JP6893678B2 - Wind measuring device - Google Patents

Wind measuring device Download PDF

Info

Publication number
JP6893678B2
JP6893678B2 JP2016228857A JP2016228857A JP6893678B2 JP 6893678 B2 JP6893678 B2 JP 6893678B2 JP 2016228857 A JP2016228857 A JP 2016228857A JP 2016228857 A JP2016228857 A JP 2016228857A JP 6893678 B2 JP6893678 B2 JP 6893678B2
Authority
JP
Japan
Prior art keywords
wind
transmission member
force
measuring device
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228857A
Other languages
Japanese (ja)
Other versions
JP2018084537A (en
Inventor
林 泰正
泰正 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORT-PLAN LLC
Original Assignee
HORT-PLAN LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORT-PLAN LLC filed Critical HORT-PLAN LLC
Priority to JP2016228857A priority Critical patent/JP6893678B2/en
Priority to PCT/JP2017/042178 priority patent/WO2018097236A1/en
Publication of JP2018084537A publication Critical patent/JP2018084537A/en
Application granted granted Critical
Publication of JP6893678B2 publication Critical patent/JP6893678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/04Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using deflection of baffle-plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

本発明は、風の力の大きさや向きを検出して、風速や風向などを計測する風計測装置に関するものである。 The present invention relates to a wind measuring device that detects the magnitude and direction of a wind force and measures the wind speed, the wind direction, and the like.

居住空間や、工業設備、栽培施設などの農場現場では、「風速」は重要な環境要素であり、生産性にも影響を与える。さらに、風がどの方向から吹いているかという「風向」の情報は、環境把握を行う上では重要である。例えば、居住空間では、タバコの煙など有害物質の流れ方向を把握できたほうが良い。工業設備でも、クリーンルーム等の風向きに注意を払う必要がある。さらに、ICT化・クラウド化等で中心的な役割を果たすデータセンタ・サーバルームなどでは、風の気流管理が適切に行われないと、サーバの冷却が適切に行われなくなり、処理速度の制約を受ける事になる。 At farm sites such as living spaces, industrial equipment, and cultivation facilities, "wind speed" is an important environmental factor and also affects productivity. Furthermore, information on the "wind direction" from which direction the wind is blowing is important for understanding the environment. For example, in a living space, it is better to be able to grasp the flow direction of harmful substances such as cigarette smoke. Even in industrial equipment, it is necessary to pay attention to the direction of the wind in clean rooms. Furthermore, in data centers and server rooms, which play a central role in ICT and cloud computing, if wind airflow is not properly managed, the server will not be cooled properly, limiting processing speed. Will receive.

また、屋外環境と異なり、これら空間の風速は1m/s以下であることが多く、また、設置場所も限られているため、風計測装置が小型である必要がある。また、屋外であっても、センサの小型化・低コスト化の要求は強くなっており、これらのニーズを満たす風計測装置が求められている。 Further, unlike the outdoor environment, the wind speed in these spaces is often 1 m / s or less, and the installation location is limited, so that the wind measuring device needs to be small. Further, even outdoors, there is an increasing demand for miniaturization and cost reduction of sensors, and a wind measuring device that meets these needs is required.

ところで、従来より、風速や風向を計測する風計測装置として、様々な方式が提案されている。例えば、屋外気象計測で一般的に用いられているものとして、いわゆる風見鶏と呼ばれるもので、風の力によって風下側に羽根が来るようにしたものが知られている。特に気象庁や屋外気象計測は、風速検出のプロペラを仕込んだ飛行機型と呼ばれるものが用いられている。 By the way, various methods have been conventionally proposed as wind measuring devices for measuring wind speed and direction. For example, a so-called weathercock, which is generally used in outdoor meteorological measurement, is known to have feathers on the leeward side due to the force of the wind. In particular, the Japan Meteorological Agency and outdoor meteorological measurements use what is called an airplane type equipped with a propeller for wind speed detection.

また、超音波の伝達速度から風速と風向を求める超音波式が実用化されている。これは、複数方向の風速を同時計測し、その複数の風速からベクトルを導き出し、風向を得る方法である。風向算出には、最低2軸の超音波発振器と受信器が必要であり、これを3組用いて3軸で計測すると、3次元での風向も得られる。 In addition, an ultrasonic method that obtains the wind speed and direction from the transmission speed of ultrasonic waves has been put into practical use. This is a method of simultaneously measuring wind speeds in a plurality of directions, deriving a vector from the plurality of wind speeds, and obtaining a wind direction. To calculate the wind direction, an ultrasonic oscillator and a receiver with at least two axes are required, and if three sets of these are used for measurement on three axes, a three-dimensional wind direction can also be obtained.

さらに、プロペラ式の風速計を3方位組合せて、3次元での風向を得られる方式も、一部では用いられている。 Further, a method in which a propeller type anemometer is combined in three directions to obtain a three-dimensional wind direction is also used in some cases.

ところが、これら従来の方式の風計測装置は、装置の大きさが20cm四方以上の空間を必要として大型であり、また装置コストも高額なものばかりであった。また、超音波式を除く上記風計測装置は、風速の3乗に比例した力が物体にかかることを利用しているため、微風速域では計測が困難、もしくは風速の違いによる差が出にくく、逆に微風速域に最適化して設計すると、やや強い風速域の環境下に置かれるとレンジオーバーを引き起こしていた。一方、1m/s以下の微風速を良好に検出できるものは、上記のうち超音波式のみであるが、超音波式のものも、分解能を上げるためには使用周波数を上げるか、発振器〜受信器間の距離を広げる必要があった。 However, these conventional wind measuring devices are large in size because they require a space of 20 cm square or more, and the cost of the device is also high. In addition, since the above wind measuring devices other than the ultrasonic type utilize the fact that a force proportional to the cube of the wind speed is applied to the object, it is difficult to measure in the light wind speed range, or it is difficult to make a difference due to the difference in wind speed. On the contrary, when the design was optimized for the breeze speed range, the range was over when placed in an environment with a slightly strong wind speed range. On the other hand, among the above, only the ultrasonic type can satisfactorily detect a breeze speed of 1 m / s or less, but in order to improve the resolution, the ultrasonic type also has to increase the frequency used or the oscillator to receive. It was necessary to increase the distance between the vessels.

