JP6906468B2 - セラミックス多孔体及びその製造方法、並びに集塵用フィルタ - Google Patents

セラミックス多孔体及びその製造方法、並びに集塵用フィルタ Download PDF

Info

Publication number
JP6906468B2
JP6906468B2 JP2018069311A JP2018069311A JP6906468B2 JP 6906468 B2 JP6906468 B2 JP 6906468B2 JP 2018069311 A JP2018069311 A JP 2018069311A JP 2018069311 A JP2018069311 A JP 2018069311A JP 6906468 B2 JP6906468 B2 JP 6906468B2
Authority
JP
Japan
Prior art keywords
porous body
ceramic porous
binder
oxide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018069311A
Other languages
English (en)
Other versions
JP2019178044A (ja
Inventor
広昭 野口
広昭 野口
市川 周一
周一 市川
顕史 川上
顕史 川上
光宏 伊藤
光宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018069311A priority Critical patent/JP6906468B2/ja
Priority to US16/290,058 priority patent/US10882796B2/en
Priority to CN201910183024.8A priority patent/CN110317074B/zh
Priority to DE102019001997.0A priority patent/DE102019001997A1/de
Publication of JP2019178044A publication Critical patent/JP2019178044A/ja
Application granted granted Critical
Publication of JP6906468B2 publication Critical patent/JP6906468B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/40Mortars, concrete or artificial stone characterised by specific physical values for gas flow through the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、セラミックス多孔体及びその製造方法、並びに集塵用フィルタに関する。
ディーゼルエンジン、ガソリンエンジンなどの内燃機関や、各種の燃焼装置などから排出される排ガスには、ススなどの粒子状物質(以下、「パティキュレートマター」又は「PM」ともいう)が多量に含まれている。このPMがそのまま大気中に放出されると、環境汚染を引き起こすため、排ガスの排気系には、PMを捕集するための集塵用フィルタ(以下、「パティキュレートフィルタ」ともいう)が搭載されている。例えば、ディーゼルエンジンやガソリンエンジンから排出される排ガスの浄化に用いられる集塵用フィルタとしては、ディーゼルパティキュレートフィルタ(DPF)、ガソリンパティキュレートフィルタ(GPF)などが挙げられる。このようなDPF及びGPFには、第1端面から第2端面まで貫通して排ガスの流路を形成する複数のセルが隔壁によって区画形成されたハニカム構造を有するセラミックス多孔体が用いられている。
また、上述した排ガスには、NOx、CO及びHCなどの有害物質も含まれている。排ガス中の有害物質の量を低減し、排ガスを浄化する際には、触媒反応が広く用いられている。このような触媒反応を利用した排ガスの浄化において、触媒を担持するための触媒担体としても、上記のハニカム構造を有するセラミックス多孔体が使用されている。
ところで、集塵用フィルタに用いられるセラミックス多孔体は、その使用に伴ってススなどの粒子状物質が表面又は内部に堆積する。その結果、セラミックス多孔体の圧力損失が大きくなり、集塵用フィルタとしての機能が低下する。そこで、集塵用フィルタとしての機能を再生させるために、定期的な間隔で、セラミックス多孔体の表面又は内部に堆積した粒子状物質を燃焼させて除去する処理が行われている。
しかしながら、従来のセラミックス多孔体は、熱伝導率が小さいため、セラミックス多孔体の表面又は内部に堆積した粒子状物質を燃焼させる際に局所的な発熱が生じ、粒子状物質を十分に除去することができないという問題があった。
そこで、出願人は、特許文献1において、セラミックス多孔体の熱伝導率を高めるために、炭化珪素粒子などの骨材と金属珪素などの結合材とを含む骨格部と、骨格部の間に形成され且つ流体が流通可能な細孔部とを備えたセラミックス多孔体を提案した。
しかしながら、特許文献1のセラミックス多孔体は、結合材と骨材との濡れ性が良好ではない場合があり、結合材と骨材との接触面積が小さくなる結果、強度及び熱伝導率が低下することがあった。
そこで、出願人は、特許文献2において、結合材と骨材との濡れ性を高めることにより、強度及び熱伝導率を高めたセラミックス多孔体を提案した。
特開2002−201082号公報 特開2002−356383号公報
特許文献2のセラミックス多孔体は、一つの結合材に対して多くの骨材が接触した二次組織粒子(ドメイン)を相互に結合させた構造を有しており、ドメイン同士の間隙によって細孔が大径化されている。しかしながら、このセラミックス多孔体は、細孔の連結性が十分でないことがあり、フィルタとして用いた場合に圧力損失が高くなる。そのため、このような構造のセラミックス多孔体は、集塵用フィルタとして用いた場合、使用時に圧力損失が早期に増大してしまい、再生処理を頻繁に行わなければならないことがあった。また一般的に、集塵用フィルタに用いられるセラミックス多孔体は、粒子状物質が堆積した状態で使用されることが多いため、粒子状物質が堆積した状態における圧力損失の増大を抑制することが必要とされている。
