JP2012174405A - Superconducting power transmission system - Google Patents

Superconducting power transmission system Download PDF

Info

Publication number
JP2012174405A
JP2012174405A JP2011033152A JP2011033152A JP2012174405A JP 2012174405 A JP2012174405 A JP 2012174405A JP 2011033152 A JP2011033152 A JP 2011033152A JP 2011033152 A JP2011033152 A JP 2011033152A JP 2012174405 A JP2012174405 A JP 2012174405A
Authority
JP
Japan
Prior art keywords
superconducting
cable
pipe
return
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033152A
Other languages
Japanese (ja)
Other versions
JP5252324B2 (en
Inventor
Yoshihiro Inagaki
芳宏 稲垣
Masayuki Hirose
正幸 廣瀬
Hiroshi Hirota
博史 広田
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011033152A priority Critical patent/JP5252324B2/en
Publication of JP2012174405A publication Critical patent/JP2012174405A/en
Application granted granted Critical
Publication of JP5252324B2 publication Critical patent/JP5252324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting power transmission system that prevents damage to a superconducting conductor layer caused by excessive abnormal current without making diameter of a superconducting cable large and that thereby facilitates construction thereof.SOLUTION: A superconducting power transmission system includes a normal temperature insulating type superconducting cable (superconducting cable) 201, a cooling mechanism, and a return pipe 301. The return pipe 301 of the superconducting power transmission system has: a return side heat insulating pipe 33 through which a coolant is passed so as to return to the cooling mechanism; a return side electric insulating layer 43 that surrounds an outer circumference of the return side heat insulating pipe 33; and a shunt conductor 40 that is provided on an inner side of the return side electric insulating layer 43 and that shares abnormal current.

Description

本発明は、超電導ケーブルを用いた超電導送電システムに関するものである。   The present invention relates to a superconducting power transmission system using a superconducting cable.

超電導ケーブルでは、一般にフォーマの外周上に超電導導体層を有する導体部を二重の金属管で構成される断熱管内に収納してなる構成を備える。このような超電導ケーブルにおいて、超電導ケーブルを外部から電気的に絶縁する構成には以下の二つが挙げられる。一つ目の構成は、導体部の外周に電気絶縁層を備えたケーブルコアが上記断熱管に収納され、ケーブルコアに備わる電気絶縁層も冷媒により冷却される低温絶縁型の構成である(例えば、特許文献1を参照)。二つ目の構成は、フォーマと超電導導体層を備える導体部が上記断熱管に収納され、かつその断熱管の上に電気絶縁層が形成されており、当該電気絶縁層が冷媒により冷却されない常温絶縁型の構成である(例えば、非特許文献1を参照)。特に、後者の常温絶縁型超電導ケーブルは、既存の常電導ケーブルの絶縁材料および構造が適用できるという利点がある。   In general, a superconducting cable has a configuration in which a conductor portion having a superconducting conductor layer on the outer periphery of a former is housed in a heat insulating tube made of a double metal tube. In such a superconducting cable, there are the following two configurations for electrically insulating the superconducting cable from the outside. The first configuration is a low-temperature insulating configuration in which a cable core having an electrical insulation layer on the outer periphery of a conductor portion is housed in the heat insulation pipe, and the electrical insulation layer provided in the cable core is also cooled by a refrigerant (for example, , See Patent Document 1). The second configuration is a room temperature in which a conductor portion including a former and a superconducting conductor layer is accommodated in the heat insulating tube, and an electric insulating layer is formed on the heat insulating tube, and the electric insulating layer is not cooled by the refrigerant. It is an insulation type structure (for example, refer nonpatent literature 1). In particular, the latter room-temperature insulated superconducting cable has an advantage that the insulation material and structure of an existing normal conducting cable can be applied.

低温絶縁型、あるいは常温絶縁型の超電導ケーブルを用いて超電導送電システムを構築する場合、超電導送電システムは、超電導ケーブルの他、さらに冷却機構と、リターン管とを備える構成とすることがある。冷却機構は、超電導導体層を冷却する冷媒を所定温度に冷却し、その冷却した冷媒を断熱管内に送り出す機構である。また、リターン管は、超電導ケーブルの断熱管の内部に流通された冷媒を冷却機構に戻す管路である。   When constructing a superconducting power transmission system using a low-temperature insulation type or room temperature insulation type superconducting cable, the superconducting power transmission system may include a cooling mechanism and a return pipe in addition to the superconducting cable. The cooling mechanism is a mechanism that cools the refrigerant that cools the superconducting conductor layer to a predetermined temperature, and sends the cooled refrigerant into the heat insulating tube. The return pipe is a pipe line that returns the refrigerant circulated inside the heat insulation pipe of the superconducting cable to the cooling mechanism.

特開2010−238427号公報JP 2010-238427 A

『Experimental 35kV/121MVA Superconducting Cable System Installed at Puji Substation in Southern China Power Grid』 Transactions on Electrical and Electronic Engineering 1巻1号8−13ページ"Experimental 35kV / 121MVA Superconducting Cable System Installed at Pujy Substituting in Southern China Power Grid 1 Transactions on Electric 13"

しかし、上述した超電導送電システムでは、その構築作業に困難が伴う場合があった。   However, in the superconducting power transmission system described above, there are cases where the construction work is difficult.

従来の超電導ケーブルでは、超電導導体層の直下にあるフォーマをCuなどの導電性に優れる常電導導体としておき、短絡電流に代表される異常時電流が発生した際、フォーマを異常時電流の分流路とすることが一般的である。しかし、大電流での送電を行う超電導送電システムでは、異常時電流も膨大な値となるため、異常時電流による超電導導体層の劣化を抑制するためには、フォーマの断面積を非常に大きくせざるを得ない。そうすると、超電導ケーブルの大径化を招く。ここで、超電導ケーブルの布設は、既存の常電導ケーブルと同等の配置および布設状態とすることが求められているため、超電導ケーブルを大径化すると、ケーブル輸送長(単位長)が制約されたり、従来の常電導ケーブルと同様に管路への布設が難くなるという問題がある。また、超電導ケーブルの構成部材が個々に挙動するため、大径化するほど布設作業が難しくなる。   In a conventional superconducting cable, the former just below the superconducting conductor layer is used as a normal conducting conductor with excellent conductivity such as Cu, and when an abnormal current typified by a short circuit current is generated, the former is divided into the abnormal current flow path. It is common to do. However, in a superconducting power transmission system that performs transmission with a large current, the current during an abnormal time is also a huge value. I must. This leads to an increase in the diameter of the superconducting cable. Here, since the installation of superconducting cables is required to be arranged and installed in the same manner as existing normal conducting cables, if the diameter of the superconducting cable is increased, the cable transport length (unit length) may be restricted. As with the conventional normal conducting cable, there is a problem that it is difficult to lay the pipe. Further, since the constituent members of the superconducting cable behave individually, the laying operation becomes more difficult as the diameter increases.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、超電導ケーブルを大径化することなく、過大な異常時電流による超電導導体層の劣化を抑制でき、その結果として容易に構築することができる超電導送電システムを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to suppress the deterioration of the superconducting conductor layer due to an excessive abnormal current without enlarging the diameter of the superconducting cable, and as a result, easily. It is to provide a superconducting power transmission system that can be constructed.

本発明超電導送電システムは、超電導ケーブルと、冷却機構と、リターン管とを備える。超電導ケーブルは、超電導導体層、およびこの超電導導体層を内部に収納するケーブル側断熱管を備える。冷却機構は、冷媒を所定温度に冷却し、その冷却した冷媒をケーブル側断熱管内に送り出す機構である。リターン管は、ケーブル側断熱管の内部に流通された冷媒を、冷却機構に戻す管路である。これらの構成を備える本発明超電導送電システムにおいて、当該システムに備わるリターン管は、冷却機構に戻る冷媒が流通されるリターン側断熱管と、そのリターン側断熱管の外周を取り囲むリターン側電気絶縁層と、そのリターン側電気絶縁層の内側に設けられ、異常時電流を分担する分流導体と、を備えることを特徴とする。   The superconducting power transmission system of the present invention includes a superconducting cable, a cooling mechanism, and a return pipe. The superconducting cable includes a superconducting conductor layer and a cable-side heat insulating tube that accommodates the superconducting conductor layer therein. The cooling mechanism is a mechanism that cools the refrigerant to a predetermined temperature and sends the cooled refrigerant into the cable-side heat insulating tube. The return pipe is a pipe line that returns the refrigerant circulated inside the cable-side heat insulation pipe to the cooling mechanism. In the superconducting power transmission system of the present invention having these configurations, the return pipe provided in the system includes a return-side heat insulation pipe through which the refrigerant returning to the cooling mechanism is circulated, and a return-side electric insulation layer surrounding the outer periphery of the return-side heat insulation pipe. And a shunt conductor that is provided inside the return-side electrical insulating layer and shares a current at the time of abnormality.