そこで、上述の方式とは別に、熱式の風計測装置が実用化されている。この方式は、小型化が容易で、構造も比較的簡単であり、微風速を計測可能という特徴を備えている。実用化された例として、指向性を持たせたPt自己発熱式風速センサを3つ組合せ、指向性による感度の違いを利用して風向を算出する手法が取られていて、市販もされている。ただ、この方式は、細い白金抵抗体を3本用いる方式であるため、機械的衝撃や腐食性に耐候性が低く、製造の手間も必要といった問題点を抱えている。
そこで、これらの問題点を克服し、高コスト、小型化、堅牢性を備えた風計測装置の構造および製造法として、本発明者は特許文献1〜3に示すものを発明し、特許出願している。
Therefore, apart from the above-mentioned method, a thermal wind measuring device has been put into practical use. This method has the features that it is easy to miniaturize, the structure is relatively simple, and the breeze speed can be measured. As an example of practical use, a method of calculating the wind direction by combining three Pt self-heating wind speed sensors having directivity and utilizing the difference in sensitivity due to directivity has been adopted and is also commercially available. .. However, since this method uses three thin platinum resistors, it has problems that it has low weather resistance against mechanical impact and corrosiveness, and that it requires labor for manufacturing.
Therefore, the present inventor has invented the ones shown in Patent Documents 1 to 3 as a structure and manufacturing method of a wind measuring device having high cost, miniaturization, and robustness by overcoming these problems, and applied for a patent. ing.

特開2015−68659号公報JP-A-2015-68659 特開2015−210196号公報Japanese Unexamined Patent Publication No. 2015-210196 特開2016−118511号公報Japanese Unexamined Patent Publication No. 2016-118511

ところが、熱式のそもそもの問題点として、検出部分を温めておく必要があり、これにより一定の熱エネルギー源をセンサに供給しなければ稼働しない問題点を有している。これにより、電池を電源とした場合は長時間連続稼働が出来ず、連続稼働を行うためには、長期間安定して電気を受けられるように、商用電源などの電源をエネルギーソースに用意する必要がある。この問題は、装置の設置や運用上の制限を設けることになり、今後予想されるセンサ等を用いたIoT化やスマートコミュニティ実現に制約を与えることになる。 However, as a problem of the thermal type, it is necessary to keep the detection portion warm, which causes a problem that the sensor does not operate unless a constant heat energy source is supplied to the sensor. As a result, when a battery is used as a power source, continuous operation cannot be performed for a long time, and in order to perform continuous operation, it is necessary to prepare a power source such as a commercial power source as an energy source so that electricity can be stably received for a long period of time. There is. This problem imposes restrictions on the installation and operation of equipment, and imposes restrictions on the IoT and smart community realization that are expected in the future.

なお、上述の方式の他に、航空機に用いているピトー管や、パイプなどの流体を図るための差圧式の流量計などが実用化されているが、これらは流れ方向が定まっている場合や、流れ経路が既知な流体に対してのもので、流れ方向が定まっていないもしくは、流れ方向が予想できない計測には向かない。 In addition to the above methods, pitot tubes used in aircraft and differential pressure type flow meters for measuring fluids such as pipes have been put into practical use, but these may be used when the flow direction is fixed. , For fluids with known flow paths, not suitable for measurements where the flow direction is uncertain or the flow direction is unpredictable.

本発明は、上述の問題に鑑みてなされたものであって、簡易な構成にして、風速や風向を精度良く計測することが可能な風計測装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a wind measuring device capable of accurately measuring a wind speed and a wind direction with a simple configuration.

本発明に係る風計測装置は、上記目的を達成するために、風を受けるディテクタと、前記ディテクタを支持するとともに、ディテクタにより受けた風の力を伝達する伝達部材と、前記伝達部材により伝達されてきた風の力の大きさを検出する検出センサとを備えることを特徴とする。 In order to achieve the above object, the wind measuring device according to the present invention has a detector that receives wind, a transmission member that supports the detector and transmits the force of the wind received by the detector, and the transmission member. It is characterized by being provided with a detection sensor that detects the magnitude of the force of the incoming wind.

これによれば、ディテクタ、伝達部材および検出センサからなる簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができ、風速や風向などを精度良く計測することが可能となる。 According to this, it is possible to easily and surely detect the magnitude of the wind force with a simple configuration consisting of a detector, a transmission member and a detection sensor, and it is possible to accurately measure the wind speed and direction. Become.

また、前記ディテクタは、球体に形成されてもよい。これよれば、上下左右あらゆる方向からの風に対して指向性を有しないため、あらゆる方向からの風の力の大きさを検出することができる。 Further, the detector may be formed in a sphere. According to this, since the wind has no directivity to the wind from all directions, up, down, left and right, the magnitude of the wind force from all directions can be detected.

また、前記ディテクタは、複数の細い棒状部材が放射状に延びる態様に形成されてもよい。これによれば、ディテクタが強い風を受けた場合、風が各棒状部材の間を抜けることにより、過大な力が伝達部材や検出センサにかかることを防止できる。 Further, the detector may be formed in such a manner that a plurality of thin rod-shaped members extend radially. According to this, when the detector receives a strong wind, it is possible to prevent an excessive force from being applied to the transmission member and the detection sensor by passing the wind between the rod-shaped members.

また、前記伝達部材は、軸方向に延びる棒状部材からなり、先端部に前記ディテクタが設けられるとともに、基端部に前記検出センサが設けられてもよいし、前記伝達部材は、検出センサが伝達部材の基端部の周面側に配置されてもよい。これによれば、より一層簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができる。 Further, the transmission member is composed of a rod-shaped member extending in the axial direction, and the detector may be provided at the tip end portion and the detection sensor may be provided at the base end portion. It may be arranged on the peripheral surface side of the base end portion of the member. According to this, it is possible to easily and surely detect the magnitude of the wind force by making the configuration even simpler.

また、前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた複数の脚部材とからなり、各脚部材の基端部に検出センサが設けられてもよい。これによれば、各脚部材の基端部に設けられた各検出センサによる風の力の大きさの検出結果を合成することにより風の向きを計測することができる。 Further, the transmission member includes a rod-shaped member extending in the axial direction and a plurality of leg members provided at the base end portions of the rod-shaped member, and a detection sensor may be provided at the base end portion of each leg member. .. According to this, the direction of the wind can be measured by synthesizing the detection results of the magnitude of the wind force by each detection sensor provided at the base end portion of each leg member.