本発明は、上記のような問題を解決するためになされたものであり、強度及び熱伝導率が高く、使用時における圧力損失の増大を抑制することが可能なセラミックス多孔体及びその製造方法、並びに集塵用フィルタを提供することを目的とする。
本発明者らは、骨材及び結合材を含む骨格部と、前記骨格部の間に形成され且つ流体が流通可能な細孔部とを備えるセラミックス多孔体において、細孔径が1〜10μmの細孔の細孔容積率、及び結合材の表面積に対する骨材と結合材との接触面積の割合が、セラミックス多孔体の強度、熱伝導率及び圧力損失と密接に関係しているという知見に基づき、当該細孔容積率及び当該接触面積の割合を所定の範囲に制御することにより、上記の問題を解決し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、骨材及び結合材を含む骨格部と、前記骨格部の間に形成され且つ流体が流通可能な細孔部とを備え、
前記細孔部は、細孔径が1〜10μmの細孔の細孔容積率が45%以上であり、且つ前記結合材の表面積に対する前記骨材と前記結合材との接触面積の割合が20〜60%であり、
骨格部が、2種以上の成分を含有する焼成助剤に由来する酸化物をさらに含み、前記酸化物における融点が最も低い二元系酸化物の割合が25〜50質量%であり、且つ二元系酸化物が、焼成温度以下の融点を有する、セラミックス多孔体である。
また、本発明は、骨材と、結合材と、2種以上の成分を含有する焼成助剤と、バインダとを含み、前記骨材と前記結合材との質量割合が65:35〜85:15である坏土を成形して成形体を得る工程と、
前記結合材の融点以上且つ前記結合材の融点+50℃以下の温度で前記成形体を1〜4時間焼成する工程と
を含み、
前記焼成助剤は前記焼成時に酸化物を生成し、前記酸化物において融点が最も低い二元系酸化物の割合が25〜50質量%となり、且つ二元系酸化物が、前記焼成温度以下の融点を有する、セラミックス多孔体の製造方法である。
さらに、本発明は、上記のセラミックス多孔体を有する集塵用フィルタである。
本発明によれば、強度及び熱伝導率が高く、使用時における圧力損失の増大を抑制することが可能なセラミックス多孔体及びその製造方法、並びに集塵用フィルタを提供することができる。
実施の形態2のセラミックス多孔体を第1端面側からみた平面図である。 図1のA−A’断面を示す断面図である。 実施の形態3のセラミックス多孔体を第1端面側からみた平面図である。 図3のB−B’断面を示す断面図である。
以下、本発明のセラミックス多孔体及びその製造方法、並びに集塵用フィルタの好適な実施の形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。各実施の形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施の形態の構成要素を適宜組み合わせてもよい。
(実施の形態1)
本実施の形態のセラミックス多孔体は、骨材及び結合材を含む骨格部と、骨格部の間に形成され且つ流体が流通可能な細孔部とを備える。
ここで、細孔部の細孔径及び細孔容積率は、セラミックス多孔体の圧力損失及び強度と関係しており、細孔径が大きな細孔の細孔容積率を高くすることにより、圧力損失の増大を抑制することができる一方、強度が低下するという傾向がある。そのため、細孔部の細孔径及び細孔容積率は、セラミックス多孔体の圧力損失と強度とのバランスが得られるように制御することが要求される。
そこで、本実施の形態のセラミックス多孔体では、細孔径が1〜10μmの細孔の細孔容積率(以下、「細孔容積率」と略すことがある)を45%以上に制御している。
ここで、細孔径を1〜10μmとした理由は、セラミックス多孔体の圧力損失及び強度に対する影響が大きいためである。
細孔容積率を45%以上とすることにより、圧力損失の増大抑制と強度の向上とを両立させることができる。特に、圧力損失は、初期(使用前)の圧力損失はもちろんのこと、使用時における圧力損失(スス堆積時の圧力損失)についても増大を抑制することができる。また、この細孔容積率は、上記の効果を安定して得る観点から、好ましくは50%以上、さらに好ましくは55%以上である。一方、この細孔容積率の上限は、特に限定されないが、一般的に90%、好ましくは85%、より好ましくは80%である。
なお、本明細書において「細孔径」とは、JIS R1655:2003に準拠し、水銀圧入法によって求めた細孔分布における細孔径を意味する。
また、骨格部における骨材と結合材との接触面積は、セラミックス多孔体の強度、熱伝導率及び圧力損失と関係している。例えば、この接触面積が小さいと、強度が低下すると共に、熱伝導のパスが細くなるため熱伝導性も低下してしまう。一方、接触面積が大きいと、細孔の連結性が低下してしまい、圧力損失が大きくなる。
そこで、本実施の形態のセラミックス多孔体では、結合材の表面積に対する骨材と結合材との接触面積の割合(以下、「接触面積率」ということがある)を60%以下に制御している。この接触面積率を上記の範囲に制御することにより、細孔の連通性の向上によって圧力損失の増大を抑制することができる。一方、本実施の形態のセラミックス多孔体では、強度低下を防止する観点から、接触面積率を20%以上に制御している。接触面積率は、熱伝導率の低下を防止する観点から、30%以上が好ましい。また、接触面積率の下限は、強度、熱伝導率とスス付き圧力損失のバランスの観点から、35〜45%の範囲とすることがより好ましい。