上記構成によれば、異常時電流を分担する分流導体により、超電導ケーブルの超電導導体層に過剰な異常時電流が流れることを抑制することができる。しかも、その分流導体は、超電導ケーブルの側ではなくリターン管の側に設けられているため、超電導ケーブルの大径化を抑制することができる。超電導ケーブルの大径化を抑制できれば、大径化に伴う超電導ケーブルの輸送長の低減や機械的特性により超電導ケーブルの布設作業性が低下することを避けることができる。また、例えば、電力ケーブル用管路などの限られたスペースに本発明超電導送電システムを構築する場合でも、その管路内に超電導ケーブルを布設し易い。つまり、本発明超電導送電システムは、フォーマを大径化(ケーブルを大径化)することで異常時電流に対する対策を施した超電導送電システムよりも容易に構築することができる。なお、リターン管にリターン側電気絶縁層を設けたのは、分流導体が、超電導ケーブルの超電導導体層と接続され、超電導導体層と同電位となるため、リターン管にも超電導ケーブルと同じ絶縁性能が要求されるからである。   According to the said structure, it can suppress that the electric current at the time of an excessive abnormality flows into the superconducting conductor layer of a superconducting cable by the shunt conductor which shares an electric current at the time of abnormality. Moreover, since the shunt conductor is provided not on the superconducting cable side but on the return pipe side, it is possible to suppress an increase in the diameter of the superconducting cable. If the increase in the diameter of the superconducting cable can be suppressed, it is possible to avoid the laying workability of the superconducting cable from being lowered due to the reduction in the transport length of the superconducting cable and the mechanical characteristics accompanying the increase in the diameter. Further, for example, even when the superconducting power transmission system of the present invention is constructed in a limited space such as a power cable conduit, it is easy to lay the superconducting cable in the conduit. That is, the superconducting power transmission system of the present invention can be constructed more easily than a superconducting power transmission system in which measures are taken against current during abnormalities by increasing the diameter of the former (increasing the diameter of the cable). The return side is provided with a return-side electrical insulation layer because the shunt conductor is connected to the superconducting conductor layer of the superconducting cable and has the same potential as the superconducting conductor layer, so the return pipe also has the same insulation performance as the superconducting cable. Is required.

さらに、リターン側電気絶縁層を備えるリターン管を適用する上記構成によれば、超電導ケーブルとして常温絶縁型超電導ケーブルを用いた超電導送電システムにおいて絶縁継手の据付位置を当該システムの冷却機構の近傍に集約することができる。通常、常温絶縁型超電導ケーブルを用いた超電導送電システムでは、超電導ケーブルの長手方向の一端側でケーブル側断熱管(電圧印加部)と冷却機構の冷媒管とを絶縁継手で接続すると共に、当該長手方向の他端側でケーブル側断熱管とリターン側断熱管(接地電位部)とを絶縁継手により接続しなければならない。それは、従来のリターン管は接地電位であるため防食目的の被覆を備えるのみであるため、常温絶縁型超電導ケーブルの断熱管と導通状態で接続すると、リターン管を介して超電導導体を接地させた地絡状態となるからである。これに対して、本発明超電導送電システムでは、リターン管にリターン側電気絶縁層が設けられているため、ケーブル側断熱管とリターン側断熱管とが導通されていても問題ない。一方、ケーブル側断熱管とリターン側断熱管との導通を許容すると、リターン側断熱管と、この断熱管を冷却機構に接続する断熱管との間に所定の電気絶縁を設ける必要がある。この電気絶縁に絶縁継手を用いればよい。つまり、本発明の構成によれば絶縁継手の位置を冷却機構の近傍、あるいは超電導ケーブルの片端に集約することができる。   Further, according to the above configuration in which the return pipe having the return-side electric insulation layer is applied, the installation position of the insulation joint is integrated in the vicinity of the cooling mechanism of the system in the superconducting power transmission system using the room temperature insulated superconducting cable as the superconducting cable. can do. Normally, in a superconducting power transmission system using a room temperature insulated superconducting cable, the cable-side heat insulation pipe (voltage application unit) and the cooling mechanism refrigerant pipe are connected by an insulating joint at one end side in the longitudinal direction of the superconducting cable. The cable-side heat insulation pipe and the return-side heat insulation pipe (ground potential part) must be connected by an insulation joint at the other end side in the direction. This is because the conventional return pipe is only provided with a coating for anticorrosion purposes because it is at ground potential, so when connected in a conductive state to the heat insulation pipe of a room temperature insulated superconducting cable, the ground is made by grounding the superconducting conductor via the return pipe. It is because it becomes a tangle state. On the other hand, in the superconducting power transmission system of the present invention, since the return side electric insulation layer is provided in the return pipe, there is no problem even if the cable side heat insulation pipe and the return side heat insulation pipe are electrically connected. On the other hand, if conduction between the cable-side heat insulation pipe and the return-side heat insulation pipe is allowed, it is necessary to provide predetermined electrical insulation between the return-side heat insulation pipe and the heat insulation pipe connecting the heat insulation pipe to the cooling mechanism. An insulating joint may be used for this electrical insulation. That is, according to the configuration of the present invention, the position of the insulating joint can be concentrated near the cooling mechanism or at one end of the superconducting cable.

ここで、本発明超電導送電システムにおける超電導ケーブルとして、常温絶縁型超電導ケーブルと低温絶縁型超電導ケーブルのいずれを採用しても良い。常温絶縁型超電導ケーブルは、超電導導体層を内部に収納するケーブル側断熱管の外周を取り囲むケーブル側電気絶縁層を備える構成である。また、低温絶縁型超電導ケーブルは、超電導導体層の外周を取り囲み、ケーブル側断熱管の内部に配されるケーブル側電気絶縁層を備える構成である。以下、常温絶縁型超電導ケーブルを用いた超電導送電システムを例に、本発明超電導送電システムの構成を、図1を参照しつつ詳細に説明する。   Here, as the superconducting cable in the superconducting power transmission system of the present invention, either a room temperature insulated superconducting cable or a low temperature insulated superconducting cable may be adopted. The room-temperature insulated superconducting cable is configured to include a cable-side electrical insulation layer that surrounds the outer periphery of a cable-side heat insulation tube that houses the superconducting conductor layer therein. The low-temperature insulated superconducting cable is configured to include a cable-side electrical insulating layer that surrounds the outer periphery of the superconducting conductor layer and is arranged inside the cable-side heat insulating tube. Hereinafter, the configuration of the superconducting power transmission system of the present invention will be described in detail with reference to FIG. 1, taking a superconducting power transmission system using a room temperature insulated superconducting cable as an example.

図1は、本発明超電導送電システムにおける常温絶縁型超電導ケーブル200とリターン管300の横断面図である。但し、図1では、ケーブル側断熱管(以下、断熱管13)とリターン側断熱管(以下、断熱管33)として、二重の金属管で構成される断熱管を例示している。   FIG. 1 is a cross-sectional view of a room temperature insulated superconducting cable 200 and a return pipe 300 in the superconducting power transmission system of the present invention. However, in FIG. 1, the heat insulation pipe | tube comprised with a double metal pipe is illustrated as a cable side heat insulation pipe | tube (henceforth heat insulation pipe | tube 13) and a return side heat insulation pipe | tube (henceforth heat insulation pipe | tube 33).

まず、本発明超電導送電システムにおける分流導体は、リターン管300におけるリターン側電気絶縁層43の内側に形成される。その位置としては、リターン側電気絶縁層43の内側で断熱管33の外側の位置(図中、αの位置)であっても良いし、断熱管33の内側の位置(図中、βの位置)であっても良い。もちろん、分流導体は、αの位置とβの位置の両方にあってもかまわない。特に、αの位置に分流導体を形成すると、分流導体に異常時電流が流れて、分流導体にジュール熱が発生しても、そのジュール熱により断熱管33内に流通する冷媒131が加熱されることがない。その結果、異常時電流の発生から通常の送電に復帰するまでの時間を短くすることができる。   First, the shunt conductor in the superconducting power transmission system of the present invention is formed inside the return-side electrical insulating layer 43 in the return pipe 300. The position may be a position inside the return-side electrical insulating layer 43 and outside the heat insulating tube 33 (position α in the drawing), or a position inside the heat insulating tube 33 (position β in the drawing). ). Of course, the shunt conductor may be located at both α and β positions. In particular, when the shunt conductor is formed at the position α, even when an abnormal current flows in the shunt conductor and Joule heat is generated in the shunt conductor, the refrigerant 131 flowing in the heat insulating pipe 33 is heated by the Joule heat. There is nothing. As a result, it is possible to shorten the time from the occurrence of an abnormal current to the return to normal power transmission.

本発明超電導送電システムの一形態として、リターン管300に設ける分流導体に加えて、異常時電流の分流路となるケーブル側分流導体を、常温絶縁型超電導ケーブル200に設けても良い。そうすることで、異常時電流による超電導導体層12の破損をより確実に抑制することができる。常温絶縁型超電導ケーブル200における分流導体の代表的な構成には以下の構成を挙げることができる。   As one form of the superconducting power transmission system of the present invention, in addition to the shunt conductor provided in the return pipe 300, a cable-side shunt conductor serving as a current shunt path for an abnormal current may be provided in the room temperature insulated superconducting cable 200. By doing so, damage to the superconducting conductor layer 12 due to an abnormal current can be more reliably suppressed. Typical configurations of the shunt conductor in the room-temperature insulated superconducting cable 200 include the following configurations.