また、前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた平板部材とからなり、平板部材の裏面に複数の検出センサが設けられてもよいし、前記伝達部材は、平面方向に延びる平板部材からなり、表面に前記ディテクタが設けられるとともに、裏面に複数の前記検出センサが設けられてもよい。これによれば、平板部材の裏面に設けられた各検出センサによる風の力の大きさの検出結果を合成することにより風の向きを計測することができる。 Further, the transmission member is composed of a rod-shaped member extending in the axial direction and a flat plate member provided at a base end portion of the rod-shaped member, and a plurality of detection sensors may be provided on the back surface of the flat plate member. The transmission member is made of a flat plate member extending in the plane direction, and the detector may be provided on the front surface and a plurality of the detection sensors may be provided on the back surface. According to this, the direction of the wind can be measured by synthesizing the detection results of the magnitude of the wind force by each detection sensor provided on the back surface of the flat plate member.

また、前記棒状部材は、可撓性の材質からなってもよい。これによれば、ディタクタが受ける風の力に応じて撓むことにより、検出センサに伝達される力を減衰させ得るため、弱い風速環境から強い風速環境の幅広い風速範囲で適用することができる。 Further, the rod-shaped member may be made of a flexible material. According to this, since the force transmitted to the detection sensor can be attenuated by bending according to the wind force received by the deductor, it can be applied in a wide wind speed range from a weak wind speed environment to a strong wind speed environment.

また、さらに、前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部を備えてもよい。これによれば、前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を精度良く計測することが可能となる。 Further, a measuring unit that measures the wind speed and / or the wind direction based on the magnitude of the wind force detected by the detection sensor may be provided. According to this, it is possible to accurately measure the wind speed and / or the wind direction based on the magnitude of the wind force detected by the detection sensor.

本発明によれば、ディテクタ、伝達部材および検出センサからなる簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができ、風速や風向などを精度良く計測することが可能となる。 According to the present invention, it is possible to easily and surely detect the magnitude of the wind force by using a simple configuration consisting of a detector, a transmission member and a detection sensor, and it is possible to accurately measure the wind speed, the wind direction, and the like. It becomes.

このため、居住空間や、工業設備、栽培施設などの農業現場などにおいて、風速や風向を必要とする場面に対して、小型で安価な風計測装置を与えることが可能となる。 Therefore, it is possible to provide a small and inexpensive wind measuring device for a situation where a wind speed or a wind direction is required in a living space, an industrial facility, an agricultural site such as a cultivation facility, or the like.

また、圧力や力を検出するピエゾ素子などの検出デバイスは、大きな電力を必要としない省電力のため、化学電池などの電源容量の制限のある環境や、太陽電池や振動発電などのエネルギーハーベスティング装置により、エネルギーを装置内で完結させた電源環境でも動作可能である。 In addition, detection devices such as piezo elements that detect pressure and force do not require a large amount of power to save power, so they can be used in environments with limited power capacity such as chemical batteries, and energy harvesting such as solar cells and vibration power generation. The device can also operate in a power environment where the energy is complete within the device.

第1の実施形態に係る風計測装置の斜視図である。It is a perspective view of the wind measuring apparatus which concerns on 1st Embodiment. 第2の実施形態に係る風計測装置の斜視図である。It is a perspective view of the wind measuring apparatus which concerns on 2nd Embodiment. 図2の風計測装置の基端部の(a)側断面図、(b)平断面図である。It is (a) side sectional view and (b) plan sectional view of the base end portion of the wind measuring apparatus of FIG. 第3の実施形態に係る風計測装置の斜視図である。It is a perspective view of the wind measuring apparatus which concerns on 3rd Embodiment. 図4の風計測装置における検出センサによる風の力の検出状態を示す模式図である。It is a schematic diagram which shows the detection state of the wind force by the detection sensor in the wind measuring apparatus of FIG. 第4の実施形態に係る風計測装置の(a)斜視図、(b)底面図である。It is (a) perspective view and (b) bottom view of the wind measuring device which concerns on 4th Embodiment. 第4の実施形態に係る風計測装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the wind measuring apparatus which concerns on 4th Embodiment. 第5の実施形態に係る風計測装置の斜視図である。It is a perspective view of the wind measuring apparatus which concerns on 5th Embodiment. 風計測装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of a wind measuring device.

<第1の実施形態>
次に、本発明に係る風計測装置(以下、本装置という)の第1の実施形態について図1を参照しつつ説明する。
<First Embodiment>
Next, a first embodiment of the wind measuring device (hereinafter referred to as the present device) according to the present invention will be described with reference to FIG.

本装置は、風を受けるディテクタ1と、風の力を伝達する伝達部材2と、風の力を検出する検出センサ3とから構成される。 This device includes a detector 1 that receives wind, a transmission member 2 that transmits wind force, and a detection sensor 3 that detects wind force.

前記ディテクタ1は、球体に形成されており、上下左右あらゆる方向からの風に対して指向性を有しない形状となされている。このため、ディテクタ1は、ある方向から風を受けた際、球体表面に沿って風を流しながら風の力を受け止める。 The detector 1 is formed in a sphere and has a shape that does not have directivity with respect to wind from all directions, up, down, left, and right. Therefore, when the detector 1 receives the wind from a certain direction, the detector 1 receives the force of the wind while flowing the wind along the surface of the sphere.

前記伝達部材2は、軸方向に延びる可撓性の樹脂製又は金属製等の棒状部材からなり、先端部2aにディテクタ1が設けられるとともに、基端部2bに検出センサ3が設けられている。この伝達部材2は、ディテクタ1により受けた風の力を検出センサ3に伝達するものである。具体的には、ディテクタ1が風を受けた際、伝達部材2が検出センサ3との接続部分を支点として撓むことによって、伝達部材2の基端部2bがZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。 The transmission member 2 is made of a flexible resin or metal rod-shaped member extending in the axial direction, and a detector 1 is provided at a tip portion 2a and a detection sensor 3 is provided at a base end portion 2b. .. The transmission member 2 transmits the wind force received by the detector 1 to the detection sensor 3. Specifically, when the detector 1 receives wind, the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum, so that the base end portion 2b of the transmission member 2 is pulled in the Z-axis direction. A pushing force acts, and the tensile force and the pushing pressure are transmitted to the detection sensor 3 as a wind force.

