JP6891054B2 - Terminal structure of normal conductive connection member and superconducting cable - Google Patents

Terminal structure of normal conductive connection member and superconducting cable Download PDF

Info

Publication number
JP6891054B2
JP6891054B2 JP2017123483A JP2017123483A JP6891054B2 JP 6891054 B2 JP6891054 B2 JP 6891054B2 JP 2017123483 A JP2017123483 A JP 2017123483A JP 2017123483 A JP2017123483 A JP 2017123483A JP 6891054 B2 JP6891054 B2 JP 6891054B2
Authority
JP
Japan
Prior art keywords
litz wire
superconducting cable
superconducting
lead portion
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017123483A
Other languages
Japanese (ja)
Other versions
JP2019009900A (en
Inventor
康雄 引地
康雄 引地
勉 小泉
勉 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2017123483A priority Critical patent/JP6891054B2/en
Publication of JP2019009900A publication Critical patent/JP2019009900A/en
Application granted granted Critical
Publication of JP6891054B2 publication Critical patent/JP6891054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導ケーブルの終端接続部等に用いられる常電導接続部材及び超電導ケーブルの端末構造体に関する。 The present invention relates to a normal conductive connection member used for a terminal connection portion of a superconducting cable and the terminal structure of a superconducting cable.

従来、極低温で超電導状態になる超電導線材を導体として用いた超電導ケーブルが知られている。超電導ケーブルは、大電流を低損失で送電可能な電力ケーブルとして期待されており、特に、大規模プラント用超電導ケーブルとしての実用化に向けて開発が進められている。 Conventionally, a superconducting cable using a superconducting wire material that becomes superconducting at an extremely low temperature as a conductor is known. Superconducting cables are expected as power cables capable of transmitting large currents with low loss, and in particular, development is underway for practical use as superconducting cables for large-scale plants.

超電導ケーブルは、断熱管内に一心又は複数心のケーブルコアが収容された構造を有するものが知られている。一心のケーブルコアとしては、例えば中心から順に、フォーマ、超電導導体層、電気絶縁層、ケーブルシールド層、及び保護層等を有する。また、一心のケーブルコアとしては、大容量の送電を可能とするために、フォーマの外周に、超電導導体層と、電気絶縁層とを交互に同心円状に配置した複数の超電導導体層を同一心で有する同軸型のケーブルコアが知られている。 A superconducting cable is known to have a structure in which a single-core or multi-core cable core is housed in a heat insulating tube. The single-core cable core includes, for example, a former, a superconducting conductor layer, an electrically insulating layer, a cable shield layer, a protective layer, and the like in order from the center. In addition, as a single-core cable core, in order to enable large-capacity power transmission, a plurality of superconducting conductor layers in which superconducting conductor layers and electrically insulating layers are alternately arranged concentrically are concentric on the outer periphery of the former. The coaxial type cable core possessed by is known.

断熱管は、ケーブルコアを収容し内部に冷媒(例えば液体窒素)が充填される内管(以下「断熱内管」)と、断熱内管の外周を覆う外管(以下「断熱外管」)を有する。断熱内管と断熱外管の間は、断熱のために真空状態とされる。 Insulated pipes are an inner pipe that houses a cable core and is filled with a refrigerant (for example, liquid nitrogen) (hereinafter referred to as "insulated inner pipe") and an outer pipe that covers the outer circumference of the insulated inner pipe (hereinafter referred to as "insulated outer pipe"). Has. A vacuum is created between the adiabatic inner pipe and the adiabatic outer pipe for heat insulation.

超電導ケーブルの終端接続部等に適用される超電導ケーブルの端末構造体においては、低温部となる低温容器に超電導ケーブルの端末部が収容され、超電導ケーブルの導体(例えば超電導導体層)が、電流導入端子である電流リード部を介して常温部に引き出される。低温容器は、超電導ケーブルの端末部を収容し、運転時に液体窒素等の冷媒が充填される冷媒槽と、冷媒槽を収容し運転時に真空状態とされる真空槽とからなる二重構造を有する。 In the terminal structure of a superconducting cable applied to a terminal connection portion of a superconducting cable, the terminal portion of the superconducting cable is housed in a low temperature container which is a low temperature portion, and a conductor of the superconducting cable (for example, a superconducting conductor layer) introduces a current. It is pulled out to the normal temperature part through the current lead part which is a terminal. The low-temperature container has a double structure consisting of a refrigerant tank that houses the terminal portion of the superconducting cable and is filled with a refrigerant such as liquid nitrogen during operation, and a vacuum tank that houses the refrigerant tank and puts it in a vacuum state during operation. ..

電流リード部としては、特許文献1に示すように、超電導ケーブルの外周に接続されるフランジ状の電流リード部としての常電導接続部材が知られている。
この常電導接続部材は、超電導ケーブルの外周に設けられ、超電導ケーブルの導体に接続されるケーブル接続部と、ケーブル接続部の外周に配置され、冷媒槽と一体に設けられる内側リード部と、内側リード部の外周に配置され、真空槽内に配置される環状の導電板部と、導電板部の外周に配置され、真空槽の周壁の一部として配置される円環部とを有する。これらケーブル接続部、内側リード部、導電板部、円管部は電気的に接続されている。導電板部には、超電導ケーブルの延在方向に貫通し、延在方向で真空槽内部を連通させる貫通孔としてのスリットが形成され、円環部の外周には、外部に突出して常温部に接続される端子が設けられている。
As the current lead portion, as shown in Patent Document 1, a normal conduction connection member as a flange-shaped current lead portion connected to the outer periphery of the superconducting cable is known.
This normal conducting connection member is provided on the outer periphery of the superconducting cable, and is arranged on the outer periphery of the cable connecting portion and is provided on the outer periphery of the cable connecting portion, and is provided on the outer periphery of the superconducting cable. It has an annular conductive plate portion arranged on the outer periphery of the lead portion and arranged in the vacuum chamber, and an annular portion arranged on the outer periphery of the conductive plate portion and arranged as a part of the peripheral wall of the vacuum chamber. These cable connection portions, inner lead portions, conductive plate portions, and circular tube portions are electrically connected. A slit is formed in the conductive plate portion as a through hole that penetrates in the extending direction of the superconducting cable and communicates with the inside of the vacuum chamber in the extending direction. Terminals to be connected are provided.

超電導ケーブルの終端にリード部を接続する超電導ケーブルの端末構造体では、外部からの熱侵入量を低くするために、常温部から低温部に渡って配置される常電導接続部材において、伝導熱の経路を長くすることが考えられている。 In the terminal structure of the superconducting cable in which the lead portion is connected to the end of the superconducting cable, in order to reduce the amount of heat intrusion from the outside, the normal conductive connecting member arranged from the normal temperature portion to the low temperature portion has a conductive heat. It is considered to lengthen the route.

特許文献1の常電導接続部材では、導電板部の表裏面を貫通する貫通孔が、同心円の複数のスロットにすることで、端子と内側リード部との間で伝導熱の経路となる部位の長さを極力長くし、当該伝導熱経路を伝達して超電導ケーブルの超電導導体層に伝達する熱の進入を低減するようにしている。 In the normal conductive connection member of Patent Document 1, through holes penetrating the front and back surfaces of the conductive plate portion are formed into a plurality of concentric slots, so that a portion serving as a conduction heat path between the terminal and the inner lead portion is provided. The length is made as long as possible to reduce the ingress of heat that is transmitted through the conductive heat path and transferred to the superconducting conductor layer of the superconducting cable.

米国特許出願公開第2012/289405号明細書U.S. Patent Application Publication No. 2012/289405

特許文献1の端末構造体を用いて、常電導接続部材と超電導ケーブルとを接続して通電する際に、常電導接続部材は、直流通電の場合、直流電流は通電領域(導体)の全体に流れるが、交流通電時では、自己磁場の作用により、通電部分の表面にしか電流が流れなくなることが知られている。これは、所謂、表皮効果(Skin effect)として知られており、交流通電では、自己磁場の作用により、通電部分の中心に磁界が集中し、電流が流れにくくなり、スロット間の通電部分の表面の電流が大きくなる。 When the normal conduction connection member and the superconducting cable are connected and energized using the terminal structure of Patent Document 1, when the normal conduction connection member is DC energized, the DC current is applied to the entire energized region (conductor). Although it flows, it is known that when alternating current is energized, the current flows only on the surface of the energized portion due to the action of the self-magnetic field. This is known as the so-called skin effect. In alternating current energization, the magnetic field is concentrated in the center of the energized portion due to the action of the self-magnetic field, making it difficult for current to flow, and the surface of the energized portion between slots. Current increases.

よって、特許文献1の常電導接続部材であっても、交流通電時に表皮効果により、通電に寄与しない非通電部分が増大してしまい、伝導熱は低減せずにジュール発熱が増大する、すなわち超電導導体層への熱侵入量を低減できないという恐れがある。 Therefore, even in the case of the normal conduction connection member of Patent Document 1, the non-energized portion that does not contribute to energization increases due to the skin effect during AC energization, and Joule heat generation increases without reducing the conduction heat, that is, superconductivity. There is a risk that the amount of heat penetration into the conductor layer cannot be reduced.

常電導接続部材は、接続対象が超電導ケーブルであるので、電流量を大きくしつつ、外部からの熱侵入量を伝達しない構成が望まれている。 Since the connection target of the normal conductive connection member is a superconducting cable, it is desired to have a configuration in which the amount of heat intrusion from the outside is not transmitted while increasing the amount of current.

本発明の目的は、超電導ケーブルと常電導部とを接続する際に、表皮効果による影響を受けにくく、好適な通電容量を確保して超電導ケーブルへの外部からの熱侵入量を低減することができる常電導接続部材及び超電導ケーブルの端末構造体を提供することである。 An object of the present invention is to reduce the amount of heat invading the superconducting cable from the outside by ensuring a suitable energizing capacity without being affected by the skin effect when connecting the superconducting cable and the normal conducting portion. It is to provide a terminal structure of a normal conductive connection member and a superconducting cable which can be made.

本発明に係る常電導接続部材は、
超電導ケーブルに接続され、当該超電導ケーブルを常温側の機器に電気的に接続する常電導接続部材であって、
前記超電導ケーブルの外周に配置され、当該超電導ケーブルに電気的に接続される内側リード部と、
前記機器に接続される端子部を有し、前記内側リード部の外周側に離間して配置される外側リード部と、
前記内側リード部と前記外側リード部とを接続するリッツ線と、
を有し、
前記リッツ線は、第一リッツ線と、前記第一リッツ線よりも径が大きい第二リッツ線とを有し、
前記第一リッツ線は、第二リッツ線よりも長さが短い構成を採る。
The normal conduction connecting member according to the present invention is
A normal conductive connection member that is connected to a superconducting cable and electrically connects the superconducting cable to equipment at room temperature.
An inner reed portion arranged on the outer circumference of the superconducting cable and electrically connected to the superconducting cable,
An outer lead portion having a terminal portion connected to the device and arranged apart from the outer peripheral side of the inner lead portion, and an outer lead portion.
A litz wire connecting the inner lead portion and the outer lead portion,
Have a,
The litz wire has a first litz wire and a second litz wire having a diameter larger than that of the first litz wire.
The first litz wire has a shorter length than the second litz wire .

本発明に係る超電導ケーブルの端末構造体は、上記構成の常電導接続部材と、前記常電導接続部材に接続される超電導ケーブルと、を有する構成を採る。 The terminal structure of the superconducting cable according to the present invention adopts a configuration having a normal conductive connecting member having the above configuration and a superconducting cable connected to the normal conductive connecting member.

本発明によれば、超電導ケーブルと常電導部とを接続する際に、表皮効果による影響を受けにくく、好適な通電容量を確保して超電導ケーブルへの外部からの熱侵入量を低減することができる。 According to the present invention, when connecting the superconducting cable and the normal conducting portion, it is difficult to be affected by the skin effect, and it is possible to secure a suitable energizing capacity and reduce the amount of heat invading the superconducting cable from the outside. it can.