第1に、常温絶縁型超電導ケーブル200において、超電導導体層12を内側から保形するフォーマ11を金属材料とすることで、フォーマ11を異常時電流の分流路であるケーブル側分流導体とする構成を挙げることができる。ここで、本発明においては、リターン管300側に分流導体を設けることが前提であるので、フォーマ11はリターン管300の分流導体に追加して設けられる分流路である。そのため、フォーマ11に異常時電流を分流させるからといって、フォーマ11の断面積を従来よりも大きくする必要はない。つまり、フォーマ11をケーブル側分流導体とするからといって、常温絶縁型超電導ケーブル200を大径化する必要はない。   First, in the room-temperature insulated superconducting cable 200, the former 11 that retains the shape of the superconducting conductor layer 12 from the inside is made of a metal material, so that the former 11 becomes a cable-side shunt conductor that is a current shunt for abnormal current. Can be mentioned. Here, in the present invention, since it is premised that a shunt conductor is provided on the return pipe 300 side, the former 11 is a shunt path provided in addition to the shunt conductor of the return pipe 300. Therefore, it is not necessary to make the cross-sectional area of the former 11 larger than the conventional one just because the current at the time of abnormality is shunted to the former 11. That is, just because the former 11 is a cable-side shunt conductor, it is not necessary to increase the diameter of the room temperature insulated superconducting cable 200.

第2に、常温絶縁型超電導ケーブル200において、ケーブル側電気絶縁層23の内側で、断熱管13の外側の位置(図中、γの位置)に、ケーブル側分流導体を設ける構成を挙げることができる。この位置におけるケーブル側分流導体も、リターン管300の分流導体に追加して設けられる異常時電流の分流路であるため、徒に断面積を大きくする必要はない。そのため、この位置におけるケーブル側分流導体が、常温絶縁型超電導ケーブルの大径化を招くことはない。   Secondly, in the room-temperature insulated superconducting cable 200, a configuration in which a cable-side shunt conductor is provided at a position outside the heat insulating tube 13 (position γ in the figure) inside the cable-side electrical insulation layer 23 is given. it can. The cable-side shunt conductor at this position is also a shunt path for the abnormal current provided in addition to the shunt conductor of the return pipe 300, so that it is not necessary to increase the cross-sectional area. Therefore, the cable-side shunt conductor at this position does not cause an increase in the diameter of the room temperature insulated superconducting cable.

上記分流導体の構成の他、本発明超電導送電システムの一形態として、リターン管の内部にも、送電を行うための超電導導体層(リターン側超電導導体層)を形成しても良い(図中、βの位置)。その場合、リターン側超電導導体層を保形するリターン側フォーマを形成することが好ましく、そのリターン側フォーマを金属材料からなる分流導体としても良い。   In addition to the configuration of the shunt conductor, as one form of the superconducting power transmission system of the present invention, a superconducting conductor layer (return side superconducting conductor layer) for power transmission may also be formed inside the return pipe (in the figure, β position). In that case, it is preferable to form a return-side former that retains the return-side superconducting conductor layer, and the return-side former may be a shunt conductor made of a metal material.

リターン側超電導導体層を形成し、このリターン側超電導導体層と、常温絶縁型超電導ケーブルの超電導導体層(ケーブル側超電導導体層)とで送電を行うことで、両超電導導体層の厚さを薄くすることができ、交流送電時の表皮効果による不具合を低減できる。また、両超電導導体層に要求される構成層数を低減できるので、各構成層に流れる電流を概ね均流化することができる。   By forming a return-side superconducting conductor layer and transmitting power between this return-side superconducting conductor layer and the superconducting conductor layer of the room-temperature insulated superconducting cable (cable-side superconducting conductor layer), the thickness of both superconducting conductor layers is reduced. It is possible to reduce defects caused by the skin effect during AC power transmission. In addition, since the number of constituent layers required for both superconducting conductor layers can be reduced, the current flowing through each constituent layer can be approximately equalized.

また、本発明超電導送電システムの一形態として、常温絶縁型超電導ケーブルとリターン管とを同一構成としても良い。ここでいう同一構成とは、分流導体や超電導導体層を配置する位置や、厚さ等を含め、全く同じとすることである。   Further, as one form of the superconducting power transmission system of the present invention, the room temperature insulated superconducting cable and the return pipe may have the same configuration. Here, the same configuration means that they are exactly the same including the position where the shunt conductor and the superconducting conductor layer are arranged, the thickness, and the like.

上記構成によれば、異常時電流の発生時にその異常時電流を常温絶縁型超電導ケーブルとリターン管とに均等に分配することができる。その結果、ケーブル側とリターン側の両方の超電導導体層が劣化することを効果的に抑制することができる。   According to the above configuration, when an abnormal current is generated, the abnormal current can be evenly distributed between the room temperature insulated superconducting cable and the return pipe. As a result, it is possible to effectively suppress deterioration of both the cable side and the return side superconducting conductor layers.

なお、図1を参照した超電導送電システムは、構成に矛盾が生じない範囲で、常温絶縁型超電導ケーブルを低温絶縁型超電導ケーブルに置き換えることができる。   The superconducting power transmission system with reference to FIG. 1 can replace the room temperature insulated superconducting cable with a low temperature insulated superconducting cable as long as the configuration does not contradict.

本発明超電導送電システムによれば、常温絶縁型超電導ケーブルを大径化することなく異常時電流による超電導導体層の劣化を抑制することができる。   According to the superconducting power transmission system of the present invention, it is possible to suppress the deterioration of the superconducting conductor layer due to the abnormal current without increasing the diameter of the room temperature insulated superconducting cable.

本発明超電導送電システムにおける常温絶縁型超電導ケーブルとリターン管の概略横断面図である。It is a schematic cross-sectional view of a room temperature insulated superconducting cable and a return pipe in the superconducting power transmission system of the present invention. 実施形態1に示す超電導送電システムの概略図である。It is the schematic of the superconducting power transmission system shown in Embodiment 1. FIG. 実施形態1に示す超電導送電システムにおける常温絶縁型超電導ケーブルとリターン管の概略横断面図である。It is a schematic cross-sectional view of a room temperature insulated superconducting cable and a return pipe in the superconducting power transmission system shown in the first embodiment. 実施形態2に示す超電導送電システムにおける常温絶縁型超電導ケーブルとリターン管の概略横断面図である。It is a schematic cross-sectional view of a room temperature insulated superconducting cable and a return pipe in the superconducting power transmission system shown in the second embodiment. 実施形態3に示す超電導送電システムにおける常温絶縁型超電導ケーブルとリターン管の概略横断面図である。It is a schematic cross-sectional view of a room temperature insulated superconducting cable and a return pipe in the superconducting power transmission system shown in the third embodiment. 実施形態4に示す超電導送電システムにおける常温絶縁型超電導ケーブルとリターン管の概略横断面図である。It is a schematic cross-sectional view of a room temperature insulated superconducting cable and a return pipe in the superconducting power transmission system shown in the fourth embodiment. 実施形態5に示す超電導送電システムにおける低温絶縁型超電導ケーブルの概略横断面図である。FIG. 10 is a schematic cross-sectional view of a low-temperature insulated superconducting cable in the superconducting power transmission system shown in the fifth embodiment.

以下、主として、超電導ケーブルとして常温絶縁型超電導ケーブルを採用した本発明超電導送電システムの実施形態を図面に基づいて説明する。図において同一符号は、同一名称物を示す。   Hereinafter, an embodiment of a superconducting power transmission system of the present invention in which a room temperature insulated superconducting cable is mainly employed as a superconducting cable will be described with reference to the drawings. In the figure, the same reference numeral indicates the same name object.