前記検出センサ3は、平面視矩形状の平板に形成されており、表面の中央部に伝達部材2が立設されるとともに、裏面が筐体などの固定物に固定される。この検出センサ3は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3は、伝達部材2の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、伝達部材2がZ軸の負方向に押されると負の値を出力する。 The detection sensor 3 is formed on a flat plate having a rectangular shape in a plan view, and a transmission member 2 is erected at the center of the front surface, and the back surface is fixed to a fixed object such as a housing. The detection sensor 3 includes a conversion element such as a piezo element for detecting the magnitude of the wind force transmitted from the transmission member 2 and converting the magnitude of the wind force into an electric signal. In the present embodiment, the detection sensor 3 outputs a positive value when the base end portion 2b of the transmission member 2 is pulled in the positive direction of the Z axis, and negative when the transmission member 2 is pushed in the negative direction of the Z axis. Output the value.

而して、X軸やY軸の横方向に風が流れ、ディテクタ1がX軸やY軸の横方向に風を受けると、伝達部材2が検出センサ3との接続部分を支点として撓むことにより、伝達部材2の基端部2bがZ軸の正方向に引っ張られた状態となるため、検出センサ3がそのときの引張力を風の力として検出して正の値を出力する。 Thus, when the wind flows in the lateral direction of the X-axis or the Y-axis and the detector 1 receives the wind in the lateral direction of the X-axis or the Y-axis, the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum. As a result, the base end portion 2b of the transmission member 2 is in a state of being pulled in the positive direction of the Z axis, so that the detection sensor 3 detects the tensile force at that time as a wind force and outputs a positive value.

<第2の実施形態>
次に、本発明に係る本装置の第2の実施形態について図2〜図3を参照しつつ説明する。なお、以下では上記の実施形態と異なる構成についてのみ説明することとし、同一の構成については説明を省略して同一の符号を付すこととする。
<Second embodiment>
Next, a second embodiment of the present device according to the present invention will be described with reference to FIGS. 2 to 3. In the following, only the configurations different from the above-described embodiment will be described, and the same configurations will be omitted and the same reference numerals will be given.

本実施形態では、前記伝達部材2は、基端部2bが筐体などの固形物Gに直接固定されている。このため、ディテクタ1が風を受けた際、伝達部材2が固形物Gとの接続部分を支点として撓むことによって、伝達部材2の基端部2bがX軸方向やY軸方向に押される力が作用し、その押圧力を風の力として検出センサ3に伝達する。 In the present embodiment, the base end portion 2b of the transmission member 2 is directly fixed to a solid object G such as a housing. Therefore, when the detector 1 receives wind, the transmission member 2 bends with the connection portion with the solid object G as a fulcrum, so that the base end portion 2b of the transmission member 2 is pushed in the X-axis direction or the Y-axis direction. A force acts and the pressing force is transmitted to the detection sensor 3 as a wind force.

また、前記検出センサ3は、直方体に形成された2個の第1および第2の検出センサ3A、3Bからなる。これら第1および第2の検出センサ3A、3Bは、それぞれ伝達部材2の基端部2bの周面側のX軸方向およびY軸方向に接続部材41,42を介して設けられている。これら第1および第2の検出センサ3A、3Bは、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、第1の検出センサ3Aは、伝達部材2の基端部2bにより接続部材41を介してX軸の正方向に引っ張られると正の値を出力し、X軸の負方向に押されると負の値を出力する。一方、第2の検出センサ3Bは、伝達部材2の基端部2bにより接続部材42を介してY軸の正方向に押されると正の値を出力し、X軸の負方向に引っ張られると負の値を出力する。 Further, the detection sensor 3 includes two first and second detection sensors 3A and 3B formed in a rectangular parallelepiped. The first and second detection sensors 3A and 3B are provided via the connecting members 41 and 42 in the X-axis direction and the Y-axis direction on the peripheral surface side of the base end portion 2b of the transmission member 2, respectively. These first and second detection sensors 3A and 3B are piezo elements for detecting the magnitude of the wind force transmitted from the transmission member 2 and converting the magnitude of the wind force into an electric signal. It consists of conversion elements such as. In the present embodiment, the first detection sensor 3A outputs a positive value when pulled in the positive direction of the X-axis by the base end portion 2b of the transmission member 2 via the connecting member 41, and outputs a positive value in the negative direction of the X-axis. When pressed, a negative value is output. On the other hand, when the second detection sensor 3B is pushed by the base end portion 2b of the transmission member 2 via the connecting member 42 in the positive direction of the Y axis, it outputs a positive value, and when it is pulled in the negative direction of the X axis. Output a negative value.

而して、X軸やY軸の横方向に風が流れ、ディテクタ1がX軸やY軸の横方向に風を受けると、伝達部材2が固定物Gとの接続部分を支点として撓むことによって、伝達部材2の基端部2bが接続部材41、42を介してX軸やY軸の方向に押された状態となり、それに伴って第1および第2の検出センサ3A、3Bが押されたり、引っ張られた状態となるため、第1および第2の検出センサ3A、3Bがそのときの押圧力や引張力を風の力として検出して正の値や負の値を出力する。このとき第1の検出センサ3AがX軸方向の風の力を検出し、第2の検出センサ3BがY軸方向の風の力を検出するため、これら第1の検出センサ3AによるX軸方向の風の力と第2の検出センサ3BによるY軸方向の風の力とを合成することにより全体の風の力と向き(X軸−Y軸方向の2次元平面の向き)を計測することができる。 Thus, when the wind flows in the lateral direction of the X-axis and the Y-axis and the detector 1 receives the wind in the lateral direction of the X-axis and the Y-axis, the transmission member 2 bends with the connection portion with the fixed object G as a fulcrum. As a result, the base end portion 2b of the transmission member 2 is pushed in the X-axis and Y-axis directions via the connecting members 41 and 42, and the first and second detection sensors 3A and 3B are pushed accordingly. The first and second detection sensors 3A and 3B detect the pressing force and the tensile force at that time as the wind force and output a positive value or a negative value. At this time, since the first detection sensor 3A detects the wind force in the X-axis direction and the second detection sensor 3B detects the wind force in the Y-axis direction, the X-axis direction by these first detection sensors 3A The total wind force and direction (direction of the two-dimensional plane in the X-axis-Y-axis direction) is measured by synthesizing the wind force of the above and the wind force in the Y-axis direction by the second detection sensor 3B. Can be done.

