JP6885112B2 - Manufacturing method of lap fillet welded joint and lap fillet welded joint - Google Patents

Manufacturing method of lap fillet welded joint and lap fillet welded joint Download PDF

Info

Publication number
JP6885112B2
JP6885112B2 JP2017042518A JP2017042518A JP6885112B2 JP 6885112 B2 JP6885112 B2 JP 6885112B2 JP 2017042518 A JP2017042518 A JP 2017042518A JP 2017042518 A JP2017042518 A JP 2017042518A JP 6885112 B2 JP6885112 B2 JP 6885112B2
Authority
JP
Japan
Prior art keywords
welding
less
steel plate
fillet welded
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042518A
Other languages
Japanese (ja)
Other versions
JP2018144077A (en
Inventor
石田 欽也
欽也 石田
真二 児玉
真二 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017042518A priority Critical patent/JP6885112B2/en
Publication of JP2018144077A publication Critical patent/JP2018144077A/en
Application granted granted Critical
Publication of JP6885112B2 publication Critical patent/JP6885112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法に関する。 The present invention relates to a lap fillet welded joint and a method for manufacturing a lap fillet welded joint.

アーム、サブフレーム、ビームといった自動車の足回り部材には、板厚2〜3mm程度の非めっきの熱延薄鋼板から製作される部材がある。鋼板から製作されるこれらの部材は、鋼板を所定の形状にプレス成形して部品とし、部品同士をアーク溶接(MAG溶接)にて接合することで製作される。溶接継手の形式は重ねすみ肉継手が大半である。アーク溶接による溶接長は、部材に必要な静的強度、疲労強度、剛性などを満たすために、10mm程度から100mmを超える長さまで、必要に応じて適宜設定されるが、上記足回り部材の主部材に溶接されるブラケットなどの溶接長は、比較的短いことが多い。また、円周溶接などを除き、これらの溶接部には溶接開始端と溶接終了端とが存在する。 The undercarriage members of automobiles such as arms, subframes, and beams include members made of unplated hot-rolled thin steel plates having a plate thickness of about 2 to 3 mm. These members manufactured from steel plates are manufactured by press-molding steel plates into a predetermined shape to form parts and joining the parts by arc welding (MAG welding). Most types of welded joints are lap fillet joints. The welding length by arc welding is appropriately set from about 10 mm to a length exceeding 100 mm in order to satisfy the static strength, fatigue strength, rigidity, etc. required for the member. The welding length of brackets and the like to be welded to a member is often relatively short. Further, except for circumferential welding, these welded portions have a welding start end and a welding end end.

溶接開始端は、溶接金属が盛り上がる形状となりやすく、比較的なだらかな形状である溶接終了端に比べて応力が集中しやすい。そのため、溶接開始端を構造上の応力集中部に配置しないなどの配慮がなされる場合がある。また、部材の疲労強度向上のため、溶接止端部をなだらかにして応力集中を低減する技術が多数提案されている。 The welding start end tends to have a shape in which the weld metal rises, and stress tends to concentrate more easily than the welding end end, which has a relatively gentle shape. Therefore, consideration may be given such as not arranging the welding start end in the structural stress concentration portion. Further, in order to improve the fatigue strength of the member, many techniques have been proposed for smoothing the weld toe to reduce stress concentration.

特許文献1には、鋼板成分及び溶接ビード止端部の形状を適切に制御することによって、重ねすみ肉アーク溶接継手の疲労強度を向上させたことが記載されている。
特許文献2には、鋼板にSiを添加することで溶接ビード形状を平坦化させ、更に、溶接時のシールドガスに含まれる酸化性ガス量を制限することで、溶接継手の疲労強度を高めたことが記載されている。
特許文献3には、鋼板の引張強度、炭素当量、溶接金属の炭素当量を所定の範囲とし、かつ、溶接部の脚長、のど厚、鋼板板厚、溶接金属の硬度を規定することで、アーク溶接重ね継手構造物の信頼性を高めたことが記載されている。
特許文献4には、高張力鋼板を重ね隅肉溶接するに際し、溶接金属の成分が所定の範囲を満たすように溶接ワイヤ及び溶接条件を設定することで、溶接ビード止端部の曲率半径を小さくして疲労特性を改善したガスシールドアーク溶接方法が記載されている。
Patent Document 1 describes that the fatigue strength of a lap fillet arc welded joint is improved by appropriately controlling the steel plate component and the shape of the weld bead toe.
In Patent Document 2, the fatigue strength of the welded joint was enhanced by flattening the weld bead shape by adding Si to the steel sheet and further limiting the amount of oxidizing gas contained in the shield gas during welding. It is stated that.
Patent Document 3 defines the tensile strength of the steel plate, the carbon equivalent, and the carbon equivalent of the weld metal within a predetermined range, and specifies the leg length, throat thickness, steel plate plate thickness, and hardness of the weld metal of the welded portion. It is stated that the reliability of the welded lap joint structure has been improved.
In Patent Document 4, the radius of curvature of the toe of the weld bead is reduced by setting the welding wire and welding conditions so that the components of the weld metal satisfy a predetermined range when laminating and fillet welding high-strength steel plates. A gas shielded arc welding method with improved fatigue characteristics is described.

特開2010−46714号公報Japanese Unexamined Patent Publication No. 2010-46714 特開2012−213803号公報Japanese Unexamined Patent Publication No. 2012-213803 特開2005−103622号公報Japanese Unexamined Patent Publication No. 2005-103622 特開2002−45963号公報JP-A-2002-459963

特許文献1〜4では、溶接ビードの止端部形状の改善について検討されている。しかしながら、溶接開始端以降、溶接ビード形状が定常状態に移行するまでの範囲の溶接ビード形状については何ら検討されていない。 In Patent Documents 1 to 4, improvement of the shape of the toe of the weld bead is studied. However, no study has been made on the weld bead shape in the range from the welding start end to the transition of the weld bead shape to the steady state.

また、例えば自動車分野においては、溶接速度の向上が部材の製作時間短縮につながりコスト削減に寄与するため、溶接速度の向上技術も多数検討されている。しかし、溶接開始端以降、溶接ビード形状が定常状態に移行するまでの範囲の溶接ビード形状について検討された例はない。 Further, for example, in the field of automobiles, since improvement of welding speed leads to shortening of manufacturing time of members and contributes to cost reduction, many techniques for improving welding speed are being studied. However, there has been no study on the weld bead shape in the range from the welding start end to the transition of the weld bead shape to the steady state.

重ねすみ肉溶接において、溶接速度を増加させると、溶接開始端の後方(溶接開始端から溶接ビード幅の2〜10倍の範囲)の溶接ビード幅が局部的に狭くなって細くくびれ、更にはピットが生じたり、アンダーカットが深く形成される場合がある。特にくびれは、のど厚や有効板厚の減少を招き、溶接継手の静的強度や疲労強度の低下を引き起こす問題がある。溶接速度が低いままだと、継手の生産性が低下する問題がある。 In lap fillet welding, when the welding speed is increased, the welding bead width behind the welding start end (range of 2 to 10 times the welding bead width from the welding start end) becomes locally narrowed and narrowed, and further. Pits may occur and undercuts may be formed deeply. In particular, the constriction causes a decrease in the throat thickness and the effective plate thickness, and has a problem of causing a decrease in the static strength and fatigue strength of the welded joint. If the welding speed remains low, there is a problem that the productivity of the joint is lowered.

本発明は上記事情に鑑みてなされたものであって、溶接開始端より後方の溶接ビードのくびれを抑制して疲労強度及び静的強度を向上させ、かつ、外観が良好な重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a lap fillet welded joint which suppresses the constriction of the weld bead behind the welding start end to improve fatigue strength and static strength and has a good appearance. An object of the present invention is to provide a method for manufacturing a lap fillet welded joint.