<実施形態1>
≪全体構成≫
図2に示すように、本実施形態の超電導送電システム100は、常温絶縁型超電導ケーブル201と、リターン管301と、冷却機構400と、を備える。常温絶縁型超電導ケーブル201は、送電側端末から受電側端末に向かって伸び、送電側端末から受電側端末に電力を送電する。また、冷却機構400は、ケーブル201に備わるケーブル側超電導導体層(図2では図示せず)を冷却する冷媒を所定温度に冷却し、ケーブル201に備わるケーブル側断熱管(図2では図示せず)に送り出す機構である。そして、リターン管301は、ケーブル側断熱管の内部に流通された冷媒を冷却機構400に戻す管路である。この超電導送電システム100の最も特徴とするところは、異常時電流が発生したときに、その異常時電流を分担する分流導体と、その分流導体の絶縁を確保するためのリターン側電気絶縁層を、リターン管301に形成したことにある。以下、図3を参照し、本実施形態における常温絶縁型超電導ケーブル201とリターン管301の構成を説明する。
<Embodiment 1>
≪Overall structure≫
As shown in FIG. 2, the superconducting power transmission system 100 according to the present embodiment includes a room temperature insulated superconducting cable 201, a return pipe 301, and a cooling mechanism 400. The room-temperature insulated superconducting cable 201 extends from the power transmission side terminal toward the power reception side terminal, and transmits power from the power transmission side terminal to the power reception side terminal. In addition, the cooling mechanism 400 cools the refrigerant that cools the cable-side superconducting conductor layer (not shown in FIG. 2) provided in the cable 201 to a predetermined temperature, and the cable-side heat insulating tube (not shown in FIG. 2) provided in the cable 201. ). The return pipe 301 is a pipe line that returns the refrigerant circulated inside the cable-side heat insulation pipe to the cooling mechanism 400. The most characteristic feature of this superconducting power transmission system 100 is that when an abnormal current is generated, a shunt conductor that shares the abnormal current and a return-side electrical insulating layer for ensuring insulation of the shunt conductor are provided. The reason is that the return pipe 301 is formed. Hereinafter, with reference to FIG. 3, the configuration of the room temperature insulated superconducting cable 201 and the return pipe 301 in the present embodiment will be described.

≪常温絶縁型超電導ケーブル≫
常温絶縁型超電導ケーブル201は、低温導電部1と、その低温導電部1の外周を覆う常温被覆部2とに分けることができる。低温導電部1は、断熱管(ケーブル側断熱管)13の内部に、導体部10が収納されてなる長尺体であり、常温被覆部2は、断熱管13の外周に設けられる電気絶縁層(ケーブル側電気絶縁層)23を含む被覆層である。
≪Room-temperature insulated superconducting cable≫
The room-temperature insulated superconducting cable 201 can be divided into a low-temperature conductive part 1 and a room-temperature coated part 2 that covers the outer periphery of the low-temperature conductive part 1. The low-temperature conductive portion 1 is a long body in which the conductor portion 10 is housed inside a heat insulating tube (cable-side heat insulating tube) 13, and the room temperature coating portion 2 is an electrical insulating layer provided on the outer periphery of the heat insulating tube 13. This is a covering layer including (cable side electrical insulating layer) 23.

[導体部]
導体部10は、代表的には、中心から順にフォーマ11、超電導導体層12、保護層(図示せず)を備える。フォーマ11は、超電導導体層12の支持体に利用される部材であり、例えば、図1に示すようなパイプ状の中空体をフォーマ11として利用できる。中空体のフォーマ11は、その内部を冷媒131の流路として利用することができる。フォーマ11の形状としては、中空体の他、中実体を利用することもできる。一方、フォーマ11の材質も特に限定されない。単に超電導導体層12の支持体としてフォーマ11を利用するのであれば、フォーマ11は樹脂などの非導電性材料から構成しても良いし、フォーマ11に異常時電流の分流路としての機能も持たせるのであれば、銅やアルミニウムなどの常電導の金属材料から構成しても良い。これらのことを考慮してフォーマ11の具体的な構成を例示すると、中空体のフォーマ11としては例えば、金属材料からなるパイプを挙げることができるし、中実体のフォーマ11としては例えば、エナメルなどの絶縁被覆を備える複数の金属線を撚り合わせたものを挙げることができる。
[Conductor]
The conductor 10 typically includes a former 11, a superconducting conductor layer 12, and a protective layer (not shown) in order from the center. The former 11 is a member used as a support for the superconducting conductor layer 12. For example, a pipe-shaped hollow body as shown in FIG. 1 can be used as the former 11. The hollow former 11 can use the inside as a flow path of the refrigerant 131. As the shape of the former 11, a solid body can be used in addition to the hollow body. On the other hand, the material of the former 11 is not particularly limited. If the former 11 is simply used as a support for the superconducting conductor layer 12, the former 11 may be made of a non-conductive material such as a resin, and the former 11 also has a function as a current shunt path for abnormal current. If it can be used, it may be made of a normal conducting metal material such as copper or aluminum. Taking the above into consideration, the concrete configuration of the former 11 is exemplified. For example, the hollow body former 11 may be a pipe made of a metal material, and the solid former 11 may be enamel, for example. The thing which twisted together the some metal wire provided with this insulation coating can be mentioned.

次に、超電導導体層12としては、例えば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、例えば、Bi2223系超電導テープ線(Ag−MnやAgなどの安定化金属中に酸化物超電導体からなるフィラメントが配されたシース線)、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど。金属基板に酸化物超電導相が成膜された積層線材)が挙げられる。超電導導体層12は、上記テープ状線材を螺旋状に巻回して形成した単層構造又は多層構造が挙げられる。   Next, as the superconducting conductor layer 12, for example, a tape-like wire material including an oxide superconductor can be suitably used. Examples of the tape-shaped wire include Bi2223 superconducting tape wire (sheath wire in which a filament made of an oxide superconductor is arranged in a stabilizing metal such as Ag-Mn and Ag), RE123 thin film wire (RE: rare earth element, For example, Y, Ho, Nd, Sm, Gd, etc. (Laminated wire material in which an oxide superconducting phase is formed on a metal substrate). The superconducting conductor layer 12 includes a single layer structure or a multilayer structure formed by spirally winding the tape-shaped wire.

図示しない保護層は、上記超電導導体層12を保護し、断熱管13と超電導導体層12との間を絶縁するためのものであり、クラフト紙などを巻回することで形成できる。   A protective layer (not shown) protects the superconducting conductor layer 12 and insulates between the heat insulating tube 13 and the superconducting conductor layer 12, and can be formed by winding kraft paper or the like.

[断熱管]
上記導体部10を収納する断熱管(ケーブル側断熱管)13は、導体部10を内部に収納する内管14と、内管14を内部に収納する外管15と、を備える。内管14は、その内部に、超電導導体層12を超電導状態に維持するための冷媒131(代表的には、液体窒素や液体ヘリウム、ヘリウムガスなど)が充填され、冷媒流路として機能する。この内管14と、内管14の外周に設けられる外管15とで断熱管13を構成することで、外部からの侵入熱などにより冷媒131の温度が上昇することを抑制する。内管14と外管15との間は真空引きされ、それによって真空断熱層が形成されている。その他、内管14と外管15との間にスーパーインシュレーションといった断熱材や、内管14と外管15とを離隔させるスペーサを配置すると、断熱管13の断熱性を高められる。なお、本実施形態では、断熱管として二重管構造の断熱管を利用しているが、三重管以上の断熱管を利用しても良い。
[Insulated pipe]
The heat insulating tube (cable-side heat insulating tube) 13 that stores the conductor portion 10 includes an inner tube 14 that stores the conductor portion 10 therein, and an outer tube 15 that stores the inner tube 14 therein. The inner tube 14 is filled with a refrigerant 131 (typically liquid nitrogen, liquid helium, helium gas, etc.) for maintaining the superconducting conductor layer 12 in a superconducting state, and functions as a refrigerant flow path. By forming the heat insulating tube 13 with the inner tube 14 and the outer tube 15 provided on the outer periphery of the inner tube 14, it is possible to suppress the temperature of the refrigerant 131 from rising due to heat entering from the outside. A vacuum is drawn between the inner tube 14 and the outer tube 15 to form a vacuum heat insulating layer. In addition, if a heat insulating material such as super insulation or a spacer that separates the inner tube 14 and the outer tube 15 is disposed between the inner tube 14 and the outer tube 15, the heat insulating property of the heat insulating tube 13 can be improved. In addition, in this embodiment, although the heat insulation pipe | tube of a double pipe structure is utilized as a heat insulation pipe | tube, you may utilize the heat insulation pipe | tube more than a triple pipe.

内管14及び外管15の構成材料は、ステンレス鋼、アルミニウムやその合金などの金属が挙げられる。上記金属は、耐食性に優れることから、種々の流体の保持や輸送を行う断熱管13の構成材料に適する。両管14,15の材質を異ならせてもよい。また、両管14,15はいずれも、その全長に亘ってコルゲート加工が施されたコルゲート管としたり、アルミニウムやその合金などの比較的柔らかく可撓性を有する材質からなるストレート管としたりすることで屈曲可能となる。このように可撓性を有する断熱管13を採用することで、搬送時や布設時に超電導ケーブル201を曲げ易くすることができる。さらに、コルゲート管で断熱管13を形成することで、断熱管13が冷媒131に冷却されて熱収縮する際に変形することで熱応力を緩和できる。   Examples of the constituent material of the inner tube 14 and the outer tube 15 include metals such as stainless steel, aluminum, and alloys thereof. Since the metal is excellent in corrosion resistance, it is suitable as a constituent material of the heat insulating tube 13 for holding and transporting various fluids. The materials of both pipes 14 and 15 may be different. Both pipes 14 and 15 should be corrugated pipes that have been corrugated over their entire length, or straight pipes made of a relatively soft and flexible material such as aluminum or its alloys. Can be bent. By adopting the heat insulating tube 13 having flexibility in this way, the superconducting cable 201 can be easily bent at the time of transportation or laying. Furthermore, by forming the heat insulating tube 13 with a corrugated tube, the heat stress can be relieved by deformation when the heat insulating tube 13 is cooled by the refrigerant 131 and thermally contracts.