本発明の実施の形態1に係る常電導接続部材を有する端末構造体の要部構成を模式的に示す図である。It is a figure which shows typically the main part structure of the terminal structure which has the normal conduction connection member which concerns on Embodiment 1 of this invention. 端末構造体における超電導ケーブルの概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the superconducting cable in a terminal structure. 端末構造体における常電導接続部材において超電導ケーブルの接続部分を示す正面図である。It is a front view which shows the connection part of the superconducting cable in the normal conduction connection member in a terminal structure. 端末構造体における常電導接続部材において超電導ケーブルの接続部分を示す側面である。It is a side surface which shows the connection part of the superconducting cable in the normal conduction connection member in a terminal structure. 図3のA−A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 本発明の実施の形態2に係る常電導接続部材において超電導ケーブルの接続部分を示す正面図である。It is a front view which shows the connection part of the superconducting cable in the normal conduction connection member which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る常電導接続部材において超電導ケーブルの接続部分を示す側面である。It is a side surface which shows the connection part of the superconducting cable in the normal conduction connection member which concerns on Embodiment 2 of this invention. 図6のB−B線断面図である。FIG. 6 is a cross-sectional view taken along the line BB of FIG.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
<端末構造体の構成>
図1は、本発明の一実施の形態に係る常電導接続部材を有する端末構造体1の要部構成を示す模式的に示す図である。図1では、常電導接続部材30以外を便宜上、断面図で示す側面図で説明の便宜上、超電導ケーブル10が導入される側を後端側(図1では右側)、反対側を先端側(図1では左側であり挿入方向側ともいう)として説明する。
(Embodiment 1)
<Structure of terminal structure>
FIG. 1 is a diagram schematically showing a main part configuration of a terminal structure 1 having a normal conduction connecting member according to an embodiment of the present invention. In FIG. 1, the side where the superconducting cable 10 is introduced is the rear end side (right side in FIG. 1), and the opposite side is the front end side (in FIG. In 1, it is the left side and is also referred to as the insertion direction side).

図1に示す端末構造体1は、超電導ケーブル10の端末部と、端末構造体1の外部機器である常温部とをリード部である常電導接続部材30を介して接続する。なお、本実施の形態1の端末構造体1は、複数の超電導導体層112を有した超電導ケーブル10を常温部にそれぞれ接続するため、複数の常電導接続部材30を有しているが、1つの常電導接続部材30を介して単層の超電導導体層を常温部に接続する構造でもあってもよい。超電導ケーブル10の端末部は、ここでは、断熱管12を段剥ぎしたケーブルコア部分とする。図1に示す端末構造体1は、超電導ケーブル10の端末部と、常電導接続部材30と、冷媒槽21及び真空槽22を有する低温容器20と、支持脚部(支持部)28を有する。 In the terminal structure 1 shown in FIG. 1, the terminal portion of the superconducting cable 10 and the normal temperature portion, which is an external device of the terminal structure 1, are connected via a normal conductive connecting member 30 which is a lead portion. The terminal structure 1 of the first embodiment has a plurality of normal conductive connecting members 30 in order to connect the superconducting cables 10 having the plurality of superconducting conductor layers 112 to the room temperature portion, respectively. It may also have a structure in which a single layer of superconducting conductor layer is connected to a room temperature portion via one normal conducting connecting member 30. Here, the terminal portion of the superconducting cable 10 is a cable core portion in which the heat insulating tube 12 is stripped off. The terminal structure 1 shown in FIG. 1 has a terminal portion of a superconducting cable 10, a normal conductive connection member 30, a low temperature container 20 having a refrigerant tank 21 and a vacuum tank 22, and a support leg portion (support portion) 28.

端末構造体1では、中央部に超電導ケーブル10が挿通された常電導接続部材30が所定間隔を空けて配置されている。常電導接続部材30間に、超電導ケーブル10を囲むように筒状の内側収容管部211が架設されることに冷媒槽21が形成される。また、冷媒槽21を囲むように、外側収容管部221が架設されることにより、真空槽22が形成されている。 In the terminal structure 1, normal conductive connecting members 30 through which the superconducting cable 10 is inserted are arranged at predetermined intervals in the central portion. The refrigerant tank 21 is formed by erection of a tubular inner accommodating pipe portion 211 so as to surround the superconducting cable 10 between the normal conductive connection members 30. Further, the vacuum tank 22 is formed by erection of the outer accommodating pipe portion 221 so as to surround the refrigerant tank 21.

すなわち、低温容器20は、常電導接続部材30及び内側収容管部211を含む内側の冷媒槽21と、常電導接続部材30及び外側収容管部221を含む外側の真空槽22とからなる二重構造となっている。 That is, the low temperature container 20 is a double composed of an inner refrigerant tank 21 including the normal conduction connection member 30 and the inner storage pipe portion 211, and an outer vacuum tank 22 including the normal conduction connection member 30 and the outer storage pipe portion 221. It has a structure.

このように構成される低温容器20(詳細には冷媒槽21)に超電導ケーブル10の端末部が所定の状態で水平方向に延在するように収容された状態となっている。 The terminal portion of the superconducting cable 10 is housed in the low temperature container 20 (specifically, the refrigerant tank 21) configured in this way so as to extend in the horizontal direction in a predetermined state.

低温容器20から、常電導接続部材30(詳細には、図3に示す常電導接続部材30の引出端子部301)を介して超電導ケーブル10の導体電流が、常温部としての外部電力機器等の実系統側に引き出される。 The conductor current of the superconducting cable 10 from the low-temperature container 20 via the normal-conducting connecting member 30 (specifically, the lead-out terminal portion 301 of the normal-conducting connecting member 30 shown in FIG. 3) is an external power device or the like as a normal temperature part. It is pulled out to the actual system side.

なお、常電導接続部材30と同様に、シールド接続端子40を設けて、このシールド接続端子40に超電導ケーブル10のケーブルシールド層114(図2参照)を接地してもよい。 As with the normal conductive connection member 30, a shielded connection terminal 40 may be provided, and the cable shield layer 114 (see FIG. 2) of the superconducting cable 10 may be grounded at the shielded connection terminal 40.

本実施の形態の超電導ケーブル10は、超電導線材からなる複層の超電導導体層を有し、端末構造体1において、略水平方向に配置した超電導ケーブル10から超電導導体層毎に、水平方向で所定間隔を空けて、常電導接続部材30を介して導体電流を引き出される。 The superconducting cable 10 of the present embodiment has a multi-layered superconducting conductor layer made of a superconducting wire, and is predetermined in the horizontal direction for each superconducting conductor layer from the superconducting cable 10 arranged substantially horizontally in the terminal structure 1. At intervals, the conductor current is drawn through the normal conducting connection member 30.

図2は、本発明の一実施の形態に係る端末構造体における超電導ケーブルの概略構成を示す断面図である。 FIG. 2 is a cross-sectional view showing a schematic configuration of a superconducting cable in the terminal structure according to the embodiment of the present invention.

図1及び図2に示すように、超電導ケーブル10は、断熱管12内に、電気絶縁層(導体絶縁層)113(113−1、113−2、113−3)を介して超電導導体層112(112−1、112−2、112−3)を同心円状に複数備えるケーブルコア11が収容された超電導ケーブルである。
超電導ケーブル10は、各超電導導体層で位相の異なる電流を流す多相超電導ケーブルとしてもよい。また、超電導ケーブル10は、超電導導体層が2層以上の超電導導体層、あるいは、単層の超電導導体層を有する構成としてもよい。本実施の形態の超電導ケーブル10は、超電導導体層112を、中心から、U相、V相、W相の電流を流す導体として3層で同軸上に有した三相同軸超電導ケーブルとしている。
As shown in FIGS. 1 and 2, the superconducting cable 10 has a superconducting conductor layer 112 in the heat insulating tube 12 via an electrically insulating layer (conductor insulating layer) 113 (113-1, 113-2, 113-3). This is a superconducting cable in which a cable core 11 having a plurality of (112-1, 112-2, 112-3) concentrically provided is housed.
The superconducting cable 10 may be a multi-phase superconducting cable in which currents having different phases are passed through each superconducting conductor layer. Further, the superconducting cable 10 may have a structure in which the superconducting conductor layer has two or more superconducting conductor layers or a single superconducting conductor layer. The superconducting cable 10 of the present embodiment is a three-phase coaxial superconducting cable having a superconducting conductor layer 112 coaxially having three layers as conductors for passing U-phase, V-phase, and W-phase currents from the center.

ケーブルコア11は、例えば中心から順に、N冷却管として機能する中央冷却管111、第1超電導導体層112−1、第1電気絶縁層(導体絶縁層)113−1、第2超電導導体層112−2、第2電気絶縁層(導体絶縁層)113−2、第3超電導導体層112−3、第3電気絶縁層(導体絶縁層)113−3、ケーブルシールド層114、及び保護層115等を有する。 Cable core 11, for example, from the center in order, the central cooling tube 111 functioning as N 2 cooling pipe, a first superconducting conductor layer 112-1, the first electrically insulating layer (conductor-insulation layer) 113-1, a second superconducting conductor layer 112-2, 2nd electrical insulation layer (conductor insulation layer) 113-2, 3rd superconducting conductor layer 112-3, 3rd electrical insulation layer (conductor insulation layer) 113-3, cable shield layer 114, and protective layer 115 Etc.

各超電導導体層112及びケーブルシールド層114は、例えば、下層の外面に螺旋状に巻き付けた多数本の超電導テープ(テープ状の超電導線材)により構成される。超電導導体層を構成する各超電導テープは、互いに重ならずに配置されている。 Each superconducting conductor layer 112 and cable shield layer 114 is composed of, for example, a large number of superconducting tapes (tape-shaped superconducting wires) spirally wound around the outer surface of the lower layer. The superconducting tapes constituting the superconducting conductor layer are arranged so as not to overlap each other.

超電導テープは、ここでは、REBaCu系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2〜7である。)の高温超電導薄膜を備える酸化物超電導材である。この超電導テープは、テープ状の金属基板上に成膜された中間層上に、テープ状の超電導薄膜である酸化物超電導層(以下、「超電導層」と称する)、安定化層が順に積層されることによって作製される。なお、超電導テープの金属基板としては、ニッケル(Ni)、ニッケル合金又はステンレス鋼である。また、中間層は、例えば、金属基板上に、酸化アルミニウム(Al)層、ガリウムドープ酸化亜鉛層(GdZr:GZO)、或いはイットリウム安定化ジルコニア(YSZ)等による第1層、Y又は酸化ランタンマンガン(LaMnO)等の層である第2層、酸化マグネシウム(MgO)等から成る第3層、LaMnO等の層である第4層、酸化セリウム(CeO)層である第5層を、順に積層することによって構成される。なお、超電導層は、有機金属酸塩あるいは有機金属化合物を原料とし、真空プロセスを使用せずに、MOD法(Metal Organic Deposition Processes:有機酸塩堆積法)により中間層上に成膜される。MOD法は、金属基板上に中間層を設けた複合基板上の金属有機酸塩を加熱して熱分解することによって複合基板上に超電導層である薄膜を形成する。安定化層は、超電導層上に銀(Ag)等を成膜することにより形成される。 The superconducting tape is here, REBa y Cu 3 O z system (RE is Y, Nd, Sm, Eu, represents one or more elements selected from Gd, and Ho, y ≦ 2 and z = 6.2 It is an oxide superconducting material provided with a high-temperature superconducting thin film (~ 7). In this superconducting tape, an oxide superconducting layer (hereinafter referred to as "superconducting layer"), which is a tape-shaped superconducting thin film, and a stabilizing layer are laminated in this order on an intermediate layer formed on a tape-shaped metal substrate. It is made by The metal substrate of the superconducting tape is nickel (Ni), nickel alloy, or stainless steel. The intermediate layer is formed on, for example, a metal substrate with an aluminum oxide (Al 2 O 3 ) layer, a gallium-doped zinc oxide layer (Gd 2 Zr 2 O 7 : GZO), yttria-stabilized zirconia (YSZ), or the like. 1st layer, 2nd layer which is a layer of Y2O 3 or lanthanum oxide (LaMnO 3 ) or the like, 3rd layer which is composed of magnesium oxide (MgO) or the like, 4th layer which is a layer of LaMnO 3 or the like, cerium oxide ( It is configured by laminating the fifth layer, which is the CeO 2) layer, in order. The superconducting layer is made of an organometallic acid salt or an organic metal compound as a raw material, and is formed on the intermediate layer by a MOD method (Metal Organic Deposition Processes) without using a vacuum process. In the MOD method, a thin film as a superconducting layer is formed on a composite substrate by heating and thermally decomposing a metal organic acid salt on a composite substrate having an intermediate layer on the metal substrate. The stabilizing layer is formed by forming a film of silver (Ag) or the like on the superconducting layer.

