JP6896008B2 - Substrate processing equipment and substrate processing method - Google Patents

Substrate processing equipment and substrate processing method Download PDF

Info

Publication number
JP6896008B2
JP6896008B2 JP2019050635A JP2019050635A JP6896008B2 JP 6896008 B2 JP6896008 B2 JP 6896008B2 JP 2019050635 A JP2019050635 A JP 2019050635A JP 2019050635 A JP2019050635 A JP 2019050635A JP 6896008 B2 JP6896008 B2 JP 6896008B2
Authority
JP
Japan
Prior art keywords
levitation
region
substrate
supply
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050635A
Other languages
Japanese (ja)
Other versions
JP2020152480A (en
Inventor
裕滋 安陪
裕滋 安陪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2019050635A priority Critical patent/JP6896008B2/en
Priority to CN202010131552.1A priority patent/CN111715473B/en
Publication of JP2020152480A publication Critical patent/JP2020152480A/en
Application granted granted Critical
Publication of JP6896008B2 publication Critical patent/JP6896008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

この発明は、液晶表示装置や有機EL表示装置等のFPD用ガラス基板、半導体ウェハ、フォトマスク用ガラス基板、カラーフィルター用基板、記録ディスク用基板、太陽電池用基板、電子ペーパー用基板等の精密電子装置用基板、半導体パッケージ用基板(以下、単に「基板」と称する)にノズルから処理液を供給する基板処理技術に関するものである。 The present invention relates to precision such as FPD glass substrates such as liquid crystal display devices and organic EL display devices, semiconductor wafers, photomask glass substrates, color filter substrates, recording disk substrates, solar cell substrates, and electronic paper substrates. The present invention relates to a substrate processing technology for supplying a processing liquid from a nozzle to a substrate for an electronic device and a substrate for a semiconductor package (hereinafter, simply referred to as a “board”).

半導体装置や液晶表示装置などの電子部品等の製造工程では、基板の上面に処理液を供給する基板処理装置の一例として塗布装置が用いられる。例えば特許文献1に記載の塗布装置は、基板をステージから浮上させた状態で当該基板をステージの長手方向に搬送しながら当該基板の上面に対して処理液をノズルの吐出口から供給して基板のほぼ全体に処理液を塗布する。 In the manufacturing process of electronic components such as semiconductor devices and liquid crystal display devices, a coating device is used as an example of a substrate processing device that supplies a processing liquid to the upper surface of a substrate. For example, in the coating apparatus described in Patent Document 1, the processing liquid is supplied to the upper surface of the substrate from the discharge port of the nozzle while the substrate is transported in the longitudinal direction of the stage in a state where the substrate is levitated from the stage. Apply the treatment solution to almost the entire area.

特許第5437134号Patent No. 5437134

特許文献1に記載の装置では、基板を浮上搬送するためのステージ部が、基板搬入用の浮上ステージ、異物検出ステージ(本発明の「上流側浮上領域」に相当)、塗布ステージ(本発明の「供給浮上領域」に相当)、振動防止ステージ(本発明の「下流側浮上領域」に相当)および基板搬出用の浮上ステージに分割されている。これらのステージは互いに隣接されている。しかも、各ステージでの基板の浮上量を比較すると、塗布ステージでの浮上量が最も少なく、それよりも異物検出ステージおよび振動防止ステージでの浮上量は大きく、基板搬入用および基板搬出用の浮上ステージでの浮上量はさらに大きくなっている。このように互いに隣接するステージ間で浮上量が階段状に変化している。このため、互いに隣接するステージ間を搬送される基板は境界近傍で変形する。特に、塗布ステージでは、浮上させた基板に対してノズルから処理液が供給される。このため、塗布ステージの近傍での浮上量が大きく変動して基板の変形量が大きくなると、処理液を適正に基板に供給することができず、これが塗布ムラの要因となり、基板処理の品質低下を招いてしまう。 In the apparatus described in Patent Document 1, the stage portion for levitation and transporting the substrate is a levitation stage for carrying the substrate, a foreign matter detection stage (corresponding to the "upstream levitation region" of the present invention), and a coating stage (the present invention). It is divided into a "supply levitation area"), a vibration prevention stage (corresponding to the "downstream levitation area" of the present invention), and a levitation stage for carrying out the substrate. These stages are adjacent to each other. Moreover, when comparing the levitation amount of the substrate in each stage, the levitation amount in the coating stage is the smallest, and the levitation amount in the foreign matter detection stage and the vibration prevention stage is larger than that, and the levitation for loading and unloading the substrate is large. The amount of levitation on the stage is even greater. In this way, the amount of levitation changes stepwise between the stages adjacent to each other. Therefore, the substrates transported between the stages adjacent to each other are deformed in the vicinity of the boundary. In particular, in the coating stage, the treatment liquid is supplied from the nozzle to the floated substrate. For this reason, if the amount of levitation in the vicinity of the coating stage fluctuates greatly and the amount of deformation of the substrate increases, the treatment liquid cannot be properly supplied to the substrate, which causes uneven coating and deteriorates the quality of substrate processing. Will be invited.

この発明は上記課題に鑑みなされたものであり、浮上量を階段状に変化させた状態で基板を浮上搬送しながら当該基板の上面に処理液を供給する基板処理技術において、基板への処理液の供給を良好に行うことを目的とする。 The present invention has been made in view of the above problems, and in a substrate processing technique for supplying a treatment liquid to the upper surface of the substrate while floating and transporting the substrate in a state where the floating amount is changed in a stepwise manner, the treatment liquid to the substrate is used. The purpose is to provide a good supply of.

この発明の一態様は、基板処理装置であって、上方に向けて気体を噴出する噴出口と気体を吸引する吸引口とが分散して設けられるステージ上面を有し、ステージ上面の上方に基板を浮上させる処理ステージと、処理ステージ上で浮上する基板を搬送方向に搬送する基板搬送部と、基板搬送部により搬送される基板の上面に処理液を供給するノズルと、を備え、処理ステージは、ノズルの下方に位置する供給用ステージ部材に設けられ、処理液の供給に適合する供給用浮上量で基板を浮上させる供給浮上領域と、搬送方向において供給浮上領域の上流側に位置する上流側ステージ部材に設けられ、供給用浮上量よりも大きな上流側浮上量で基板を浮上させる上流側浮上領域と、搬送方向において供給浮上領域の下流側に位置する下流側ステージ部材に設けられ、供給用浮上量よりも大きな下流側浮上量で基板を浮上させる下流側浮上領域と、上流側ステージ部材において上流側浮上領域の搬送方向の下流側で噴出口および吸引口を設けずに上流側浮上領域に隣接する緩衝領域と、下流側ステージ部材において下流側浮上領域の搬送方向の上流側で噴出口および吸引口を設けずに下流側浮上領域に隣接する緩衝領域とのうちの少なくとも一方を有し、緩衝領域と供給浮上領域との境界近傍での供給用浮上量に対する基板の浮上量の変動を緩和する変動緩和部と、を有することを特徴している。 One aspect of the present invention is a substrate processing apparatus, which has a stage upper surface in which an outlet for ejecting gas upward and a suction port for sucking gas are dispersedly provided, and a substrate is provided above the upper surface of the stage. The processing stage is provided with a processing stage for floating the gas, a substrate transporting unit for transporting the substrate floating on the processing stage in the transporting direction, and a nozzle for supplying the processing liquid to the upper surface of the substrate transported by the substrate transporting unit. , A supply levitation region that is provided on the supply stage member located below the nozzle and floats the substrate with a supply levitation amount that matches the supply of the processing liquid, and an upstream side that is located on the upstream side of the supply levitation region in the transport direction. It is provided in the upstream levitation region, which is provided on the stage member and floats the substrate with an upstream levitation amount larger than the supply levitation amount, and the downstream stage member, which is located on the downstream side of the supply levitation region in the transport direction, and is provided for supply. In the downstream levitation region where the substrate is levitated with a downstream levitation amount larger than the levitation amount, and in the upstream levitation region without providing a spout and a suction port on the downstream side in the transport direction of the upstream levitation region in the upstream stage member. It has at least one of an adjacent buffer region and a buffer region adjacent to the downstream levitation region without providing a spout and a suction port on the upstream side in the transport direction of the downstream levitation region in the downstream stage member. It is characterized by having a fluctuation mitigation portion that alleviates fluctuations in the floating amount of the substrate with respect to the floating amount for supply in the vicinity of the boundary between the buffer region and the supply floating region.