なお、本明細書において「結合材の表面積に対する骨材と結合材との接触面積の割合」は、次の方法によって算出することができる。まず、セラミックス多孔体から、流体の流通方向と平行な方向の切断面を有する試験片を切り出す。次に、試験片の切断面を樹脂に埋設した後、この切断面を研磨してSEM(走査型電子顕微鏡)を用いて観察し、その観察写真の画像解析を行う。画像解析は、得られた解析写真をもとにして、骨材と結合材との接触部の曲線、及び結合材の外縁部の曲線の長さをそれぞれ測定し、骨材と結合材との接触部の曲線を「骨材と結合材との接触面積」、結合材の外縁部の曲線の長さを「結合材の表面積」とそれぞれ推定する。そして、「骨材と結合材との接触部の曲線の長さ(骨材と結合材との接触面積)/結合材の外縁部の曲線の長さ(結合材の表面積)×100」によって、接触面積の割合を算出する。
骨格部に用いられる骨材としては、特に限定されず、当該技術分野において公知のものを用いることができる。その中でも骨材は、炭化珪素、窒化珪素、窒化アルミニウム、ムライト、酸化チタン又はこれを含む複合酸化物(例えば、チタン酸アルミニウム)であることが好ましい。このような材料を骨材として用いることにより、強度及び耐熱衝撃性に優れたセラミックス多孔体を得ることができる。
骨材の平均粒径は、好ましくは40μm以下、より好ましくは30μm以下である。このような範囲の平均粒径を有する骨材を用いることにより、粗大な骨格部が形成され難くなり、骨格部の間に連通性が良好な細孔部が形成され易くなる。また、骨材の平均粒径の下限は、特に限定されないが、好ましくは10μm、より好ましくは15μmである。
ここで、本明細書において「平均粒径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
骨格部に用いられる結合材としては、特に限定されず、当該技術分野において公知のものを用いることができる。その中でも結合材は、金属珪素、炭化珪素、酸化アルミニウム及びこれを含む複合酸化物(例えば、コージェライト)からなる群から選択される少なくとも1種であることが好ましい。このような結合材を、骨材に対する比率を適切に選択して用いることにより、熱伝導性に優れたセラミックス多孔体を得ることができる。
なお、炭化珪素は、骨材としても用いられるが、一緒に使用される骨材の種類や焼成温度によっては結合材としても機能する。例えば、骨材である炭化珪素と共に、Si及びCを含む有機物を原料として用いた場合、当該有機物が約1800℃で反応焼結することで生成した炭化珪素が結合材として機能する。
骨格部は、2種以上の成分を含有する焼成助剤に由来する酸化物をさらに含むことができる。ここで、焼成助剤に由来する酸化物の種類は、使用する焼成助剤の種類及び焼成温度から特定することができる。
この酸化物において、融点が最も低い二元系酸化物の割合は、25〜50質量%であることが好ましい。融点が最も低い二元系酸化物の割合が50質量%を超えると、粗大な骨格部が形成され易くなり、細孔の連通性が十分に確保されない場合がある。一方、融点が最も低い二元系酸化物の割合が25質量%未満であると、接触面積率の低下によって、強度及び熱伝導率が十分に確保されない場合がある。
ここで、焼成助剤に由来する酸化物の融点は、焼成助剤に含有される金属元素の酸化物の平衡状態図から特定することができる。また、融点が最も低い二元系酸化物の割合は、焼成助剤に含まれる成分の種類及びその割合を調整することによって制御することができる。さらに、融点が最も低い二元系酸化物の割合は、原料の蛍光X線分析(XRF)による組成分析を行い、原料の仕込量から焼成助剤に由来する各酸化物の質量割合を求めた後、これらの酸化物に占める融点が最も低い二元系酸化物の質量割合を算出すればよい。
焼成助剤に含有される成分としては、特に限定されず、当該技術分野において公知のものを用いることができる。焼成助剤は、アルカリ土類金属元素を含む化合物を一般に含有する。アルカリ土類金属を含む化合物の例としては、カルシウム、マグネシウム又はストロンチウムのフッ化物、炭化物、塩化物、珪化物、炭酸塩、水酸化物、酸化物、無機酸塩、有機酸塩などが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。また、焼成助剤は、焼成助剤の融点を制御する観点から、アルカリ土類金属元素以外の元素を含む化合物をさらに含有してもよい。
1つの実施形態において、焼成助剤は、ストロンチウムを含む化合物と、アルミニウムを含む化合物と、珪素を含む化合物との混合物である。ここで、各化合物は、2種以上の金属元素を含有していてもよい。例えば、珪素を含む化合物は、アルミニウムを含んでいてもよい。その中でも好ましい焼成助剤は、酸化ストロンチウム、二酸化珪素及び酸化アルミニウムの混合物、又は焼成時に当該混合物を与える原料である。焼成時に酸化ストロンチウムを与える原料としては炭酸ストロンチウムが挙げられる。焼成時に二酸化珪素を与える原料としては、石英及びコロイダルシリカが挙げられる。焼成時に酸化アルミニウムを与える原料としては、水酸化アルミニウムが挙げられる。二酸化珪素及び酸化アルミニウムを同時に与える原料としては、ケイ酸塩化合物、例えば、ベントナイト、モンモリロナイト、カオリン、セピオライトなどの粘土鉱物が挙げられる。このような混合物又は当該混合物を与える原料から構成される焼成助剤を用いる場合、焼成時に、ストロンチウムと珪素との二元系酸化物(Si−Sr系酸化物)及びAl23が生成し、Si−Sr系酸化物が、最も融点が低い二元系酸化物となる。
セラミックス多孔体の気孔率は、特に限定されないが、好ましくは30%以上、より好ましくは35%以上、さらに好ましくは39%以上である。このような範囲の気孔率とすることにより、セラミックス多孔体をフィルタとして用いた場合に流体の流れ易さ(ろ過速度)を確保することができる。また、セラミックス多孔体の気孔率は、好ましくは50%以下、より好ましくは45%以下である。このような範囲の気孔率とすることにより、セラミックス多孔体をフィルタとして用いた場合に圧力損失の増大を抑制することができる。
ここで、本明細書において「気孔率」とは、JIS R1655:2003に準拠し、水銀圧入法によって測定される気孔率を意味する。