なお、本実施形態では、第1の検出センサ3Aと第2の検出センサ3Bを別個に設けたが、第1の検出センサ3Aと第2の検出センサ3Bを統合して1個のものとして、2つの風の力を電気信号に変換してもよい。 In the present embodiment, the first detection sensor 3A and the second detection sensor 3B are provided separately, but the first detection sensor 3A and the second detection sensor 3B are integrated into one. The forces of the two winds may be converted into electrical signals.

<第3の実施形態>
次に、本発明に係る本装置の第3の実施形態について図4〜図5を参照しつつ説明する。
<Third embodiment>
Next, a third embodiment of the present device according to the present invention will be described with reference to FIGS. 4 to 5.

本実施形態では、前記伝達部材2は、軸方向に延びる可撓性の樹脂製又は金属製等の棒状部材からなる第1の伝達部材21と、該第1の伝達部材21の基端部に設けられた可撓性の樹脂製又は金属製等の脚部材からなる第2の伝達部材22とから構成される。これら第2の伝達部材22は、3個の伝達部材22A、22B、22Cからなり、それぞれ第1の伝達部材21の基端部から互いに平面視120度の角度をなして斜め下方に向けて延びており、基端部2bに検出センサ3(3A,3B、3C)が設けられている。このため、ディテクタ1が風を受けた際、伝達部材2が検出センサ3との接続部分を支点として撓むことによって、第2の伝達部材22の基端部2bがZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。 In the present embodiment, the transmission member 2 is attached to a first transmission member 21 made of a rod-shaped member made of flexible resin or metal extending in the axial direction, and a base end portion of the first transmission member 21. It is composed of a second transmission member 22 made of a flexible resin or metal leg member provided. The second transmission member 22 is composed of three transmission members 22A, 22B, and 22C, each extending diagonally downward from the base end portion of the first transmission member 21 at an angle of 120 degrees in a plan view. A detection sensor 3 (3A, 3B, 3C) is provided at the base end portion 2b. Therefore, when the detector 1 receives wind, the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum, so that the base end portion 2b of the second transmission member 22 is pulled in the Z-axis direction. , Pushing force acts, and those tensile force and pushing force are transmitted to the detection sensor 3 as wind force.

前記検出センサ3は、平面視矩形状の平板に形成された第1〜第3の検出センサ3A、3B、3Cからなり、表面の中央部に第2の伝達部材22(22A、22B、22C)が立設されるとともに、裏面が筐体などの固定物に固定されている。この検出センサ3(3A、3B、3C)は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3(3A、3B、3C)は、第2の伝達部材22(22A、22B、22C)の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、第2の伝達部材22(22A、22B、22C)の基端部2bがZ軸の負方向に押されると負の値を出力する。 The detection sensor 3 is composed of first to third detection sensors 3A, 3B, and 3C formed on a flat plate having a rectangular shape in a plan view, and a second transmission member 22 (22A, 22B, 22C) is located at the center of the surface. Is erected, and the back surface is fixed to a fixed object such as a housing. The detection sensor 3 (3A, 3B, 3C) detects the magnitude of the wind force transmitted from the transmission member 2, and converts the magnitude of the wind force into an electric signal such as a piezo element. Consists of conversion elements. In the present embodiment, the detection sensor 3 (3A, 3B, 3C) outputs a positive value when the base end portion 2b of the second transmission member 22 (22A, 22B, 22C) is pulled in the positive direction of the Z axis. Then, when the base end portion 2b of the second transmission member 22 (22A, 22B, 22C) is pushed in the negative direction of the Z axis, a negative value is output.

而して、所定の方向に風が流れ、ディテクタ1が所定の方向に風を受けると、第2の伝達部材22(22A、22B、22C)の基端部2bはZ軸の正方向に引っ張られたり、負方向に押されたりする状態となるため、検出センサ3(3A、3B、3C)がそのときの引張力や押圧力を風の力として検出して正の値または負の値をそれぞれ出力する。また、これら検出センサ3(3A、3B、3C)のZ軸方向の風の力を合成することにより全体の風の力と向き(X軸−Y軸−Z軸方向の3次元の向き)を計測することができる。 Thus, when the wind flows in a predetermined direction and the detector 1 receives the wind in a predetermined direction, the base end portion 2b of the second transmission member 22 (22A, 22B, 22C) is pulled in the positive direction of the Z axis. The detection sensor 3 (3A, 3B, 3C) detects the tensile force and pressing force at that time as the force of the wind and sets a positive value or a negative value. Output each. Further, by synthesizing the wind force in the Z-axis direction of these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (three-dimensional direction in the X-axis-Y-axis-Z-axis direction) can be obtained. Can be measured.

例えば、図5(a)に示すように、Y軸の正方向に風が流れ、ディテクタ1がY軸の正方向に風を受けると、第2の伝達部材22Cの基端部2bはZ軸の負方向に押された状態となるため、検出センサ3Cがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22A、22Bの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3A、3Bがそのときの引張力を風の力として検出して正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Y軸の正方向)を計測することができる。 For example, as shown in FIG. 5A, when the wind flows in the positive direction of the Y-axis and the detector 1 receives the wind in the positive direction of the Y-axis, the base end portion 2b of the second transmission member 22C has the Z-axis. Since the state is pushed in the negative direction of, the detection sensor 3C detects the pushing pressure at that time as the force of the wind and outputs a negative value. On the other hand, since the base end portions 2b of the second transmission members 22A and 22B are in a state of being pulled in the positive direction of the Z axis, the detection sensors 3A and 3B detect the tensile force at that time as the wind force and are positive. Outputs the value of. By synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (positive direction of the Y-axis) can be measured.

また、例えば、図5(b)に示すように、Y軸の負方向に風が流れ、ディテクタ1がY軸の負方向に風を受けると、第2の伝達部材22A,22Bの基端部2bはZ軸の負方向に押された状態となるため、検出センサ3A,3Bがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22Cの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3Cがそのときの引張力を風の力として検出して正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Y軸の負方向)を計測することができる。 Further, for example, as shown in FIG. 5B, when the wind flows in the negative direction of the Y axis and the detector 1 receives the wind in the negative direction of the Y axis, the base end portions of the second transmission members 22A and 22B Since 2b is in a state of being pushed in the negative direction of the Z axis, the detection sensors 3A and 3B detect the pushing pressure at that time as a wind force and output a negative value. On the other hand, since the base end portion 2b of the second transmission member 22C is in a state of being pulled in the positive direction of the Z axis, the detection sensor 3C detects the tensile force at that time as a wind force and outputs a positive value. To do. By synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (negative direction in the Y-axis) can be measured.