[1] 2枚の鋼板が重ねられ、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部が形成されてなる鋼板の重ねすみ肉溶接継手であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%(但し、0.30%以下を除く)
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しない、重ねすみ肉溶接継手。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
[2] 2枚の鋼板が重ねられ、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部が形成されてなる鋼板の重ねすみ肉溶接継手であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%(但し、0.30%以下及び0.310%を除く)、
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しない、重ねすみ肉溶接継手。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
] 前記一方及び他方の鋼板の板厚が、2.0〜3.5mmの範囲である[1]または[2]に記載の重ねすみ肉溶接継手。
] 前記一方及び他方の鋼板の引張強度が、780MPa未満である[1]乃至[3]の何れか一項に記載の重ねすみ肉溶接継手。
] 2枚の鋼板を重ね、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部を形成する鋼板の重ねすみ肉溶接継手の製造方法であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%、
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
溶接速度120〜180cm/分のアーク溶接によって前記すみ肉溶接部を形成することにより、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しないものとする、重ねすみ肉溶接継手の製造方法。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
] シールドガスとして、COまたはOの一方又は両方とArとの混合ガスであって、COまたはOの一方又は両方を体積%で3〜25体積%含むガスを用いる、[]に記載の重ねすみ肉溶接継手の製造方法。
] 溶接線方向を水平とし、溶接線方向に垂直な断面において前記他方の鋼板の表面と水平面とのなす角度αが0°以上30°未満である、[]または[]に記載の重ねすみ肉溶接継手の製造方法。
[8] 前記一方及び他方の鋼板の板厚が、2.0〜3.5mmの範囲である[5]乃至[7]の何れか一項に記載の重ねすみ肉溶接継手の製造方法。
[9] 前記一方及び他方の鋼板の引張強度が、780MPa未満である[5]乃至[8]の何れか一項に記載の重ねすみ肉溶接継手の製造方法。
[1] A lap fillet welded joint of a steel plate formed by stacking two steel plates and forming a fillet welded portion between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80% (excluding 0.30% or less) ,
Ti: 0 to less than 0.15%,
Nb: Containing less than 0-0.05%, the balance consisting of iron and impurities,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. Overlapping corners that are less than 5.0% of the thickness of the steel sheet, the initial welding portion has the dimensions and shapes specified in the following equations (2) to (4), and there are no pits in the initial welding portion. Flesh welded joint.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
[2] A lap fillet welded joint of a steel plate formed by stacking two steel plates and forming a fillet welded portion between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80% (excluding 0.30% or less and 0.310%),
Ti: 0 to less than 0.15%,
Nb: 0 to less than 0.05%
Containing, the balance consists of iron and impurities,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. Overlapping corners that are less than 5.0% of the thickness of the steel sheet, the initial welding portion has the dimensions and shapes specified in the following equations (2) to (4), and there are no pits in the initial welding portion. Flesh welded joint.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
[ 3 ] The lap fillet welded joint according to [1] or [2] , wherein the thickness of one and the other steel plate is in the range of 2.0 to 3.5 mm.
[ 4 ] The lap fillet welded joint according to any one of [1] to [3], wherein the tensile strength of one and the other steel plate is less than 780 MPa.
[ 5 ] A method for manufacturing a lap fillet welded joint of a steel plate in which two steel plates are stacked to form a fillet welded portion between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80%,
Ti: 0 to less than 0.15%,
Nb: Containing less than 0-0.05%, the balance consisting of iron and impurities,
By forming the fillet welded portion by arc welding at a welding speed of 120 to 180 cm / min,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. It is assumed that the thickness is less than 5.0% of the thickness of the steel plate, the initial welding portion has the dimensions and shapes specified by the following equations (2) to (4), and there is no pit in the initial welding portion. , How to manufacture lap fillet welded joints.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
[ 6 ] As the shield gas, a gas that is a mixed gas of one or both of CO 2 or O 2 and Ar and contains one or both of CO 2 or O 2 in a volume% of 3 to 25% by volume is used. 5 ] The method for manufacturing a lap fillet welded joint according to.
[ 7 ] Described in [5 ] or [ 6 ], wherein the angle α formed by the surface of the other steel plate and the horizontal plane is 0 ° or more and less than 30 ° in a cross section perpendicular to the welding line direction with the welding line direction horizontal. How to manufacture lap fillet welded joints.
[8] The method for manufacturing a lap fillet welded joint according to any one of [5] to [7], wherein the thickness of one and the other steel plate is in the range of 2.0 to 3.5 mm.
[9] The method for manufacturing a lap fillet welded joint according to any one of [5] to [8], wherein the tensile strength of one and the other steel plate is less than 780 MPa.

本発明によれば、溶接開始端より後方の溶接ビードにおけるくびれを抑制して疲労強度及び静的強度を向上させ、かつ、外観が良好な重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法を提供できる。 According to the present invention, a method for manufacturing a lap fillet welded joint and a lap fillet welded joint, which suppresses constriction in a weld bead behind the welding start end to improve fatigue strength and static strength and have a good appearance. Can be provided.

図1は、本実施形態の重ねすみ肉溶接継手のすみ肉溶接部を開始端側から見た斜視図。FIG. 1 is a perspective view of the fillet welded portion of the lap fillet welded joint of the present embodiment as viewed from the start end side. 図2は、本実施形態の重ねすみ肉溶接継手のすみ肉溶接部を上方から俯瞰した平面模式図。FIG. 2 is a schematic plan view of the fillet welded portion of the overlap fillet welded joint of the present embodiment from above. 図3は、図2に示すすみ肉溶接部の断面模式図。FIG. 3 is a schematic cross-sectional view of the fillet welded portion shown in FIG. 図4は、従来の重ねすみ肉溶接継手のすみ肉溶接部を上方から俯瞰した平面模式図。FIG. 4 is a schematic plan view of a fillet welded portion of a conventional lap fillet welded joint from above. 図5は、実施例の重ねすみ肉溶接継手のすみ肉溶接部を示す断面模式図。FIG. 5 is a schematic cross-sectional view showing a fillet welded portion of the lap fillet welded joint of the embodiment. 図6は、別の実施例の重ねすみ肉溶接継手のすみ肉溶接部を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a fillet welded portion of a lap fillet welded joint according to another embodiment. 図7は、他の実施例の重ねすみ肉溶接継手のすみ肉溶接部を示す断面模式図。FIG. 7 is a schematic cross-sectional view showing a fillet welded portion of the overlap fillet welded joint of another embodiment. 図8は、比較例の重ねすみ肉溶接継手のすみ肉溶接部を示す断面模式図。FIG. 8 is a schematic cross-sectional view showing a fillet welded portion of a lap fillet welded joint of a comparative example.

重ねすみ肉溶接継手は、一方の鋼板の端面と他方の鋼板の表面とを隣接するように重ねてから、一方の鋼板の端面と他方の鋼板の表面との間にすみ肉溶接部を形成することによって得られる継手である。溶接手段としては例えばアーク溶接方法が選択される。アーク溶接法によってすみ肉溶接部を形成する場合、シールドガスを供給しながらトーチ先端から供給された溶接ワイヤからアークを発生させ、アーク熱によって溶接棒及び鋼板の一部を溶融して溶融池を形成させつつ、トーチを溶接予定線に沿って移動させる。トーチの移動に伴って溶融池も移動し、トーチが通過した後には溶融金属が凝固してすみ肉溶接部が形成される。 In the lap fillet welded joint, the end face of one steel plate and the surface of the other steel plate are overlapped so as to be adjacent to each other, and then a fillet weld is formed between the end face of one steel plate and the surface of the other steel plate. It is a joint obtained by. As the welding means, for example, an arc welding method is selected. When a fillet weld is formed by the arc welding method, an arc is generated from the welding wire supplied from the tip of the torch while supplying shield gas, and the welding rod and a part of the steel plate are melted by the arc heat to form a molten pool. While forming, move the torch along the planned welding line. As the torch moves, the molten pool also moves, and after the torch passes, the molten metal solidifies to form a fillet weld.

ここで、溶接の開始点である溶接開始端では比較的大きな溶融池が形成されるが、その後のトーチの移動に伴って新たに形成される溶融金属は、溶接開始端に形成された溶融金属の粘度や表面張力の影響を受けて溶接開始端側に引き寄せられやすくなる。このため、溶接開始端における溶接金属の体積が増大する一方で、溶接開始端よりもトーチの移動方向下流側では溶融金属が不足し、アンダーカットが大きくなる。溶接金属の減少やアンダーカットの増大は、溶接速度が大きくなるほど顕著になり、重ねすみ肉溶接部の静的強度や疲労強度の低下を引き起こす。このような不具合を防止するためには、溶接速度を低下させることが考えられるが、溶接速度の低下は溶接効率の低下につながり、生産性を低下させてしまう不具合がある。 Here, a relatively large molten pool is formed at the welding start end, which is the starting point of welding, but the molten metal newly formed with the subsequent movement of the torch is the molten metal formed at the welding start end. It is easily attracted to the welding start end side due to the influence of the viscosity and surface tension of. Therefore, while the volume of the weld metal at the welding start end increases, the molten metal is insufficient on the downstream side in the moving direction of the torch from the welding start end, and the undercut becomes large. The decrease in weld metal and the increase in undercut become more remarkable as the welding speed increases, causing a decrease in static strength and fatigue strength of the overlap fillet weld. In order to prevent such a defect, it is conceivable to reduce the welding speed, but there is a problem that the decrease in the welding speed leads to a decrease in welding efficiency and a decrease in productivity.