上記の特徴を有するセラミックス多孔体は、骨材と、結合材と、2種以上の成分を含有する焼成助剤と、バインダとを含み、骨材と結合材との質量割合が65:35〜85:15である坏土を成形して成形体を得る工程と、結合材の融点以上且つ結合材の融点+50℃以下の温度で成形体を1〜4時間焼成する工程とを含む方法によって製造することができる。特に、焼成助剤を配合し、所定の焼成温度及び焼成時間で焼成することにより、焼成時に焼成助剤が反応して生成する酸化物(例えば、珪酸塩化合物)のガラス相及び結晶相の発生割合によって接触面積率を所定の範囲に制御することができる。このような焼成助剤の機能を得るためには、焼成時に生成する焼成助剤の酸化物において、融点が最も低い二元系酸化物が焼成温度以下の融点を有すると共に、この二元系酸化物の割合が25〜50質量%となるようにする必要がある。この二元系酸化物の融点及び割合は、焼成助剤に使用する成分の種類及び配合割合を制御することによって調整することができる。例えば、3成分を含む焼成助剤を用いる場合、融点が最も低い二元系酸化物を与える2成分に対して、残りの成分の配合割合を増大させることにより、酸化物の結晶相の割合を高めることができる。したがって、上記のような条件で焼成を行うことにより、接触面積率を所定の範囲に制御することが可能となり、細孔の連通性を向上させることができる。
上記の二元系酸化物の融点としては、特に限定されないが、1300℃以上であることが好ましい。この融点が1300℃未満であると、酸化物のガラス相が焼成時の昇温過程で生成しても、所望の形態で骨格部中に留まり難い傾向にある。その結果、細孔容積率及び接触面積率を上記の範囲に制御し難くなることがある。一方、この融点が1450℃を超えると、焼成時に酸化物のガラス相が生成し難くなり、所望の形態で骨格部中に存在させ難くなる。その結果、細孔容積率及び接触面積率を上記の範囲に制御し難くなることがある。
焼成助剤の配合量は、特に限定されないが、骨材及び結合材の合計量に対して、一般に5質量%以下である。
バインダとしては、特に限定されず、当該技術分野において公知のものを用いることができる。バインダの例としては、メチルセルロース、ヒドロキシプロポキシルメチルセルロースなどの有機バインダが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
バインダの配合量は、特に限定されないが、骨材及び結合材の合計量に対して、一般に5〜8質量%である。
また、セラミックス多孔体の気孔率を調整するために、坏土の原料に造孔剤を配合してもよい。造孔剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。造孔剤の例としては、グラファイト、小麦粉、澱粉、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレートなどが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
造孔剤の配合量は、その種類及び気孔率の程度に応じて適宜調整すればよく、特に限定されない。
坏土は、上記の原料を混合及び混錬することによって得ることができる。原料の混合及び混錬方法としては、特に限定されず、当該技術分野において公知の方法によって行うことができる。例えば、原料の混合及び混錬は、ニーダー、真空土練機などを用いて行うことができる。
坏土の成形方法も同様に、特に限定されず、当該技術分野において公知の方法によって行うことができる。
成形体は、成形体中に含まれるバインダを除去(脱脂)するために、焼成の前に仮焼してもよい。仮焼は、金属珪素が溶融する温度よりも低い温度で行うことが好ましい。具体的には、150〜700℃程度の所定の温度で一旦保持してもよく、また、所定温度域で昇温速度を50℃/時間以下に遅くして仮焼してもよい。
所定の温度で一旦保持する手法については、使用したバインダの種類及び量に応じて、一温度水準のみの保持でも複数温度水準での保持でもよく、更に複数温度水準で保持する場合には、互いに保持時間を同じにしても異ならせてもよい。また、昇温速度を遅くする手法についても同様に、ある一温度区域間のみ遅くしても複数区間で遅くしてもよく、更に複数区間の場合には、互いに速度を同じとしても異ならせてもよい。
仮焼の雰囲気については、酸化雰囲気でもよいが、成形体中にバインダが多く含まれる場合には、仮焼中にバインダが酸素で激しく燃焼して成形体温度が急激に高くなることがあるため、N2、Arなどの不活性雰囲気で行うことによって、成形体の異常昇温を抑制してもよい。この異常昇温の抑制は、熱膨張係数の大きい(熱衝撃に弱い)原料を用いた場合に重要な制御である。バインダを、例えば主原料(骨材及び結合材)の合計量に対して20質量%以上配合した場合には、不活性雰囲気にて仮焼するのが好ましい。また、骨材が炭化珪素粒子である場合の他、高温での酸化が懸念されるものである場合にも、少なくとも酸化が始まる温度以上では、前記のような不活性雰囲気で仮焼を行うことによって、成形体の酸化を抑制することが好ましい。
仮焼及びそれに続く焼成は、同一若しくは別個の炉にて、別工程として行ってもよく、又は同一炉での連続工程としてもよい。仮焼及び焼成を異なる雰囲気にて実施する場合には前者も好ましい手法であるが、総焼成時間、炉の運転コストなどの見地からは後者の手法も好ましい。
焼成雰囲気については、骨材の種類に応じて決定すればよい。例えば、高温での酸化が懸念される骨材を用いた場合には、少なくとも酸化が始まる温度以上の温度域においては、N2、Arなどの非酸化雰囲気とすることが好ましい。
上記のようにして製造される本実施の形態のセラミックス多孔体は、細孔容積率及び接触面積率が適切な範囲に制御されているため、強度及び熱伝導率が高く、使用時における圧力損失の増大を抑制することができる。
(実施の形態2)
本実施の形態のセラミックス多孔体は、第1端面から第2端面まで貫通して流体の流路を形成する複数のセルが隔壁によって区画形成されたハニカム構造を有する。このようなハニカム構造を有するセラミックス多孔体では、隔壁がセラミックス多孔体に相当する。また、ハニカム構造を有するセラミックス多孔体において、「流体の流通方向と平行な方向」とは、セルが延びる方向に直交する方向のことを意味し、「流体の流通方向」とは、隔壁の厚み方向のことを意味する。