また、例えば、図5(c)に示すように、X軸の正方向に風が流れ、ディテクタ1がX軸の正方向に風を受けると、第2の伝達部材22Bの基端部2bはZ軸の負方向に押された状態となるため、第2の検出センサ3Bがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22Aの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3Aがそのときの引張力を風の力として検出して正の値で出力する。なお、第2の伝達部材22Cの基端部2bは押されることも、引っ張られることもないため、検出センサ3Cは中立の値(±0)を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(X軸の正方向)を計測することができる。 Further, for example, as shown in FIG. 5C, when the wind flows in the positive direction of the X-axis and the detector 1 receives the wind in the positive direction of the X-axis, the base end portion 2b of the second transmission member 22B is moved. Since the Z-axis is pushed in the negative direction, the second detection sensor 3B detects the pushing pressure at that time as a wind force and outputs a negative value. On the other hand, since the base end portion 2b of the second transmission member 22A is in a state of being pulled in the positive direction of the Z axis, the detection sensor 3A detects the tensile force at that time as a wind force and outputs a positive value. To do. Since the base end portion 2b of the second transmission member 22C is neither pushed nor pulled, the detection sensor 3C outputs a neutral value (± 0). By synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (positive direction of the X-axis) can be measured.

また、例えば、図5(d)に示すように、Z軸の負方向に風が流れ、ディテクタ1がZ軸の負方向に風を受けると、第2の伝達部材22A、22B、22Cの各基端部2bはいずれもZ軸の負方向に押された状態となるため、検出センサ3A、3B、3Cはそのときの押圧力を風の力として検出して同一の負の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Z軸の負方向)を計測することができる。 Further, for example, as shown in FIG. 5D, when the wind flows in the negative direction of the Z axis and the detector 1 receives the wind in the negative direction of the Z axis, each of the second transmission members 22A, 22B, and 22C. Since the base end portion 2b is in a state of being pushed in the negative direction of the Z axis, the detection sensors 3A, 3B, and 3C detect the pressing force at that time as a wind force and output the same negative value. .. By synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (negative direction in the Z-axis) can be measured.

また、例えば、図5(e)に示すように、Z軸の正方向に風が流れ、ディテクタ1がZ軸の正方向に風を受けると、第2の伝達部材22A、22B、22Cの各基端部2bはいずれもZ軸の正方向に引っ張られた状態となるため、検出センサ3A、3B、3Cはそのときの引張力を風の力として検出して同一の正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Z軸の正方向)を計測することができる。 Further, for example, as shown in FIG. 5E, when the wind flows in the positive direction of the Z axis and the detector 1 receives the wind in the positive direction of the Z axis, each of the second transmission members 22A, 22B, and 22C. Since the base end portion 2b is in a state of being pulled in the positive direction of the Z axis, the detection sensors 3A, 3B, and 3C detect the tensile force at that time as a wind force and output the same positive value. .. By synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (positive direction of the Z-axis) can be measured.

<第4の実施形態>
次に、本発明に係る本装置の第4の実施形態について図6を参照しつつ説明する。
<Fourth Embodiment>
Next, a fourth embodiment of the present device according to the present invention will be described with reference to FIG.

本実施形態では、前記伝達部材2は、軸方向に延びる棒状部材からなる第1の伝達部材21と、該第1の伝達部材21に基端部に設けられた平板部材からなる第2の伝達部材22とから構成される。この第2の伝達部材22は、表面の中央部から第1の伝達部材21が立設され、裏面に検出センサ3が設けられている。このため、ディテクタ1が風を受けた際、第1の伝達部材21が第2の伝達部材22との接続部分を支点として撓むことにより、第2の伝達部材22の平面上の各部がZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。 In the present embodiment, the transmission member 2 is a second transmission composed of a first transmission member 21 made of a rod-shaped member extending in the axial direction and a flat plate member provided at a base end portion of the first transmission member 21. It is composed of a member 22. In the second transmission member 22, the first transmission member 21 is erected from the central portion of the front surface, and the detection sensor 3 is provided on the back surface. Therefore, when the detector 1 receives the wind, the first transmission member 21 bends with the connecting portion with the second transmission member 22 as a fulcrum, so that each portion on the plane of the second transmission member 22 becomes Z. Forces that are pulled or pushed in the axial direction act, and these tensile forces and pushing pressures are transmitted to the detection sensor 3 as wind forces.

前記検出センサ3は、図6(b)に示すように、円盤状に形成された3個の検出センサ3A、3B、3Cからなり、それぞれ第2の伝達部材22の裏面の周縁部に沿って設けられ、第2の伝達部材22の中央部から見て互いに120度の角度をもって配置されている。これら検出センサ3(3A、3B、3C)は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3(3A、3B、3C)は、第2の伝達部材22の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、第2の伝達部材22の基端部2bがZ軸の負方向に押されると負の値を出力する。 As shown in FIG. 6B, the detection sensor 3 is composed of three detection sensors 3A, 3B, and 3C formed in a disk shape, and each is along the peripheral edge of the back surface of the second transmission member 22. It is provided and is arranged at an angle of 120 degrees with respect to the central portion of the second transmission member 22. These detection sensors 3 (3A, 3B, 3C) detect the magnitude of the wind force transmitted from the transmission member 2, and convert the magnitude of the wind force into an electric signal such as a piezo element. Consists of conversion elements. In the present embodiment, the detection sensor 3 (3A, 3B, 3C) outputs a positive value when the base end portion 2b of the second transmission member 22 is pulled in the positive direction of the Z axis, and the second transmission member 22. When the base end portion 2b of 22 is pushed in the negative direction of the Z axis, a negative value is output.