本発明者らが溶接対象となる鋼板の化学成分について鋭意検討したところ、従来、溶接金属の断面形状の改善効果があるとされているSiは、溶接速度の増加につれて形状改善効果が現れにくくなることがわかった。そこで、鋼板中のSi量を少なめにしてAl量を高めたところ、溶融金属の溶接開始端側への移動量が少なくなり、溶接開始端よりも後方での溶接金属の減少やアンダーカットの増大が抑制されることを見出した。この現象は、鋼板中のAl量の増加により溶融金属の粘度または表面張力が低下し、溶融金属の開始端側への移動量が少なくなったためと推測している。Al量を従来より増やした鋼板を用いることで、例えば一例として溶接速度を120cm/分以上に増加しても、溶接開始端より後方の溶接金属の減少とアンダーカットの発生とが抑制され、静的強度及び疲労強度の改善効果が得られることが明らかになった。なお、溶接ワイヤに含まれるAl量を増大させた場合は、同様の改善効果は明確には確認されなかった。従って本発明では、溶接ワイヤではなく鋼板の化学成分の制御が重要になる。以下、本発明の実施形態について説明する。 As a result of diligent studies on the chemical composition of the steel sheet to be welded by the present inventors, Si, which has conventionally been considered to have an effect of improving the cross-sectional shape of the weld metal, is less likely to show the effect of improving the shape as the welding speed increases. I understood it. Therefore, when the amount of Si in the steel plate was reduced and the amount of Al was increased, the amount of movement of the molten metal toward the welding start end side was reduced, and the amount of weld metal behind the welding start end was reduced and the undercut was increased. Was found to be suppressed. It is presumed that this phenomenon is due to the fact that the viscosity or surface tension of the molten metal decreases due to the increase in the amount of Al in the steel sheet, and the amount of movement of the molten metal toward the starting end side decreases. By using a steel sheet with an increased amount of Al, for example, even if the welding speed is increased to 120 cm / min or more, the decrease in the weld metal behind the welding start end and the occurrence of undercut are suppressed, and it is static. It was clarified that the effect of improving the target strength and the fatigue strength can be obtained. When the amount of Al contained in the welding wire was increased, the same improvement effect was not clearly confirmed. Therefore, in the present invention, it is important to control the chemical composition of the steel sheet instead of the welding wire. Hereinafter, embodiments of the present invention will be described.

本実施形態の重ねすみ肉溶接継手は、2枚の鋼板が重ねられ、一方の鋼板の端面と他方の鋼板の表面との間にすみ肉溶接部が形成されてなるものである。 The lap fillet welded joint of the present embodiment is formed by stacking two steel plates and forming a fillet welded portion between the end face of one steel plate and the surface of the other steel plate.

まず、すみ肉溶接部について説明する。図1に、本実施形態の重ねすみ肉溶接継手のすみ肉溶接部を開始端側から見た斜視図を示す。また、図2に、本実施形態の重ねすみ肉溶接継手のすみ肉溶接部を上方から俯瞰した平面模式図を示し、図3には、図2のすみ肉溶接部の断面模式図を示す。図4には従来の重ねすみ肉溶接継手のすみ肉溶接部を上方から俯瞰した平面模式図を示す。 First, the fillet welded portion will be described. FIG. 1 shows a perspective view of the fillet welded portion of the lap fillet welded joint of the present embodiment as viewed from the start end side. Further, FIG. 2 shows a schematic plan view of the fillet welded portion of the lap fillet welded joint of the present embodiment from above, and FIG. 3 shows a schematic cross-sectional view of the fillet welded portion of FIG. FIG. 4 shows a schematic plan view of the fillet welded portion of the conventional lap fillet welded joint from above.

図1に示すように、本実施形態の重ねすみ肉溶接継手1は、一方の鋼板2の端面2aと他方の鋼板3の表面3aとが隣接するように重ねられ、一方の鋼板2の端面2aと他方の鋼板3の表面3aとの間にすみ肉溶接部4が形成された継手である。図1に示す、すみ肉溶接部4の溶接線Lは、溶接開始端4aから鋼板2の端面2aに沿って延在している。 As shown in FIG. 1, in the lap fillet welded joint 1 of the present embodiment, the end surface 2a of one steel plate 2 and the surface 3a of the other steel plate 3 are overlapped so as to be adjacent to each other, and the end surface 2a of one steel plate 2 is overlapped. This is a joint in which a fillet welded portion 4 is formed between the surface 3a of the other steel plate 3 and the surface 3a of the other steel plate 3. The welding line L of the fillet welded portion 4 shown in FIG. 1 extends from the welding start end 4a along the end surface 2a of the steel plate 2.

すみ肉溶接部4は、図2に示すように、溶接開始端4aと、溶接開始端4aから端面2aに沿って伸びる本体部4bとを有している。更に、本体部4bの先には、図視略の溶接終了端が設けられている。溶接開始端4aから溶接終了端までの長さは、例えば10mm程度から100mmを超える長さとされている。なお、図2に示す、すみ肉溶接部4の図中上側が鋼板2側であり、図中下側が鋼板3側である。 As shown in FIG. 2, the fillet welded portion 4 has a welding start end 4a and a main body portion 4b extending from the welding start end 4a along the end face 2a. Further, a welding end end (not shown) is provided at the tip of the main body portion 4b. The length from the welding start end 4a to the welding end end is, for example, about 10 mm to more than 100 mm. The upper side of the fillet welded portion 4 shown in FIG. 2 is the steel plate 2 side, and the lower side in the figure is the steel plate 3 side.

図2において、すみ肉溶接部4を示す輪郭線m1は、溶接時に鋼板2、3が溶融した際の溶融境界線であり、すみ肉溶接部の止端の位置を示している。また、輪郭線m2は、鋼板3の表面3aの高さと同じ高さを示す等高線である。輪郭線m2は、鋼板3側の溶融境界線(輪郭線m1)の等高線でもある。輪郭線m1とm2の間の領域は、溝状に窪んだアンダーカット5である。 In FIG. 2, the contour line m1 indicating the fillet welded portion 4 is a melting boundary line when the steel plates 2 and 3 are melted during welding, and indicates the position of the toe of the fillet welded portion. Further, the contour line m2 is a contour line showing the same height as the height of the surface 3a of the steel plate 3. The contour line m2 is also a contour line of the molten boundary line (contour line m1) on the steel plate 3 side. The region between the contour lines m1 and m2 is an undercut 5 recessed in a groove shape.

すみ肉溶接部4の本体部4bは、溶接開始端4aから下記(1)式で規定される距離Xまでの範囲にある溶接初期部4cと、溶接初期部4cよりも溶接終端側に延在する定常部4dとを有する。溶接初期部4cの範囲を決める距離Xは、下記式(1)に示すように、定常部4dにおける溶融幅の平均値Wa(mm)の2〜10倍の長さである。定常部4dにおける溶融幅の平均値Waは、例えば、定常部4dの溶融幅を10箇所にわたって測定し、その平均値とする。定常部4dの溶融幅は、溶接線Lと直交する方向における、溶融境界線同士(輪郭線m1同士)の間隔である。溶接初期部4cは、溶接開始端4aに近い位置にあって溶接開始直後に形成される部分であり、溶接金属が減少やすく、アンダーカットが増大しやすい領域である。本発明では、溶接初期部4cの形状を適切な形状にして静的強度及び疲労強度を低下させないことが重要である。 The main body portion 4b of the fillet welded portion 4 extends from the welding start end portion 4a to the welding initial portion 4c in the range from the distance X defined by the following equation (1) to the welding end side of the welding initial portion 4c. It has a stationary portion 4d to be welded. As shown in the following formula (1), the distance X that determines the range of the initial welding portion 4c is 2 to 10 times as long as the average value Wa (mm) of the melting width in the stationary portion 4d. The average value Wa of the melting width in the stationary portion 4d is, for example, the average value obtained by measuring the melting width of the stationary portion 4d over 10 points. The melting width of the stationary portion 4d is the distance between the melting boundary lines (contour lines m1) in the direction orthogonal to the welding line L. The initial welding portion 4c is a portion located near the welding start end 4a and formed immediately after the start of welding, and is a region in which weld metal is likely to decrease and undercut is likely to increase. In the present invention, it is important that the shape of the initial welding portion 4c is appropriately shaped so as not to reduce the static strength and the fatigue strength.