また、この発明の他の態様は、上方に向けて気体を噴出する噴出口と気体を吸引する吸引口とが分散して設けられるステージ上面を有する処理ステージによりステージ上面の上方に浮上された、基板を基板搬送部により搬送方向に搬送しながらノズルから処理液を基板の上面に供給する基板処理方法であって、処理ステージのうち、ノズルの下方に位置する供給用ステージ部材に設けられ、処理液の供給に適合する供給用浮上量で基板を浮上させる領域を供給浮上領域とし、搬送方向において供給浮上領域の上流側に位置する上流側ステージ部材に設けられ、供給用浮上量よりも大きな上流側浮上量で基板を浮上させる領域を上流側浮上領域とし、搬送方向において供給浮上領域の下流側に位置する下流側ステージ部材に設けられ、供給用浮上量よりも大きな下流側浮上量で基板を浮上させる領域を下流側浮上領域と定義するとともに、記上流側ステージ部材において上流側浮上領域の搬送方向の下流側で噴出口および吸引口を設けずに上流側浮上領域に隣接する緩衝領域と、下流側ステージ部材において下流側浮上領域の搬送方向の上流側で噴出口および吸引口を設けずに下流側浮上領域に隣接する緩衝領域とのうちの少なくとも一方を有するとき、緩衝領域を経由して基板を搬送させて緩衝領域と供給浮上領域との境界近傍での供給用浮上量に対する基板の浮上量の変動を緩和することを特徴としている。 Further, another aspect of the present invention is raised above the upper surface of the stage by a processing stage having an upper surface of the stage provided in which a spout for ejecting gas upward and a suction port for sucking gas are dispersedly provided. This is a substrate processing method in which the processing liquid is supplied from the nozzle to the upper surface of the substrate while the substrate is conveyed in the transport direction by the substrate transport unit, and is provided on the supply stage member located below the nozzle to process the processing stage. The region where the substrate is levitated with a supply levitation amount suitable for the supply of the liquid is defined as a supply levitation region, and is provided on the upstream stage member located on the upstream side of the supply levitation region in the transport direction, and is upstream larger than the supply levitation amount. The region where the substrate is levitated by the side levitation amount is defined as the upstream levitation region, which is provided on the downstream stage member located on the downstream side of the supply levitation region in the transport direction, and the substrate is provided with the downstream levitation amount larger than the supply levitation amount. The region to be levitated is defined as the downstream levitation region, and the buffer region adjacent to the upstream levitation region without providing the spout and suction port on the downstream side of the upstream levitation region in the transport direction in the upstream stage member. When the downstream stage member has at least one of a buffer region adjacent to the downstream levitation region on the upstream side in the transport direction of the downstream levitation region without providing a spout and a suction port, the downstream stage member passes through the buffer region. It is characterized in that the substrate is conveyed to alleviate fluctuations in the amount of levitation of the substrate with respect to the amount of levitation for supply in the vicinity of the boundary between the buffer region and the supply levitation region.

このように構成された発明では、搬送方向における供給浮上領域の両側に上流側浮上領域および下流側浮上領域が設けられ、供給浮上領域での供給用浮上量よりも大きな浮上量で基板を浮上させている。このため、供給浮上領域と上流側浮上領域との間で浮上量が階段状に変化しており、供給浮上領域の上流側での浮上量が供給用浮上量から許容範囲を超えて変化することがある。また、供給浮上領域の下流側で浮上量の変動が問題となることもある。そこで、本発明では、噴出口および吸引口を有しない緩衝領域が設けられ、緩衝領域と供給浮上領域との境界近傍での基板の浮上量の変動を緩和することで供給浮上領域での浮上量が大きく変化するのを抑制する。 In the invention configured in this way, the upstream levitation region and the downstream levitation region are provided on both sides of the supply levitation region in the transport direction, and the substrate is levitated with a levitation amount larger than the supply levitation amount in the supply levitation region. ing. For this reason, the levitation amount changes stepwise between the supply levitation region and the upstream levitation region, and the levitation amount on the upstream side of the supply levitation region changes beyond the permissible range from the supply levitation amount. There is. In addition, fluctuations in the amount of levitation may become a problem on the downstream side of the supply levitation region. Therefore, in the present invention, a buffer region having no spout and suction port is provided, and the levitation amount in the supply levitation region is relaxed by mitigating the fluctuation of the levitation amount of the substrate near the boundary between the buffer region and the supply levitation region. Suppresses large changes.

以上のように、本発明によれば、緩衝領域を設けることで緩衝領域と供給浮上領域との境界近傍での基板の浮上量の変動を緩和しているので、基板への処理液の供給を良好に行うことができる。 As described above, according to the present invention, since the fluctuation of the floating amount of the substrate in the vicinity of the boundary between the buffer region and the supply levitation region is alleviated by providing the buffer region, the treatment liquid can be supplied to the substrate. Can be done well.

本発明に係る基板処理装置の一実施形態である塗布装置の全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the coating apparatus which is one Embodiment of the substrate processing apparatus which concerns on this invention. 図1に示す塗布装置に装備される浮上ステージ部の構成を示す図である。It is a figure which shows the structure of the buoyant stage part equipped in the coating apparatus shown in FIG. 従来の塗布装置に装備される塗布ステージの構成を示す図である。It is a figure which shows the structure of the coating stage equipped in the conventional coating apparatus. 本発明に係る基板処理装置の他の実施形態である塗布装置に装備される浮上ステージ部の構成を示す図である。It is a figure which shows the structure of the buoyant stage part provided in the coating apparatus which is another embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の別の実施形態である塗布装置に装備される浮上ステージ部の部分構成を示す図である。It is a figure which shows the partial structure of the levitation stage part provided in the coating apparatus which is another embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置のさらに別の実施形態である塗布装置に装備される浮上ステージ部の部分構成を示す図である。It is a figure which shows the partial structure of the levitation stage part which is attached to the coating apparatus which is still another embodiment of the substrate processing apparatus which concerns on this invention.

図1は本発明に係る基板処理装置の一実施形態である塗布装置の全体構成を模式的に示す図である。この塗布装置1は、図1の左手側から右手側に向けて水平姿勢で搬送される基板Sの上面Sfに処理液の一例として塗布液を塗布するスリットコータである。なお、以下の各図において装置各部の配置関係を明確にするために、基板Sの搬送方向Dtと関連付けて位置関係を示すとき、「基板Sの搬送方向Dtにおける上流側」を単に「上流側」と、また「基板Sの搬送方向Dtにおける下流側」を単に「下流側」と略することがある。この例では、ある基準位置から見て相対的に(−X)側が「上流側」、(+X)側が「下流側」に相当する。 FIG. 1 is a diagram schematically showing an overall configuration of a coating apparatus according to an embodiment of the substrate processing apparatus according to the present invention. The coating device 1 is a slit coater that applies the coating liquid as an example of the treatment liquid to the upper surface Sf of the substrate S that is conveyed in a horizontal posture from the left-hand side to the right-hand side in FIG. In addition, in order to clarify the arrangement relationship of each part of the apparatus in each of the following figures, when the positional relationship is shown in association with the transport direction Dt of the substrate S, "upstream side in the transport direction Dt of the substrate S" is simply "upstream side". , And "downstream side in the transport direction Dt of the substrate S" may be simply abbreviated as "downstream side". In this example, the (−X) side corresponds to the “upstream side” and the (+ X) side corresponds to the “downstream side” relative to a certain reference position.

まず図1を用いて塗布装置1の構成および動作の概要を説明し、その後で本発明の技術的特徴を備える浮上ステージ部3の詳細な構造および動作について説明する。塗布装置1では、基板Sの搬送方向Dt(+X方向)に沿って、入力コンベア100、入力移載部2、浮上ステージ部3、出力移載部4、出力コンベア110がこの順に近接して配置されており、以下に詳述するように、これらにより略水平方向に延びる基板Sの搬送経路が形成されている。 First, the outline of the configuration and operation of the coating device 1 will be described with reference to FIG. 1, and then the detailed structure and operation of the levitation stage portion 3 having the technical features of the present invention will be described. In the coating device 1, the input conveyor 100, the input transfer unit 2, the levitation stage unit 3, the output transfer unit 4, and the output conveyor 110 are arranged close to each other in this order along the transport direction Dt (+ X direction) of the substrate S. As will be described in detail below, a transport path for the substrate S extending in a substantially horizontal direction is formed by these.