本実施の形態のセラミックス多孔体は、所定のハニカム構造を有することを除けば実施の形態1のセラミックス多孔体と同一である。よって、ここでは、実施の形態1と共通する構成については説明を省略し、実施の形態1と異なる箇所のみについて説明する。
図1は、本実施の形態のセラミックス多孔体を第1端面側からみた平面図である。また、図2は、図1のA−A’断面を示す断面図である。
図1及び2に示されるように、セラミックス多孔体10は、第1端面1aから第2端面1bまで貫通して流体の流路を形成する複数のセル2を区画形成する隔壁3を備える。また、セラミックス多孔体10の外周面には外周壁4が形成されている。
隔壁3の厚さとしては、特に限定されないが、好ましくは100〜500μm、より好ましくは150〜400μm、さらに好ましくは150〜350μmである。このような厚さの隔壁とすることにより、隔壁3の強度を確保しつつ、圧力損失の上昇を抑制することができる。
セラミックス多孔体10におけるセル密度としては、特に限定されないが、好ましくは15〜100セル/cm2、より好ましくは30〜65セル/cm2、さらに好ましくは30〜50セル/cm2である。このようなセル密度とすることにより、セラミックス多孔体を集塵用フィルタとして用いた場合に、圧力損失の上昇を抑制しつつ、粒子状物質の捕集効率を向上させることができる。
セル2の形状としては、特に限定されず、当該技術分野において公知の形状とすることができる。ここで、本明細書において「セル2の形状」とは、セル2が延びる方向に直交する方向の断面におけるセル2の形状を意味する。セル2の形状の例としては、四角形、六角形、八角形などが挙げられる。
セラミックス多孔体10の形状としては、特に限定されず、端面(第1端面1a及び第2端面1b)が円形の柱状(円柱形状)、端面がオーバル形状の柱状、端面が多角形(例えば、四角形、五角形、六角形、七角形、八角形など)の柱状などにすることができる。
セラミックス多孔体10の第1端面1aから第2端面1bまでの長さ、及びセル2が延びる方向に直交する断面の大きさは、セラミックス多孔体の使用状況及び使用用途などに応じて適宜設定すればよく、特に限定されない。
本実施の形態のセラミックス多孔体は、隔壁3の表面及び隔壁3の細孔のうちの少なくとも一方に排ガス浄化用の触媒が担持されていてもよい。触媒としては、当該技術分野において公知のものを用いることができる。触媒の例としては、白金、パラジウム、ロジウム、イリジウム、銀などの貴金属、アルミナ、ジルコニア、チタニア、セリア、酸化鉄などの酸化物などが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
上記のような特徴を有するセラミックス多孔体10は、成形体を押出成形によって製造すること以外は、実施の形態1と同様にして行うことができる。押出成形は、所望のセル形状、隔壁厚さ、セル密度を有する口金を用いて行うことができる。このようにして得られたハニカム構造を有する成形体は、焼成前に乾燥させてもよい。乾燥方法としては、特に限定されず、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥などを用いることができる。これらの中でも、誘電乾燥、マイクロ波乾燥又は熱風乾燥を単独又は組み合せて行うことが好ましい。また、乾燥条件としては、特に限定されないが、乾燥温度30〜150℃、乾燥時間1分〜2時間とすることが好ましい。本明細書において「乾燥温度」とは、乾燥を行う雰囲気の温度のことを意味する。
(実施の形態3)
本実施の形態のセラミックス多孔体は、ハニカム構造が、第1端面における所定のセルの開口部、及び第2端面における残余のセルの開口部に設けられた目封止部をさらに含む点で、実施の形態3のセラミックス多孔質体と異なる。よって、ここでは、実施の形態2と共通する構成については説明を省略し、実施の形態2と異なる箇所のみについて説明する。
図3は、本実施の形態のセラミックス多孔体を第1端面側からみた平面図である。また、図4は、図3のB−B’断面を示す断面図である。
図3及び4に示されるように、本実施の形態のセラミックス多孔体10は、第1端面1aにおける所定のセル2の開口部、及び第2端面1bにおける残余のセル2の開口部に設けられ目封止部5を有する。このように構成されたセラミックス多孔体は、内燃機関、又は各種燃焼装置から排出される排ガスを浄化するパティキュレートフィルタとして用いることができる。
目封止部5を備えたセラミックス多孔体10を製造する場合には、ハニカム構造を有する成形体又は当該成形体を乾燥した乾燥体のセル2の開口部を、目封止材によって目封止する。セル2の開口部を目封止する方法としては、セルの開口部に目封止材を充填する方法を用いればよい。目封止材を充填する方法としては、従来公知の目封止部5を備えたハニカム構造体の製造方法に準じて行うことができる。目封止部5を形成するための目封止部形成原料は、従来公知のハニカム構造体の製造方法において用いられる目封止部形成原料を用いることができる。
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
平均粒径が25μmの炭化珪素(骨材)と金属珪素(結合材)との質量割合が75:25のセラミックス原料100質量部に、酸化ストロンチウム、二酸化珪素及び酸化アルミニウムの混合物(焼成助剤)1.62質量部、メチルセルロース(バインダ)7.0質量部及び水を加え、ニーダーで混練し、次に真空土練機で土練して坏土を得た。なお、酸化ストロンチウムと二酸化珪素と酸化アルミニウムとの質量割合は、0.49:0.19:0.95とした。得られた坏土を、押出成形機にて、端面の一辺の長さ38mm、隔壁の厚さ300μm、セル密度45セル/cm2の四角柱状のハニカム形状に成形した。次に、得られた成形体をマイクロ波乾燥させた後、80℃で熱風乾燥させて乾燥体を得た。次に、得られた乾燥体を大気中、450℃で5時間脱脂した後、脱脂した乾燥体を、Ar雰囲気中、1430℃で2時間焼成してセラミックス多孔体を得た。