2Wa≦X≦10Wa … (1) 2W ≤ X ≤ 10W ... (1)

溶接初期部4cにおける溶融幅の最小値Wbは、下記式(2)に示すように、定常部4dにおける溶融幅の平均値Wa(mm)の0.9倍以上であればよい。溶接初期部4cの最小値Wbが平均値Waの0.9倍未満になると、溶接初期部4cにおける溶接金属量が不足して静的強度及び疲労強度が低下してしまうので好ましくない。溶接初期部4cの溶融幅は、溶接線Lと直交する方向における、溶融境界線同士(輪郭線m1同士)の間隔である。 As shown in the following formula (2), the minimum value Wb of the melting width in the initial welding portion 4c may be 0.9 times or more the average value Wa (mm) of the melting width in the stationary portion 4d. If the minimum value Wb of the initial welding portion 4c is less than 0.9 times the average value Wa, the amount of weld metal in the initial welding portion 4c is insufficient and the static strength and fatigue strength are lowered, which is not preferable. The melting width of the initial welding portion 4c is the distance between the melting boundary lines (contour lines m1) in the direction orthogonal to the welding line L.

Wb≧0.9Wa … (2) Wb ≧ 0.9Wa… (2)

また、すみ肉溶接部4には、その鋼板3側に、アンダーカット5が形成される。アンダーカット5は、溶接の際に鋼板3側の溶融境界線(輪郭線m1)の近傍に形成された溝状の部分であり、鋼板3の表面3aよりも低い位置にある部分をいう。溶接初期部4cにおけるアンダーカット5の最大幅Wcは、下記式(3)に示すように、溶接初期部4cにおける溶融幅の最小値Wb(mm)の0.15倍以下であればよい。アンダーカット5の最大幅Wcが最小値Wbの0.15倍以下であれば、溶接初期部4cにおける溶接金属量が十分になって静的強度及び疲労強度の低下が抑制される。アンダーカット5の最大幅Wcは、図3に示すように、鋼板3の表面3aよりも低い領域の幅であって、溶接初期部4cにおけるアンダーカット5の最大幅である。 Further, an undercut 5 is formed on the steel plate 3 side of the fillet welded portion 4. The undercut 5 is a groove-shaped portion formed in the vicinity of the melting boundary line (contour line m1) on the steel plate 3 side during welding, and refers to a portion located lower than the surface 3a of the steel plate 3. As shown in the following formula (3), the maximum width Wc of the undercut 5 in the initial welding portion 4c may be 0.15 times or less of the minimum value Wb (mm) of the melting width in the initial welding portion 4c. When the maximum width Wc of the undercut 5 is 0.15 times or less of the minimum value Wb, the amount of weld metal in the initial welding portion 4c is sufficient and the decrease in static strength and fatigue strength is suppressed. As shown in FIG. 3, the maximum width Wc of the undercut 5 is the width of a region lower than the surface 3a of the steel plate 3, and is the maximum width of the undercut 5 in the initial welding portion 4c.

Wc≦0.15Wb … (3) Wc ≦ 0.15Wb… (3)

また、アンダーカットの最大深さdは、鋼板3の板厚の5.0%未満であることが好ましい。最大深さdが鋼板3の板厚の5%未満であれば、溶接初期部4cにおける溶接金属量が十分になって静的強度及び疲労強度の低下が抑制される。アンダーカット5の最大深さdは、図3に示すように、鋼板3の表面3aの位置からの深さであって、溶接初期部4cにあるアンダーカット5の最大深さである。 Further, the maximum depth d of the undercut is preferably less than 5.0% of the plate thickness of the steel plate 3. When the maximum depth d is less than 5% of the plate thickness of the steel plate 3, the amount of weld metal in the initial welding portion 4c is sufficient and the decrease in static strength and fatigue strength is suppressed. As shown in FIG. 3, the maximum depth d of the undercut 5 is the depth from the position of the surface 3a of the steel plate 3, and is the maximum depth of the undercut 5 in the initial welding portion 4c.

なお、図3に示すように、鋼板2側にもアンダーカットと同様の凹み部分が部分的に形成される場合があるが、継手の静的強度及び疲労強度に対する凹み部分の影響は大きなものではない。 As shown in FIG. 3, a recessed portion similar to the undercut may be partially formed on the steel plate 2 side, but the influence of the recessed portion on the static strength and fatigue strength of the joint is not large. Absent.

次に、溶接初期部4cにおける余盛りの最小高さWh(mm)は、下記(4)式に示すように、溶接初期部4cにおける溶融幅の最小値Wb(mm)の0.05倍以上であればよい。溶接初期部4cにおける余盛りの最小高さWhが最小値Wbの0.05倍を超えることで、溶接金属量が十分になり、静的強度及び疲労強度の低下が抑制される。余盛りの最小高さWhは、図3に示すように、すみ肉溶接部の鋼板2側の止端(溶融境界線)と鋼板3側の止端(溶融境界線)とを結ぶ直線から、溶接初期部4cの表面までの垂線の長さであって、溶接初期部4cにある余盛りの高さの最小値である。 Next, the minimum height Wh (mm) of the surplus in the initial welding portion 4c is 0.05 times or more the minimum value Wb (mm) of the melting width in the initial welding portion 4c, as shown in the following equation (4). It should be. When the minimum height Wh of the surplus in the initial welding portion 4c exceeds 0.05 times the minimum value Wb, the amount of weld metal becomes sufficient, and the decrease in static strength and fatigue strength is suppressed. As shown in FIG. 3, the minimum height Wh of the surplus is determined from the straight line connecting the toe end (melt boundary line) on the steel plate 2 side and the toe end (melt boundary line) on the steel plate 3 side of the fillet weld. It is the length of the perpendicular line to the surface of the initial welding portion 4c, and is the minimum value of the height of the surplus in the initial welding portion 4c.

Wh≧0.05Wb … (4) Wh ≧ 0.05 Wb… (4)

本実施形態の重ねすみ肉溶接継手は、上記(2)〜(4)を満足し、かつ、アンダーカットの最大深さdが鋼板3の板厚の5.0%未満とすることで、静的強度及び疲労強度が高められる。
また、溶接初期部4cの表面にはピットが存在しないことが好ましい。溶接初期部4cの表面にピットが存在すると、すみ肉溶接部4の外観を損ねてしまうので好ましくない。
The lap fillet welded joint of the present embodiment satisfies the above (2) to (4), and the maximum undercut depth d is less than 5.0% of the plate thickness of the steel plate 3, so that it is static. Target strength and fatigue strength are increased.
Further, it is preferable that there are no pits on the surface of the initial welding portion 4c. If a pit is present on the surface of the initial welding portion 4c, the appearance of the fillet welded portion 4 is spoiled, which is not preferable.

図4には、従来の重ねすみ肉溶接継手のすみ肉溶接部の平面模式図を示す。従来のすみ肉溶接部は、溶接初期部14cの溶融幅の最小値Wbが定常部の溶融幅の平均値の0.9倍未満となっており、溶接初期部14cのくびれが顕著になっている。また、くびれが顕著な部分では、アンダーカット15の最大幅Wcが大きく、溶接ビードの余盛り高さWhも小さくなっており、溶接金属が相対的に少ない部分が存在する。このため、静的強度及び疲労強度が本実施形態の継手に比べて大幅に低くなる。 FIG. 4 shows a schematic plan view of the fillet welded portion of the conventional lap fillet welded joint. In the conventional fillet welded portion, the minimum value Wb of the melt width of the initial weld portion 14c is less than 0.9 times the average value of the melt width of the stationary portion, and the constriction of the initial weld portion 14c becomes remarkable. There is. Further, in the portion where the constriction is remarkable, the maximum width Wc of the undercut 15 is large, the extra height Wh of the weld bead is also small, and there is a portion where the weld metal is relatively small. Therefore, the static strength and the fatigue strength are significantly lower than those of the joint of the present embodiment.