このように構成される超電導テープを、複合基板上において、下層の中央冷却管111、電気絶縁層113(113−1、113−2)の外周に、超電導層(超電導薄膜)が外周側、複合基板(基板)が内周側となるように、螺旋状に巻回することによって、各超電導導体層112は構成される。 On the composite substrate, the superconducting tape configured in this way is composite with the superconducting layer (superconducting thin film) on the outer periphery of the lower central cooling tube 111 and the electrically insulating layer 113 (113-1, 113-2). Each superconducting conductor layer 112 is configured by spirally winding the substrate so that the substrate is on the inner peripheral side.

電気絶縁層113は、それぞれ下層の超電導導体層112の外周に、例えば、半合成絶縁紙を巻回して構成される。保護層115は、例えば、ケーブルシールド層114の外周にクラフト紙等を巻回して構成される。 Each of the electrically insulating layers 113 is formed by winding, for example, semi-synthetic insulating paper around the outer periphery of the lower superconducting conductor layer 112. The protective layer 115 is formed by winding kraft paper or the like around the outer circumference of the cable shield layer 114, for example.

超電導ケーブル10の端末部においては、図1に示すように、ケーブルコア11に段剥ぎ加工が施され、先端側から順に各層が露出する。各超電導導体層112(112−1、112−2、112−3)には、各超電導導体層112(112−1、112−2、112−3)に電気的に接続される常電導接続部材30(30−1、30−2、30−3)が接続されている。 In the terminal portion of the superconducting cable 10, as shown in FIG. 1, the cable core 11 is subjected to a step stripping process, and each layer is exposed in order from the tip side. Each superconducting conductor layer 112 (112-1, 112-2, 112-3) is a normal conducting connecting member electrically connected to each superconducting conductor layer 112 (112-1, 112-2, 112-3). 30 (30-1, 30-2, 30-3) are connected.

ここでは、常電導接続部材30は、超電導導体層112の外周に配置され、且つ、外側収容管部221及び内側収容管部211のそれぞれに、冷媒槽21及び真空槽22を形成するように接続される。ケーブルシールド層114の外周には、ケーブルシールド層114に電気的に接続されるシールド接続端子が配置されてもよい。また、本実施の形態では、超電導導体層112(112−1、112−2、112−3)の外周に配置される電気絶縁層113(113−1、113−2、113−3)の外周には、ストレスコーン等の電界緩和部15が配置されている。 Here, the normal conducting connection member 30 is arranged on the outer periphery of the superconducting conductor layer 112, and is connected so as to form a refrigerant tank 21 and a vacuum tank 22 in each of the outer accommodating pipe portion 221 and the inner accommodating pipe portion 211. Will be done. A shielded connection terminal electrically connected to the cable shield layer 114 may be arranged on the outer periphery of the cable shield layer 114. Further, in the present embodiment, the outer circumference of the electrically insulating layer 113 (113-1, 113-2, 113-3) arranged on the outer circumference of the superconducting conductor layer 112 (112-1, 112-2, 112-3). An electric field relaxation unit 15 such as a stress cone is arranged in the.

断熱管12は、内側の断熱内管121と外側の断熱外管122とからなり、断熱内管121及び断熱外管122は、コルゲート状を有することが好ましい。本実施の形態の断熱内管121及び断熱外管122は、例えば、ステンレス鋼(SUS)製のコルゲート管(波付き管)によりそれぞれ構成される。超電導ケーブル10は、フォーマの外周側に、超電導導体層112と、波付き管である断熱内管121と断熱外管122とによる二重構造を採る断熱管12とを順に有する構成となっている。 The heat insulating pipe 12 is composed of an inner heat insulating inner pipe 121 and an outer heat insulating outer pipe 122, and the heat insulating inner pipe 121 and the heat insulating outer pipe 122 preferably have a corrugated shape. The heat insulating inner pipe 121 and the heat insulating outer pipe 122 of the present embodiment are each composed of, for example, a corrugated pipe (corrugated pipe) made of stainless steel (SUS). The superconducting cable 10 has a configuration in which a superconducting conductor layer 112 and a heat insulating pipe 12 having a double structure consisting of a heat insulating inner pipe 121 and a heat insulating outer pipe 122, which are corrugated pipes, are sequentially provided on the outer peripheral side of the former. ..

断熱内管121は、低温容器20の基端側において、シールド接続端子40の内周部に、内部接続部52を介して気密的に固定されている。内部接続部52が固定されたシールド接続端子40の内周部を介して、断熱内管121は、冷媒槽21内部(主に内側収容管211内部)を気密的に連通する。 The heat insulating inner pipe 121 is airtightly fixed to the inner peripheral portion of the shield connecting terminal 40 on the base end side of the low temperature container 20 via the internal connecting portion 52. The heat insulating inner pipe 121 communicates airtightly with the inside of the refrigerant tank 21 (mainly inside the inner accommodating pipe 211) via the inner peripheral portion of the shield connecting terminal 40 to which the internal connecting portion 52 is fixed.

断熱外管122は、低温容器20の基端側において、真空槽22の基端面として機能するシールド接続端子40の外周部に、外部接続部54を介して気密的に固定されている。外部接続部54が固定されたシールド接続端子40の外周部を介して、断熱外管122と断熱内管121の間の空間は、断熱層を形成する真空槽22内部(主に外側収容管部221内部)と気密的に連通する。 The heat insulating outer pipe 122 is airtightly fixed to the outer peripheral portion of the shield connection terminal 40 that functions as the base end surface of the vacuum chamber 22 on the base end side of the low temperature container 20 via the external connection portion 54. The space between the heat insulating outer pipe 122 and the heat insulating inner pipe 121 is formed inside the vacuum chamber 22 (mainly the outer accommodating pipe part) forming the heat insulating layer through the outer peripheral portion of the shield connecting terminal 40 to which the external connecting portion 54 is fixed. It communicates airtightly with (inside 221).

シールド接続端子40は、内周部の中央部で超電導ケーブル10を挿通し、超電導ケーブル10のシールド層を接地するために外部に引き出す端子であり、ここでは、常電導接続部材30と同様に形成される。よって、シールド接続端子40については、常電導接続部材の説明とともに後述する。 The shield connection terminal 40 is a terminal through which the superconducting cable 10 is inserted at the center of the inner peripheral portion and pulled out to the outside in order to ground the shield layer of the superconducting cable 10, and is formed here in the same manner as the normal conducting connection member 30. Will be done. Therefore, the shield connection terminal 40 will be described later together with the description of the normal conduction connection member.

断熱内管121は、ケーブルコア11を収容し、冷媒槽21に接続される。断熱内管121は、運転時には冷媒(例えば液体窒素)が充填される。これにより、超電導導体層112は、超電導状態に維持される。断熱内管121と断熱外管122の間は、断熱のために、運転時に真空状態に保持される。
内側収容管部211は、筒状であり、エポキシ樹脂や繊維強化プラスチック(FRP:Fiber Reinforced Plastics)等の絶縁材料により構成される絶縁管である。すなわち、超電導ケーブル10の端末部は、冷媒槽21である絶縁管に収容された状態となる。
The heat insulating inner pipe 121 accommodates the cable core 11 and is connected to the refrigerant tank 21. The heat insulating inner pipe 121 is filled with a refrigerant (for example, liquid nitrogen) during operation. As a result, the superconducting conductor layer 112 is maintained in the superconducting state. The space between the heat insulating inner pipe 121 and the heat insulating outer pipe 122 is maintained in a vacuum state during operation for heat insulation.
The inner accommodating pipe portion 211 has a tubular shape and is an insulating pipe made of an insulating material such as epoxy resin or fiber reinforced plastic (FRP). That is, the terminal portion of the superconducting cable 10 is housed in the insulating pipe which is the refrigerant tank 21.

筒状の内側収容管部211の軸方向(ここでは、超電導ケーブル10の延在方向にも相当する)で常電導接続部材30を介して接続される内側収容管部211同士は、常電導接続部材30に、超電導ケーブル10の延在方向(「軸方向」ともいう)に貫通して形成された貫通孔322(図3参照)を介して連通した状態となっている。
なお、冷媒槽21は、例えば真空槽22内に配置された架台(図示略)に載置してもよい。冷媒槽21には、運転時に冷媒循環装置(図示略)により冷媒が循環供給される。冷媒槽21に連通する断熱内管121の内部も冷媒で充填される。
The inner accommodating pipes 211 connected via the normal conductive connection member 30 in the axial direction of the tubular inner accommodating pipe 211 (here, also corresponding to the extending direction of the superconducting cable 10) are connected to each other. The member 30 is in a state of communicating with the member 30 through a through hole 322 (see FIG. 3) formed through the superconducting cable 10 in the extending direction (also referred to as "axial direction").
The refrigerant tank 21 may be placed on a pedestal (not shown) arranged in the vacuum tank 22, for example. Refrigerant is circulated and supplied to the refrigerant tank 21 by a refrigerant circulation device (not shown) during operation. The inside of the heat insulating inner pipe 121 communicating with the refrigerant tank 21 is also filled with the refrigerant.

外側収容管部221は、外周にがい管部23を有する筒状であり、冷媒槽21を収容するように常電導接続部材30間に設けられる。外側収容管部221は、例えばエポキシ樹脂やFRP等の絶縁材料で構成され、常電導接続部材30に気密的に固定される。 The outer accommodating pipe portion 221 has a tubular shape having a gauze pipe portion 23 on the outer periphery, and is provided between the normal conducting connection members 30 so as to accommodate the refrigerant tank 21. The outer accommodating pipe portion 221 is made of an insulating material such as epoxy resin or FRP, and is airtightly fixed to the normal conducting connection member 30.

外側収容管部221の内側は、常電導接続部材30に、超電導ケーブル10の延在方向に貫通して形成され、真空断熱層となる空隙310(図3参照)を介して連通した状態となっている。 The inside of the outer accommodating pipe portion 221 is formed through the normal conductive connecting member 30 in the extending direction of the superconducting cable 10 and communicates with the void 310 (see FIG. 3) which is a vacuum heat insulating layer. ing.

がい管部23は、例えば、ポリマーがい管または磁器がい管により構成される。ここでは、がい管部23をポリマーがい管で構成したものとして説明する。がい管部23は、例えば、絶縁筒の外周面に一体的にポリマー被覆体を一体的に設けて形成される。絶縁筒は、機械的強度の高いFRP(繊維強化プラスチック)で構成される。絶縁筒は、冷媒槽21内の超電導ケーブル10の外面に電界緩和部15を取り付けた場合、この電界緩和層の周囲で電界緩和部を囲む位置に配置される。ポリマー被覆体は、電気絶縁性能に優れる材料、例えばシリコーンポリマー(シリコーンゴム)などの高分子材料で構成され、外周面に、複数個の傘状の襞部が長手方向に離間して形成される。がい管部23の内部、つまり、真空槽22の内部は、運転時には真空引きされて真空状態となる。 The shaving tube portion 23 is composed of, for example, a polymer shaving tube or a porcelain shaving tube. Here, it is assumed that the slab tube portion 23 is composed of a polymer slab tube. The shaving tube portion 23 is formed, for example, by integrally providing a polymer coating on the outer peripheral surface of the insulating cylinder. The insulating cylinder is made of FRP (fiber reinforced plastic) having high mechanical strength. When the electric field relaxation portion 15 is attached to the outer surface of the superconducting cable 10 in the refrigerant tank 21, the insulating cylinder is arranged at a position surrounding the electric field relaxation portion around the electric field relaxation layer. The polymer coating is made of a material having excellent electrical insulation performance, for example, a polymer material such as silicone polymer (silicone rubber), and a plurality of umbrella-shaped folds are formed on the outer peripheral surface so as to be separated from each other in the longitudinal direction. .. The inside of the squeeze pipe portion 23, that is, the inside of the vacuum tank 22, is evacuated during operation to be in a vacuum state.