(実施例2)
骨材の平均粒径を33μmに変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例3)
骨材の平均粒径を23μmに変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例4)
焼成助剤の配合割合を1.35質量%、及び酸化ストロンチウムと二酸化珪素と酸化アルミニウムとの質量割合を0.21:0.19:0.95に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例5)
骨材の平均粒径を33μmに変更したこと以外は実施例4と同様にしてセラミックス多孔体を得た。
(実施例6)
骨材の平均粒径を23μmに変更したこと以外は実施例4と同様にしてセラミックス多孔体を得た。
(実施例7)
焼成温度を1410℃に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例8)
焼成温度を1450℃に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例9)
焼成時間を1時間に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(実施例10)
焼成時間を4時間に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
(比較例1)
炭化珪素(骨材)と金属珪素(結合材)との質量割合が80:20のセラミックス原料100質量部に、酸化ストロンチウム、二酸化珪素及びアルミナの混合物(焼成助剤)2.07質量部、メチルセルロース(バインダ)7.0質量部及び水を加え、ニーダーで混練し、次に真空土練機で土練して坏土を得た。この坏土を用い、実施例1と同様にしてセラミックス多孔体を得た。なお、酸化ストロンチウムと二酸化珪素と酸化アルミニウムとの質量割合は、0.98:0.62:0.47とした。
(比較例2)
骨材の平均粒径を23μmに変更したこと以外は比較例1と同様にしてセラミックス多孔体を得た。
(比較例3)
骨材の平均粒径を15μm、焼成助剤の配合割合を1.21質量%、及び酸化ストロンチウムと二酸化珪素と酸化アルミニウムとの質量割合を0.07:0.19:0.95に変更したこと以外は実施例1と同様にしてセラミックス多孔体を得た。
上記の実施例及び比較例で得られたセラミックス多孔体について、下記の評価を行った。
(融点が最も低い二元系酸化物の割合)
上記の実施例及び比較例で使用した焼成助剤及び焼成温度に基づくと、ストロンチウムと珪素との二元系酸化物(Si−Sr系酸化物:融点1350℃)及びAl23(融点2072℃)が、焼成助剤に由来する酸化物として生成する。そこで、原料の蛍光X線分析(XRF)を行い、原料の仕込量から焼成後に生成する酸化物中に含まれるSi−Sr系酸化物及びAl23の質量割合を求めた。その後、これらの酸化物に占めるSi−Sr系酸化物の割合を算出した。
(接触面積率)
セルの延びる方向と直交する方向にセラミックス多孔体を切断して試験片を得た。次に、試験片の切断面を樹脂に埋設した後、この切断面を研磨して内部断面を得た。次に、これを走査型電子顕微鏡(SEM)により観察し、その観察写真の画像解析を行った。SEM観察は、倍率500倍で撮像した。得られた解析写真において、骨材と結合材との接触部の曲線、及び結合材の外縁部の曲線の長さをそれぞれ測定し、結合材の外縁部の曲線の長さに対する骨材と結合材との接触部の曲線の長さの割合を、接触面積率とした。
(細孔容積率)
水銀ポロシメータ(マイクロメリティクス社製オートポアIV9500)を用いて、細孔径が1〜10μmの細孔の細孔容積率を測定した。
(気孔率)
水銀ポロシメータ(マイクロメリティクス社製オートポアIV9500)を用いて、気孔率を測定した。
(スス付き圧力損失上昇差)
スス付き圧力損失上昇差とは、ススが堆積していないときの圧力損失(P1)とススを堆積させた後の圧力損失(P2)との差(P2−P1)の値を意味する。
スス付き圧力損失上昇差は、以下のようにして測定した。まず、ススを捕集させていない状態で0.15mm3/分の空気を流し、セラミックス多孔体の前後の圧力差(圧力損失P1)を測定した。次に、スートジェネレーター(東京ダイレック株式会社製、「CAST2」)により発生させたススをセラミックス多孔体に0.1g/L堆積させた。その後、ススを堆積させた状態のセラミックスス多孔体に0.15mm3/分の空気を流し、そのときの圧力差(圧力損失P2)を測定した。その後、式:P2−P1により、スス付き圧力損失上昇差を算出した。なお、空気を流す際には、隔壁の厚さ方向に平行に空気が流れるようにセラミックスス多孔体に目封止を予め施した。
(熱伝導率)
定常法(ヒートフローメーターによる熱流計法)によって熱伝導率を測定した。
(アイソスタティック強度)
アイソスタティック強度の測定は、社団法人自動車技術会発行の自動車規格(JASO規格)のM505−87で規定されているアイソスタティック破壊強度試験に基づいて行った。アイソスタティック破壊強度試験は、ゴムの筒状容器に、セラミックス多孔体を入れてアルミ製板で蓋をし、水中で等方加圧圧縮を行う試験である。すなわち、アイソスタティック破壊強度試験は、缶体に、セラミックス多孔体が外周面把持される場合の圧縮負荷加重を模擬した試験である。このアイソスタティック破壊強度試験によって測定されるアイソスタティック強度は、セラミックス多孔体が破壊したときの加圧圧力値(MPa)で示される。なお、この評価において、アイソスタティック強度(MPa)が1.5MPaを超えたものを〇、アイソスタティック強度(MPa)が1.5MPa以下であったものを×と表す。
上記の各評価結果を表1及び表2に示す。
Figure 0006906468
Figure 0006906468