而して、第3の実施形態と同様に、所定の方向に風が流れ、ディテクタ1が所定の方向に風を受けると、第2の伝達部材22の各部はZ軸の正方向または負方向に押されたり、引っ張られた状態となるため、検出センサ3(3A、3B、3C)がそのときの押圧力または引張力を風の力として検出して負の値または正の値をそれぞれ出力する。また、これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(X軸−Y軸−Z軸方向の3次元の向き)を計測することができる。 Thus, as in the third embodiment, when the wind flows in a predetermined direction and the detector 1 receives the wind in a predetermined direction, each part of the second transmission member 22 is in the positive or negative direction of the Z axis. The detection sensor 3 (3A, 3B, 3C) detects the pressing force or tensile force at that time as the force of the wind and outputs a negative value or a positive value, respectively. To do. Further, by synthesizing the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the total wind force and direction (three-dimensional direction in the X-axis-Y-axis-Z-axis direction) can be obtained. Can be measured.

なお、本実施形態では、伝達部材2は、棒状部材からなる第1の伝達部材21と、平板部材からなる第2の伝達部材22からなるものとしたが、図7に示すように、平板部材のみからなるものであってもよい。 In the present embodiment, the transmission member 2 is composed of a first transmission member 21 made of a rod-shaped member and a second transmission member 22 made of a flat plate member, but as shown in FIG. 7, the flat plate member It may consist of only.

<第5の実施形態>
次に、本発明に係る本装置の第5の実施形態について図8を参照しつつ説明する。
<Fifth Embodiment>
Next, a fifth embodiment of the present device according to the present invention will be described with reference to FIG.

本実施形態では、前記ディテクタ1は、複数の細長い棒状部材11がZ軸の正方向の斜め上方に向けて放射状に延びる態様で形成されている。これによれば、ディテクタ1が強い風を受けた場合、風が各棒状部材11の間を抜けることにより、過大な力が伝達部材2や検出センサ3にかかることを防止できる。 In the present embodiment, the detector 1 is formed in such a manner that a plurality of elongated rod-shaped members 11 extend radially upward in the positive direction of the Z axis. According to this, when the detector 1 receives a strong wind, it is possible to prevent an excessive force from being applied to the transmission member 2 and the detection sensor 3 by passing the wind between the rod-shaped members 11.

なお、本実施形態において、棒状部材11とは、ある程度の径を有する剛性物のみならず、毛からなるものなども含む。 In the present embodiment, the rod-shaped member 11 includes not only a rigid material having a certain diameter but also a material made of hair and the like.

以上の各実施形態において、図9に示すように、前記検出センサ3により検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部を備えてもよい。さらに、計測部は、検出センサ3による風の力の大きさの振幅や振幅周期によって風速や風向を計測してもよい。 In each of the above embodiments, as shown in FIG. 9, a measuring unit that measures the wind speed and / or the wind direction may be provided based on the magnitude of the wind force detected by the detection sensor 3. Further, the measuring unit may measure the wind speed and the wind direction according to the amplitude and amplitude period of the magnitude of the wind force by the detection sensor 3.

また、前記ディテクタ1は、球体や放射状のものとしたが、その他の形状であってもよい。 Further, although the detector 1 is spherical or radial, it may have other shapes.

また、前記伝達部材2は、棒状部材や平板部材、あるいはそれらの組み合わせからなるものとしたが、その他の形状であってもよい。 Further, the transmission member 2 is made of a rod-shaped member, a flat plate member, or a combination thereof, but may have other shapes.

また、前記伝達部材2は、可撓性部材からなるものとしたが、撓まない部材であってもよい。ただ、伝達部材2が可撓性部材からなる場合、ディテクタが受ける風の力に応じて撓むことにより、検出センサ3に伝達される力を減衰させ得るため、弱い風速環境から強い風速環境の幅広い風速範囲で適用することができる。 Further, although the transmission member 2 is made of a flexible member, it may be a member that does not bend. However, when the transmission member 2 is made of a flexible member, the force transmitted to the detection sensor 3 can be attenuated by bending according to the wind force received by the detector, so that the wind speed environment can be changed from a weak wind speed environment to a strong wind speed environment. It can be applied in a wide range of wind speeds.

また、前記検出センサ3は、1〜3個の検出センサ3を用いるものとしたが、4個以上の検出センサ3を用いてもよい。また、3個の検出センサ3(3A、3B、3C)を用いる場合、各検出センサ3(3A、3B、3C)を中心から120度の角度をなすように配置するものとしたが、その他の配置であってもよい。ただ、3個の検出センサ3(3A、3B、3C)を設ける場合、それらを一直線に並ばないように配置すれば、風の大きさや向きを精度良く計測することができる。 Further, although the detection sensor 3 uses 1 to 3 detection sensors 3, 4 or more detection sensors 3 may be used. When three detection sensors 3 (3A, 3B, 3C) are used, each detection sensor 3 (3A, 3B, 3C) is arranged so as to form an angle of 120 degrees from the center, but other detection sensors 3 (3A, 3B, 3C) are used. It may be an arrangement. However, when three detection sensors 3 (3A, 3B, 3C) are provided, if they are arranged so as not to line up in a straight line, the magnitude and direction of the wind can be measured with high accuracy.

以上、図面を参照して本発明の実施形態を説明したが、本発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to those of the illustrated embodiments. Various modifications and modifications can be made to the illustrated embodiment within the same range as the present invention or within the same range.

1…ディテクタ
2…伝達部材
3…検出センサ
1 ... Detector 2 ... Transmission member 3 ... Detection sensor

Claims (10)