[電気絶縁層]
一方、常温被覆部2を構成する電気絶縁層(ケーブル側電気絶縁層)23は、超電導ケーブル201を外部環境から電気的に絶縁する層である。この電気絶縁層23には、常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに利用される架橋ポリエチレン(XLPE)などを利用できる。架橋ポリエチレンなどの絶縁性樹脂であれば、断熱管13の外周に絶縁性樹脂を押し出すだけで電気絶縁層23を容易に形成できる。その他、電気絶縁層23には、OFケーブルにおける絶縁層と同様の構成を採用することができる。例えば、断熱管13の外周にテープ状のクラフト紙や半合成紙を多層に巻回し、その絶縁層に合成油などの絶縁油を含浸させることでケーブル側電気絶縁層23を形成することができる。
[Electrical insulation layer]
On the other hand, the electrical insulation layer (cable-side electrical insulation layer) 23 constituting the room temperature coating portion 2 is a layer that electrically insulates the superconducting cable 201 from the external environment. The electrical insulation layer 23 can be made of a material having an excellent electrical insulation strength that has been used in ordinary conductive cables, typically, cross-linked polyethylene (XLPE) used for CV cables. In the case of an insulating resin such as cross-linked polyethylene, the electrical insulating layer 23 can be easily formed simply by extruding the insulating resin to the outer periphery of the heat insulating tube 13. In addition, the electrical insulating layer 23 can employ the same configuration as the insulating layer in the OF cable. For example, the cable-side electrical insulating layer 23 can be formed by winding tape-like kraft paper or semi-synthetic paper around the outer periphery of the heat insulating tube 13 in a multilayer manner and impregnating the insulating layer with insulating oil such as synthetic oil. .

[その他の構成]
電気絶縁層23の外周には、代表的には、銅やアルミニウムなどの常電導材料から構成された外側遮蔽層(図示せず)が設けられる。外側遮蔽層は、絶縁層23の外側の電位を与えるもので、従来の電力ケーブルと同様に常電導材料を利用できる。そのため、常温絶縁型超電導ケーブル201は製造性に優れる。また、外側遮蔽層の外周には、外側遮蔽層を保護すると共に、所定の絶縁特性を有する防食層(図示せず)が設けられている。
[Other configurations]
An outer shielding layer (not shown) made of a normal conducting material such as copper or aluminum is typically provided on the outer periphery of the electrical insulating layer 23. The outer shielding layer provides a potential outside the insulating layer 23, and a normal conductive material can be used as in the case of a conventional power cable. Therefore, the room-temperature insulated superconducting cable 201 is excellent in manufacturability. Further, on the outer periphery of the outer shielding layer, an anticorrosion layer (not shown) having a predetermined insulating characteristic is provided while protecting the outer shielding layer.

≪リターン管≫
リターン管301は、冷媒が流通される断熱管(リターン側断熱管)33と、その外周に順次形成される分流導体40と、電気絶縁層(リターン側電気絶縁層)43とを備える。
≪Return pipe≫
The return pipe 301 includes a heat insulating pipe (return side heat insulating pipe) 33 through which the refrigerant flows, a shunt conductor 40 sequentially formed on the outer periphery thereof, and an electric insulating layer (return side electric insulating layer) 43.

[断熱管]
断熱管(リターン側断熱管)33は、常温絶縁型超電導ケーブル201の断熱管13と同様に、内管34と、その外周を覆う外管35とを備える。これら内管34と外管35にはそれぞれ、断熱管13の内管14と外管15と同じ構成を採用できる。なお、リターン管301の断熱管として、三重管以上の多重構造の断熱管を利用しても良い。
[Insulated pipe]
The heat insulation pipe (return side heat insulation pipe) 33 includes an inner pipe 34 and an outer pipe 35 covering the outer periphery thereof, similarly to the heat insulation pipe 13 of the room temperature insulated superconducting cable 201. The inner tube 34 and the outer tube 35 may have the same configuration as the inner tube 14 and the outer tube 15 of the heat insulating tube 13, respectively. In addition, as the heat insulation pipe of the return pipe 301, a heat insulation pipe having a multiple structure more than a triple pipe may be used.

[分流導体]
分流導体40は、異常時電流が生じたときに、その異常時電流を分担する常電導導体である。分流導体40は、異常時電流を分担する役割を担う観点から、高導電性の金属材料、つまり電気抵抗値が低い銅やアルミニウム、銀などの金属材料から構成される。特に、銅は、銀に次ぐ高い導電率を有し、銀よりも格段に安価である点で、分流導体40として好適である。
[Branch conductor]
The shunt conductor 40 is a normal conducting conductor that shares an abnormal current when an abnormal current is generated. The shunt conductor 40 is made of a highly conductive metal material, that is, a metal material such as copper, aluminum, or silver having a low electric resistance value, from the viewpoint of sharing the current at the time of abnormality. In particular, copper is suitable as the shunt conductor 40 in that it has the second highest conductivity after silver and is much cheaper than silver.

上記分流導体40は、銅撚り線で構成されるセグメント導体など既存の常電導ケーブルの導体に準じた部材を断熱管33上に巻回することで形成することができる。   The said shunt conductor 40 can be formed by winding the member according to the conductor of the existing normal conducting cable, such as a segment conductor comprised with a copper strand wire, on the heat insulation pipe | tube 33. As shown in FIG.

上記分流導体40の断面積は、超電導送電システム100の運用上、どの程度の異常時電流が発生し得るか、その発生した異常時電流を分流導体40にどの程度負担させるかによって適宜選択すれば良い。例えば、上述した常温絶縁型超電導ケーブル201のフォーマ11を非導電性材料で構成する場合、異常時電流の大部分をリターン管301の分流導体40に流せるように分流導体40の断面積を決定し、分流導体40と超電導導体層12とで異常時電流を分担させることで、超電導導体層12を保護する。また、当該フォーマ11を導電性材料とし、異常時電流をリターン管301の分流導体40とケーブル201超電導導体層12に分担させるだけでなく、ケーブル201のフォーマ11にも分担させる構成であれば、分流導体40に分担させる異常時電流を流せるように分流導体40の断面積を決定すれば良い。また、銅素線を素線絶縁線とすることで交流抵抗を低減した分流導体とすることも有効である。   The cross-sectional area of the shunt conductor 40 may be appropriately selected depending on how much abnormal current can be generated in the operation of the superconducting power transmission system 100 and how much the abnormal current generated is borne by the shunt conductor 40. good. For example, when the former 11 of the room temperature insulation type superconducting cable 201 is made of a non-conductive material, the cross-sectional area of the shunt conductor 40 is determined so that most of the abnormal current can flow through the shunt conductor 40 of the return pipe 301. The superconducting conductor layer 12 is protected by sharing the abnormal current between the shunt conductor 40 and the superconducting conductor layer 12. Further, if the former 11 is made of a conductive material and the abnormal current is shared not only between the shunt conductor 40 of the return pipe 301 and the cable 201 superconducting conductor layer 12, but also to the former 11 of the cable 201, What is necessary is just to determine the cross-sectional area of the shunting conductor 40 so that the electric current at the time of abnormality shared by the shunting conductor 40 can be sent. Moreover, it is also effective to make a shunt conductor with reduced AC resistance by using a copper insulated wire as the insulated wire.

≪超電導送電システムの効果≫
実施形態1の超電導送電システム100の構成であれば、異常時電流が発生したときに、その異常時電流をリターン管301の分流導体40に分担させることができる。そのため、常温絶縁型超電導ケーブル201の超電導導体層12に過剰な電流が流れて超電導導体層12が劣化することを回避できる。また、異常時電流を分担する分流導体40が、冷媒131と隔絶された位置に設けられていることから、分流導体40で生じるジュール熱により冷媒131が熱せられることがない。そのため、冷媒131が熱せられてガス化することを抑制できるし、冷媒131を運用可能な温度まで冷却するための時間を短くすることもできるので、異常時電流の発生から短時間で超電導ケーブル線路を通常運転に復帰させることができる。
≪Effect of superconducting power transmission system≫
With the configuration of the superconducting power transmission system 100 according to the first embodiment, when an abnormal current is generated, the abnormal current can be shared by the shunt conductor 40 of the return pipe 301. Therefore, it can be avoided that excessive current flows through the superconducting conductor layer 12 of the room temperature insulated superconducting cable 201 and the superconducting conductor layer 12 is deteriorated. In addition, since the shunt conductor 40 that shares the abnormal current is provided at a position isolated from the refrigerant 131, the refrigerant 131 is not heated by Joule heat generated in the shunt conductor 40. Therefore, the refrigerant 131 can be prevented from being heated and gasified, and the time for cooling the refrigerant 131 to an operable temperature can be shortened. Can be returned to normal operation.