表1及び2に示されるように、細孔容積率が45%以上であり、且つ接触面積率が20〜60%である実施例1〜10のセラミックス多孔体は、スス付き圧力損失上昇差が小さく、しかも熱伝導率及びアイソスタティック強度が高かった。これに対して細孔容積率及び/又は接触面積率が当該範囲を満たさない比較例1〜3のセラミックス多孔体は、スス付き圧力損失上昇差が大きいか、又は熱伝導率及びアイソスタティック強度が低かった。
以上の結果からわかるように、本発明によれば、強度及び熱伝導率が高く、使用時における圧力損失の増大を抑制することが可能なセラミックス多孔体及びその製造方法、並びに集塵用フィルタを提供することができる。
1a 第1端面
1b 第2端面
2 セル
3 隔壁
4 外周壁
5 目封止部
10 セラミックス多孔体

Claims (9)

  1. 骨材及び結合材を含む骨格部と、前記骨格部の間に形成され且つ流体が流通可能な細孔部とを備え、
    前記細孔部は、細孔径が1〜10μmの細孔の細孔容積率が45%以上であり、且つ前記結合材の表面積に対する前記骨材と前記結合材との接触面積の割合が20〜60%であり、
    骨格部が、2種以上の成分を含有する焼成助剤に由来する酸化物をさらに含み、前記酸化物における融点が最も低い二元系酸化物の割合が25〜50質量%であり、且つ二元系酸化物が、焼成温度以下の融点を有する、セラミックス多孔体。
  2. 前記骨材が、炭化珪素、酸化チタン又はそれらの混合物である、請求項1に記載のセラミックス多孔体。
  3. 前記結合材が、金属珪素、酸化アルミニウム及びコージェライトからなる群から選択される少なくとも1種である、請求項1又は2に記載のセラミックス多孔体。
  4. 気孔率が30〜55%である、請求項1〜のいずれか一項に記載のセラミックス多孔体。
  5. 第1端面から第2端面まで貫通して前記流体の流路を形成する複数のセルが隔壁によって区画形成されたハニカム構造を有する、請求項1〜のいずれか一項に記載のセラミックス多孔体。
  6. 前記ハニカム構造は、前記第1端面における所定の前記セルの開口部、及び前記第2端面における残余の前記セルの開口部に設けられた目封止部を含む、請求項に記載のセラミックス多孔体。
  7. 骨材と、結合材と、2種以上の成分を含有する焼成助剤と、バインダとを含み、前記骨材と前記結合材との質量割合が65:35〜85:15である坏土を成形して成形体を得る工程と、
    前記結合材の融点以上且つ前記結合材の融点+50℃以下の温度で前記成形体を1〜4時間焼成する工程と
    を含み、
    前記焼成助剤は前記焼成時に酸化物を生成し、前記酸化物において融点が最も低い二元系酸化物の割合が25〜50質量%となり、且つ二元系酸化物が、前記焼成温度以下の融点を有する、セラミックス多孔体の製造方法。
  8. 前記二元系酸化物の融点が1300〜1450℃である、請求項に記載のセラミックス多孔体の製造方法。
  9. 請求項1〜のいずれか一項に記載のセラミックス多孔体を有する集塵用フィルタ。
JP2018069311A 2018-03-30 2018-03-30 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ Active JP6906468B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018069311A JP6906468B2 (ja) 2018-03-30 2018-03-30 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
US16/290,058 US10882796B2 (en) 2018-03-30 2019-03-01 Ceramic porous body and method for producing the same, and dust collecting filter
CN201910183024.8A CN110317074B (zh) 2018-03-30 2019-03-12 陶瓷多孔体及其制造方法、以及集尘用过滤器
DE102019001997.0A DE102019001997A1 (de) 2018-03-30 2019-03-21 Poröser Keramikkörper und Verfahren zu dessen Herstellung und Staubsammelfilter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069311A JP6906468B2 (ja) 2018-03-30 2018-03-30 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ

Publications (2)

Publication Number Publication Date
JP2019178044A JP2019178044A (ja) 2019-10-17
JP6906468B2 true JP6906468B2 (ja) 2021-07-21

Family

ID=67910080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069311A Active JP6906468B2 (ja) 2018-03-30 2018-03-30 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ

Country Status (4)

Country Link
US (1) US10882796B2 (ja)
JP (1) JP6906468B2 (ja)
CN (1) CN110317074B (ja)