処理対象である基板Sは図1の左手側から入力コンベア100に搬入される。入力コンベア100は、コロコンベア101と、これを回転駆動する回転駆動機構102とを備えており、コロコンベア101の回転により基板Sは水平姿勢で下流側、つまり(+X)方向に搬送される。入力移載部2は、コロコンベア21と、これを回転駆動する機能および昇降させる機能を有する回転・昇降駆動機構22とを備えている。コロコンベア21が回転することで、基板Sはさらに(+X)方向に搬送される。また、コロコンベア21が昇降することで基板Sの鉛直方向位置が変更される。このように構成された入力移載部2により、基板Sは入力コンベア100から浮上ステージ部3に移載される。 The substrate S to be processed is carried into the input conveyor 100 from the left hand side of FIG. The input conveyor 100 includes a roller conveyor 101 and a rotation drive mechanism 102 that rotationally drives the roller conveyor 101, and the rotation of the roller conveyor 101 causes the substrate S to be conveyed in a horizontal posture on the downstream side, that is, in the (+ X) direction. The input transfer unit 2 includes a roller conveyor 21 and a rotation / elevation drive mechanism 22 having a function of rotationally driving the roller conveyor 21 and a function of raising and lowering the roller conveyor 21. As the roller conveyor 21 rotates, the substrate S is further conveyed in the (+ X) direction. Further, the vertical position of the substrate S is changed by moving the roller conveyor 21 up and down. The substrate S is transferred from the input conveyor 100 to the levitation stage unit 3 by the input transfer unit 2 configured in this way.

浮上ステージ部3は、基板の搬送方向Dtに沿って3分割された平板状のステージを備える。すなわち、浮上ステージ部3は入口浮上ステージ31、塗布ステージ32および出口浮上ステージ33を備えており、これらの各ステージの上面は互いに同一平面の一部をなしている。そして、浮上ステージ部3は各ステージの上面から鉛直上方(+Z)に基板を浮上させる。なお、これらのステージのうち入口浮上ステージ31には、図には現れていないリフトピンが配設されており、浮上ステージ部3にはこのリフトピンを昇降させるリフトピン駆動機構34が設けられている。また、塗布ステージ32での浮上量についてはセンサ61、62による検出結果に基づいて制御ユニット9により算出され、高精度に調整可能となっている。 The levitation stage portion 3 includes a flat plate-shaped stage divided into three along the transport direction Dt of the substrate. That is, the levitation stage portion 3 includes an inlet levitation stage 31, a coating stage 32, and an outlet levitation stage 33, and the upper surfaces of each of these stages form a part of the same plane. Then, the levitation stage portion 3 levitates the substrate vertically upward (+ Z) from the upper surface of each stage. Of these stages, the inlet levitation stage 31 is provided with a lift pin not shown in the drawing, and the levitation stage portion 3 is provided with a lift pin drive mechanism 34 for raising and lowering the lift pin. Further, the floating amount on the coating stage 32 is calculated by the control unit 9 based on the detection results by the sensors 61 and 62, and can be adjusted with high accuracy.

入力移載部2を介して浮上ステージ部3に搬入される基板Sは、コロコンベア21の回転により(+X)方向への推進力を付与されて、入口浮上ステージ31上に搬送される。入口浮上ステージ31、塗布ステージ32および出口浮上ステージ33は基板Sを浮上状態に支持するが、基板Sを水平方向に搬送する機能を有していない。浮上ステージ部3における基板Sの搬送は、入口浮上ステージ31、塗布ステージ32および出口浮上ステージ33の下方に配置された基板搬送部5により行われる。 The substrate S carried into the levitation stage unit 3 via the input transfer unit 2 is given a propulsive force in the (+ X) direction by the rotation of the roller conveyor 21 and is conveyed onto the entrance levitation stage 31. The inlet levitation stage 31, the coating stage 32, and the outlet levitation stage 33 support the substrate S in a levitation state, but do not have a function of transporting the substrate S in the horizontal direction. The transfer of the substrate S in the levitation stage portion 3 is performed by the substrate transfer portion 5 arranged below the inlet levitation stage 31, the coating stage 32, and the outlet levitation stage 33.

基板搬送部5は、基板Sの下面周縁部に部分的に当接することで基板Sを下方から支持するチャック機構51と、チャック機構51上端の吸着部材に設けられた吸着パッド(図示省略)に負圧を与えて基板Sを吸着保持させる機能およびチャック機構51をX方向に往復走行させる機能を有する吸着・走行制御機構52とを備えている。チャック機構51が基板Sを保持した状態では、基板Sの下面Sbは浮上ステージ部3の各ステージの上面よりも高い位置に位置している。したがって、基板Sは、チャック機構51により周縁部を吸着保持されつつ、浮上ステージ部3から付与される浮力により全体として水平姿勢を維持する。なお、チャック機構51により基板Sの下面Sbを部分的に保持した段階で基板Sの上面の鉛直方向位置を検出するために板厚測定用のセンサ61がコロコンベア21の近傍に配置されている。このセンサ61の直下位置に基板Sを保持していない状態のチャック(図示省略)が位置することで、センサ61は吸着部材の上面、つまり吸着面の鉛直方向位置を検出可能となっている。 The substrate transport portion 5 is provided on a chuck mechanism 51 that supports the substrate S from below by partially abutting the lower peripheral edge portion of the substrate S, and a suction pad (not shown) provided on the suction member at the upper end of the chuck mechanism 51. It is provided with a suction / running control mechanism 52 having a function of applying a negative pressure to suck and hold the substrate S and a function of reciprocating the chuck mechanism 51 in the X direction. When the chuck mechanism 51 holds the substrate S, the lower surface Sb of the substrate S is located higher than the upper surface of each stage of the levitation stage portion 3. Therefore, the substrate S maintains the horizontal posture as a whole by the buoyancy applied from the levitation stage portion 3 while the peripheral portion is attracted and held by the chuck mechanism 51. A sensor 61 for measuring the plate thickness is arranged near the roller conveyor 21 in order to detect the vertical position of the upper surface of the substrate S at the stage where the lower surface Sb of the substrate S is partially held by the chuck mechanism 51. .. By locating a chuck (not shown) in a state where the substrate S is not held directly below the sensor 61, the sensor 61 can detect the vertical position of the upper surface of the suction member, that is, the suction surface.

入力移載部2から浮上ステージ部3に搬入された基板Sをチャック機構51が保持し、この状態でチャック機構51が(+X)方向に移動することで、基板Sが入口浮上ステージ31の上方から塗布ステージ32の上方を経由して出口浮上ステージ33の上方へ搬送される。搬送された基板Sは、出口浮上ステージ33の(+X)側に配置された出力移載部4に受け渡される。 The chuck mechanism 51 holds the substrate S carried from the input transfer unit 2 to the levitation stage unit 3, and the chuck mechanism 51 moves in the (+ X) direction in this state, so that the substrate S is moved above the inlet levitation stage 31. Is conveyed above the outlet levitation stage 33 via above the coating stage 32. The conveyed substrate S is delivered to the output transfer unit 4 arranged on the (+ X) side of the outlet levitation stage 33.

出力移載部4は、コロコンベア41と、これを回転駆動する機能および昇降させる機能を有する回転・昇降駆動機構42とを備えている。コロコンベア41が回転することで、基板Sに(+X)方向への推進力が付与され、基板Sは搬送方向Dtに沿ってさらに搬送される。また、コロコンベア41が昇降することで基板Sの鉛直方向位置が変更される。コロコンベア41の昇降により実現される作用については後述する。出力移載部4により、基板Sは出口浮上ステージ33の上方から出力コンベア110に移載される。 The output transfer unit 4 includes a roller conveyor 41 and a rotation / elevating drive mechanism 42 having a function of rotationally driving the roller conveyor 41 and a function of raising and lowering the roller conveyor 41. By rotating the roller conveyor 41, a propulsive force is applied to the substrate S in the (+ X) direction, and the substrate S is further conveyed along the transfer direction Dt. Further, the vertical position of the substrate S is changed by moving the roller conveyor 41 up and down. The operation realized by raising and lowering the roller conveyor 41 will be described later. The output transfer unit 4 transfers the substrate S to the output conveyor 110 from above the outlet levitation stage 33.

出力コンベア110は、コロコンベア111と、これを回転駆動する回転駆動機構112とを備えており、コロコンベア111の回転により基板Sはさらに(+X)方向に搬送され、最終的に塗布装置1外へと払い出される。なお、入力コンベア100および出力コンベア110は塗布装置1の構成の一部として設けられてもよいが、塗布装置1とは別体のものであってもよい。また例えば、塗布装置1の上流側に設けられる別ユニットの基板払い出し機構が入力コンベア100として用いられてもよい。また、塗布装置1の下流側に設けられる別ユニットの基板受け入れ機構が出力コンベア110として用いられてもよい。 The output conveyor 110 includes a roller conveyor 111 and a rotation drive mechanism 112 that rotationally drives the roller conveyor 111. The rotation of the roller conveyor 111 further conveys the substrate S in the (+ X) direction, and finally outside the coating device 1. Will be paid out to. The input conveyor 100 and the output conveyor 110 may be provided as part of the configuration of the coating device 1, but may be separate from the coating device 1. Further, for example, a substrate dispensing mechanism of another unit provided on the upstream side of the coating device 1 may be used as the input conveyor 100. Further, a substrate receiving mechanism of another unit provided on the downstream side of the coating device 1 may be used as the output conveyor 110.