また、図5〜図7には、本発明の範囲に含まれる重ねすみ肉溶接継手の断面模式図を示す。また図8には、本発明の範囲外になる重ねすみ肉溶接継手の断面模式図を示す。 Further, FIGS. 5 to 7 show a schematic cross-sectional view of the lap fillet welded joint included in the scope of the present invention. Further, FIG. 8 shows a schematic cross-sectional view of a lap fillet welded joint that is outside the scope of the present invention.

図5に示す例は、溶接初期部の溶融幅の最小値Wbが0.9Wa以上であり、アンダーカットの最大幅Wcが0.13Wbであり、余盛りの最小高さWhが0.19Wbであり、上記(2)〜(4)式を満たすものである。また、アンダーカットの最大深さdは鋼板3の板厚の2.3%であり、本発明の範囲を満たすものである。 In the example shown in FIG. 5, the minimum value Wb of the melting width at the initial stage of welding is 0.9 Wa or more, the maximum width Wc of the undercut is 0.13 Wb, and the minimum height Wh of the surplus is 0.19 Wb. Yes, it satisfies the above equations (2) to (4). Further, the maximum depth d of the undercut is 2.3% of the plate thickness of the steel plate 3, which satisfies the scope of the present invention.

図6に示す例は、溶接初期部の溶融幅の最小値Wbが0.9Wa以上であり、アンダーカットの最大幅Wcが0.14Wbであり、余盛りの最小高さWhが0.11Wbであり、上記(2)〜(4)式を満たすものである。また、アンダーカットの最大深さdは鋼板3の板厚の3.8%であり、本発明の範囲を満たすものである。 In the example shown in FIG. 6, the minimum value Wb of the melting width at the initial stage of welding is 0.9 Wa or more, the maximum width Wc of the undercut is 0.14 Wb, and the minimum height Wh of the surplus is 0.11 Wb. Yes, it satisfies the above equations (2) to (4). Further, the maximum depth d of the undercut is 3.8% of the plate thickness of the steel plate 3, which satisfies the scope of the present invention.

図7に示す例は、溶接初期部の溶融幅の最小値Wbが0.9Waであり、アンダーカットの最大幅Wcが0.15Wbであり、余盛りの最小高さWhが0.05Wbであり、上記(2)〜(4)式を満たすものである。また、アンダーカットの最大深さdは鋼板3の板厚の4.9%であり、本発明の範囲を満たすものである。 In the example shown in FIG. 7, the minimum value Wb of the melt width at the initial stage of welding is 0.9 Wa, the maximum width Wc of the undercut is 0.15 Wb, and the minimum height Wh of the surplus is 0.05 Wb. , The above equations (2) to (4) are satisfied. Further, the maximum depth d of the undercut is 4.9% of the plate thickness of the steel plate 3, which satisfies the scope of the present invention.

図8に示す例は、溶接初期部の溶融幅の最小値Wbが0.9Wa未満であり、アンダーカットの最大幅Wcが0.43Wbであり、余盛りの最小高さWhが−0.05Wbであり、上記(2)〜(4)式の全部を満たさないものである。また、アンダーカットの最大深さdは鋼板3の板厚の31.3%であり、本発明の範囲を満たないものである。 In the example shown in FIG. 8, the minimum value Wb of the melt width at the initial stage of welding is less than 0.9 Wa, the maximum width Wc of the undercut is 0.43 Wb, and the minimum height Wh of the surplus is −0.05 Wb. It does not satisfy all of the above equations (2) to (4). Further, the maximum depth d of the undercut is 31.3% of the plate thickness of the steel plate 3, which does not meet the scope of the present invention.

以上例示したように、図5〜図7に示す例は本発明の範囲にあるが、図8に示す例は本発明の範囲外になる。 As illustrated above, the examples shown in FIGS. 5 to 7 are within the scope of the present invention, but the examples shown in FIG. 8 are outside the scope of the present invention.

次に、本実施形態に係る鋼板は、質量%で、C:0.04〜0.08%以下、Si:0.01〜0.1%以下、Mn:1.0〜2.0%未満、P:0.03%未満、S:0.005%未満、Al:0.20〜0.80%以下、Ti:0〜0.15%未満、Nb:0〜0.05%未満を含有し、残部が鉄及び不純物からなる。以下、鋼板の化学成分の限定理由を説明する。 Next, the steel sheet according to the present embodiment has a mass% of C: 0.04 to 0.08% or less, Si: 0.01 to 0.1% or less, and Mn: 1.0 to less than 2.0%. , P: less than 0.03%, S: less than 0.005%, Al: 0.20 to 0.80% or less, Ti: 0 to less than 0.15%, Nb: less than 0 to 0.05% The balance is made of iron and impurities. The reasons for limiting the chemical composition of the steel sheet will be described below.

Cは、鋼の強度向上に必須の含有元素である。この効果を十分に得るためにはCの含有率を0.04%以上にする必要である。しかし、Cの含有率が0.08%を超えると常温で時効性を発現し成形性を劣化させるほか、溶接性が低下する。このため、本発明ではCの含有率を0.08%以下とする。また、Cの含有率が高いとパーライト相が生成しやすく、母材の疲労特性が低下するため、Cの含有率は0.06%以下がより好ましい。 C is a contained element essential for improving the strength of steel. In order to obtain this effect sufficiently, the C content needs to be 0.04% or more. However, when the C content exceeds 0.08%, aging is exhibited at room temperature, the moldability is deteriorated, and the weldability is deteriorated. Therefore, in the present invention, the C content is set to 0.08% or less. Further, when the C content is high, a pearlite phase is likely to be formed, and the fatigue characteristics of the base metal are lowered. Therefore, the C content is more preferably 0.06% or less.

Siは、溶接金属のぬれ性を良好にさせ、溶接ビードの止端部における鋼板と溶接ビードとがなす角度を低減させる効果があるが、Siの過剰な含有で化成処理性を悪化させ、Siスケールも発生するため、Siの含有率は0.1%を上限とする。一方で、Siはパーライトの生成を抑制すること、固溶強化により強度上昇に役立つ元素であることから、0.01%以上の含有が必要である。また、良好な溶接金属のぬれ性を発現させるためには、0.02%以上の含有が好ましい。 Si has the effect of improving the wettability of the weld metal and reducing the angle formed by the steel plate and the weld bead at the toe of the weld bead, but the excessive content of Si deteriorates the chemical conversion processability and Si. Since scale is also generated, the Si content is limited to 0.1%. On the other hand, Si is an element that suppresses the formation of pearlite and helps increase the strength by strengthening the solid solution, so that the content of Si must be 0.01% or more. Further, in order to develop good wettability of the weld metal, the content is preferably 0.02% or more.

Mnは、強度の確保に必要な元素であり、1.0%以上の含有を必要とする。しかし、2.0%以上を含有するとミクロ偏析、マクロ偏析が起こりやすくなり、材料の加工性を劣化させる他、化成処理性の劣化も見られることから、2.0%未満とする必要がある。 Mn is an element necessary for ensuring strength, and its content is required to be 1.0% or more. However, if it contains 2.0% or more, microsegregation and macrosegregation are likely to occur, which deteriorates the processability of the material and also deteriorates the chemical conversion processability. Therefore, it should be less than 2.0%. ..

Pは、フェライトに固溶してその延性を低下させるので、その含有量は0.03%未満とする。なお、Pは0%の場合も含む。 Since P dissolves in ferrite to reduce its ductility, its content is set to less than 0.03%. In addition, P includes the case of 0%.

Sは、MnSを形成して破壊の起点として作用し、プレス成形性を著しく低下させるので0.005%未満とする。ただし、0.0005%未満まで低下させるためには、生産コストが非常に高まるため、下限を0.0005%以上とする。 S forms MnS, acts as a starting point of fracture, and significantly reduces press moldability, and is therefore set to less than 0.005%. However, in order to reduce it to less than 0.0005%, the production cost is very high, so the lower limit is set to 0.0005% or more.

Alは、アーク溶接時に生成する溶融金属の粘度または表面張力を低下させ、鋼板に対する溶融金属の濡れ性を向上させて、開始端側への溶融金属の流動を抑制する効果があるため、Alの含有率は0.20%以上が好ましい。但し、Alの含有率が0.80%を超えると、溶接部表面に酸化物が多く発生し、外観を悪化させるだけでなく。塗装性も劣化させるので、Alの含有率は0.80%以下とする。 Al has the effect of reducing the viscosity or surface tension of the molten metal generated during arc welding, improving the wettability of the molten metal with respect to the steel plate, and suppressing the flow of the molten metal toward the starting end side. The content is preferably 0.20% or more. However, if the Al content exceeds 0.80%, a large amount of oxide is generated on the surface of the welded portion, which not only deteriorates the appearance. Since the coatability is also deteriorated, the Al content is set to 0.80% or less.