DE (1) DE102019001997A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020203924A1 (de) 2020-03-26 2021-09-30 Hug Engineering Ag Formkörper, Verbundkörper, Verfahren zur Herstellung eines Formkörpers und Verfahren zur Herstellung eines Verbundkörpers
JP7325473B2 (ja) * 2021-03-30 2023-08-14 日本碍子株式会社 多孔質ハニカム構造体及びその製造方法
CN114956853A (zh) * 2022-05-23 2022-08-30 山东国瓷功能材料股份有限公司 蜂窝陶瓷、其制备方法、应用及蜂窝过滤器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136319B2 (ja) * 2000-04-14 2008-08-20 日本碍子株式会社 ハニカム構造体及びその製造方法
EP1332194B1 (en) * 2000-10-06 2007-01-03 3M Innovative Properties Company Ceramic aggregate particles
JP4307781B2 (ja) * 2001-03-30 2009-08-05 日本碍子株式会社 炭化珪素質多孔体及びその製造方法
KR100629195B1 (ko) * 2002-03-29 2006-09-28 니뽄 가이시 가부시키가이샤 탄화규소질 다공체 및 그 제조 방법
JP4426459B2 (ja) * 2002-11-20 2010-03-03 日本碍子株式会社 炭化珪素質多孔体及びその製造方法、並びにハニカム構造体
JP4394343B2 (ja) * 2002-12-11 2010-01-06 日本碍子株式会社 炭化珪素質多孔体及びその製造方法、並びにハニカム構造体
JPWO2005002709A1 (ja) * 2003-06-23 2006-08-10 イビデン株式会社 ハニカム構造体
JP5369029B2 (ja) * 2010-03-12 2013-12-18 日本碍子株式会社 ハニカムフィルタ
JP5419769B2 (ja) * 2010-03-25 2014-02-19 日本碍子株式会社 ゼオライト構造体及びその製造方法
JP5580090B2 (ja) * 2010-03-25 2014-08-27 日本碍子株式会社 ゼオライト構造体及びその製造方法
JP5587003B2 (ja) * 2010-03-25 2014-09-10 日本碍子株式会社 ゼオライト構造体の製造方法
JP5419772B2 (ja) * 2010-03-26 2014-02-19 日本碍子株式会社 ゼオライトハニカム構造体
EP2832713B1 (en) * 2012-03-28 2019-02-27 NGK Insulators, Ltd. Porous material and honeycomb structure
JP5926593B2 (ja) * 2012-03-28 2016-05-25 日本碍子株式会社 多孔質材料及びその製造方法、並びにハニカム構造体
JP2012152750A (ja) * 2012-04-17 2012-08-16 Hitachi Metals Ltd ハニカム構造体
JP6285225B2 (ja) * 2014-03-12 2018-02-28 日本碍子株式会社 ハニカム構造体
JP6654085B2 (ja) * 2016-03-31 2020-02-26 日本碍子株式会社 多孔質材料、及び多孔質材料の製造方法並びにハニカム構造体
JP6324563B2 (ja) * 2017-02-28 2018-05-16 日本碍子株式会社 多孔質材料の製造方法

Also Published As

Publication number Publication date
CN110317074B (zh) 2022-12-16
US20190300445A1 (en) 2019-10-03
CN110317074A (zh) 2019-10-11
JP2019178044A (ja) 2019-10-17
US10882796B2 (en) 2021-01-05
DE102019001997A1 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
US11033885B2 (en) Ceramic honeycomb structure and its production method
JP5864329B2 (ja) ハニカム構造体
JP5746986B2 (ja) 排ガス浄化フィルタの製造方法
JP6906468B2 (ja) セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP7289813B2 (ja) セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
US10232298B2 (en) Honeycomb structure
US11691137B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
US10632409B2 (en) Honeycomb structure
JP5856793B2 (ja) チタン酸アルミニウム質ハニカム構造体
JP5707203B2 (ja) ハニカム構造体
JP7038585B2 (ja) セラミックス多孔体及び集塵用フィルタ
JP2022128501A (ja) セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP7318841B1 (ja) セラミックハニカム構造体及びその製造方法
JP7205671B1 (ja) 炭化珪素質セラミックハニカム構造体及びその製造方法
JP2020199496A (ja) フィルタ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150