このようにして搬送される基板Sの搬送経路上に、基板Sの上面Sfに塗布液を塗布するための塗布機構7が配置される。塗布機構7はスリットノズルであるノズル71を有している。ノズル71には、塗布液供給機構8から塗布液が供給され、ノズル下部に下向きに開口する吐出口から塗布液が吐出される。 A coating mechanism 7 for applying the coating liquid to the upper surface Sf of the substrate S is arranged on the transport path of the substrate S transported in this way. The coating mechanism 7 has a nozzle 71 which is a slit nozzle. The coating liquid is supplied to the nozzle 71 from the coating liquid supply mechanism 8, and the coating liquid is discharged from a discharge port that opens downward to the lower part of the nozzle.

ノズル71は、図示を省略する位置決め機構によりX方向およびZ方向に移動位置決め可能となっている。位置決め機構により、ノズル71が塗布ステージ32の上方の塗布位置(図1中の実線で示される位置)に位置決めされる。この塗布位置に位置決めされたノズル71から塗布液が吐出されて、塗布ステージ32との間を搬送されてくる基板Sに供給される。こうして基板Sへの塗布液の塗布が行われる。 The nozzle 71 can be moved and positioned in the X direction and the Z direction by a positioning mechanism (not shown). The positioning mechanism positions the nozzle 71 at the coating position (the position shown by the solid line in FIG. 1) above the coating stage 32. The coating liquid is discharged from the nozzle 71 positioned at the coating position and supplied to the substrate S which is conveyed between the coating liquid and the coating stage 32. In this way, the coating liquid is applied to the substrate S.

ノズル71に対して所定のメンテナンスを行うために、図1に示すように、塗布機構7にはノズル洗浄待機ユニット72が設けられている。ノズル洗浄待機ユニット72は、主にローラ721、洗浄部722、ローラバット723などを有している。そして、これらによってノズル洗浄および液だまり形成を行い、ノズル71の吐出口を次の塗布処理に適した状態に整える。また、ノズル洗浄待機ユニット72が設けられた位置、つまりメンテナンス位置にノズル71を位置させ、最適化処理における疑似吐出が実行される。 As shown in FIG. 1, the coating mechanism 7 is provided with a nozzle cleaning standby unit 72 in order to perform predetermined maintenance on the nozzle 71. The nozzle cleaning standby unit 72 mainly includes a roller 721, a cleaning unit 722, a roller butt 723, and the like. Then, the nozzle is cleaned and a liquid pool is formed by these, and the discharge port of the nozzle 71 is adjusted to a state suitable for the next coating process. Further, the nozzle 71 is positioned at the position where the nozzle cleaning standby unit 72 is provided, that is, the maintenance position, and the pseudo discharge in the optimization process is executed.

この他、塗布装置1には、装置各部の動作を制御するための制御ユニット9が設けられている。制御ユニット9は所定の制御プログラムや各種データを記憶する記憶手段、この制御プログラムを実行することで装置各部に所定の動作を実行させるCPUなどの演算手段、ユーザや外部装置との情報交換を担うインターフェース手段などを備えている。本実施形態では、演算手段が装置各部を制御して次に説明するように塗布ステージ32での基板Sの浮上量を高精度に制御しつつノズル71からの塗布液の供給を行う。 In addition, the coating device 1 is provided with a control unit 9 for controlling the operation of each part of the device. The control unit 9 is responsible for storing a predetermined control program and various data, a computing means such as a CPU that causes each part of the device to execute a predetermined operation by executing the control program, and exchanging information with a user or an external device. It is equipped with interface means. In the present embodiment, the calculation means controls each part of the apparatus to supply the coating liquid from the nozzle 71 while controlling the floating amount of the substrate S on the coating stage 32 with high accuracy as described below.

図2は図1に示す塗布装置に装備される浮上ステージ部の構成を示す図であり、同図中の上段に示す図は浮上ステージ部3の部分平面図であり、中段および下段は浮上ステージ部3での基板Sの浮上搬送状態を模式的に示す側面図である。なお、同図および後で説明する図3および図4においては、理解容易の目的で、必要に応じて各部の寸法や数を誇張または簡略化して描いている。 FIG. 2 is a diagram showing a configuration of a levitation stage portion mounted on the coating device shown in FIG. 1, the upper part of the figure is a partial plan view of the levitation stage portion 3, and the middle and lower stages are levitation stages. It is a side view which shows typically the floating transport state of the substrate S in a part 3. In addition, in FIG. 3 and FIG. 4 which will be described later, the dimensions and numbers of each part are exaggerated or simplified as necessary for the purpose of easy understanding.

浮上ステージ部3を構成する3つのステージのうち、入口浮上ステージ31および出口浮上ステージ33のそれぞれの上面には、噴出口36がマトリクス状に多数設けられている。また、各噴出口36に対して特許文献1に記載の装置と同様に構成される浮上制御機構35が接続され、噴出口36から圧縮空気を基板Sの下面Sbに向けて噴出して入口浮上ステージ31および出口浮上ステージ33のステージ上面と基板Sの下面Sbとの間の空間に圧縮空気を送り込む。これにより、各噴出口36から噴出される気流から付与される浮力により基板Sが浮上する。こうして基板Sの下面Sbがステージ上面から離間した状態で水平姿勢に支持される。基板Sの下面Sbとステージ上面との距離、つまり浮上量は、例えば10マイクロメートルないし500マイクロメートルとすることができる。 Of the three stages constituting the levitation stage portion 3, a large number of spouts 36 are provided in a matrix on the upper surfaces of the inlet levitation stage 31 and the outlet levitation stage 33. Further, a levitation control mechanism 35 configured in the same manner as the device described in Patent Document 1 is connected to each ejection port 36, and compressed air is ejected from the ejection port 36 toward the lower surface Sb of the substrate S to ascend the inlet. Compressed air is sent into the space between the upper surface of the stage 31 and the outlet levitation stage 33 and the lower surface Sb of the substrate S. As a result, the substrate S floats due to the buoyancy applied from the airflow ejected from each ejection port 36. In this way, the lower surface Sb of the substrate S is supported in a horizontal posture in a state of being separated from the upper surface of the stage. The distance between the lower surface Sb of the substrate S and the upper surface of the stage, that is, the levitation amount can be, for example, 10 micrometers to 500 micrometers.

塗布ステージ32では、搬送方向Xに沿って5つの領域32A〜32Eがこの順序で設けられており、入口浮上ステージ31および出口浮上ステージ33よりも小さな浮上量で基板Sを浮上させることが可能となっている。領域32A、32Bはともにステージ部材321のステージ上面321aに設けられている。領域32Cはステージ部材322のステージ上面322aに設けられている。領域32D、32Eはともにステージ部材323のステージ上面323aに設けられている。 In the coating stage 32, five regions 32A to 32E are provided in this order along the transport direction X, so that the substrate S can be levitated with a levitation amount smaller than that of the inlet levitation stage 31 and the outlet levitation stage 33. It has become. Both the regions 32A and 32B are provided on the stage upper surface 321a of the stage member 321. The region 32C is provided on the stage upper surface 322a of the stage member 322. Both the regions 32D and 32E are provided on the stage upper surface 323a of the stage member 323.