カバー、外部接続部54、常電導接続部材30及び外側収容管部221により構成される真空槽22は、運転時に真空ポンプ(図示略)により真空引きされ、真空状態に保持される。真空槽22に連通する断熱内管121と断熱外管122の間の空間が真空状態に保持される。 The vacuum tank 22 including the cover, the external connection portion 54, the normal conduction connection member 30, and the outer accommodating pipe portion 221 is evacuated by a vacuum pump (not shown) during operation and is held in a vacuum state. The space between the heat insulating inner pipe 121 and the heat insulating outer pipe 122 communicating with the vacuum tank 22 is maintained in a vacuum state.

<常電導接続部材30の構成>
図3は、端末構造体における常電導接続部材において超電導ケーブルの接続部分を示す正面図であり、図4は、端末構造体における常電導接続部材において超電導ケーブルの接続部分を示す側面である。また、図5は、図3のA−A線断面図である。
<Structure of normal conductive connection member 30>
FIG. 3 is a front view showing a connecting portion of the superconducting cable in the normal conducting connection member in the terminal structure, and FIG. 4 is a side view showing the connecting portion of the superconducting cable in the normal conducting connecting member in the terminal structure. Further, FIG. 5 is a cross-sectional view taken along the line AA of FIG.

図3〜図5に示す常電導接続部材30は、端末構造体1において、内側収容管部211と外側収容管部221とに軸方向で接続される。
常電導接続部材30は、内側収容管部211(冷媒槽21)の内側の超電導ケーブル10の外周面に位置する超電導導体層112の端末に電気的に接続される。
The normal conduction connecting member 30 shown in FIGS. 3 to 5 is axially connected to the inner accommodating pipe portion 211 and the outer accommodating pipe portion 221 in the terminal structure 1.
The normal conducting connection member 30 is electrically connected to the terminal of the superconducting conductor layer 112 located on the outer peripheral surface of the superconducting cable 10 inside the inner accommodating pipe portion 211 (refrigerant tank 21).

常電導接続部材30は、内側リード部31に接続される超電導ケーブル10を、外側リード部34の引出端子部301を介して常温側の機器に電気的に接続する。 The normal conductive connection member 30 electrically connects the superconducting cable 10 connected to the inner lead portion 31 to the device on the room temperature side via the drawer terminal portion 301 of the outer lead portion 34.

常電導接続部材30は、内側リード部31と、外側リード部34と、リッツ線36と、支持部材38と、被覆断熱部39とを有する。
内側リード部31は、超電導ケーブル10の外周に配置され、超電導ケーブル10に電気的に接続される。
The normal conduction connecting member 30 has an inner lead portion 31, an outer lead portion 34, a litz wire 36, a support member 38, and a covering heat insulating portion 39.
The inner lead portion 31 is arranged on the outer circumference of the superconducting cable 10 and is electrically connected to the superconducting cable 10.

内側リード部31は、超電導ケーブル10の外周に接触して固定される電極部32と、電極部32の外周に電気的に接続されつつ、電極部32に対し相対的に周方向に回動自在に配置される内管リング33とを有する。なお、本実施の形態では、電極部32と内管リング33は、外側リード部34とともに、銅等の導電材料により形成され、超電導ケーブル10と同一軸心上となるように配置されている。
電極部32は、銅等の導電材料により形成される。電極部32は、筒状に形成され、超電導ケーブル10に外嵌して、その内周面で超電導ケーブル10の外周面を構成する超電導導体層112の表面に電気的に接触して固定される。
The inner lead portion 31 is electrically connected to the electrode portion 32 which is fixed in contact with the outer periphery of the superconducting cable 10 and to the outer periphery of the electrode portion 32, and is rotatable in the circumferential direction relative to the electrode portion 32. It has an inner tube ring 33 arranged in. In the present embodiment, the electrode portion 32 and the inner tube ring 33 are formed of a conductive material such as copper together with the outer lead portion 34, and are arranged so as to be on the same axis as the superconducting cable 10.
The electrode portion 32 is formed of a conductive material such as copper. The electrode portion 32 is formed in a tubular shape, is fitted onto the superconducting cable 10, and is electrically contacted and fixed to the surface of the superconducting conductor layer 112 forming the outer peripheral surface of the superconducting cable 10 on its inner peripheral surface. ..

本実施の形態では、図3〜図5に示すように、電極部32は、外側リード部34及び内管リング33の軸方向の長さよりも長く、その外周面の中央部分に内管リング33が外挿された状態で配置されている。 In the present embodiment, as shown in FIGS. 3 to 5, the electrode portion 32 is longer than the axial length of the outer lead portion 34 and the inner pipe ring 33, and the inner pipe ring 33 is located in the central portion of the outer peripheral surface thereof. Is arranged in an extrapolated state.

電極部32は、超電導ケーブル10とともに冷媒槽21内に配置される。電極部32には、超電導ケーブル10の延在方向、つまり、電極部32の軸方向に沿って延在する複数の貫通孔322が形成されている。複数の貫通孔322は、超電導ケーブル10の外側で、超電導ケーブル10を囲むように配置され、電極部32の厚み方向、つまり、軸方向で冷媒を通して、軸方向での冷媒の流通を可能としている。 The electrode portion 32 is arranged in the refrigerant tank 21 together with the superconducting cable 10. The electrode portion 32 is formed with a plurality of through holes 322 extending in the extending direction of the superconducting cable 10, that is, along the axial direction of the electrode portion 32. The plurality of through holes 322 are arranged outside the superconducting cable 10 so as to surround the superconducting cable 10, and allow the refrigerant to flow in the axial direction through the refrigerant in the thickness direction of the electrode portion 32, that is, in the axial direction. ..

内管リング33は、銅等からなる導電材料により内部に円形の開口を有する環状に形成される。ここでは内管リング33は、円環板状に形成され、表裏面の少なくとも一方の面に内側収容管部211の開口端部が密着して固定される。表裏面の少なくとも一方の面には、内側収容管部211を固定する冷媒層用の固定穴332が形成されている。本実施の形態では、固定穴332は、内管リング33の表裏面を貫通して設けられている。なお、内管リング33は、常電導接続部材30の他にシールド接続端子40にも備えられ、この内管リング33が、内側収容管部211、先端蓋部、及び内部接続部52とともに、冷媒槽21を構成している。 The inner tube ring 33 is formed of a conductive material made of copper or the like in an annular shape having a circular opening inside. Here, the inner pipe ring 33 is formed in the shape of an annular plate, and the open end portion of the inner pipe portion 211 is closely fixed to at least one surface of the front and back surfaces. A fixing hole 332 for the refrigerant layer for fixing the inner accommodating pipe portion 211 is formed on at least one of the front and back surfaces. In the present embodiment, the fixing hole 332 is provided so as to penetrate the front and back surfaces of the inner pipe ring 33. The inner pipe ring 33 is also provided in the shield connection terminal 40 in addition to the normal conduction connection member 30, and the inner pipe ring 33 together with the inner accommodating pipe portion 211, the tip lid portion, and the internal connection portion 52 is a refrigerant. It constitutes a tank 21.

内管リング33の内周面には、接触子であるマルチコンタクト35が取り付けられ、このマルチコンタクト35を介して、当該内管リング33の開口内を挿通する電極部32が電気的に接続されている。なお、マルチコンタクト35は、内管リング33を電極部32の外周面において、電極部32に電気的に接続させつつ、周方向及び軸方向に摺動自在に外嵌させる。これにより、内管リング33と電極部32は、マルチコンタクト35により超電導ケーブル10の軸心を中心に相対的に周方向に回動可能であり、且つ、相対的に軸方向に移動可能となっている。 A multi-contact 35, which is a contactor, is attached to the inner peripheral surface of the inner tube ring 33, and an electrode portion 32 that inserts through the opening of the inner tube ring 33 is electrically connected via the multi-contact 35. ing. The multi-contact 35 is fitted with the inner tube ring 33 on the outer peripheral surface of the electrode portion 32 so as to be slidably fitted in the circumferential direction and the axial direction while being electrically connected to the electrode portion 32. As a result, the inner tube ring 33 and the electrode portion 32 can be relatively rotatable in the circumferential direction around the axial center of the superconducting cable 10 by the multi-contact 35, and can be relatively movable in the axial direction. ing.

外側リード部34は、内側リード部31の外周側に離間して配置され、外部の常温部の機器に接続される。
外側リード部34は、環状に形成され、内側リード部32を囲むように配置される環状の外管リング340と、引出端子部301とを有する。外管リング340の外周の一部から引出端子部301が軸方向と直交する方向に突出されている。外側リード部34は、本実施の形態では板状をなし、円環板状の外管リング340から板状の引出端子部301が突出して設けられている。
The outer lead portion 34 is arranged apart from the outer peripheral side of the inner lead portion 31 and is connected to an external device at a normal temperature.
The outer lead portion 34 has an annular outer tube ring 340 formed in an annular shape and arranged so as to surround the inner lead portion 32, and a drawer terminal portion 301. The drawer terminal portion 301 projects from a part of the outer circumference of the outer tube ring 340 in a direction orthogonal to the axial direction. The outer lead portion 34 has a plate shape in the present embodiment, and a plate-shaped drawer terminal portion 301 is provided so as to protrude from the ring plate-shaped outer tube ring 340.

外管リング340は、銅等の導電材料により形成された導電円環板である。外管リング340の表裏面の少なくとも一面には、周縁部に外側収容管部221(図1参照)が気密的に固定される固定穴342が設けられている。図1に示す常電導接続部材30―1の表面(ここでは、先端側の面)には、真空槽22の先端面となるカバーが気密的に固定され、裏面(ここでは、後端側の面には外側収容管部221の先端側開口部が気密的に密着して固定される。なお、外管リング340は、常電導接続部材30の他にシールド接続端子40にも備えられ、この外管リング340が、外側収容管部221、カバー、及び外部接続部54とともに、真空槽22を構成する。
なお、本実施の形態では、外管リング340及び引出端子部301つまり、外部リード部34の厚み(軸方向の長さ)は、電極部32の軸方向の長さよりも短く、内管リング33の軸方向の長さよりも短い。外部リード部34の厚さを薄くすることにより、交流通電時において引出端子部301の表皮効果による非通電領域の割合を減少させることができる。
The outer tube ring 340 is a conductive ring plate formed of a conductive material such as copper. At least one of the front and back surfaces of the outer tube ring 340 is provided with a fixing hole 342 on the peripheral edge to airtightly fix the outer accommodating tube portion 221 (see FIG. 1). A cover serving as the front end surface of the vacuum chamber 22 is airtightly fixed to the front surface (here, the front end side surface) of the normal conducting connection member 30-1 shown in FIG. 1, and the back surface (here, the rear end side side) is airtightly fixed. The opening on the tip end side of the outer accommodating pipe portion 221 is airtightly fixed to the surface. The outer pipe ring 340 is provided not only on the normal conduction connecting member 30 but also on the shield connecting terminal 40. The outer pipe ring 340, together with the outer accommodating pipe portion 221 and the cover, and the external connecting portion 54, constitutes the vacuum tank 22.
In the present embodiment, the outer tube ring 340 and the drawer terminal portion 301, that is, the thickness (axial length) of the outer lead portion 34 is shorter than the axial length of the electrode portion 32, and the inner tube ring 33 Shorter than the axial length of. By reducing the thickness of the external lead portion 34, it is possible to reduce the proportion of the non-energized region due to the skin effect of the drawer terminal portion 301 during AC energization.

支持部材38は、内側リード部31と外側リード部34とを所定間隔開けた状態で保持する。支持部材38は、絶縁材料により形成される。支持部材38は、本実施の形態では、GFRP(ガラス繊維強化プラスチック:Glass Fiber Reinforced Plastics)により成形されている。支持部材38は、内側リード部31の内管リング33と、外側リード部34の外管リング340との間に介設され、内管リング33を外管リング340に支持させている。 The support member 38 holds the inner lead portion 31 and the outer lead portion 34 in a state of being spaced apart from each other by a predetermined distance. The support member 38 is formed of an insulating material. In the present embodiment, the support member 38 is formed of GFRP (Glass Fiber Reinforced Plastics). The support member 38 is interposed between the inner pipe ring 33 of the inner lead portion 31 and the outer pipe ring 340 of the outer lead portion 34, and supports the inner pipe ring 33 by the outer pipe ring 340.