鋼板の化学成分の残部は、鉄及び不純物である。 The rest of the chemical composition of the steel sheet is iron and impurities.

更に、上記の成分に加えて、Ti及びNbを必要に応じて含有させるとよい。従ってこれらの元素の含有率の下限値は0%である。
Tiは、鋼板の強度の確保のために含有させるとよい。フェライトを析出強化させるには0.05%以上を含有させるとよい。しかしながら、Tiを0.15%以上含有させると、Ti系の介在物が生成して加工性が低下するため、Tiの含有率は0.15%未満がよい。
また、Nbは、鋼板の結晶粒径を小さくし、また、NbCを析出させて鋼板強度を高めることができる。Nbを0.01%以上含有させることでその効果が得られる。一方、Nbを0.05%以上含有させるとその効果が飽和するので、Nbの含有率は0.05%未満を上限とする。
Further, in addition to the above components, Ti and Nb may be contained as needed. Therefore, the lower limit of the content of these elements is 0%.
Ti may be contained in order to secure the strength of the steel sheet. In order to precipitate and strengthen ferrite, it is preferable to contain 0.05% or more. However, if the content of Ti is 0.15% or more, Ti-based inclusions are generated and the workability is lowered. Therefore, the Ti content is preferably less than 0.15%.
Further, Nb can reduce the crystal grain size of the steel sheet and precipitate NbC to increase the strength of the steel sheet. The effect can be obtained by containing 0.01% or more of Nb. On the other hand, if Nb is contained in an amount of 0.05% or more, the effect is saturated, so the Nb content is limited to less than 0.05%.

鋼板の引張強度は780MPa未満であることが好ましい。
また、鋼板の板厚は、2.0〜3.5mmの範囲が好ましい。
更に、溶接材料は溶接される鋼板に適合したものを適宜選択するとよい。
The tensile strength of the steel sheet is preferably less than 780 MPa.
The thickness of the steel plate is preferably in the range of 2.0 to 3.5 mm.
Further, as the welding material, a material suitable for the steel plate to be welded may be appropriately selected.

次に、本実施形態の重ねすみ肉溶接継手の製造方法を説明する。
本実施形態の製造方法では、一方の鋼板2の端面2aと他方の鋼板3の表面3aとを隣接するように重ねてから、一方の鋼板2の端面2aと他方の鋼板3の表面3aとの間にすみ肉溶接部を形成することによる製造する。溶接手段としては例えばアーク溶接方法が選択される。
Next, a method of manufacturing the lap fillet welded joint of the present embodiment will be described.
In the manufacturing method of the present embodiment, the end face 2a of one steel plate 2 and the surface 3a of the other steel plate 3 are overlapped so as to be adjacent to each other, and then the end face 2a of one steel plate 2 and the surface 3a of the other steel plate 3 are overlapped. Manufactured by forming a fillet weld between them. As the welding means, for example, an arc welding method is selected.

鋼板2、3は、上述の化学成分を有する鋼板を用いる。上述の化学成分以外の鋼板を用いた場合は、溶接初期部4cの形状が上記(2)〜(4)式の条件を満たすことができなくなる。 As the steel sheets 2 and 3, steel sheets having the above-mentioned chemical composition are used. When a steel sheet other than the above chemical components is used, the shape of the initial welding portion 4c cannot satisfy the conditions of the above equations (2) to (4).

溶接姿勢としては、溶接線方向を水平とし、溶接線方向に垂直な断面において他方の鋼板3の表面3aと水平面とのなす角度αが0°以上30°未満とする。角度αが30°を超えると、一方の鋼板2側に溶融金属が垂れ落ちたり、アンダーカットが増大するので、角度αは30°未満にする。また、角度αが0°未満になると、他方の鋼板3側に溶融金属が垂れ落ちてしまうので、角度αは0°以上にする。 As for the welding posture, the welding line direction is horizontal, and the angle α formed by the surface 3a of the other steel plate 3 and the horizontal plane in the cross section perpendicular to the welding line direction is 0 ° or more and less than 30 °. If the angle α exceeds 30 °, the molten metal hangs down on one of the steel plates 2 and the undercut increases. Therefore, the angle α is set to less than 30 °. Further, if the angle α is less than 0 °, the molten metal hangs down on the other steel plate 3 side, so the angle α is set to 0 ° or more.

アーク溶接は、パルスMAGアーク溶接方法により実施することが好ましい。シールドガスは、COまたはOの一方又は両方とArとの混合ガスであって、COまたはOの一方又は両方を体積%で3〜25体積%含むガスを用いることが好ましい。また、溶接時のトーチの傾斜角度は例えば60°程度がよい。また、溶接ワイヤの先端狙いは、鋼板2の端面2aと鋼板3の表面とにより形成されるコーナーに合わせるとよい。 The arc welding is preferably carried out by a pulse MAG arc welding method. The shield gas is a mixed gas of one or both of CO 2 or O 2 and Ar, and it is preferable to use a gas containing one or both of CO 2 or O 2 in an amount of 3 to 25% by volume. Further, the inclination angle of the torch at the time of welding is preferably about 60 °, for example. Further, the tip aim of the welding wire may be aligned with the corner formed by the end surface 2a of the steel plate 2 and the surface of the steel plate 3.

溶接速度は、120〜180cm/分の範囲とする。溶接速度が120cm/分未満では溶接速度が低すぎてしまい、生産性を向上させることができなくなる。一方、溶接速度が180cm/分を超えると、溶接初期部4cの形状が上記(2)〜(4)式の条件を満たすことができなくなるので好ましくない。 The welding speed is in the range of 120 to 180 cm / min. If the welding speed is less than 120 cm / min, the welding speed will be too low and the productivity cannot be improved. On the other hand, if the welding speed exceeds 180 cm / min, the shape of the initial welding portion 4c cannot satisfy the conditions of the above equations (2) to (4), which is not preferable.

なお、本発明では、溶接ワイヤの化学成分よりも、鋼板の化学成分の制御が重要であり、溶接ワイヤの化学成分によって本発明の効果が損なわれるおそれはないため、溶接に用いる溶接ワイヤの種類は鋼板の強度に合わせて適宜選定すればよい。 In the present invention, it is more important to control the chemical composition of the steel sheet than the chemical composition of the welding wire, and the effect of the present invention may not be impaired by the chemical composition of the welding wire. May be appropriately selected according to the strength of the steel sheet.

以上説明したように、本実施形態の重ねすみ肉溶接継手1によれば、すみ肉溶接部4の溶接初期部4cの形状が上記(2)〜(4)式を満たし、アンダーカットの最大深さdを鋼板3の板厚の5.0%未満にすることができるため、溶接初期部4cがくびれた形状にならず、静的強度及び疲労強度の低下を防止できる。また、ピットが存在しないため、外観に優れた重ねすみ肉溶接継手1とすることができる。 As described above, according to the lap fillet welded joint 1 of the present embodiment, the shape of the welded initial portion 4c of the fillet welded portion 4 satisfies the above equations (2) to (4), and the maximum depth of undercut is reached. Since the diameter d can be less than 5.0% of the plate thickness of the steel plate 3, the initial welding portion 4c does not have a constricted shape, and a decrease in static strength and fatigue strength can be prevented. Further, since there is no pit, the lap fillet welded joint 1 having an excellent appearance can be obtained.

また、本実施形態の重ねすみ肉溶接継手の製造方法によれば、所定の化学成分の鋼板を用いて重ねすみ肉溶接部4を形成することで、溶接時に形成された溶融金属が溶接開始端4a側に引き寄せられるおそれがなく、溶接開始端4aの後方に形成される溶接初期部4cの溶接金属量を十分なものとすることができ、静的強度及び疲労強度に優れた重ねすみ肉溶接継手1を製造できる。
また、溶接速度を120〜180cm/分の範囲とすることで、重ねすみ肉溶接継手の生産性を向上させるとともに、溶接初期部4cの形状を上記(2)〜(4)式の条件を満たすものにすることができる。
Further, according to the method for manufacturing a lap fillet welded joint of the present embodiment, by forming the lap fillet welded portion 4 using a steel plate having a predetermined chemical component, the molten metal formed at the time of welding is the welding start end. There is no risk of being attracted to the 4a side, the amount of weld metal in the initial welding portion 4c formed behind the welding start end 4a can be sufficient, and lap fillet welding with excellent static strength and fatigue strength can be achieved. The joint 1 can be manufactured.
Further, by setting the welding speed in the range of 120 to 180 cm / min, the productivity of the fillet welded joint is improved, and the shape of the initial welding portion 4c satisfies the conditions of the above equations (2) to (4). Can be a thing.