ステージ部材321では、領域32Aがステージ上面321aの上流側に位置しており、上記噴出口36と、基板Sの下面Sbとステージ上面321aとの間の空気を吸引する吸引口37とが分散して設けられている。より詳しくは、入口浮上ステージ31および出口浮上ステージ33に設けられた噴出口36よりも狭く、異物検出に適したピッチPaで複数の開口がマトリックス状に分散して設けられている。これら複数の開口のうち半分は上記噴出口36として機能し、残りの半分は吸引口37として機能するものであり、噴出口36と吸引口37とが交互に設けられている。そして、浮上制御機構35は領域32Aの噴出口36と接続され、噴出口36から圧縮空気を基板Sの下面Sbに向けて噴出してステージ上面321aと基板Sの下面Sbとの間の空間に圧縮空気を送り込む。また、浮上制御機構35は領域32Aの吸引口37と接続され、吸引口37を介して上記空間から空気を吸引する。このように上記空間に対して空気の噴出と吸引とが行われることで、上記空間では各噴出口36から噴出された圧縮空気の空気流は水平方向に広がった後、当該噴出口36に隣接する吸引口37から吸引される。このため、上記空間に広がる空気層(圧力気体層)における圧力バランスは、より安定的となり、基板Sの浮上量Fa(図2参照)を高精度に、しかも安定して制御することができる。また、領域32Aに対応して特許文献1に記載の装置と同様の構成を有する異物検出部73が設けられ、浮上量Faで浮上している基板Sに対する異物検出を行う。このように、本実施形態では、領域32Aが異物検出を担保する上流側浮上領域として機能し、以下においては「上流側浮上領域32A」と称する。 In the stage member 321, the region 32A is located on the upstream side of the stage upper surface 321a, and the ejection port 36 and the suction port 37 for sucking air between the lower surface Sb of the substrate S and the stage upper surface 321a are dispersed. Is provided. More specifically, it is narrower than the spout 36 provided in the inlet levitation stage 31 and the outlet levitation stage 33, and a plurality of openings are dispersed in a matrix at a pitch Pa suitable for detecting foreign matter. Half of these plurality of openings function as the spout 36, and the other half functions as the suction port 37, and the spout 36 and the suction port 37 are provided alternately. Then, the levitation control mechanism 35 is connected to the ejection port 36 in the region 32A, and the compressed air is ejected from the ejection port 36 toward the lower surface Sb of the substrate S to enter the space between the upper surface 321a of the stage and the lower surface Sb of the substrate S. Send compressed air. Further, the levitation control mechanism 35 is connected to the suction port 37 in the region 32A, and sucks air from the space through the suction port 37. By ejecting and sucking air into the space in this way, the air flow of the compressed air ejected from each outlet 36 spreads in the horizontal direction in the space, and then is adjacent to the outlet 36. It is sucked from the suction port 37. Therefore, the pressure balance in the air layer (pressure gas layer) spreading in the space becomes more stable, and the floating amount Fa (see FIG. 2) of the substrate S can be controlled with high accuracy and stably. Further, a foreign matter detection unit 73 having the same configuration as the apparatus described in Patent Document 1 is provided corresponding to the region 32A, and foreign matter detection is performed on the substrate S floating with the floating amount Fa. As described above, in the present embodiment, the region 32A functions as the upstream levitation region that guarantees the detection of foreign matter, and is hereinafter referred to as the “upstream levitation region 32A”.

またステージ部材321では、領域32Bがステージ上面321aの下流側に位置しており、上記噴出口36および吸引口37は設けられておらず、後で詳述するように、上流側浮上領域32Aから領域32Bを経由して領域32Cに基板Sを浮上搬送している間における浮上量の変化を緩衝して領域32Cの上流側近傍における浮上量の変動を緩和する上流側緩衝部として機能し、以下においては「上流側緩衝領域32B」と称する。 Further, in the stage member 321, the region 32B is located on the downstream side of the stage upper surface 321a, and the spout 36 and the suction port 37 are not provided. It functions as an upstream buffer portion that cushions the change in the levitation amount during the levitation and transportation of the substrate S to the region 32C via the region 32B and alleviates the fluctuation in the levitation amount in the vicinity of the upstream side of the region 32C. In the above, it is referred to as "upstream buffer region 32B".

ステージ部材322では、ステージ上面322aに対し、上流側浮上領域32Aに設けられた開口(=噴出口36+吸引口37)のピッチPaよりも狭く、基板Sへの塗布液の塗布に適したピッチで複数の開口がマトリックス状に分散して設けられている。これら複数の開口のうち半分は上記噴出口36として機能し、残りの半分は吸引口37として機能するものであり、噴出口36と吸引口37とが交互に設けられている。そして、浮上制御機構35は上流側緩衝領域32Bと同様に領域32Cの噴出口36および吸引口37に接続され、浮上量Fc(図2参照)で基板Sを浮上させる。ここで、領域32Cはノズル71の下方に位置して塗布液の供給を受ける基板Sを浮上させるための供給浮上領域であることから、噴出口36および吸引口37の配設密度が上流側浮上領域32Aよりも高められるとともに浮上制御機構35は浮上量Fcを上流側緩衝領域32Bでの浮上量Faよりも小さくして基板Sへの塗布液の供給に適合させている。こうして、領域32Cでは、基板Sの浮上が超高精度で、しかも安定して制御される。このように領域32Cは超高精度な供給を担保するための供給浮上領域として機能し、以下においては「供給浮上領域32C」と称する。 In the stage member 322, the pitch Pa of the opening (= ejection port 36 + suction port 37) provided in the upstream levitation region 32A is narrower than the pitch Pa of the upper surface 322a of the stage, and the pitch is suitable for applying the coating liquid to the substrate S. A plurality of openings are dispersed in a matrix. Half of these plurality of openings function as the spout 36, and the other half functions as the suction port 37, and the spout 36 and the suction port 37 are provided alternately. Then, the levitation control mechanism 35 is connected to the ejection port 36 and the suction port 37 of the region 32C in the same manner as the upstream buffer region 32B, and the substrate S is levitated by the levitation amount Fc (see FIG. 2). Here, since the region 32C is a supply levitation region for levitation of the substrate S to which the coating liquid is supplied, which is located below the nozzle 71, the arrangement densities of the ejection port 36 and the suction port 37 are levitation on the upstream side. The levitation control mechanism 35 is made higher than the region 32A and the levitation amount Fc is made smaller than the levitation amount Fa in the upstream buffer region 32B to be adapted to the supply of the coating liquid to the substrate S. In this way, in the region 32C, the levitation of the substrate S is controlled with ultra-high accuracy and stably. In this way, the region 32C functions as a supply levitation region for ensuring ultra-high accuracy supply, and will be referred to as a "supply levitation region 32C" below.

ステージ部材323では、ステージ上面323aの上流側に領域32Dが設けられるとともに下流側に領域32Eが設けられている。この領域32Dでは、上記噴出口36および吸引口37は設けられていない。このため、上流側緩衝領域32Bと同様に、領域32Dは供給浮上領域32Cから領域32Dを経由して領域32Eに基板Sを浮上搬送している間における浮上量の変化を緩衝して供給浮上領域32Cの下流側近傍における浮上量の変動を緩和する下流側緩衝部として機能し、以下においては「下流側緩衝領域32D」と称する。 In the stage member 323, the region 32D is provided on the upstream side of the stage upper surface 323a and the region 32E is provided on the downstream side. In this region 32D, the spout 36 and the suction port 37 are not provided. Therefore, similarly to the upstream side buffering region 32B, the region 32D buffers the change in the levitation amount during the levitation and transportation of the substrate S from the supply levitation region 32C to the region 32E via the region 32D, and supplies the levitation region. It functions as a downstream buffer portion that alleviates fluctuations in the amount of levitation in the vicinity of the downstream side of 32C, and is hereinafter referred to as "downstream buffer region 32D".

また、領域32Eでは、上流側浮上領域32Aと同様に、所定のピッチPeで噴出口36および吸引口37が交互に設けられており、これらをマトリックス状に分散させた配置構造が形成されている。ステージ部材323では、ステージ部材322側から搬送されてくる基板Sが供給浮上領域32Cでの浮上量Fcよりも大きい浮上量Feで浮上される。ここで、当該基板Sの上面Sfには、塗布液の供給を受けて塗布膜が形成されており、ステージ部材323の上方で基板Sが振動すると、供給浮上領域32Cの上方での塗布液の塗布に悪影響を及ぼす可能性がある。そこで、ピッチPeおよび浮上量Fcは振動を防止するのに好適な値に設定されている。なお、本実施形態では、ピッチPeおよび浮上量Fcは上流側緩衝領域32Bと同じ値に設定されており、領域32Eが塗布済基板Sの振動防止を担保するための下流側浮上領域として機能し、以下においては「下流側浮上領域32E」と称する。 Further, in the region 32E, as in the upstream levitation region 32A, the spouts 36 and the suction ports 37 are alternately provided at a predetermined pitch Pe, and an arrangement structure in which these are dispersed in a matrix is formed. .. In the stage member 323, the substrate S conveyed from the stage member 322 side is levitated with a levitation amount Fe larger than the levitation amount Fc in the supply levitation region 32C. Here, a coating film is formed on the upper surface Sf of the substrate S by receiving the supply of the coating liquid, and when the substrate S vibrates above the stage member 323, the coating liquid above the supply floating region 32C May adversely affect application. Therefore, the pitch Pe and the levitation amount Fc are set to values suitable for preventing vibration. In the present embodiment, the pitch Pe and the levitation amount Fc are set to the same values as the upstream buffer region 32B, and the region 32E functions as a downstream levitation region for ensuring vibration prevention of the coated substrate S. , Hereinafter referred to as "downstream levitation region 32E".

上記したように本実施形態は、特許文献1に記載の装置と同様に上流側浮上領域32A、供給浮上領域32Cおよび下流側浮上領域32Eを有するだけでなく、さらに上流側緩衝領域32Bと下流側緩衝領域32Dとからなる変動緩和部38が追加されている。このため、供給浮上領域32Cの上流近傍Rbcおよび下流近傍Rcdにおける浮上量の変動を緩和することができる。この緩和効果について、図2に示す塗布装置1を図3に示す変動緩和部38を有さない塗布装置と比較しながら説明する。 As described above, the present embodiment not only has an upstream levitation region 32A, a supply levitation region 32C, and a downstream levitation region 32E, as in the apparatus described in Patent Document 1, but also has an upstream buffer region 32B and a downstream side. A fluctuation mitigation unit 38 including a buffer region 32D has been added. Therefore, fluctuations in the amount of levitation in the upstream vicinity Rbc and the downstream vicinity Rcd of the supply levitation region 32C can be alleviated. This mitigation effect will be described by comparing the coating device 1 shown in FIG. 2 with the coating device not having the fluctuation mitigation portion 38 shown in FIG.