本実施の形態では、支持部材38は、内管リング33の下面と、外管リング340との間に配設される円弧板状に成形されたGFRP製の台座である。支持部材38は、外管リング340の内周面上に固定され、上側の円弧面に内管リング33が載置され、内管リング33が摺動可能となっている。これにより、冷媒槽21が真空槽22に対して軸方向に移動可能となっている。 In the present embodiment, the support member 38 is a GFRP pedestal formed in the shape of an arc plate arranged between the lower surface of the inner tube ring 33 and the outer tube ring 340. The support member 38 is fixed on the inner peripheral surface of the outer pipe ring 340, the inner pipe ring 33 is placed on the upper arc surface, and the inner pipe ring 33 is slidable. As a result, the refrigerant tank 21 can move in the axial direction with respect to the vacuum tank 22.

また、被覆断熱部39は、外側リード34の外周を覆い外周側から内周側への熱の侵入を防止する。被覆断熱部39は、例えば中空で内部を真空にした真空断熱材により形成される。また、被覆断熱部39は、グラスウール等により形成してもよい。これにより、外側リード部34に外部からの熱侵入をより防止できる。 Further, the covering heat insulating portion 39 covers the outer periphery of the outer lead 34 to prevent heat from entering from the outer peripheral side to the inner peripheral side. The coated heat insulating portion 39 is formed of, for example, a vacuum heat insulating material that is hollow and has a vacuum inside. Further, the covering heat insulating portion 39 may be formed of glass wool or the like. As a result, it is possible to further prevent heat from entering the outer lead portion 34 from the outside.

リッツ線36は、内側リード部31と外側リード部34とを電気的に接続する。
リッツ線36は、可撓性を有し、内側リード部31と外側リード部34との間に介設され、断熱層としての真空断熱層に配置される。
リッツ線36は、素線を絶縁被覆膜で被覆したエナメル線を撚り合わせて束ねて形成される。本実施の形態のリッツ線36は、直径0.5〜1.5mmの素線を絶縁被覆で被覆したエナメル線を撚り合わせて束ね帯状に形成している。
リッツ線36は、通電条件(材料、周波数、温度等であり特に温度)に応じて、長さ/断面積比が最適値となるように設定される。
The litz wire 36 electrically connects the inner lead portion 31 and the outer lead portion 34.
The litz wire 36 has flexibility, is interposed between the inner lead portion 31 and the outer lead portion 34, and is arranged in a vacuum heat insulating layer as a heat insulating layer.
The litz wire 36 is formed by twisting and bundling enamel wires whose strands are coated with an insulating coating film. The litz wire 36 of the present embodiment is formed by twisting enamel wires having a diameter of 0.5 to 1.5 mm coated with an insulating coating to form a bundle band shape.
The litz wire 36 is set so that the length / cross-sectional area ratio becomes the optimum value according to the energization conditions (material, frequency, temperature, etc., particularly temperature).

ここで、熱侵入について説明する。
超電導ケーブル10に接続される部位、本実施の形態では内側リード部31と、常温部に接続される部位、本実施の形態では外側リード部34とを接続する導体部分の構造では、超電導ケーブル10側への常温部からの熱侵入(熱侵入量=ジュール発熱+伝導熱)を極力小さくすることが望まれる。通電時において、導体部分の断面積の増加に応じて導体抵抗が小さくなりジュール発熱は減少するものの、外部からの伝導熱が伝わり易くなる。
一方、導体部分の長さの延長に応じて導体抵抗が大きくなりジュール発熱は大きくなるものの、外部からの伝導熱は伝わりにくくなる。このように導体部分の断面積とその長さとはトレードオフの関係となり、この関係を踏まえて熱侵入量を設定する。
また、常電導接続部材30では、交流通電の際に表皮効果により導体断面の中心において電流密度が低くなり導体抵抗が増大することが知られている。このとき、導体抵抗が増大しても熱伝導率は変化しないため、結果として常電導接続部材30において、導体部分を介した熱侵入量が増大する問題点があった。この表皮効果による影響を低減するために、導体断面寸法を表皮厚さ以下にする方法が考えられる。表皮深さとは表皮効果が現れる部位を示す導体表面からの所定の深さである。この方法では、導体の材料の温度が下がると表皮深さは小さくなる。例えば、常電導接続部材30に用いられる導電材料としての銅においては、周波数60Hz(商用周波数)、温度300K(室温)での表皮深さは8.5mmであるが、温度70K(超電導ケーブルの冷却温度)での表皮深さは2.8mmと小さくなる。よって、例えば、電流リードの断面寸法は、室温側では直径17mm以下、低温側では直径5.6mm以下となる導体を、通電電流に必要な断面積となるように集合化させる必要がある。しかし、導体の断面積はその温度勾配に合わせて変化させる必要があり、上述したように、導体の断面積を変えると温度勾配も変化するため、最適な形状を求めるのは困難である。
Here, heat intrusion will be described.
In the structure of the conductor portion connecting the portion connected to the superconducting cable 10, the portion connected to the inner lead portion 31 and the normal temperature portion in the present embodiment, and the outer lead portion 34 in the present embodiment, the superconducting cable 10 It is desirable to minimize the heat intrusion (heat intrusion amount = Joule heat generation + conduction heat) from the normal temperature part to the side. When energized, the conductor resistance decreases as the cross-sectional area of the conductor portion increases, and the Joule heat generation decreases, but the conduction heat from the outside is easily transferred.
On the other hand, as the length of the conductor portion is extended, the conductor resistance increases and the Joule heat generation increases, but the conduction heat from the outside is difficult to transfer. In this way, the cross-sectional area of the conductor portion and its length are in a trade-off relationship, and the amount of heat penetration is set based on this relationship.
Further, it is known that in the normal conducting connection member 30, the current density is lowered at the center of the cross section of the conductor due to the skin effect when alternating current is applied, and the conductor resistance is increased. At this time, since the thermal conductivity does not change even if the conductor resistance increases, there is a problem that the amount of heat penetration through the conductor portion increases in the normal conducting connection member 30 as a result. In order to reduce the influence of this skin effect, a method of reducing the cross-sectional dimension of the conductor to the skin thickness or less can be considered. The skin depth is a predetermined depth from the conductor surface indicating the part where the skin effect appears. In this method, the skin depth decreases as the temperature of the conductor material decreases. For example, in copper as a conductive material used for the normal conducting connection member 30, the skin depth at a frequency of 60Hz (commercial frequency) and a temperature of 300K (room temperature) is 8.5mm, but the temperature is 70K (cooling of a superconducting cable). The skin depth at (temperature) is as small as 2.8 mm. Therefore, for example, it is necessary to assemble conductors having a diameter of 17 mm or less on the room temperature side and a diameter of 5.6 mm or less on the low temperature side so as to have a cross-sectional area required for the energizing current. However, the cross-sectional area of the conductor needs to be changed according to the temperature gradient, and as described above, the temperature gradient also changes when the cross-sectional area of the conductor is changed, so that it is difficult to obtain the optimum shape.

本実施の形態では、導体として絶縁被覆した素線を集合化したリッツ線36を用いて、リッツ線36の導体断面積寸法を常電導接続部材30において一番温度の低い箇所の表皮深さ以下とすることにより、表皮効果による影響を受けず、かつ、温度勾配を考慮する必要ない構成としている。 In the present embodiment, a litz wire 36 obtained by assembling insulatingly coated strands as a conductor is used, and the conductor cross-sectional area dimension of the litz wire 36 is set to be equal to or less than the skin depth of the lowest temperature portion of the normal conducting connection member 30. As a result, the configuration is not affected by the skin effect and does not require consideration of the temperature gradient.

リッツ線36は、両端部が接続される部位としてのリッツ線内側取付部336と、リッツ線36が接続する外側リード部34の部位としてのリッツ線外側取付部346とから軸方向と平行に延出して、中央部分が撓むように配置されている。
リッツ線内側取付部336とリッツ線外側取付部346とは、接続されるリッツ線36を所定方向、ここでは軸方向に沿って延在するように好適に保持する。
リッツ線36は、本実施の形態では、一端部が、外管リング340の内周面に設けられたリッツ線外側取付部346に電気的に接続され、他端部に向かって軸方向に延出するように取り付けられる。また、リッツ線36の中央部分は湾曲され、リッツ線36の他端部側が、一端部側に対向させた状態で、内管リング32の外周面に取り付けられたリッツ線内側取付部336に電気的に接続されている。
The litz wire 36 extends parallel to the axial direction from the litz wire inner mounting portion 336 as a portion to which both ends are connected and the litz wire outer mounting portion 346 as a portion of the outer lead portion 34 to which the litz wire 36 is connected. It is arranged so that the central part bends out.
The litz wire inner mounting portion 336 and the litz wire outer mounting portion 346 preferably hold the connected litz wire 36 so as to extend in a predetermined direction, here in the axial direction.
In the present embodiment, one end of the litz wire 36 is electrically connected to the litz wire outer mounting portion 346 provided on the inner peripheral surface of the outer tube ring 340, and extends axially toward the other end. It is attached so that it can be put out. Further, the central portion of the litz wire 36 is curved, and the other end side of the litz wire 36 faces the one end side, and electricity is applied to the litz wire inner mounting portion 336 attached to the outer peripheral surface of the inner pipe ring 32. Is connected.

リッツ線36が接続する内側リード部31の部位としてのリッツ線内側取付部336と、リッツ線36が接続する外側リード部34の部位としてのリッツ線外側取付部346との間におけるリッツ線36の長さD2は、リッツ線内側取付部336とリッツ線外側取付部346との間の最短の長さD1の等倍以上である。好ましくは、長さD2は、最短の長さD1の1.5倍以上であり、最短の長さの5倍以下であることが好ましい。ここでは長さD2は、長さD1の3倍の長さとしている。これにより、内側リード部31と外側リード部34とが軸方向に相対移動する場合でも、常にリッツ線36に負荷が掛かることなく、リッツ線36は、内側リード部31と外側リード部34との導通状態を確保できる。
すなわち、リッツ線36とすることにより、導体部分の断面を複数の断面により形成することにより、交流通電時において引出端子部301の表皮効果による非通電領域の割合を減少させる、すなわち、同じ断面積でも通電領域を増加させることが可能となり、常電導接続部材一つ当たりのジュール発熱を低減し、熱侵入量を低減できる。ここで、熱侵入量は、常電導接続部材30の室温あるいは高温部から低温部に伝わる伝導熱と、通電時のジュール発熱の和で表される。
なお、均流化のためにリッツ線36を複数本に分ける場合は、それぞれの「長さ/断面積比」を最適値とし、断面積を増やす場合には、素線径を変えずに撚り線数を変えることによって表皮効果の影響を受けることは無い。この一例を実施の形態2として説明する。
The litz wire 36 between the litz wire inner mounting portion 336 as the portion of the inner reed portion 31 to which the litz wire 36 is connected and the litz wire outer mounting portion 346 as the portion of the outer reed portion 34 to which the litz wire 36 is connected. The length D2 is equal to or more than the shortest length D1 between the reed wire inner mounting portion 336 and the reed wire outer mounting portion 346. Preferably, the length D2 is 1.5 times or more the shortest length D1 and 5 times or less the shortest length. Here, the length D2 is three times as long as the length D1. As a result, even when the inner lead portion 31 and the outer lead portion 34 move relative to each other in the axial direction, the litz wire 36 is always connected to the inner lead portion 31 and the outer lead portion 34 without applying a load to the litz wire 36. A conductive state can be ensured.
That is, by using the litz wire 36, the cross section of the conductor portion is formed by a plurality of cross sections, thereby reducing the proportion of the non-energized region due to the skin effect of the extraction terminal portion 301 when alternating current is applied, that is, the same cross-sectional area. However, it is possible to increase the energized area, reduce the Joule heat generation per normal conducting connection member, and reduce the amount of heat intrusion. Here, the amount of heat penetration is represented by the sum of the conduction heat transferred from the room temperature or high temperature part of the normal conduction connecting member 30 to the low temperature part and the Joule heat generation at the time of energization.
When dividing the litz wire 36 into a plurality of wires for equalization, the optimum value is the "length / cross-sectional area ratio" of each, and when increasing the cross-sectional area, the strands are twisted without changing the wire diameter. The skin effect is not affected by changing the number of lines. An example of this will be described as the second embodiment.