以下、本発明の実施例について説明する。以下の実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、該一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組み合わせを採用し得るものである。 Hereinafter, examples of the present invention will be described. The conditions in the following examples are one-condition examples adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to the one-condition examples. The present invention can adopt various conditions or combinations of conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

表1に示す化学成分及び機械的性質を有する鋼板を用い、重ねすみ肉アーク溶接継手を製造し、性能を試験、調査した。一方及び他方の鋼板の重ね代を15mmとして密着させ、鋼板の板厚は2.1から3.5mmとした。溶接姿勢は溶接線を水平とし、他方の鋼板の傾斜角度αを0°とした。溶接方法はパルスMAGアーク溶接方法とし、溶接トーチの傾斜角度(起こし角度)を60°とし、シールドガスは、主として20体積%COを含むArガスを用いた。また、シールドガスとして、3%のOを含むArガスや、20%のCOと2%のOを含むArガスも用いた。ワイヤ先端狙いは一方の鋼板の端面と他方の鋼板の表面とにより構成されるコーナー部とした。溶接ワイヤは日鐵住金溶接工業株式会社のソリッドワイヤ(YM−24T)とし、ワイヤ径は1.2mmとした。溶接開始端から溶接終了端の長さは150mmとした。試験結果を表2に示す。 A lap fillet arc welded joint was manufactured using a steel plate having the chemical composition and mechanical properties shown in Table 1, and its performance was tested and investigated. The stacking allowance of one and the other steel plate was set to 15 mm for close contact, and the thickness of the steel plate was set to 2.1 to 3.5 mm. The welding posture was such that the welding line was horizontal and the inclination angle α of the other steel plate was 0 °. The welding method was a pulse MAG arc welding method, the inclination angle (raising angle) of the welding torch was 60 °, and Ar gas containing 20% by volume CO 2 was mainly used as the shield gas. Further, as the shield gas, Ar gas containing 3% O 2 and Ar gas containing 20% CO 2 and 2% O 2 were also used. The wire tip was aimed at a corner formed by the end face of one steel plate and the surface of the other steel plate. The welding wire was a solid wire (YM-24T) manufactured by Nippon Steel & Sumikin Welding & Co., Ltd., and the wire diameter was 1.2 mm. The length from the welding start end to the welding end end was 150 mm. The test results are shown in Table 2.

表2A及び表2Bにおいて、(2)〜(4)式を満たす場合を○とし、満たさない場合を×とした。 In Tables 2A and 2B, the cases where the equations (2) to (4) were satisfied were marked with ◯, and the cases where they were not satisfied were marked with x.

静的強度は、JIS Z 2241に規定する金属材料引張試験方法に準拠して測定した。なお、試験片形状は13B号試験片とし、試験片の平行部の中央かつ長さ方向に垂直になるよう溶接線を配置した。引張試験時には同板厚の当て金を掴み部に重ね、試験機で試験片を把持した際に軸芯がずれないようにした。
静的強度の評価は、溶接ビード形状が定常状態の部分から採取した試験片と、溶接初期部における溶融幅の最小値Wbを含む部分から採取した試験片で行い、溶接初期部の引張強度が定常部の引張強度の90%未満の場合を「×」、90%以上の場合を「○」とした。
The static strength was measured according to the metal material tensile test method specified in JIS Z 2241. The shape of the test piece was No. 13B test piece, and the welding line was arranged so as to be perpendicular to the center and the length direction of the parallel portion of the test piece. During the tensile test, a pad of the same thickness was placed on the grip to prevent the shaft core from shifting when the test piece was gripped by the testing machine.
The static strength is evaluated by using a test piece taken from a part where the weld bead shape is in a steady state and a test piece taken from a part including the minimum value Wb of the melt width in the initial part of welding, and the tensile strength of the initial part of welding is The case where the tensile strength of the stationary portion was less than 90% was evaluated as “x”, and the case where the tensile strength was 90% or more was evaluated as “◯”.

疲労強度は、JIS Z 2275に規定する金属平板の平面曲げ疲れ試験方法に準拠して測定した。なお、試験片形状は1号試験片(中央部幅15mm)とし、試験片の中央かつ長さ方向に垂直になるよう溶接線を配置した。曲げモーメントは重ね部が開口しない向きに与え、応力比は0.1(片振り)とした。
疲労強度の評価は、溶接ビード形状が定常状態の部分から採取した試験片と、溶接初期部における溶融幅の最小値Wbを含む部分から採取した試験片で行い、溶接初期部の200万回疲労強度が定常部の200万回疲労強度の90%未満の場合を「×」、90%以上の場合を「○」とした。
The fatigue strength was measured according to the plane bending fatigue test method for a metal flat plate specified in JIS Z 2275. The shape of the test piece was No. 1 test piece (center width 15 mm), and the welding line was arranged so as to be perpendicular to the center and the length direction of the test piece. The bending moment was given in a direction in which the overlapping portion did not open, and the stress ratio was 0.1 (one-sided swing).
Fatigue strength is evaluated using a test piece taken from a part where the weld bead shape is in a steady state and a test piece taken from a part containing the minimum value Wb of the melt width in the initial welding part, and fatigue is performed 2 million times in the initial welding part. When the strength was less than 90% of the 2 million times fatigue strength of the stationary part, it was evaluated as "x", and when it was 90% or more, it was evaluated as "○".

生産性は、溶接速度が120cm/min未満の場合に継手の生産性が劣るとして×とし、溶接速度が120cm/min以上を○とした。 The productivity was evaluated as x because the productivity of the joint was inferior when the welding speed was less than 120 cm / min, and was evaluated as ◯ when the welding speed was 120 cm / min or more.

Figure 0006885112
Figure 0006885112

Figure 0006885112
Figure 0006885112

Figure 0006885112
Figure 0006885112

表1及び表2A並びに表2Bに示すように、化学成分が本発明範囲にある鋼板を用い、120〜180cm/分の溶接速度で製造した継手は、何れも、外観に優れ、かつ、静的強度及び疲労強度に優れていることがわかる。また、溶接速度を120cm/分以上としたことで、生産性も良好だった。ただし、試験No.12、20、28、36、44の溶接継手は参考例とする。 As shown in Tables 1 and 2A and Table 2B, all the joints manufactured by using steel sheets whose chemical composition is within the range of the present invention and at a welding speed of 120 to 180 cm / min are excellent in appearance and static. It can be seen that the strength and fatigue strength are excellent. Moreover, since the welding speed was 120 cm / min or more, the productivity was also good. However, the test No. The welded joints of 12, 20, 28, 36 and 44 are used as reference examples.

Claims (9)