図3は従来の塗布装置に装備される塗布ステージの構成を示す図である。従来装置では、入口浮上ステージ31、塗布ステージ32および出口浮上ステージ33が基板Sを浮上させる一方、図示省略のチャック機構が浮上状態の基板Sを入口浮上ステージ31の上方から塗布ステージ32の上方を経由して出口浮上ステージ33の上方へ搬送する。特に塗布ステージ32では、搬送方向(+X)に沿って上流側浮上領域32A、供給浮上領域32Cおよび下流側浮上領域32Eが互いに隣接して設けられている。これら上流側浮上領域32A、供給浮上領域32Cおよび下流側浮上領域32Eは基本的に上記実施形態と同一構造を有しており、上流側浮上領域32A、供給浮上領域32Cおよび下流側浮上領域32Eでの浮上量Fa、Fc、Feは、上記実施形態と同様に、
Fa=Fe>Fc
となっている。このため、上流側浮上領域32Aおよび供給浮上領域32Cの間、ならびに供給浮上領域32Cおよび下流側浮上領域32Eの間で浮上量が階段状に変化している。このため、上流側浮上領域32Aと供給浮上領域32Cとの境界近傍Racで浮上量が大きく変動する。このため、境界近傍Rac、特に供給浮上領域32Cの上流側端部では、基板Sの浮上量が浮上量Fcから許容範囲を超えて変化してしまう可能性がある。このような浮上量の変動が大きくなると、供給浮上領域32Cの上流側で基板Sが変形して塗布液の供給が良好に行われず、塗布ムラは発生することがある。
FIG. 3 is a diagram showing a configuration of a coating stage equipped in a conventional coating device. In the conventional device, the inlet levitation stage 31, the coating stage 32, and the outlet levitation stage 33 levitate the substrate S, while the chuck mechanism (not shown) floats the substrate S from above the inlet levitation stage 31 to above the coating stage 32. It is conveyed above the exit levitation stage 33 via the route. In particular, in the coating stage 32, the upstream levitation region 32A, the supply levitation region 32C, and the downstream levitation region 32E are provided adjacent to each other along the transport direction (+ X). The upstream levitation region 32A, the supply levitation region 32C, and the downstream levitation region 32E basically have the same structure as the above-described embodiment, and the upstream levitation region 32A, the supply levitation region 32C, and the downstream levitation region 32E have the same structure. The levitation amounts Fa, Fc, and Fe are the same as those in the above embodiment.
Fa = Fe> Fc
It has become. Therefore, the amount of levitation changes stepwise between the upstream levitation region 32A and the supply levitation region 32C, and between the supply levitation region 32C and the downstream levitation region 32E. Therefore, the levitation amount greatly fluctuates in Rac near the boundary between the upstream levitation region 32A and the supply levitation region 32C. Therefore, in the vicinity of the boundary Rac, particularly at the upstream end of the supply levitation region 32C, the levitation amount of the substrate S may change from the levitation amount Fc beyond the permissible range. When such a fluctuation in the floating amount becomes large, the substrate S is deformed on the upstream side of the supply floating region 32C, the coating liquid is not supplied well, and coating unevenness may occur.

また、供給浮上領域32Cと下流側浮上領域32Eとの境界近傍Rceでの浮上量の変動が大きくなり、供給浮上領域32Cの下流側端部で、基板Sの浮上量が浮上量Fcから大きく変動することがある。この場合、供給浮上領域32Cの下流側端部で基板Sが変形して塗布液の供給が良好に行われず、塗布ムラは発生することがある。 Further, the fluctuation of the levitation amount in the Rce near the boundary between the supply levitation region 32C and the downstream levitation region 32E becomes large, and the levitation amount of the substrate S greatly fluctuates from the levitation amount Fc at the downstream end of the supply levitation region 32C. I have something to do. In this case, the substrate S may be deformed at the downstream end of the supply levitation region 32C, the coating liquid may not be supplied well, and coating unevenness may occur.

これに対し、本実施形態では、図2に示すように、上流側浮上領域32Aと供給浮上領域32Cとの間に上流側緩衝領域32Bが設けられている。この上流側緩衝領域32Bには、噴出口36および吸引口37のいずれも設けられておらず浮上量の変化を緩和し、上流側緩衝領域32Bと供給浮上領域32Cとの境界近傍Rbcでの浮上量の変動が緩和される。これによって、境界近傍Rbc、特に供給浮上領域32Cの上流側端部では、基板Sの浮上量が浮上量Fcから許容範囲を超えて変化するのを防止することができる。その結果、供給浮上領域32Cの上流側端部での基板Sの変形が抑えられ、塗布液の供給が良好に行うことができ、塗布ムラの発生を効果的に防止することができる。ここで、上流側緩衝領域32Bによる十分な変動緩和効果を得るためには、搬送方向Xにおける上流側緩衝領域32Bの長さLbをピッチPaの1.1倍以上に設定するのが望ましい。ただし、長さLbがピッチPaの2倍以上となると、上流側緩衝領域32Bで基板Sが下方に撓んで基板Sの下面Sbがステージ上面321aと接触するおそれが生じる。したがって、長さLbについては、ピッチPaの1.1倍以上かつ2倍未満とするのが望ましい。 On the other hand, in the present embodiment, as shown in FIG. 2, an upstream buffer region 32B is provided between the upstream levitation region 32A and the supply levitation region 32C. Neither the spout 36 nor the suction port 37 is provided in the upstream buffer region 32B to mitigate the change in the amount of levitation, and the upstream buffer region 32B and the supply levitation region 32C are levitated in the vicinity of the boundary Rbc. Fluctuations in quantity are mitigated. As a result, it is possible to prevent the levitation amount of the substrate S from changing beyond the permissible range from the levitation amount Fc at the Rbc near the boundary, particularly at the upstream end portion of the supply levitation region 32C. As a result, the deformation of the substrate S at the upstream end of the supply levitation region 32C is suppressed, the coating liquid can be supplied satisfactorily, and the occurrence of coating unevenness can be effectively prevented. Here, in order to obtain a sufficient fluctuation mitigation effect by the upstream buffer region 32B, it is desirable to set the length Lb of the upstream buffer region 32B in the transport direction X to 1.1 times or more the pitch Pa. However, if the length Lb is twice or more the pitch Pa, the substrate S may bend downward in the upstream buffer region 32B, and the lower surface Sb of the substrate S may come into contact with the stage upper surface 321a. Therefore, it is desirable that the length Lb is 1.1 times or more and less than 2 times the pitch Pa.

また、下流側についても上流側と同様に構成されている。つまり、供給浮上領域32Cと下流側浮上領域32Eとの間に下流側緩衝領域32Dが設けられ、浮上量の変化を緩和し、供給浮上領域32Cと下流側緩衝領域32Dとの境界近傍Rcdでの浮上量の変動が緩和される。これによって、境界近傍Rcd、特に供給浮上領域32Cの下流側端部では、基板Sの浮上量が浮上量Fcから許容範囲を超えて変化するのが防止される。その結果、供給浮上領域32Cの下流側端部での基板Sの変形が抑えられ、塗布液の供給が良好に行うことができ、塗布ムラの発生を効果的に防止することができる。搬送方向Xにおける下流側緩衝領域32Dの長さLdについても、上記と同様の理由からピッチPeの1.1倍以上かつ2倍未満とするのが望ましい。 Further, the downstream side is configured in the same manner as the upstream side. That is, the downstream buffer region 32D is provided between the supply levitation region 32C and the downstream levitation region 32E to mitigate the change in the levitation amount, and at the Rcd near the boundary between the supply levitation region 32C and the downstream buffer region 32D. Fluctuations in the amount of ascent are mitigated. This prevents the levitation amount of the substrate S from changing beyond the permissible range from the levitation amount Fc at the Rcd near the boundary, particularly at the downstream end of the supply levitation region 32C. As a result, the deformation of the substrate S at the downstream end of the supply levitation region 32C is suppressed, the coating liquid can be supplied satisfactorily, and the occurrence of coating unevenness can be effectively prevented. It is desirable that the length Ld of the downstream buffer region 32D in the transport direction X is 1.1 times or more and less than 2 times the pitch Pe for the same reason as described above.