また、実施形態1の超電導送電システム100では、異常時電流の分流路となる分流導体40をリターン管301に設けたことにより、常温絶縁型超電導ケーブル201を大径化しなくて済む。そのため、常温絶縁型超電導ケーブル201の機械的特性を損なうこともないので、当該ケーブル201を現場に布設し易く、超電導送電システム100を容易に構築することができる。また、常温絶縁型超電導ケーブル201の大径化を避けることで、常温絶縁型超電導ケーブル201の輸送長が低下することを抑制できる。   Further, in the superconducting power transmission system 100 of the first embodiment, the return conductor 301 is provided with the shunt conductor 40 serving as a shunt path for the abnormal current, so that the room temperature insulated superconducting cable 201 does not have to be enlarged. Therefore, since the mechanical characteristics of the room temperature insulated superconducting cable 201 are not impaired, the cable 201 can be easily laid on the site, and the superconducting power transmission system 100 can be easily constructed. Further, by avoiding an increase in the diameter of the room temperature insulated superconducting cable 201, it is possible to suppress a decrease in the transport length of the room temperature insulated superconducting cable 201.

<実施形態2>
実施形態2では、常温絶縁型超電導ケーブルの側にも分流導体を形成した超電導送電システムを説明する。以下、図4に基づいて実施形態1と相違点を中心に説明する。
<Embodiment 2>
In the second embodiment, a superconducting power transmission system in which a shunt conductor is also formed on the side of a room temperature insulated superconducting cable will be described. Hereinafter, the difference from the first embodiment will be mainly described based on FIG.

図4は、実施形態2の超電導送電システムにおける常温絶縁型超電導ケーブル202とリターン管302の概略横断面図である。この実施形態2における常温絶縁型超電導ケーブル202は、断熱管(ケーブル側断熱管)13と電気絶縁層(ケーブル側電気絶縁層)23との間に分流導体(ケーブル側分流導体)20を備える。一方、リターン管302は、実施形態1のリターン管301と同一の構成を備える。   FIG. 4 is a schematic cross-sectional view of the room temperature insulated superconducting cable 202 and the return pipe 302 in the superconducting power transmission system of the second embodiment. The room-temperature insulated superconducting cable 202 according to the second embodiment includes a shunt conductor (cable-side shunt conductor) 20 between a heat insulation pipe (cable-side heat insulation pipe) 13 and an electrical insulation layer (cable-side electrical insulation layer) 23. On the other hand, the return pipe 302 has the same configuration as the return pipe 301 of the first embodiment.

本実施形態の構成によれば、異常時電流を常温絶縁型超電導ケーブル202の分流導体20とリターン管302の分流導体40とで分担することができる。そのため、常温絶縁型超電導ケーブル202の超電導導体層12に過大な異常時電流が流れることをより確実に抑制することができる。   According to the configuration of the present embodiment, the abnormal current can be shared by the shunt conductor 20 of the room-temperature insulated superconducting cable 202 and the shunt conductor 40 of the return pipe 302. Therefore, it is possible to more reliably suppress an excessive abnormal current from flowing through the superconducting conductor layer 12 of the room-temperature insulated superconducting cable 202.

<実施形態3>
実施形態3では、実施形態2と同様に常温絶縁型超電導ケーブルの側に分流導体を形成し、さらにその分流導体を内周側から保持するパイプ状構造物を設けた超電導送電システムを説明する。以下、図5に基づいて実施形態2との相違点を中心に説明する。
<Embodiment 3>
In the third embodiment, a superconducting power transmission system in which a shunt conductor is formed on the room temperature insulated superconducting cable side as in the second embodiment and a pipe-like structure that holds the shunt conductor from the inner peripheral side is provided. Hereinafter, based on FIG. 5, it demonstrates centering on difference with Embodiment 2. FIG.

図5は、実施形態3の超電導送電システムにおける常温絶縁型超電導ケーブル203とリターン管303の概略横断面図である。この実施形態3における常温絶縁型超電導ケーブル203は、断熱管13を内部に収納するパイプ状構造物20Pを備え、そのパイプ状構造物20Pの外周に、分流導体20と電気絶縁層23が形成されている。一方、リターン管303は、実施形態2のリターン管302と同一の構成を備える。   FIG. 5 is a schematic cross-sectional view of the room-temperature insulated superconducting cable 203 and the return pipe 303 in the superconducting power transmission system of the third embodiment. The room-temperature insulated superconducting cable 203 according to the third embodiment includes a pipe-like structure 20P that houses the heat-insulating tube 13 therein, and a shunt conductor 20 and an electrical insulating layer 23 are formed on the outer periphery of the pipe-like structure 20P. ing. On the other hand, the return pipe 303 has the same configuration as the return pipe 302 of the second embodiment.

上記パイプ状構造物20Pは、その外周面に形成される分流導体20やケーブル側電気絶縁層23を保形する部材であり、当該パイプ状構造物20Pに要求される最も重要な特性は強度である。また、超電導ケーブル203に所定の機械的特性を持たせるために、パイプ状構造物20Pも所定の可撓性を有することが求められる。これらの点を考慮して、パイプ状構造物20Pとしては、アルミニウムのストレートパイプや、SUSのコルゲートパイプなどを利用することができる。その他、パイプ状構造物20Pは、樹脂などの非導電材料でできていても良い。ここで、このパイプ状構造物20Pが導電材料であれば、それ自身も分流導体20の機能の一部を分担できる。   The pipe-shaped structure 20P is a member that retains the shunt conductor 20 and the cable-side electrical insulation layer 23 formed on the outer peripheral surface thereof, and the most important characteristic required for the pipe-shaped structure 20P is strength. is there. Further, in order to give the superconducting cable 203 predetermined mechanical characteristics, the pipe-like structure 20P is also required to have predetermined flexibility. Considering these points, as the pipe-like structure 20P, an aluminum straight pipe, a SUS corrugated pipe, or the like can be used. In addition, the pipe-like structure 20P may be made of a non-conductive material such as resin. Here, if the pipe-like structure 20P is a conductive material, it can share a part of the function of the shunt conductor 20 itself.

上述したようにパイプ状構造物20Pと断熱管13との間には所定の隙間が形成されており、そうすることでパイプ状構造物20Pを含む常温被覆部2と、断熱管13と導体部10からなる低温導電部1とを個別に作製することができる。このような構成によれば、布設後の使用に伴い低温導電部1が劣化した場合、低温導電部1のみを交換することができる。   As described above, a predetermined gap is formed between the pipe-like structure 20P and the heat insulating tube 13, and by doing so, the room temperature covering portion 2 including the pipe-like structure 20P, the heat insulating tube 13 and the conductor portion. Thus, the low-temperature conductive portion 1 made of 10 can be individually manufactured. According to such a structure, when the low temperature conductive part 1 deteriorates with use after laying, only the low temperature conductive part 1 can be replaced.

<変形実施形態3−1>
図5を参照する実施形態3の変形実施形態として、常温絶縁型超電導ケーブル203における分流導体20の位置を断熱管13の外周面上に変更しても良い。その場合、パイプ状構造物20Pの外周面にケーブル側電気絶縁層23が形成されることになる。断熱管13に形成される分流導体20の外周面と、パイプ状構造物20Pの内周面との間には隙間が形成される。
<Modified Embodiment 3-1>
As a modified embodiment of the third embodiment with reference to FIG. 5, the position of the shunt conductor 20 in the room temperature insulated superconducting cable 203 may be changed on the outer peripheral surface of the heat insulating tube 13. In that case, the cable-side electrical insulation layer 23 is formed on the outer peripheral surface of the pipe-like structure 20P. A gap is formed between the outer peripheral surface of the shunt conductor 20 formed in the heat insulating tube 13 and the inner peripheral surface of the pipe-like structure 20P.

この変形実施形態3−1の構成によっても、実施形態3の構成と同様に、布設後の使用に伴い低温導電部1が劣化した場合、低温導電部1のみを交換することができる。   Even in the configuration of the modified embodiment 3-1, when the low-temperature conductive portion 1 deteriorates with use after laying, only the low-temperature conductive portion 1 can be replaced as in the configuration of the third embodiment.

<変形実施形態3−2>
図5を参照して説明した実施形態3および変形実施形態3−1において、常温絶縁型超電導ケーブル203における断熱管13よりも外側の構成(断熱管13を含む)と、リターン管303における断熱管33よりも外側の構成(断熱管33を含む)とを同一にしても良い。
<Modified Embodiment 3-2>
In the third embodiment and the modified embodiment 3-1 described with reference to FIG. 5, the configuration outside the heat insulating pipe 13 in the room temperature insulated superconducting cable 203 (including the heat insulating pipe 13), and the heat insulating pipe in the return pipe 303. The configuration outside the 33 (including the heat insulating pipe 33) may be the same.

この変形実施形態3−2の構成によれば、超電導ケーブル203とリターン管303とで共通の断熱管を利用することができるので、製造性の点で優れる。   According to the configuration of the modified embodiment 3-2, a common heat insulating pipe can be used for the superconducting cable 203 and the return pipe 303, which is excellent in terms of manufacturability.