2枚の鋼板が重ねられ、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部が形成されてなる鋼板の重ねすみ肉溶接継手であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%(但し、0.30%以下を除く)
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しない、重ねすみ肉溶接継手。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
A lap fillet welded joint of steel plates in which two steel plates are stacked and a fillet weld is formed between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80% (excluding 0.30% or less) ,
Ti: 0 to less than 0.15%,
Nb: Containing less than 0-0.05%, the balance consisting of iron and impurities,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. Overlapping corners that are less than 5.0% of the thickness of the steel sheet, the initial welding portion has the dimensions and shapes specified in the following equations (2) to (4), and there are no pits in the initial welding portion. Flesh welded joint.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
2枚の鋼板が重ねられ、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部が形成されてなる鋼板の重ねすみ肉溶接継手であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%(但し、0.30%以下及び0.310%を除く)
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しない、重ねすみ肉溶接継手。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
A lap fillet welded joint of steel plates in which two steel plates are stacked and a fillet weld is formed between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80% (excluding 0.30% or less and 0.310%) ,
Ti: 0 to less than 0.15%,
Nb: Containing less than 0-0.05%, the balance consisting of iron and impurities,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. Overlapping corners that are less than 5.0% of the thickness of the steel sheet, the initial welding portion has the dimensions and shapes specified in the following equations (2) to (4), and there are no pits in the initial welding portion. Flesh welded joint.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
前記一方及び他方の鋼板の板厚が、2.0〜3.5mmの範囲である請求項1または請求項2に記載の重ねすみ肉溶接継手。 The lap fillet welded joint according to claim 1 or 2 , wherein the thickness of one and the other steel plate is in the range of 2.0 to 3.5 mm. 前記一方及び他方の鋼板の引張強度が、780MPa未満である請求項1乃至請求項3の何れか一項に記載の重ねすみ肉溶接継手。 The lap fillet welded joint according to any one of claims 1 to 3, wherein the tensile strength of one and the other steel plate is less than 780 MPa. 2枚の鋼板を重ね、一方の鋼板の端面と他方の鋼板の表面との間に、すみ肉溶接部を形成する鋼板の重ねすみ肉溶接継手の製造方法であって、
前記鋼板の化学成分が、質量%で、
C:0.04〜0.08%、
Si:0.01〜0.1%、
Mn:1.0〜2.0%未満、
P:0.03%未満、
S:0.005%未満、
Al:0.20〜0.80%、
Ti:0〜0.15%未満、
Nb:0〜0.05%未満
を含有し、残部が鉄及び不純物からなり、
溶接速度120〜180cm/分のアーク溶接によって前記すみ肉溶接部を形成することにより、
前記すみ肉溶接部のうち、溶接開始端から下記(1)式で規定される距離Xまでの範囲の溶接初期部における、前記他方の鋼板側のアンダーカット部の最大深さdが前記他方の鋼板の板厚の5.0%未満であり、前記溶接初期部が下記(2)〜(4)式に規定される寸法形状を有し、かつ前記溶接初期部にピットが存在しないものとする、重ねすみ肉溶接継手の製造方法。
2Wa≦X≦10Wa … (1)
Wb≧0.9Wa … (2)
Wc≦0.15Wb … (3)
Wh≧0.05Wb … (4)
上記(1)〜(4)式において、Waは、前記すみ肉溶接部の溶接終了端側の定常部における溶融幅の平均値(mm)であり、Wbは、前記溶接初期部の溶融幅の最小値(mm)であり、Wcは、前記溶接初期部におけるアンダーカット部の最大幅(mm)であり、Whは前記溶接初期部の余盛りの最小高さ(mm)である。
A method for manufacturing a lap fillet welded joint of a steel plate in which two steel plates are stacked to form a fillet welded portion between the end face of one steel plate and the surface of the other steel plate.
The chemical composition of the steel sheet is mass%.
C: 0.04 to 0.08%,
Si: 0.01-0.1%,
Mn: 1.0 to less than 2.0%,
P: less than 0.03%,
S: less than 0.005%,
Al: 0.25 to 0.80%,
Ti: 0 to less than 0.15%,
Nb: Containing less than 0-0.05%, the balance consisting of iron and impurities,
By forming the fillet welded portion by arc welding at a welding speed of 120 to 180 cm / min,
Of the fillet welded portions, the maximum depth d of the undercut portion on the other steel plate side in the initial welding portion in the range from the welding start end to the distance X defined by the following equation (1) is the other. It is assumed that the thickness is less than 5.0% of the thickness of the steel plate, the initial welding portion has the dimensions and shapes specified by the following equations (2) to (4), and there is no pit in the initial welding portion. , How to manufacture lap fillet welded joints.
2W ≤ X ≤ 10W ... (1)
Wb ≧ 0.9Wa… (2)
Wc ≦ 0.15Wb… (3)
Wh ≧ 0.05 Wb… (4)
In the above equations (1) to (4), Wa is the average value (mm) of the melt width at the stationary portion on the welding end end side of the fillet welded portion, and Wb is the melt width of the initial weld portion. It is the minimum value (mm), Wc is the maximum width (mm) of the undercut portion in the initial welding portion, and Wh is the minimum height (mm) of the surplus in the initial welding portion.
シールドガスとして、COまたはOの一方又は両方とArとの混合ガスであって、COまたはOの一方又は両方を体積%で3〜25体積%含むガスを用いる、請求項に記載の重ねすみ肉溶接継手の製造方法。 As shielding gas, a mixed gas of one or both of the CO 2 or O 2 and Ar, a gas containing 3-25 vol% of one or both of the CO 2 or O 2 by volume%, in claim 5 The method for manufacturing a fillet welded joint according to the description. 溶接線方向を水平とし、溶接線方向に垂直な断面において前記他方の鋼板の表面と水平面とのなす角度αが0°以上30°未満である、請求項5または請求項6に記載の重ねすみ肉溶接継手の製造方法。 The overlapping area according to claim 5 or 6 , wherein the welding line direction is horizontal, and the angle α formed by the surface of the other steel plate and the horizontal plane is 0 ° or more and less than 30 ° in the cross section perpendicular to the welding line direction. Manufacturing method of fillet welded joints. 前記一方及び他方の鋼板の板厚が、2.0〜3.5mmの範囲である請求項5乃至請求項7の何れか一項に記載の重ねすみ肉溶接継手の製造方法。The method for manufacturing a lap fillet welded joint according to any one of claims 5 to 7, wherein the thickness of one and the other steel plate is in the range of 2.0 to 3.5 mm. 前記一方及び他方の鋼板の引張強度が、780MPa未満である請求項5乃至請求項8の何れか一項に記載の重ねすみ肉溶接継手の製造方法。The method for manufacturing a lap fillet welded joint according to any one of claims 5 to 8, wherein the tensile strength of one and the other steel plate is less than 780 MPa.
JP2017042518A 2017-03-07 2017-03-07 Manufacturing method of lap fillet welded joint and lap fillet welded joint Active JP6885112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042518A JP6885112B2 (en) 2017-03-07 2017-03-07 Manufacturing method of lap fillet welded joint and lap fillet welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042518A JP6885112B2 (en) 2017-03-07 2017-03-07 Manufacturing method of lap fillet welded joint and lap fillet welded joint

Publications (2)

Publication Number Publication Date
JP2018144077A JP2018144077A (en) 2018-09-20
JP6885112B2 true JP6885112B2 (en) 2021-06-09

Family

ID=63590383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042518A Active JP6885112B2 (en) 2017-03-07 2017-03-07 Manufacturing method of lap fillet welded joint and lap fillet welded joint

Country Status (1)

Country Link
JP (1) JP6885112B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021011371A (en) * 2019-03-27 2021-10-13 Nippon Steel Corp Automobile undercarriage component.
CN114058967B (en) * 2021-11-04 2023-03-21 武汉钢铁有限公司 700 MPa-grade automotive steel with good fatigue performance and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529482B2 (en) * 2004-03-01 2010-08-25 Jfeスチール株式会社 Fillet welding method
CN101309773B (en) * 2006-10-19 2012-07-18 松下电器产业株式会社 Method for controlling arc welding and arc welding apparatus
JP5386942B2 (en) * 2008-11-17 2014-01-15 新日鐵住金株式会社 Fillet arc welding method for thin steel sheet
JP6373550B2 (en) * 2011-03-31 2018-08-15 Jfeスチール株式会社 Gas shield arc welding method
MX2015010292A (en) * 2013-02-15 2015-10-26 Nippon Steel & Sumitomo Metal Corp Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint.

Also Published As

Publication number Publication date
JP2018144077A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP2008290116A (en) Fillet welded joint and fillet welding method
JP6802660B2 (en) Arc spot welding method
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP6885112B2 (en) Manufacturing method of lap fillet welded joint and lap fillet welded joint
JP5953993B2 (en) Fillet welded joints
JP5104037B2 (en) Fillet welding method and fillet welded joint
CN103946410A (en) Steel material for welding
JP3800330B2 (en) Large heat input electroslag welding method
JP6782580B2 (en) Arc spot welding method
JP6829111B2 (en) Filling material for TIG welding
JP6776798B2 (en) Multi-layer submerged arc welding method
JP2011224612A (en) Electroslag welded joint with excellent toughness
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP5187833B2 (en) Welding method for zinc-based alloy plated steel
JP4857855B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP4736193B2 (en) Fillet welded joint with excellent fatigue characteristics and gas shielded arc fillet welding method
JP4427350B2 (en) Weld metal with excellent strength uniformity
WO2020194669A1 (en) Lap laser welding joint, method for manufacturing same, and automobile chassis structure member
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
JP2021120473A (en) Longitudinal seam welded steel pipe
JP5044928B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method
JP4264298B2 (en) Large section flash butt welded structure with high toughness in the weld zone
KR102425296B1 (en) Manufacturing method of vertical narrow line weld joint and vertical direction narrow line weld joint

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151