(実施の形態2)
<常電導接続部材30Aの構成>
図6は、本発明の実施の形態2に係る常電導接続部材において超電導ケーブルの接続部分を示す正面図であり、図7は、本発明の実施の形態2に係る常電導接続部材において超電導ケーブルの接続部分を示す側面である。また、図8は、図6のB−B線断面図である。
(Embodiment 2)
<Structure of normal conductive connection member 30A>
FIG. 6 is a front view showing a connecting portion of the superconducting cable in the normal conducting connection member according to the second embodiment of the present invention, and FIG. 7 is a front view showing the connecting portion of the superconducting cable in the normal conducting connecting member according to the second embodiment of the present invention. It is a side surface which shows the connection part of. Further, FIG. 8 is a cross-sectional view taken along the line BB of FIG.

図6〜図8に示す常電導接続部材30Aは、実施の形態1の端末構造体1において、常電導接続部材30に換えて、内側収容管部211と外側収容管部221とに軸方向で接続される。
常電導接続部材30Aは、内側収容管部211(冷媒槽21)の内側の超電導ケーブル10の外周面に位置する超電導導体層112の端末に電気的に接続される。
In the terminal structure 1 of the first embodiment, the normal conducting connection member 30A shown in FIGS. 6 to 8 is axially connected to the inner accommodating pipe portion 211 and the outer accommodating pipe portion 221 instead of the normal conducting connecting member 30. Be connected.
The normal conducting connection member 30A is electrically connected to the terminal of the superconducting conductor layer 112 located on the outer peripheral surface of the superconducting cable 10 inside the inner accommodating pipe portion 211 (refrigerant tank 21).

常電導接続部材30Aは、内側リード部31Aに接続される超電導ケーブル10を、外側リード部34Aの引出端子部301を介して常温側の機器に電気的に接続する。
常電導接続部材30Aは、常電導接続部材30と同様の機能を有し、リッツ線36Aを介した外側リード部34Aと、内側リード部31Aとの接続構造のみが異なる。以下では、異なる構成要素を詳細に説明し、同様の構成要素については同符号を付して説明は省略する。
The normal conductive connection member 30A electrically connects the superconducting cable 10 connected to the inner lead portion 31A to the equipment on the room temperature side via the drawer terminal portion 301 of the outer lead portion 34A.
The normal conduction connection member 30A has the same function as the normal conduction connection member 30, and differs only in the connection structure between the outer lead portion 34A via the litz wire 36A and the inner lead portion 31A. In the following, different components will be described in detail, and similar components will be designated by the same reference numerals and description thereof will be omitted.

常電導接続部材30Aは、内側リード部31Aと、外側リード部34Aと、リッツ線36Aと、支持部材38Aと、被覆断熱部39とを有する。
内側リード部31Aは、超電導ケーブル10の外周に配置され、超電導ケーブル10に電気的に接続される。
The normal conduction connecting member 30A has an inner lead portion 31A, an outer lead portion 34A, a litz wire 36A, a support member 38A, and a covering heat insulating portion 39.
The inner lead portion 31A is arranged on the outer circumference of the superconducting cable 10 and is electrically connected to the superconducting cable 10.

内側リード部31Aは、超電導ケーブル10の外周に接触して固定される電極部32と、電極部32の外周に電気的に接続されつつ、電極部32に対し相対的に周方向に回動自在に配置される内管リング33Aとを有する。なお、本実施の形態では、電極部32と内管リング33Aは、外側リード部34Aとともに、銅等の導電材料により形成され、超電導ケーブル10と同一軸心上となるように配置されている。
電極部32は、銅等の導電材料により筒状に形成され、超電導ケーブル10に外嵌して、内周面で超電導ケーブル10の外周面を構成する超電導導体層112の表面に電気的に接触して固定される。
本実施の形態では、図6〜図8に示すように、電極部32は、実施の形態1と同様に、外側リード部34A及び内管リング33Aの軸方向の長さよりも長く、その外周面の中央部分に内管リング33Aが外挿された状態で配置されている。
The inner lead portion 31A is electrically connected to the electrode portion 32 which is fixed in contact with the outer circumference of the superconducting cable 10 and to the outer circumference of the electrode portion 32, and is rotatable in the circumferential direction relative to the electrode portion 32. It has an inner tube ring 33A arranged in. In the present embodiment, the electrode portion 32 and the inner tube ring 33A are formed of a conductive material such as copper together with the outer lead portion 34A, and are arranged so as to be on the same axis as the superconducting cable 10.
The electrode portion 32 is formed in a tubular shape by a conductive material such as copper, and is fitted onto the superconducting cable 10 and electrically contacts the surface of the superconducting conductor layer 112 forming the outer peripheral surface of the superconducting cable 10 on the inner peripheral surface. And fixed.
In the present embodiment, as shown in FIGS. 6 to 8, the electrode portion 32 is longer than the axial length of the outer lead portion 34A and the inner tube ring 33A, and is the outer peripheral surface thereof, as in the first embodiment. The inner tube ring 33A is extrapolated and arranged in the central portion of the above.

内管リング33Aは、銅等からなる導電材料により内部に円形の開口を有する環状に形成される。ここでは内管リング33Aは、円環板状に形成され、表裏面の少なくとも一方の面に内側収容管部211の開口端部が密着して固定される。表裏面の少なくとも一方の面には、内側収容管部211を固定する冷媒層用の固定穴332が形成されている。本実施の形態では、固定穴332は、内管リング33Aの表裏面を貫通して設けられている。なお、内管リング33Aは、常電導接続部材30Aの他にシールド接続端子40にも備えられ、この内管リング33Aが、内側収容管部211、先端蓋部、及び内部接続部52とともに、冷媒槽21を構成している。 The inner tube ring 33A is formed of a conductive material made of copper or the like in an annular shape having a circular opening inside. Here, the inner tube ring 33A is formed in the shape of an annular plate, and the open end portion of the inner tube portion 211 is closely fixed to at least one surface of the front and back surfaces. A fixing hole 332 for the refrigerant layer for fixing the inner accommodating pipe portion 211 is formed on at least one of the front and back surfaces. In the present embodiment, the fixing hole 332 is provided so as to penetrate the front and back surfaces of the inner pipe ring 33A. The inner pipe ring 33A is also provided in the shield connection terminal 40 in addition to the normal conduction connecting member 30A, and the inner pipe ring 33A together with the inner accommodating pipe portion 211, the tip lid portion, and the internal connecting portion 52 is a refrigerant. It constitutes a tank 21.

内管リング33Aの内周面には、内管リング33と同様に、接触子であるマルチコンタクト35が取り付けられ、このマルチコンタクト35を介して、当該内管リング33Aの開口内を挿通する電極部32が電気的に接続されている。内管リング33Aと電極部32は、マルチコンタクト35により超電導ケーブル10の軸心を中心に相対的に周方向に回動可能であり、且つ、相対的に軸方向に移動可能である。 Similar to the inner tube ring 33, a multi-contact 35 which is a contact is attached to the inner peripheral surface of the inner tube ring 33A, and an electrode for inserting the inside of the opening of the inner tube ring 33A through the multi-contact 35. The unit 32 is electrically connected. The inner tube ring 33A and the electrode portion 32 are relatively rotatable in the circumferential direction around the axial center of the superconducting cable 10 by the multi-contact 35, and are relatively movable in the axial direction.

外側リード部34Aは、内側リード部31Aの外周側に離間して配置され、外部の常温部の機器に接続される。
外側リード部34Aは、環状に形成され、内側リード部31Aを囲むように配置される環状の外管リング340Aを有する。外管リング340Aの外周の一部から引出端子部301が軸方向と直交する方向に突出されている。外側リード部34Aは、本実施の形態では板状をなし、円環板状の外管リング340Aから板状の引出端子部301が突出して設けられている。
The outer lead portion 34A is arranged apart from the outer peripheral side of the inner lead portion 31A and is connected to an external device at a normal temperature.
The outer lead portion 34A has an annular outer tube ring 340A that is formed in an annular shape and is arranged so as to surround the inner lead portion 31A. The drawer terminal portion 301 projects from a part of the outer circumference of the outer tube ring 340A in a direction orthogonal to the axial direction. The outer lead portion 34A has a plate shape in the present embodiment, and a plate-shaped drawer terminal portion 301 is provided so as to project from the annular plate-shaped outer tube ring 340A.

外管リング340Aは、銅等の導電材料により形成された導電円環板である。外管リング340Aの表裏面の少なくとも一面には、周縁部に外側収容管部221(図1参照)が気密的に固定される固定穴342が設けられている。常電導接続部材30Aが、図1に示す常電導接続部材30―1に用いられる場合、その表面(ここでは、先端側の面)に、真空槽22の先端面となるカバーが気密的に固定され、裏面(ここでは、後端側の面には外側収容管部221の先端側開口部が気密的に固定される。なお、外管リング340Aは、常電導接続部材30Aの他にシールド接続端子40にも備えられる。この外管リング340Aが、外側収容管部221、カバー、及び外部接続部54とともに、真空槽22を構成する。
なお、外管リング340A及び引出端子部301つまり、外部リード部34Aの厚み(軸方向の長さ)は、実施の形態1のものと同様に、電極部32の軸方向の長さよりも短く、内管リング33Aの軸方向の長さよりも短い。外部リード部34Aの厚さを薄くすることにより、交流通電時において引出端子部301の表皮効果による非通電領域の割合を減少させることができる。
The outer tube ring 340A is a conductive ring plate formed of a conductive material such as copper. At least one of the front and back surfaces of the outer tube ring 340A is provided with a fixing hole 342 on the peripheral edge to airtightly fix the outer accommodating tube portion 221 (see FIG. 1). When the normal conduction connecting member 30A is used for the normal conducting connecting member 30-1 shown in FIG. 1, a cover serving as the tip surface of the vacuum chamber 22 is airtightly fixed to the surface (here, the surface on the tip side). The back surface (here, the front end side opening of the outer accommodating pipe portion 221 is airtightly fixed to the rear end side surface. The outer pipe ring 340A is shield-connected in addition to the normal conduction connecting member 30A. The outer pipe ring 340A, which is also provided in the terminal 40, constitutes the vacuum tank 22 together with the outer accommodating pipe portion 221 and the cover, and the external connection portion 54.
The thickness (axial length) of the outer tube ring 340A and the drawer terminal portion 301, that is, the external lead portion 34A, is shorter than the axial length of the electrode portion 32, as in the case of the first embodiment. It is shorter than the axial length of the inner tube ring 33A. By reducing the thickness of the external lead portion 34A, it is possible to reduce the proportion of the non-energized region due to the skin effect of the drawer terminal portion 301 during AC energization.

支持部材38Aは、支持部材38と同様の機能を有し、内側リード部31Aと外側リード部34Aとを所定間隔開けた状態で保持する。支持部材38Aは、絶縁材料により形成され、本実施の形態では、GFRP(ガラス繊維強化プラスチック:Glass Fiber Reinforced Plastics)により成形されている。支持部材38Aは、内側リード部31Aの内管リング33Aと、外側リード部34Aの外管リング340Aとの間に介設され、内管リング33Aを外管リング340Aに支持させている。 The support member 38A has the same function as the support member 38, and holds the inner lead portion 31A and the outer lead portion 34A in a predetermined interval. The support member 38A is formed of an insulating material, and in the present embodiment, is formed of GFRP (Glass Fiber Reinforced Plastics). The support member 38A is interposed between the inner pipe ring 33A of the inner lead portion 31A and the outer pipe ring 340A of the outer lead portion 34A, and supports the inner pipe ring 33A by the outer pipe ring 340A.