以上のように上記実施形態では、塗布液および空気がそれぞれ本発明の「処理液」および「気体」の一例に相当している。また、塗布ステージ32が本発明の「処理ステージ」の一例に相当している。また、浮上量Fa、Fc、Feがそれぞれ本発明の「上流側浮上量」、「供給用浮上量」および「下流側浮上量」の一例に相当している。また、ピッチPa、Peがそれぞれ本発明の「上流側ピッチ」および「下流側ピッチ」の一例に相当している。 As described above, in the above embodiment, the coating liquid and the air correspond to an example of the "treatment liquid" and the "gas" of the present invention, respectively. Further, the coating stage 32 corresponds to an example of the "processing stage" of the present invention. Further, the levitation amounts Fa, Fc, and Fe correspond to examples of the "upstream side levitation amount", "supply levitation amount", and "downstream side levitation amount" of the present invention, respectively. Further, the pitches Pa and Pe correspond to examples of the "upstream side pitch" and the "downstream side pitch" of the present invention, respectively.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、上流側緩衝領域32Bをステージ部材321に設けているが、上流側緩衝領域32Bをステージ部材322に設けてもよいし、上流側緩衝領域32B用のステージ部材をステージ部材321、322の間に追加し、当該ステージ部材に上流側緩衝領域32Bを設けてもよい。この点については、下流側緩衝領域32Dを同様である。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the upstream buffer region 32B is provided on the stage member 321. However, the upstream buffer region 32B may be provided on the stage member 322, or the stage member for the upstream buffer region 32B may be provided on the stage member 321. An upstream buffer region 32B may be provided in the stage member by adding it between 322. In this respect, the downstream buffer region 32D is the same.

また、5つの領域32A〜32Eを3つのステージ部材321〜323に振り分けて設けているが、例えば図4に示すように、1つのステージ部材320に全領域32A〜32Eを設けてもよい。また、領域32A〜32Eを2、4または5つのステージ部材に振り分けて設けてもよい。 Further, although the five regions 32A to 32E are divided and provided in the three stage members 321 to 223, for example, as shown in FIG. 4, the entire region 32A to 32E may be provided in one stage member 320. Further, the regions 32A to 32E may be divided into 2, 4 or 5 stage members and provided.

また、上記実施形態では、上流側浮上領域32A、供給浮上領域32Cおよび下流側浮上領域32Eでは、噴出口36および吸引口37を交互に設けてマトリックス状に分散させているが、分散形態はこれに限定されるものではなく、噴出口36および吸引口37を格子状に設けることができる。つまり、噴出口36および吸引口37を格子状に設けるものとしては、上記マトリックス状に設ける以外に、例えば図5に示すようにハニカム状に設けたものや例えば図6に示すようにX方向に配列する噴出口36および吸引口37の開口列39が基板Sの搬送方向(X方向)に対して傾斜するように設けたものなどが含まれる。 Further, in the above embodiment, in the upstream levitation region 32A, the supply levitation region 32C and the downstream levitation region 32E, the ejection ports 36 and the suction ports 37 are alternately provided and dispersed in a matrix. The spout 36 and the suction port 37 can be provided in a grid pattern. That is, as the spout 36 and the suction port 37 are provided in a grid pattern, in addition to the matrix shape, for example, a honeycomb shape as shown in FIG. 5 or in the X direction as shown in FIG. 6 is provided. The arrangement of the spouts 36 and the opening rows 39 of the suction ports 37 is provided so as to be inclined with respect to the transport direction (X direction) of the substrate S.

また、上記実施形態では、上流側緩衝領域32Bおよび下流側緩衝領域32Dを設けて供給浮上領域32Cの両端部において基板Sの浮上量が許容範囲を超えて変化するのを防止している。ただし、浮上量の変化が問題となるのが供給浮上領域32Cの上流側端部のみである場合には、上流側緩衝領域32Bのみを設ければよい。逆に、上記問題が供給浮上領域32Cの下流側端部のみである場合には、下流側緩衝領域32Dのみを設ければよい。 Further, in the above embodiment, the upstream side buffer region 32B and the downstream side buffer region 32D are provided to prevent the levitation amount of the substrate S from changing beyond the permissible range at both ends of the supply levitation region 32C. However, when the change in the levitation amount becomes a problem only at the upstream end of the supply levitation region 32C, only the upstream buffer region 32B may be provided. On the contrary, when the problem is only the downstream end of the supply levitation region 32C, only the downstream buffer region 32D may be provided.

さらに、上記実施形態では、上流側浮上領域32Aおよび下流側浮上領域32Eでの浮上量Fa、Feを一致させているが、両者が相違した状態で基板Sを浮上搬送させてもよい。 Further, in the above embodiment, the levitation amounts Fa and Fe in the upstream levitation region 32A and the downstream levitation region 32E are matched, but the substrate S may be levitation-conveyed in a state where both are different.

この発明は、浮上量を階段状に変化させた状態で基板を浮上搬送しながら当該基板の上面に処理液を供給する基板処理技術全般に適用可能である。 The present invention is applicable to all substrate processing techniques for supplying a processing liquid to the upper surface of the substrate while floating and transporting the substrate in a state where the floating amount is changed in a stepwise manner.

1…塗布装置
5…基板搬送部
7…塗布機構
32…塗布ステージ(処理ステージ)
32A…上流側浮上領域
32B…上流側緩衝領域
32C…供給浮上領域
32D…下流側緩衝領域
32E…下流側浮上領域
36…噴出口
37…吸引口
38…変動緩和部
71…ノズル
73…異物検出部
321a,322a,323a…ステージ上面
Dt…搬送方向
Fa…(上流側)浮上量
Fc…(供給用)浮上量
Fe…(下流側)浮上量
Pa…(上流側)ピッチ
Pe…(下流側)ピッチ
S…基板
Sb…(基板の)下面
Sf…(基板の)上面
1 ... Coating device 5 ... Substrate transfer unit 7 ... Coating mechanism 32 ... Coating stage (processing stage)
32A ... Upstream side levitation area 32B ... Upstream side buffer area 32C ... Supply levitation area 32D ... Downstream side buffer area 32E ... Downstream side levitation area 36 ... Spout 37 ... Suction port 38 ... Fluctuation mitigation part 71 ... Nozzle 73 ... Foreign matter detection part 321a, 322a, 323a ... Stage upper surface Dt ... Transport direction Fa ... (Upstream side) Lifting amount Fc ... (For supply) Lifting amount Fe ... (Downstream side) Lifting amount Pa ... (Upstream side) Pitch Pe ... (Downstream side) Pitch S ... Substrate Sb ... Lower surface (of the substrate) Sf ... Upper surface (of the substrate)

Claims (6)