風を受けるディテクタと、
前記ディテクタを支持するとともに、前記ディテクタにより受けた風の力を伝達する伝達部材と、
前記伝達部材の基端部に設けられ、前記伝達部材により伝達されてきた風の力の大きさを前記伝達部材からのZ軸方向の引張力および/または押圧力により検出するピエゾ素子からなる検出センサと、
前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部を備えることを特徴とする風計測装置。
With a detector that receives the wind,
While supporting the detector, and the transmitting member for transmitting the force of the wind received by the detector,
A detection composed of a piezo element provided at the base end portion of the transmission member and detecting the magnitude of the wind force transmitted by the transmission member by a tensile force and / or a pressing force in the Z-axis direction from the transmission member. With the sensor
A wind measuring device including a measuring unit that measures a wind speed and / or a wind direction based on the magnitude of a wind force detected by the detection sensor.
前記検出センサは、3個の検出センサからなり、
前記計測部は、前記各検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を計測する請求項1に記載の風計測装置。
The detection sensor consists of three detection sensors.
The wind measuring device according to claim 1, wherein the measuring unit measures a wind speed and / or a wind direction based on the magnitude of a wind force detected by each of the detection sensors.
前記ディテクタは、球体に形成されている請求項1または請求項2に記載の風計測装置。 The wind measuring device according to claim 1 or 2, wherein the detector is formed on a sphere. 前記ディテクタは、複数の細い棒状部材が放射状に延びる態様に形成されている請求項1または請求項2に記載の風計測装置。 The wind measuring device according to claim 1 or 2, wherein the detector is formed in a manner in which a plurality of thin rod-shaped members extend radially. 前記伝達部材は、軸方向に延びる棒状部材からなり、先端部に前記ディテクタが設けられるとともに、基端部に前記検出センサが設けられている請求項1から請求項4のいずれかに記載の風計測装置。 The wind according to any one of claims 1 to 4, wherein the transmission member is a rod-shaped member extending in the axial direction, the detector is provided at the tip end portion, and the detection sensor is provided at the base end portion. Measuring device. 前記伝達部材は、検出センサが伝達部材の基端部の周面側に配置されている請求項5に記載の風計測装置。 The wind measuring device according to claim 5, wherein the transmission member is a wind measuring device in which a detection sensor is arranged on the peripheral surface side of a base end portion of the transmission member. 前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた複数の脚部材とからなり、各脚部材の基端部に検出センサが設けられている請求項1から請求項4のいずれかに記載の風計測装置。 The transmission member is composed of a rod-shaped member extending in the axial direction and a plurality of leg members provided at the base end portions of the rod-shaped member, and a detection sensor is provided at the base end portion of each leg member. The wind measuring device according to any one of claims 4. 前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた平板部材とからなり、平板部材の裏面に複数の検出センサが設けられている請求項1から請求項4のいずれかに記載の風計測装置。 The transmission member comprises a rod-shaped member extending in the axial direction and a flat plate member provided at a base end portion of the rod-shaped member, and a plurality of detection sensors are provided on the back surface of the flat plate member. The wind measuring device according to any one of 4. 前記棒状部材は、可撓性の材質からなる請求項4から請求項8のいずれかに記載の風計測装置。 The wind measuring device according to any one of claims 4 to 8, wherein the rod-shaped member is made of a flexible material. 前記伝達部材は、平面方向に延びる平板部材からなり、表面に前記ディテクタが設けられるとともに、裏面に複数の前記検出センサが設けられている請求項1から請求項4のいずれかに記載の風計測装置。 The wind measurement according to any one of claims 1 to 4, wherein the transmission member is made of a flat plate member extending in the plane direction, the detector is provided on the front surface, and a plurality of the detection sensors are provided on the back surface. apparatus.
JP2016228857A 2016-11-25 2016-11-25 Wind measuring device Active JP6893678B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016228857A JP6893678B2 (en) 2016-11-25 2016-11-25 Wind measuring device
PCT/JP2017/042178 WO2018097236A1 (en) 2016-11-25 2017-11-24 Wind measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228857A JP6893678B2 (en) 2016-11-25 2016-11-25 Wind measuring device

Publications (2)

Publication Number Publication Date
JP2018084537A JP2018084537A (en) 2018-05-31
JP6893678B2 true JP6893678B2 (en) 2021-06-23

Family

ID=62195252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228857A Active JP6893678B2 (en) 2016-11-25 2016-11-25 Wind measuring device

Country Status (2)

Country Link
JP (1) JP6893678B2 (en)
WO (1) WO2018097236A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201817749D0 (en) * 2018-10-31 2018-12-19 Secr Defence Fluid flow measuring device, system and method
CN111208315B (en) * 2020-02-24 2022-02-01 吉林大学 Bionic hairy airflow velocity sensor and preparation method thereof
CN111208316B (en) * 2020-02-24 2021-04-20 吉林大学 Bionic airflow omnidirectional sensing flexible sensor and preparation method thereof
DE102022104153A1 (en) 2022-02-22 2023-08-24 Hagen Heckel flow rate sensor
GB2621874A (en) * 2022-08-25 2024-02-28 Flare Bright Ltd Fluid flow estimation and navigation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4023320B1 (en) * 1960-11-24 1965-10-14
US5117687A (en) * 1990-01-11 1992-06-02 Gerardi Joseph J Omnidirectional aerodynamic sensor
JPH07140161A (en) * 1993-11-19 1995-06-02 Hitachi Cable Ltd Wind velocity sensor using surface roughness and wind vane/anemometer employing it

Also Published As

Publication number Publication date
WO2018097236A1 (en) 2018-05-31
JP2018084537A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6893678B2 (en) Wind measuring device
EP3262384B1 (en) A multi-directional fluid velocity measurement device (fvmd)
US20190368955A1 (en) Mechanical strain-based weather sensor
CN103728463B (en) Ultrasonic wind meter and measuring method
CN109115275B (en) Wind speed and direction meter
Bechmann et al. The Bolund experiment: overview and background
Bucci et al. A low-cost ultrasonic wind speed and direction measurement system
CN110470860B (en) Time difference method based ultrasonic anemometer calibration method
CN101793905B (en) Optical fiber type two-dimensional wind speed/direction measuring device and method
WO2018214839A1 (en) Flow rate flowmeter, and method for measuring flow rate and flow amount
Haneda et al. Neural network-based airflow vector sensor using multiple MEMS differential pressure sensors
US20110283811A1 (en) Integrated Micromachined Wind and Gas Velocity Profiler
CN106405147B (en) A kind of ultrasonic transducer surveys wind array and its wind detection method
CN104833819A (en) Wind speed on-line measurement system and test method
WO2021193051A1 (en) Thermal flow direction sensor
CN101776696A (en) Three-dimensional flow velocity sensor
CN101187672A (en) Flow rate and direction measuring device and its method
CN203643467U (en) Ultrasonic wind meter
CN112924715A (en) Airflow parameter measuring device and method
WO2017031508A1 (en) Electronic wind measurement device
Fukushima et al. Underground Water Flow Speed and Direction Measurement Using Differential Pressure Sensors
CN113063961A (en) Ultrasonic sensing array wind measuring device and method thereof
CN204129067U (en) A kind of device measuring muddy fluid three-dimensional flow information
JP6931953B1 (en) Wind speed measurement method using an ultrasonic anemometer and the ultrasonic anemometer
CN201583551U (en) Combined micro gentle-breeze three-dimensional wind speed and direction inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210426

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6893678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250