リッツ線36Aは、内側リード部31Aと外側リード部34Aとを電気的に接続する。
リッツ線36Aは、可撓性を有し、内側リード部31Aと外側リード部34Aとの間に介設され、断熱層としての真空断熱層に配置される。
The litz wire 36A electrically connects the inner lead portion 31A and the outer lead portion 34A.
The litz wire 36A has flexibility, is interposed between the inner lead portion 31A and the outer lead portion 34A, and is arranged in a vacuum heat insulating layer as a heat insulating layer.

リッツ線36Aは、リッツ線36と比較して、複数のリッツ線364、366、368を含む。本実施の形態では、リッツ線36Aは、第一リッツ線364と、第一リッツ線364よりも径が大きい第二リッツ線366と、第二リッツ線366よりも径が大きい第三リッツ線368を有する。リッツ線36Aは複数のリッツ線364、366、368により、引出端子部301と内側リード部31Aとを、内側リード部31A(内管リング33A)の外周に均等な間隔を空けて接続した状態にしている。 The litz wire 36A includes a plurality of litz wires 364, 366, 368 as compared with the litz wire 36. In the present embodiment, the litz wire 36A has a first litz wire 364, a second litz wire 366 having a diameter larger than that of the first litz wire 364, and a third litz wire 368 having a diameter larger than that of the second litz wire 366. Has. The litz wire 36A is in a state where the drawer terminal portion 301 and the inner lead portion 31A are connected to the outer circumference of the inner lead portion 31A (inner tube ring 33A) at equal intervals by a plurality of litz wires 364, 366, 368. ing.

これら第一リッツ線364は、第二リッツ線366よりも長さが短く、第二リッツ線366は、第三リッツ線368よりも長さが短い。
第一リッツ線364、第二リッツ線366及び第三リッツ線368は、それぞれ、リッツ線36Aと同様に、素線を絶縁被覆膜で被覆したエナメル線を撚り合わせて束ねて形成される。第一リッツ線364、第二リッツ線366及び第三リッツ線368は、直径0.5〜1.5mmの素線を絶縁被覆で被覆したエナメル線を撚り合わせて束ね、それぞれ外径が異なる線状に形成されている。
The first litz wire 364 is shorter than the second litz wire 366, and the second litz wire 366 is shorter than the third litz wire 368.
The first litz wire 364, the second litz wire 366, and the third litz wire 368 are each formed by twisting and bundling enamel wires whose strands are coated with an insulating coating film, similarly to the litz wire 36A. The first litz wire 364, the second litz wire 366, and the third litz wire 368 are made by twisting and bundling enamel wires having a diameter of 0.5 to 1.5 mm coated with an insulating coating, and each having a different outer diameter. It is formed in a shape.

第一リッツ線364における長さ/素線の総断面積比と第二リッツ線366の長さ/素線の総断面積比は1:0.8〜1.2の関係にある。また、第二リッツ線366における長さ/素線の総断面積比と第三リッツ線368の長さ/素線の総断面積比は1:0.8〜1.2の関係にある。また、第一リッツ線364における長さ/素線の総断面積比と第三リッツ線368の長さ/素線の総断面積比は1:0.8〜1.2の関係にある。なお、第二リッツ線366における長さ/素線の総断面積比と第三リッツ線368の長さ/素線の総断面積比は1:0.8〜1.2の関係にあってもよい。また、第一リッツ線364における長さ/素線の総断面積比、第二リッツ線366の長さ/素線の総断面積比、および、第三リッツ線368の長さ/素線の総断面積比は、互いに同じであることが好ましい。
第一リッツ線364における長さ/素線の総断面積比、第二リッツ線366の長さ/素線の総断面積比、および、第三リッツ線368の長さ/素線の総断面積比は、より効果的な同じ通電量を確保するため、熱侵入量が最も小さく、且つ、同じかまたは近似している値が好ましい。
また、各リッツ線364、366、368により、引出端子部301は、内側リング32Aの外周に等間隔を空けて全周に渡るように接続された状態となっている。これにより、第一リッツ線364、第二リッツ線366及び第三リッツ線368のそれぞれを流れる電流の均流化が図られている。
The length / total cross-sectional area ratio of the first litz wire 364 and the length / total cross-sectional area ratio of the second litz wire 366 are in a relationship of 1: 0.8 to 1.2. Further, the total cross-sectional area ratio of the length / strand of the second litz wire 366 and the total cross-sectional area ratio of the length / strand of the third litz wire 368 are in a relationship of 1: 0.8 to 1.2. Further, the length / total cross-sectional area ratio of the first litz wire 364 and the length / total cross-sectional area ratio of the third litz wire 368 are in a relationship of 1: 0.8 to 1.2. The length / total cross-sectional area ratio of the second litz wire 366 and the length / total cross-sectional area ratio of the third litz wire 368 are in a relationship of 1: 0.8 to 1.2. May be good. Further, the length / total cross-sectional area ratio of the first litz wire 364, the length / total cross-sectional area ratio of the second litz wire 366, and the length / strand of the third litz wire 368. The total cross-sectional area ratios are preferably the same as each other.
The length / total cross-sectional area ratio of the first litz wire 364, the length / total cross-sectional area ratio of the second litz wire 366, and the length / total cross-sectional area ratio of the third litz wire 368. The area ratio is preferably a value having the smallest amount of heat penetration and the same or similar value in order to secure the same amount of electricity more effectively.
Further, the drawer terminal portions 301 are connected to the outer circumference of the inner ring 32A by the litz wires 364, 366, and 368 so as to cover the entire circumference at equal intervals. As a result, the current flowing through each of the first litz wire 364, the second litz wire 366, and the third litz wire 368 is equalized.

第一リッツ線364、第二リッツ線366及び第三リッツ線368のそれぞれの長さ/素線の総断面積比は、実施の形態1のリッツ線36と同様に、熱侵入量(=ジュール発熱+伝導熱)が極力小さくなるように、通電条件(材料、周波数、温度等であり特に温度)に応じて最適値となるように設定される。
例えば、340Aの温度が300K、33Aの温度が70Kであるとき、第一リッツ線364、第二リッツ線366及び第三リッツ線368の長さと総断面積は、それぞれ100mm、180mm、250mmと公称断面積83mm、150mm、208mmである。
なお、本実施の形態では、リッツ線36Aを用いて、リッツ線36A(具体的には、第一リッツ線364、第二リッツ線366及び第三リッツ線368)のそれぞれの導体断面積寸法を常電導接続部材30Aの一番温度の低い箇所の表皮深さ以下とすることにより、表皮効果による影響を受けず、かつ、温度勾配を考慮する必要ない構成としている。
The total cross-sectional area ratio of the lengths / strands of the first litz wire 364, the second litz wire 366, and the third litz wire 368 is the same as that of the litz wire 36 of the first embodiment, that is, the amount of heat penetration (= joules). The optimum value is set according to the energization conditions (material, frequency, temperature, etc., especially temperature) so that (heat generation + conduction heat) becomes as small as possible.
For example, when the temperature of 340A is 300K and the temperature of 33A is 70K, the lengths and total cross-sectional areas of the first litz wire 364, the second litz wire 366 and the third litz wire 368 are nominally 100 mm, 180 mm and 250 mm, respectively. The cross-sectional areas are 83 mm 2 , 150 mm 2 , and 208 mm 2 .
In this embodiment, the litz wire 36A is used to determine the cross-sectional area dimensions of the conductors of the litz wire 36A (specifically, the first litz wire 364, the second litz wire 366, and the third litz wire 368). By setting the depth of the skin at the lowest temperature of the normal conducting connection member 30A or less, it is not affected by the skin effect and it is not necessary to consider the temperature gradient.

リッツ線36Aは、第一リッツ線364、第二リッツ線366及び第三リッツ線368をそれぞれ、2本ずつ有する。
第一リッツ線364、第二リッツ線366及び第三リッツ線368は、それぞれ外管リング340Aの内周面と内管リング33Aの外周面との間に、引出端子部301の中心線を中心に左右対象に撓ませた状態で架設されている。なお、第一リッツ線364、第二リッツ線366及び第三リッツ線368のそれぞれの長さは、内管リング33Aの外周面と外管リング340Aの内周面との最短の長さD1の等倍以上の長さである。好ましくは、それぞれのリッツ線の長さは、最短の長さD1の1.5倍以上であり、最短の長さD1の5倍以下であることが好ましい。これにより、内側リード部31Aと外側リード部34Aとが軸方向に相対移動する場合でも、常にリッツ線36Aに負荷が掛かることなく、リッツ線36Aは、内側リード部31Aと外側リード部34Aとの導通状態を確保できる。
The litz wire 36A has two first litz wire 364, two second litz wire 366, and two third litz wire 368.
The first litz wire 364, the second litz wire 366, and the third litz wire 368 are centered on the center line of the drawer terminal portion 301 between the inner peripheral surface of the outer tube ring 340A and the outer peripheral surface of the inner tube ring 33A, respectively. It is erected in a state of being bent symmetrically to the left and right. The lengths of the first litz wire 364, the second litz wire 366, and the third litz wire 368 are the shortest lengths D1 between the outer peripheral surface of the inner tube ring 33A and the inner peripheral surface of the outer tube ring 340A. It is more than the same size. Preferably, the length of each litz wire is 1.5 times or more the shortest length D1 and 5 times or less the shortest length D1. As a result, even when the inner lead portion 31A and the outer lead portion 34A move relative to each other in the axial direction, the litz wire 36A is not always loaded with the litz wire 36A, and the litz wire 36A is connected to the inner lead portion 31A and the outer lead portion 34A. A conductive state can be ensured.

具体的には、第一リッツ線364は、外管リング340Aにおいて引出端子部301の下面と鉛直下方で対向する内管リング33Aの上面との間に配置される。第二リッツ線366は、第一リッツ線364よりも中心鉛直線L1から離間する部位と内管リング33Aの両側部との間に架設されている。また、第三リッツ線368は、第二リッツ線366よりも更に中心鉛直線L1から離れた部位と、内管リング33Aの外周面の下面部分との間に架設されている。これにより、リッツ線36Aは、引出端子部301に対して、内管リング33Aを、その全周に渡って均一に電流が流れるように電気的に接続している。これにより、引出端子部301を介して超電導ケーブル10に常温部から通電される際に、超電導ケーブル10に均一に通電させることができ、熱侵入量も極力低減することができ、好適な通電状態を確保できる。 Specifically, the first litz wire 364 is arranged between the lower surface of the drawer terminal portion 301 and the upper surface of the inner pipe ring 33A facing vertically below the outer pipe ring 340A. The second litz wire 366 is erected between a portion separated from the central vertical line L1 by the first litz wire 364 and both side portions of the inner pipe ring 33A. Further, the third litz wire 368 is erected between a portion further away from the central vertical line L1 than the second litz wire 366 and a lower surface portion of the outer peripheral surface of the inner pipe ring 33A. As a result, the litz wire 36A electrically connects the inner tube ring 33A to the extraction terminal portion 301 so that a current flows uniformly over the entire circumference thereof. As a result, when the superconducting cable 10 is energized from the room temperature portion via the drawer terminal portion 301, the superconducting cable 10 can be uniformly energized, the amount of heat penetration can be reduced as much as possible, and a suitable energized state. Can be secured.

また、交流通電時の場合、1枚のフランジを介して通電させる従来構成と比較して、各実施の形態の常電導接続部材30、30Aを用いれば、表皮効果により、通電領域が減少することがない。 Further, in the case of alternating current energization, the energization region is reduced due to the skin effect by using the normal conduction connecting members 30 and 30A of each embodiment as compared with the conventional configuration in which energization is performed through one flange. There is no.

したがって、超電導ケーブル10と常電導部とを接続する際に、好適な通電容量を確保しつつ、超電導ケーブルへの外部からの熱侵入量を低減することができる。 Therefore, when connecting the superconducting cable 10 and the normal conducting portion, it is possible to reduce the amount of heat invading the superconducting cable from the outside while ensuring a suitable energizing capacity.