<実施形態4>
実施形態4では、実施形態2と同様に常温絶縁型超電導ケーブルの側に分流導体を形成し、さらにリターン管にも超電導導体層を有する導体部を形成した超電導送電システムを説明する。以下、図6に基づいて実施形態2との相違点を中心に説明する。
<Embodiment 4>
In the fourth embodiment, a superconducting power transmission system will be described in which a shunt conductor is formed on the room temperature insulated superconducting cable side as in the second embodiment, and a conductor portion having a superconducting conductor layer is formed on the return pipe. Hereinafter, based on FIG. 6, it demonstrates centering on difference with Embodiment 2. FIG.

図6は、実施形態4の超電導送電システムにおける常温絶縁型超電導ケーブル204とリターン管304の概略横断面図である。この図6に示すように、この実施形態4の常温絶縁型超電導ケーブル204は、実施形態2における常温絶縁型超電導ケーブル202と同一の構成を有する。一方、リターン管304は、断熱管33の内部に導体部50を備える点で、実施形態2におけるリターン管302と異なる。この導体部50は、中空状のフォーマ(リターン側フォーマ)51と、そのフォーマ51の外周に形成される超電導導体層(リターン側超電導導体層)52とを備える。これらフォーマ51と超電導導体層52は、超電導ケーブル204側のフォーマ11と超電導導体層12と同一の構成となっている。   FIG. 6 is a schematic cross-sectional view of the room-temperature insulated superconducting cable 204 and the return pipe 304 in the superconducting power transmission system of the fourth embodiment. As shown in FIG. 6, the room-temperature insulated superconducting cable 204 of the fourth embodiment has the same configuration as the room-temperature insulated superconducting cable 202 of the second embodiment. On the other hand, the return pipe 304 is different from the return pipe 302 in the second embodiment in that the conductor portion 50 is provided inside the heat insulating pipe 33. The conductor part 50 includes a hollow former (return side former) 51 and a superconducting conductor layer (return side superconducting conductor layer) 52 formed on the outer periphery of the former 51. The former 51 and the superconducting conductor layer 52 have the same configuration as the former 11 and the superconducting conductor layer 12 on the superconducting cable 204 side.

本実施形態の構成によれば、常温絶縁型超電導ケーブル204とリターン管304の両方で送電を行うことができる。つまり、常温絶縁型超電導ケーブル204に形成する超電導導体層12とリターン管304に形成する超電導導体層52の構成層数を低減することができ、電流の均流化や、交流送電における交流損失の低減を図ることができる。   According to the configuration of the present embodiment, power can be transmitted by both the room temperature insulated superconducting cable 204 and the return pipe 304. That is, it is possible to reduce the number of constituent layers of the superconducting conductor layer 12 formed on the room-temperature insulated superconducting cable 204 and the superconducting conductor layer 52 formed on the return pipe 304, so that current equalization and AC loss in AC transmission can be reduced. Reduction can be achieved.

また、本実施形態の構成によれば、異常時電流の発生時にその異常時電流を常温絶縁型超電導ケーブル204とリターン管304とに均等に分配することができる。その結果、ケーブル側の超電導導体層12、およびリターン側の超電導導体層52の劣化を効果的に抑制することができる。   Further, according to the configuration of the present embodiment, when an abnormal current is generated, the abnormal current can be evenly distributed to the room temperature insulated superconducting cable 204 and the return pipe 304. As a result, deterioration of the superconducting conductor layer 12 on the cable side and the superconducting conductor layer 52 on the return side can be effectively suppressed.

<実施形態5>
以上説明した実施形態1〜4は、超電導ケーブルとして常温絶縁型超電導ケーブルを採用したが、超電導ケーブルとして低温絶縁型超電導ケーブルを採用しても良い。以下、図7を参照して、低温絶縁型超電導ケーブル209の構成のみを説明する。なお、リターン管については、上述した実施形態1〜4に例示するものを適宜選択できる。
<Embodiment 5>
In Embodiments 1 to 4 described above, a room temperature insulated superconducting cable is employed as the superconducting cable, but a low temperature insulated superconducting cable may be employed as the superconducting cable. Hereinafter, only the configuration of the low-temperature insulated superconducting cable 209 will be described with reference to FIG. In addition, about a return pipe | tube, what is illustrated to Embodiment 1-4 mentioned above can be selected suitably.

図7に示す低温絶縁型超電導ケーブル209は、ケーブルコア60と、そのケーブルコア60を内部に収納する断熱管13と、で形成される。   A low-temperature insulated superconducting cable 209 shown in FIG. 7 is formed of a cable core 60 and a heat insulating tube 13 that houses the cable core 60 therein.

[ケーブルコア]
ケーブルコア60は、フォーマ11の上に順次、超電導導体層12、電気絶縁層16、外側超電導導体層(または外側遮蔽層)17、保護層18を設けた構成を備える。これら構成部材11〜18のうち、電気絶縁層16は、実施形態1〜4に示す常温絶縁型超電導ケーブル201〜204に備わるケーブル側電気絶縁層23と同様の役割を担う層である。但し、ケーブル側電気絶縁層23と異なり、電気絶縁層16は、後述する断熱管13内で超電導導体層12と共に極低温に冷却される。
[Cable core]
The cable core 60 has a configuration in which a superconducting conductor layer 12, an electrical insulating layer 16, an outer superconducting conductor layer (or outer shielding layer) 17, and a protective layer 18 are sequentially provided on the former 11. Among these constituent members 11 to 18, the electrical insulating layer 16 is a layer that plays the same role as the cable-side electrical insulating layer 23 provided in the room temperature insulated superconducting cables 201 to 204 shown in the first to fourth embodiments. However, unlike the cable-side electrical insulation layer 23, the electrical insulation layer 16 is cooled to a cryogenic temperature together with the superconducting conductor layer 12 in a heat insulating tube 13 described later.

ケーブルコア60に備わる外側超電導導体層(または外側遮蔽層)17を超電導導体から構成した場合、交流ケーブルでは電磁シールドとして機能し、直流ケーブルでは帰路電流用導体として機能する。また、保護層18は、所定の絶縁特性を有し、外側超電導導体層(または外側遮蔽層)17を機械的に保護する。   When the outer superconducting conductor layer (or outer shielding layer) 17 provided in the cable core 60 is composed of a superconducting conductor, the AC cable functions as an electromagnetic shield, and the DC cable functions as a return current conductor. Further, the protective layer 18 has a predetermined insulating characteristic and mechanically protects the outer superconducting conductor layer (or outer shielding layer) 17.

[断熱管]
低温絶縁型超電導ケーブル209における断熱管13は、常温絶縁型超電導ケーブルにおける断熱管と同様に、内管14と外管15とを備える。外管15の外周には、所定の絶縁特性を有し、外管15を衝撃や腐食から防護する防食層(図示せず)を形成することが好ましい。
[Insulated pipe]
The heat insulating tube 13 in the low-temperature insulated superconducting cable 209 includes an inner tube 14 and an outer tube 15, similarly to the heat insulating tube in the room temperature insulated superconducting cable. It is preferable to form an anticorrosion layer (not shown) having a predetermined insulating property and protecting the outer tube 15 from impact and corrosion on the outer periphery of the outer tube 15.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更することが可能である。例えば、実施形態では説明を省略したが、常温側電気絶縁層23の内周部と外周部の各々に内部半導電層と外部半導電層を形成するのが一般的である。その他、上述した実施形態では交流送電用の超電導送電システムを説明したが、直流送電に利用しても良い。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, although the description is omitted in the embodiment, it is general to form an internal semiconductive layer and an external semiconductive layer on each of the inner peripheral portion and the outer peripheral portion of the room temperature side electric insulating layer 23. In addition, although the superconducting power transmission system for AC power transmission has been described in the above-described embodiment, it may be used for DC power transmission.

本発明超電導送電システムは、大電流送電網の形成に好適に利用することができる。   The superconducting power transmission system of the present invention can be suitably used for forming a large current power transmission network.