上方に向けて気体を噴出する噴出口と気体を吸引する吸引口とが分散して設けられるステージ上面を有し、前記ステージ上面の上方に基板を浮上させる処理ステージと、
前記処理ステージ上で浮上する前記基板を搬送方向に搬送する基板搬送部と、
前記基板搬送部により搬送される前記基板の上面に処理液を供給するノズルと、を備え、
前記処理ステージは、
前記ノズルの下方に位置する供給用ステージ部材に設けられ、前記処理液の供給に適合する供給用浮上量で前記基板を浮上させる供給浮上領域と、
前記搬送方向において前記供給浮上領域の上流側に位置する上流側ステージ部材に設けられ、前記供給用浮上量よりも大きな上流側浮上量で前記基板を浮上させる上流側浮上領域と、
前記搬送方向において前記供給浮上領域の下流側に位置する下流側ステージ部材に設けられ、前記供給用浮上量よりも大きな下流側浮上量で前記基板を浮上させる下流側浮上領域と、
前記上流側ステージ部材において前記上流側浮上領域の前記搬送方向の下流側で前記噴出口および前記吸引口を設けずに前記上流側浮上領域に隣接する緩衝領域と、前記下流側ステージ部材において前記下流側浮上領域の前記搬送方向の上流側で前記噴出口および前記吸引口を設けずに前記下流側浮上領域に隣接する緩衝領域とのうちの少なくとも一方を有し、前記緩衝領域と前記供給浮上領域との境界近傍での前記供給用浮上量に対する前記基板の浮上量の変動を緩和する変動緩和部と、
を有することを特徴とする基板処理装置。
A processing stage that has a stage upper surface in which a gas outlet for ejecting gas upward and a suction port for sucking gas are dispersedly provided, and a substrate is levitated above the upper surface of the stage.
A substrate transporting unit that transports the substrate floating on the processing stage in the transport direction,
A nozzle for supplying a processing liquid to the upper surface of the substrate transported by the substrate transport unit is provided.
The processing stage is
A supply levitation region provided on the supply stage member located below the nozzle and levitation of the substrate with a supply levitation amount suitable for the supply of the treatment liquid.
An upstream levitation region provided on the upstream stage member located on the upstream side of the supply levitation region in the transport direction and levating the substrate with an upstream levitation amount larger than the supply levitation amount.
A downstream levitation region provided on the downstream stage member located on the downstream side of the supply levitation region in the transport direction and levating the substrate with a downstream levitation amount larger than the supply levitation amount.
In the upstream stage member, a buffer region adjacent to the upstream levitation region without providing the spout and the suction port on the downstream side of the upstream levitation region in the transport direction, and the downstream in the downstream stage member. The side levitation region has at least one of the ejection port and the buffer region adjacent to the downstream levitation region without providing the suction port on the upstream side in the transport direction, and the buffer region and the supply levitation region are provided. A fluctuation mitigation unit that alleviates fluctuations in the floating amount of the substrate with respect to the floating amount for supply in the vicinity of the boundary with the
A substrate processing apparatus characterized by having.
請求項1に記載の基板処理装置であって、
前記上流側浮上領域の上方に配置されて前記基板の上面に存在する異物を検出する異物検出部を備え、
前記上流側浮上領域では、前記噴出口および前記吸引口が前記異物の検出に対応した上流側ピッチで格子状に設けられる基板処理装置。
The substrate processing apparatus according to claim 1.
A foreign matter detection unit that is arranged above the upstream levitation region and detects foreign matter existing on the upper surface of the substrate is provided.
In the upstream levitation region, a substrate processing apparatus in which the spout and the suction port are provided in a grid pattern at an upstream pitch corresponding to the detection of the foreign matter.
請求項2に記載の基板処理装置であって、
前記変動緩和部は、前記供給浮上領域と前記上流側浮上領域との間に設けられ、前記搬送方向における長さが前記上流側ピッチの1.1倍以上かつ2倍未満である上流側緩衝領域を有する基板処理装置。
The substrate processing apparatus according to claim 2.
The fluctuation mitigation portion is provided between the supply levitation region and the upstream levitation region, and has an upstream buffer region having a length in the transport direction of 1.1 times or more and less than 2 times the upstream pitch. Substrate processing equipment with.
請求項1ないし3のいずれか一項に記載の基板処理装置であって、
前記下流側浮上領域では、前記噴出口および前記吸引口が下流側ピッチで格子状に設けられて前記処理液を担持する前記基板が前記搬送方向に搬送されるのに伴う前記供給浮上領域での前記基板の振動を抑制する基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 3.
In the downstream levitation region, in the supply levitation region where the ejection port and the suction port are provided in a grid pattern at a downstream pitch and the substrate carrying the treatment liquid is transported in the transport direction. A substrate processing device that suppresses vibration of the substrate.
請求項4に記載の基板処理装置であって、
前記変動緩和部は、前記供給浮上領域と前記下流側浮上領域との間に設けられ、前記搬送方向における長さが前記下流側ピッチの1.1倍以上かつ2倍未満である下流側緩衝領域を有する基板処理装置。
The substrate processing apparatus according to claim 4.
The fluctuation mitigation portion is provided between the supply levitation region and the downstream levitation region, and is a downstream buffer region having a length in the transport direction of 1.1 times or more and less than 2 times the downstream pitch. Substrate processing equipment with.
上方に向けて気体を噴出する噴出口と気体を吸引する吸引口とが分散して設けられるステージ上面を有する処理ステージにより前記ステージ上面の上方に浮上された、基板を基板搬送部により搬送方向に搬送しながらノズルから処理液を前記基板の上面に供給する基板処理方法であって、
前記処理ステージのうち、
前記ノズルの下方に位置する供給用ステージ部材に設けられ、前記処理液の供給に適合する供給用浮上量で前記基板を浮上させる領域を供給浮上領域とし、
前記搬送方向において前記供給浮上領域の上流側に位置する上流側ステージ部材に設けられ、前記供給用浮上量よりも大きな上流側浮上量で前記基板を浮上させる領域を上流側浮上領域とし、
前記搬送方向において前記供給浮上領域の下流側に位置する下流側ステージ部材に設けられ、前記供給用浮上量よりも大きな下流側浮上量で前記基板を浮上させる領域を下流側浮上領域と定義するとともに、
前記上流側ステージ部材において前記上流側浮上領域の前記搬送方向の下流側で前記噴出口および前記吸引口を設けずに前記上流側浮上領域に隣接する緩衝領域と、前記下流側ステージ部材において前記下流側浮上領域の前記搬送方向の上流側で前記噴出口および前記吸引口を設けずに前記下流側浮上領域に隣接する緩衝領域とのうちの少なくとも一方を有するとき、
前記緩衝領域を経由して前記基板を搬送させて前記緩衝領域と前記供給浮上領域との境界近傍での前記供給用浮上量に対する前記基板の浮上量の変動を緩和することを特徴とする基板処理方法。
The substrate is floated above the upper surface of the stage by the processing stage having the upper surface of the stage provided in which the ejection port for ejecting the gas upward and the suction port for sucking the gas are dispersedly provided, and the substrate is conveyed in the conveying direction by the substrate conveying portion. A substrate processing method in which a processing liquid is supplied from a nozzle to the upper surface of the substrate while being conveyed.
Of the processing stages
A region provided on the supply stage member located below the nozzle and floating the substrate with a supply levitation amount suitable for the supply of the treatment liquid is defined as a supply levitation region.
A region provided on the upstream stage member located on the upstream side of the supply levitation region in the transport direction and levating the substrate with an upstream levitation amount larger than the supply levitation amount is defined as an upstream levitation region.
A region provided on the downstream stage member located on the downstream side of the supply levitation region in the transport direction and levating the substrate with a downstream levitation amount larger than the supply levitation amount is defined as a downstream levitation region. ,
In the upstream stage member, a buffer region adjacent to the upstream levitation region without providing the spout and the suction port on the downstream side of the upstream levitation region in the transport direction, and the downstream in the downstream stage member. When the spout and the suction port are not provided on the upstream side of the side levitation region in the transport direction and at least one of the buffer region adjacent to the downstream levitation region is provided .
Substrate processing, characterized in that to alleviate the variation of the flying height of the substrate relative to the supplying the flying height at the vicinity of the boundary between the said via a buffer area is transported to the substrate buffer region and the supply air bearing region Method.
JP2019050635A 2019-03-19 2019-03-19 Substrate processing equipment and substrate processing method Active JP6896008B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019050635A JP6896008B2 (en) 2019-03-19 2019-03-19 Substrate processing equipment and substrate processing method
CN202010131552.1A CN111715473B (en) 2019-03-19 2020-02-28 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050635A JP6896008B2 (en) 2019-03-19 2019-03-19 Substrate processing equipment and substrate processing method

Publications (2)

Publication Number Publication Date
JP2020152480A JP2020152480A (en) 2020-09-24
JP6896008B2 true JP6896008B2 (en) 2021-06-30

Family

ID=72557627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050635A Active JP6896008B2 (en) 2019-03-19 2019-03-19 Substrate processing equipment and substrate processing method

Country Status (2)

Country Link
JP (1) JP6896008B2 (en)
CN (1) CN111715473B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437134B2 (en) * 2010-03-31 2014-03-12 大日本スクリーン製造株式会社 Coating device
JP2018043200A (en) * 2016-09-15 2018-03-22 株式会社Screenホールディングス Coating applicator and application method
JP2018113327A (en) * 2017-01-11 2018-07-19 株式会社Screenホールディングス Substrate processing apparatus
JP6860356B2 (en) * 2017-01-20 2021-04-14 株式会社Screenホールディングス Coating device and coating method
JP6860379B2 (en) * 2017-03-03 2021-04-14 株式会社Screenホールディングス Coating device and coating method

Also Published As

Publication number Publication date
CN111715473B (en) 2021-12-14
CN111715473A (en) 2020-09-29
JP2020152480A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
TWI445578B (en) Coating device
JP6831406B2 (en) Coating device and coating method
TWI660786B (en) Substrate processing device and substrate processing method
KR20180082959A (en) Substrate processing apparatus
JP2018043200A (en) Coating applicator and application method
JP2012076877A (en) Workpiece transport method and workpiece transport apparatus
CN108525941B (en) Coating apparatus and coating method
JP6860356B2 (en) Coating device and coating method
JP6896008B2 (en) Substrate processing equipment and substrate processing method
JP4982292B2 (en) Coating apparatus and coating method
KR20130017443A (en) Substrate coating apparatus, substrate conveyance apparatus having the function for floating the surface and the method of conveying floating the substrate
JP6860357B2 (en) Coating device and coating method
JP6916833B2 (en) Coating device and coating method
JP6797698B2 (en) Abnormality detection method for substrate processing equipment and substrate processing equipment
JP6905830B2 (en) Substrate processing equipment and substrate processing method
JP6861198B2 (en) Substrate transfer device and coating device
JP6737649B2 (en) Coating device and coating method
JP2018152441A (en) Substrate transfer device, substrate transfer method and coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6896008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250