参考例1
図3〜図5に示す常電導接続部材30を、無酸素銅に銀メッキした材料を用いて製造した。内側リード部31と外側リード部34とを接続する導体であるリッツ線は、長さ/断面積比(例えば、1,200[m−1)を最適化した一本のリッツ線とした。この参考例1の常電導接続部材30に実効値AC3000であり、周波数60Hzで通電した際の常電導接続部材30における熱侵入量を測定した。これを表1に示す。測定した際の常電導接続部材30における室温側温度、つまり外側リード部34の引出端子部301における温度は、700Kであり、内側リード部31における温度は70Kであった。
[ Reference example 1 ]
The normal conductive connection member 30 shown in FIGS. 3 to 5 was manufactured using a material obtained by silver-plating oxygen-free copper. The litz wire, which is a conductor connecting the inner lead portion 31 and the outer lead portion 34, is a single litz wire with an optimized length / cross-sectional area ratio (for example, 1,200 [m-1)). The normal conductive connection member 30 of Reference Example 1 had an effective value of AC3000, and the amount of heat penetration in the normal conductive connecting member 30 when energized at a frequency of 60 Hz was measured. This is shown in Table 1. The room temperature side temperature of the normal conducting connection member 30 at the time of measurement, that is, the temperature of the drawer terminal portion 301 of the outer lead portion 34 was 700K, and the temperature of the inner lead portion 31 was 70K.

[実施例2]
図6〜図8に示す常電導接続部材30Aを、無酸素銅に銀メッキした材料を用いて製造した。内側リード部31Aと外側リード部34Aとを接続する導体であるリッツ線36Aを径の異なる3種類(外径12.3mm、16.5mm、19.4mm)×2本のリッツ線364、366、368とし、各リッツ線の「長さ/断面積比」を最適化(例えば、1,200[m−1)して用いた。この実施例2の常電導接続部材30Aに、参考例1と同様の条件で通電して常電導接続部材における熱侵入量を測定した。これを表1に示す。
[Example 2]
The normal conductive connection member 30A shown in FIGS. 6 to 8 was manufactured using a material obtained by silver-plating oxygen-free copper. Three types of litz wire 36A, which is a conductor connecting the inner lead portion 31A and the outer lead portion 34A, having different diameters (outer diameter 12.3 mm, 16.5 mm, 19.4 mm) x 2 litz wires 364, 366, It was set to 368, and the "length / cross-sectional area ratio" of each litz wire was optimized (for example, 1,200 [m-1) and used. The normal conduction connection member 30A of Example 2 was energized under the same conditions as in Reference Example 1 and the amount of heat penetration in the normal conduction connection member was measured. This is shown in Table 1.

[比較例1]
参考例1及び実施例2と同様の材料で、外側リード部と内側リード部とを接続する導体を、外側リード部と同様の無酸素銅に銀メッキした材料で「長さ/断面積比」を最適化した板状導体で形成した従来型の常電導部材を製造した。この比較例1の常電導接続部材に参考例1と同様の条件で通電して、常電導接続部材における熱侵入量を測定した。これを表1に示す。
[Comparative Example 1]
"Length / cross-sectional area ratio" with the same material as in Reference Example 1 and Example 2, where the conductor connecting the outer lead portion and the inner lead portion is silver-plated on oxygen-free copper similar to the outer lead portion. A conventional normal conducting member formed of a plate-shaped conductor optimized for the above was manufactured. The normal conduction connection member of Comparative Example 1 was energized under the same conditions as in Reference Example 1, and the amount of heat penetration in the normal conduction connection member was measured. This is shown in Table 1.

Figure 0006891054
Figure 0006891054

これら参考例1実施例2及び比較例1のそれぞれについて、通電電流AC3000A(実効値)、周波数60Hzで通電して、熱侵入量を測定したところ、参考例1は156Wであり、実施例2は147Wであり、比較例1は186Wであった。なお、熱侵入量は、カロリメトリック法にて測定した。
測定の結果、参考例1では、比較例1に対して84%、実施例2は、比較例1に対して79%の熱侵入量となり、比較例1と比較して減少することが判った。
つまり、外側リード部34と内側リード部31とを接続する導電部分である導体にリッツ線を用いることにより、表皮効果による抵抗値の上昇、つまりジュール発熱の増大を防止できることがわかった。また、実施例2から、リッツ線を複数用いて、図6に示すように、超電導ケーブル10の周りに均等配置となるように接続することにより、周方向の電流密度が均一となり、ジュール発熱が一層低減されていることがわかった。

When each of these Reference Example 1 , Example 2 and Comparative Example 1 was energized at an energizing current AC3000A (effective value) and a frequency of 60 Hz, and the amount of heat penetration was measured, Reference Example 1 was 156 W, and Example 2 was found. Was 147 W, and Comparative Example 1 was 186 W. The amount of heat penetration was measured by the calorimetric method.
As a result of the measurement, it was found that the heat penetration amount of Reference Example 1 was 84% with respect to Comparative Example 1 and that of Example 2 was 79% with respect to Comparative Example 1, which was reduced as compared with Comparative Example 1. ..
That is, it was found that by using the litz wire for the conductor which is the conductive portion connecting the outer lead portion 34 and the inner lead portion 31, it is possible to prevent an increase in the resistance value due to the skin effect, that is, an increase in Joule heat generation. Further, from Example 2, by using a plurality of litz wires and connecting them so as to be evenly arranged around the superconducting cable 10 as shown in FIG. 6, the current density in the circumferential direction becomes uniform and Joule heat generation is generated. It turned out that it was further reduced.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。 Although the invention made by the present inventor has been specifically described above based on the embodiment, the present invention is not limited to the above embodiment and can be changed without departing from the gist thereof.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 端末構造体
10 超電導ケーブル
11 ケーブルコア
12 断熱管
20 低温容器
21 冷媒槽
22 真空槽
23 がい管部
30、30A 常電導接続部材
31、31A 内側リード部
32 電極部
33、33A 内管リング
34、34A 外側リード部
35 マルチコンタクト
36、36A リッツ線
111 中央冷却管
112 超電導導体層
113 電気絶縁層
114 ケーブルシールド層
115 保護層
121 断熱内管
122 断熱外管
211 内側収容管部
221 外側収容管部
301 引出端子部
322 貫通孔
340、340A 外管リング
332、342 固定穴
364 第一リッツ線
366 第二リッツ線
368 第三リッツ線
1 Terminal structure 10 Superconducting cable 11 Cable core 12 Insulation pipe 20 Low temperature container 21 Refrigerator tank 22 Vacuum tank 23 Gable pipe part 30, 30A Normal conducting connection member 31, 31A Inner lead part 32 Electrode part 33, 33A Inner pipe ring 34, 34A Outer lead part 35 Multi-contact 36, 36A Litz wire 111 Central cooling pipe 112 Superconducting conductor layer 113 Electrical insulation layer 114 Cable shield layer 115 Protective layer 121 Insulation inner pipe 122 Insulation outer pipe 211 Inner accommodation pipe 221 Outer accommodation pipe 301 Draw terminal part 322 Through hole 340, 340A Outer tube ring
332, 342 Fixing hole 364 1st litz wire 366 2nd litz wire 368 3rd litz wire

Claims (3)

超電導ケーブルに接続され、当該超電導ケーブルを常温側の機器に電気的に接続する常電導接続部材であって、
前記超電導ケーブルの外周に配置され、当該超電導ケーブルに電気的に接続される内側リード部と、
前記機器に接続される端子部を有し、前記内側リード部の外周側に離間して配置される外側リード部と、
前記内側リード部と前記外側リード部とを接続するリッツ線と、
を有し、
前記リッツ線は、第一リッツ線と、前記第一リッツ線よりも径が大きい第二リッツ線とを有し、
前記第一リッツ線は、第二リッツ線よりも長さが短い、常電導接続部材。
A normal conductive connection member that is connected to a superconducting cable and electrically connects the superconducting cable to equipment at room temperature.
An inner reed portion arranged on the outer circumference of the superconducting cable and electrically connected to the superconducting cable,
An outer lead portion having a terminal portion connected to the device and arranged apart from the outer peripheral side of the inner lead portion, and an outer lead portion.
A litz wire connecting the inner lead portion and the outer lead portion,
Have a,
The litz wire has a first litz wire and a second litz wire having a diameter larger than that of the first litz wire.
The first litz wire is a normal conduction connecting member having a shorter length than the second litz wire.
前記第一リッツ線における長さ/素線の総断面積と前記第二リッツ線の長さ/素線の総断面積は1:0.8〜1.2の関係にある、請求項1記載の常電導接続部材。 The total cross-sectional area of the length / wire of the total cross-sectional area and the second litz wire length / wire in the first litz wire 1: in 0.8 to 1.2 of the relationship, according to claim 1, wherein Normal conduction connection member. 請求項1または2に記載の常電導接続部材と、
前記常電導接続部材に接続される超電導ケーブルと、
を有する、超電導ケーブルの端末構造体。
The normal conduction connecting member according to claim 1 or 2,
A superconducting cable connected to the normal conductive connecting member and
The terminal structure of the superconducting cable having.
JP2017123483A 2017-06-23 2017-06-23 Terminal structure of normal conductive connection member and superconducting cable Active JP6891054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123483A JP6891054B2 (en) 2017-06-23 2017-06-23 Terminal structure of normal conductive connection member and superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123483A JP6891054B2 (en) 2017-06-23 2017-06-23 Terminal structure of normal conductive connection member and superconducting cable

Publications (2)

Publication Number Publication Date
JP2019009900A JP2019009900A (en) 2019-01-17
JP6891054B2 true JP6891054B2 (en) 2021-06-18

Family

ID=65027010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123483A Active JP6891054B2 (en) 2017-06-23 2017-06-23 Terminal structure of normal conductive connection member and superconducting cable

Country Status (1)

Country Link
JP (1) JP6891054B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283106B2 (en) * 1993-06-22 2002-05-20 中部電力株式会社 Structure of current supply terminal for oxide superconducting conductor
JP4671111B2 (en) * 2005-05-26 2011-04-13 住友電気工業株式会社 Superconducting cable
JP5213349B2 (en) * 2007-03-20 2013-06-19 矢崎総業株式会社 High-frequency electric wire, wire harness including the same, high-frequency electric wire manufacturing method, and manufacturing apparatus for manufacturing high-frequency electric wire
KR101081482B1 (en) * 2009-12-29 2011-11-08 한국표준과학연구원 Low noise crycooling apparatus
KR20110086241A (en) * 2010-01-22 2011-07-28 엘에스전선 주식회사 Shielding conductor connecting structure of terminal for super-conductor cable
JP6463202B2 (en) * 2015-03-31 2019-01-30 昭和電線ケーブルシステム株式会社 Superconducting cable terminal structure

Also Published As

Publication number Publication date
JP2019009900A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
EP1743345B1 (en) A system for transmitting current including magnetically decoupled superconducting conductors
US20070137881A1 (en) Terminal structure of multiphase superconducting cable
JPH09190847A (en) Terminal connecting superconductive multiphase cable to electric device with room temperature
KR101708062B1 (en) Terminal structure of superconducting cable system
US8271061B2 (en) Connection arrangement for two superconductor cables
DK2523291T3 (en) Branching element intended for a superconductor cable unit
US20110275521A1 (en) Transmission system with a superconducting cable
JP4201331B2 (en) Phase branching structure of multiphase superconducting cable
JP6463202B2 (en) Superconducting cable terminal structure
CN101361143A (en) Superconducting cable
JP2012120435A (en) Terminal connection structure of superconducting cable
JP2001525649A (en) High voltage power cable termination
JP6947509B2 (en) Terminal structure of normal conductive connection member and superconducting cable
KR20130014396A (en) Arrangement with a superconducting direct-current electric cable system
JP6891054B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP6482358B2 (en) Superconducting cable terminal structure
JP2015177605A (en) Intermediate connection member for superconducting cables, and intermediate connection structure of superconducting cables
JP6896527B2 (en) Terminal structure of normal conductive connection member and superconducting cable
KR20110086241A (en) Shielding conductor connecting structure of terminal for super-conductor cable
JP2014192114A (en) Superconductive cable
JP7085956B2 (en) Superconducting cable termination connection and superconducting cable system
JP2012174405A (en) Superconducting power transmission system
JP2018129889A (en) Normally conducting connecting member and terminal structure of superconducting cable
JP6491518B2 (en) Superconducting cable terminal structure
JP2020028134A (en) Terminal structure of superconducting cable

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6891054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250