100 超電導送電システム
200〜204 常温絶縁型超電導ケーブル
209 低温絶縁型超電導ケーブル
1 低温導電部
10 導体部 11 フォーマ 12 超電導導体層
13 断熱管(ケーブル側断熱管)
14 内管 15 外管 131 冷媒
2 常温被覆部
20 分流導体 20P パイプ状構造物
23 電気絶縁層(ケーブル側電気絶縁層)
60 ケーブルコア
16 電気絶縁層(ケーブル側電気絶縁層) 17 外側超電導導体層
18 保護層
300〜304 リターン管
33 断熱管(リターン側断熱管)
34 内管 35 外管
40 分流導体
43 電気絶縁層(リターン側電気絶縁層)
50 導体部
51 フォーマ(リターン側フォーマ)
52 超電導導体層(リターン側超電導導体層)
400 冷却機構
DESCRIPTION OF SYMBOLS 100 Superconducting power transmission system 200-204 Room temperature insulation type superconducting cable 209 Low temperature insulation type superconducting cable 1 Low temperature conductive part 10 Conductor part 11 Former 12 Superconducting conductor layer 13 Heat insulation pipe (cable side heat insulation pipe)
14 Inner pipe 15 Outer pipe 131 Refrigerant 2 Room temperature coating 20 Shunt conductor 20P Pipe-like structure 23 Electrical insulation layer (cable side electrical insulation layer)
60 Cable Core 16 Electrical Insulation Layer (Cable Side Electrical Insulation Layer) 17 Outer Superconducting Conductor Layer 18 Protective Layer 300-304 Return Pipe 33 Insulation Pipe (Return Side Insulation Pipe)
34 Inner pipe 35 Outer pipe 40 Shunt conductor 43 Electrical insulation layer (return-side electrical insulation layer)
50 Conductor part 51 Former (return side former)
52 Superconducting conductor layer (return superconducting conductor layer)
400 Cooling mechanism

Claims (8)

超電導導体層、およびこの超電導導体層を内部に収納するケーブル側断熱管を備える超電導ケーブルと、
冷媒を所定温度に冷却し、その冷却した冷媒を前記ケーブル側断熱管内に送り出す冷却機構と、
前記ケーブル側断熱管の内部に流通された冷媒を、前記冷却機構に戻すリターン管と、を備える超電導送電システムであって、
前記リターン管は、
前記冷却機構に戻る冷媒が流通されるリターン側断熱管と、
そのリターン側断熱管の外周を取り囲むリターン側電気絶縁層と、
前記リターン側電気絶縁層の内側に設けられ、異常時電流を分担する分流導体と、
を備えることを特徴とする超電導送電システム。
A superconducting cable provided with a superconducting conductor layer and a cable-side heat insulating tube for accommodating the superconducting conductor layer therein;
A cooling mechanism that cools the refrigerant to a predetermined temperature and sends the cooled refrigerant into the cable-side heat insulating pipe;
A superconducting power transmission system comprising a return pipe that returns the refrigerant circulated inside the cable-side heat insulation pipe to the cooling mechanism,
The return pipe is
A return-side heat insulating pipe through which the refrigerant returning to the cooling mechanism is circulated;
A return-side electrical insulation layer surrounding the outer periphery of the return-side heat insulation pipe;
A shunt conductor that is provided inside the return-side electrical insulating layer and shares current during an abnormality;
A superconducting power transmission system comprising:
前記超電導ケーブルは、ケーブル側断熱管の外周を取り囲むケーブル側電気絶縁層を備える常温絶縁型超電導ケーブルであることを特徴とする請求項1に記載の超電導送電システム。   2. The superconducting power transmission system according to claim 1, wherein the superconducting cable is a room-temperature insulated superconducting cable including a cable-side electrical insulating layer surrounding an outer periphery of a cable-side heat insulating tube. 前記分流導体は、前記リターン側断熱管とリターン側電気絶縁層との間に配置されていることを特徴とする請求項1または2に記載の超電導送電システム。   3. The superconducting power transmission system according to claim 1, wherein the shunt conductor is disposed between the return-side heat insulation pipe and the return-side electrical insulation layer. 前記分流導体は、前記リターン側断熱管の内側に設けられていることを特徴とする請求項1〜3のいずれか一項に記載の超電導送電システム。   The superconducting power transmission system according to any one of claims 1 to 3, wherein the shunt conductor is provided inside the return-side heat insulating tube. 前記常温絶縁型超電導ケーブルは、前記超電導導体層を内側から保形するフォーマを備え、
当該フォーマは金属材料で構成され、異常時電流を分担するケーブル側分流導体として用いられることを特徴とする請求項2〜4のいずれか一項に記載の超電導送電システム。
The room temperature insulated superconducting cable comprises a former that retains the superconducting conductor layer from the inside,
The superconducting power transmission system according to any one of claims 2 to 4, wherein the former is made of a metal material and is used as a cable-side shunt conductor that shares an abnormal current.
前記ケーブル側電気絶縁層とケーブル側断熱管との間に配置され、異常時電流を分担するケーブル側分流導体を備えることを特徴とする請求項2〜5のいずれか一項に記載の超電導送電システム。   The superconducting power transmission according to any one of claims 2 to 5, further comprising a cable-side shunt conductor that is disposed between the cable-side electrical insulating layer and the cable-side heat insulating pipe and shares an abnormal current. system. 前記リターン管の内部にも、送電を行うためのリターン側超電導導体層を形成したことを特徴とする請求項1〜6のいずれか一項に記載の超電導送電システム。   The superconducting power transmission system according to any one of claims 1 to 6, wherein a return-side superconducting conductor layer for performing power transmission is also formed inside the return pipe. 前記超電導ケーブルとリターン管とを同一構成としたことを特徴とする請求項7に記載の超電導送電システム。   The superconducting power transmission system according to claim 7, wherein the superconducting cable and the return pipe have the same configuration.
JP2011033152A 2011-02-18 2011-02-18 Superconducting power transmission system Expired - Fee Related JP5252324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033152A JP5252324B2 (en) 2011-02-18 2011-02-18 Superconducting power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033152A JP5252324B2 (en) 2011-02-18 2011-02-18 Superconducting power transmission system

Publications (2)

Publication Number Publication Date
JP2012174405A true JP2012174405A (en) 2012-09-10
JP5252324B2 JP5252324B2 (en) 2013-07-31

Family

ID=46977162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033152A Expired - Fee Related JP5252324B2 (en) 2011-02-18 2011-02-18 Superconducting power transmission system

Country Status (1)

Country Link
JP (1) JP5252324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132765A1 (en) * 2013-02-28 2014-09-04 住友電気工業株式会社 Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
JP2021110477A (en) * 2020-01-07 2021-08-02 株式会社ジェイテクト Thermoacoustic device
WO2022077568A1 (en) * 2020-10-14 2022-04-21 深圳供电局有限公司 Single-ended downstream refrigerating system for superconducting cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPH0432108A (en) * 1990-05-24 1992-02-04 Sumitomo Electric Ind Ltd Superconductive cable
JP2002352645A (en) * 2001-05-29 2002-12-06 Furukawa Electric Co Ltd:The Superconducting cable
JP2003297161A (en) * 2002-04-05 2003-10-17 Sumitomo Electric Ind Ltd Cooling method of superconductive cable line
JP2006012775A (en) * 2004-05-21 2006-01-12 Sumitomo Electric Ind Ltd Superconductive cable
JP2010277975A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting cable line

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPH0432108A (en) * 1990-05-24 1992-02-04 Sumitomo Electric Ind Ltd Superconductive cable
JP2002352645A (en) * 2001-05-29 2002-12-06 Furukawa Electric Co Ltd:The Superconducting cable
JP2003297161A (en) * 2002-04-05 2003-10-17 Sumitomo Electric Ind Ltd Cooling method of superconductive cable line
JP2006012775A (en) * 2004-05-21 2006-01-12 Sumitomo Electric Ind Ltd Superconductive cable
JP2010277975A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting cable line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132765A1 (en) * 2013-02-28 2014-09-04 住友電気工業株式会社 Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
JP2021110477A (en) * 2020-01-07 2021-08-02 株式会社ジェイテクト Thermoacoustic device
JP7424060B2 (en) 2020-01-07 2024-01-30 株式会社ジェイテクト thermoacoustic device
WO2022077568A1 (en) * 2020-10-14 2022-04-21 深圳供电局有限公司 Single-ended downstream refrigerating system for superconducting cable

Also Published As

Publication number Publication date
JP5252324B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4298450B2 (en) Superconducting cable terminal structure
JP6399674B2 (en) Superconducting cable
JP5416509B2 (en) Intermediate connection structure of superconducting cable
JP2015032525A (en) Connection structure of superconductive cables, superconductive cable, and current terminal structure of terminal edge of superconductive cable
JP2005032698A (en) Superconducting cable, and superconducting cable line using the same
JP5443835B2 (en) Superconducting cable line
JP2006012776A (en) Superconductive cable
JP5810925B2 (en) Room-temperature insulated superconducting cable connection structure
JP5252324B2 (en) Superconducting power transmission system
JP4843937B2 (en) Superconducting cable
WO2007122670A1 (en) Superconducting cable
WO2013077128A1 (en) Method for measuring critical current of superconductive cable
JP6216302B2 (en) Insulated pipe insulation unit and superconducting cable line
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP5273572B2 (en) Laying the superconducting cable
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP2016065629A (en) Adiabatic pipe insulation unit and superconductive cable track
JP2014146585A (en) Superconductive cable and superconductive cable rail track
JP2014192114A (en) Superconductive cable
JP2013073831A (en) Superconducting cable line
JP2015216735A (en) Superconducting cable and superconducting cable line
JP5418772B2 (en) Superconducting cable
JP5305180B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP2012174669A (en) Normal temperature insulating type superconducting cable
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

R150 Certificate of patent or registration of utility model

Ref document number: 5252324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees