JP5187833B2 - Welding method for zinc-based alloy plated steel - Google Patents

Welding method for zinc-based alloy plated steel Download PDF

Info

Publication number
JP5187833B2
JP5187833B2 JP2008063491A JP2008063491A JP5187833B2 JP 5187833 B2 JP5187833 B2 JP 5187833B2 JP 2008063491 A JP2008063491 A JP 2008063491A JP 2008063491 A JP2008063491 A JP 2008063491A JP 5187833 B2 JP5187833 B2 JP 5187833B2
Authority
JP
Japan
Prior art keywords
mass
welding
zinc
weld metal
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008063491A
Other languages
Japanese (ja)
Other versions
JP2009214171A (en
Inventor
智和 延時
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2008063491A priority Critical patent/JP5187833B2/en
Publication of JP2009214171A publication Critical patent/JP2009214171A/en
Application granted granted Critical
Publication of JP5187833B2 publication Critical patent/JP5187833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、溶接接合して各種用途に用いられる亜鉛系合金めっき鋼板等の鋼材を、優れた耐食性を維持しつつ溶接部の割れ発生を抑制した溶接方法に関する。   The present invention relates to a welding method in which cracking of a welded portion is suppressed while maintaining excellent corrosion resistance of a steel material such as a zinc-based alloy-plated steel plate that is welded and used for various applications.

亜鉛系合金めっき鋼板、特にZn−Al−Mg系合金めっき鋼板は、優れた耐食性を活かして、建築や自動車等の分野において幅広く用いられている。
従来、比較的にサイズの小さい鋼製溶接構造物にあっては、非めっき部材を所定形状に組み合わせて溶接接合し、その後に、亜鉛系合金めっき浴に浸漬して鋼製部材および溶接部表面に亜鉛系合金めっき付着させ、溶接構造物全体の耐食性を確保している。
しかしながら、この方法も、比較的サイズの小さい構造物の製造に限定される。さらに生産性が低いために、結果的に製造コストが高いものとなっている。
Zinc-based alloy-plated steel sheets, particularly Zn-Al-Mg-based alloy-plated steel sheets, are widely used in the fields of architecture, automobiles, and the like, taking advantage of excellent corrosion resistance.
Conventionally, in a steel welded structure having a relatively small size, non-plated members are welded and combined in a predetermined shape, and then immersed in a zinc-based alloy plating bath to make the steel member and the surface of the welded portion. Zinc-based alloy plating is adhered to the entire structure to ensure the corrosion resistance of the entire welded structure.
However, this method is also limited to the production of relatively small structures. Further, since the productivity is low, the manufacturing cost is high as a result.

このため、比較的にサイズの大きい溶接構造物であっても、耐食性を維持したものを低コストで提供するために、優れた耐食性を有する亜鉛系合金めっきが施された鋼板を素材として溶接接合することにより、耐食性に優れた鋼製溶接構造物を得る方法が採用されるようになっている。
ところが、亜鉛系合金めっき鋼板を溶接接合する際に、溶接部はめっき層がなくなった状態となって耐食性が低下する、と言った問題点がある。この問題点は、溶接後、溶接部およびその近傍を、ジンクリッチペイント等の防錆塗料で後塗装することによって解消しているが、後塗装を必要とする点で生産性が低下するばかりでなく、塗装部の信頼性も十分でない。
For this reason, even in the case of a relatively large welded structure, in order to provide a low-cost one that maintains corrosion resistance, welding joining is performed using steel sheets plated with zinc-based alloy plating with excellent corrosion resistance as raw materials. By doing so, a method of obtaining a steel welded structure excellent in corrosion resistance is adopted.
However, when the zinc-based alloy-plated steel sheets are joined by welding, there is a problem that the welded portion is in a state where the plating layer disappears and the corrosion resistance is lowered. This problem is solved by post-coating the welded part and its vicinity with a rust-proof paint such as zinc rich paint after welding, but the productivity is only reduced because it requires post-coating. In addition, the reliability of the painted part is not sufficient.

そこで、溶接材料として耐食性に優れるステンレス鋼を用いて亜鉛系合金めっき鋼板を溶接接合することも提案されている。
例えば特許文献1では、質量%で、C:0.01〜0.05%、Si:0.1〜1%、Mn:0.5〜3%、Ni:7〜12%、Cr:24〜30%を含有し、さらに、Mo:2%以下およびN:0.17%以下の1種または2種を含有し、残部がFeおよび不可避的不純物からなるオーステナイト系ステンレス鋼組成の溶接ワイヤを用いて亜鉛系合金めっき鋼板を溶接接合している。
特開2007−118077号公報
Accordingly, it has also been proposed to weld and join a zinc-based alloy-plated steel sheet using stainless steel having excellent corrosion resistance as a welding material.
For example, in Patent Document 1, in mass%, C: 0.01 to 0.05%, Si: 0.1 to 1%, Mn: 0.5 to 3%, Ni: 7 to 12%, Cr: 24 to Using a welding wire of an austenitic stainless steel composition containing 30%, further containing one or two of Mo: 2% or less and N: 0.17% or less, the balance being Fe and inevitable impurities Zinc-based alloy-plated steel plates are welded.
JP 2007-118077 A

特許文献1に記載の発明は、亜鉛系合金めっき鋼板を溶接接合する際に、溶接金属をオーステナイト系ステンレス鋼組成のものとすることにより従来の普通鋼組成の溶接金属を用いる技術と比べて耐食性に優れた溶接部を得ることができる点においては、極めて有用な技術である。
しかしながら、溶接金属をオーステナイト系ステンレス鋼組成のものとすると、母材部の板厚が厚いものまたは拘束状態にあるような溶接条件の場合、オーステナイト系ステンレス鋼組成の溶接金属の熱膨張係数が大きいため、溶接時の溶接金属膨張後の収縮により母材部または溶着金属に引張応力が働き、さらに溶接時の熱により母材のめっきが溶融状態となり、溶接部近傍の母材部あるいは溶接金属に割れが発生することがある。割れが生じると本来の強度を発現しなくなってしまう。
本発明は、このような問題を解消すべく案出されたものであり、亜鉛系合金めっき鋼材を溶接接合する際に、溶接部およびその近傍において割れが発生することなく、素材亜鉛系めっき鋼板の耐食性を維持できる溶接方法を提供することを目的とする。
The invention described in Patent Document 1 has a corrosion resistance compared to the conventional technique using a weld metal having a normal steel composition by using a weld metal of an austenitic stainless steel composition when welding a zinc-based alloy plated steel sheet. This is a very useful technique in that a welded portion excellent in the above can be obtained.
However, when the weld metal has an austenitic stainless steel composition, the thermal expansion coefficient of the weld metal of the austenitic stainless steel composition is large when the base metal part has a thick plate thickness or is in a restrained state. For this reason, tensile stress acts on the base metal part or weld metal due to shrinkage after expansion of the weld metal during welding, and the base metal plating becomes molten due to heat during welding, causing the base metal part or weld metal near the weld part to melt. Cracks may occur. When cracking occurs, the original strength is not expressed.
The present invention has been devised to solve such a problem, and when a zinc-based alloy-plated steel material is joined by welding, cracks do not occur in the welded portion and the vicinity thereof, and the material is a zinc-based plated steel plate. It aims at providing the welding method which can maintain corrosion resistance of.

本発明の亜鉛系合金めっき鋼材の溶接方法は、その目的を達成するため、少なくとも一方が亜鉛系合金めっき鋼材である鋼材同士を溶接接合する際、溶接ワイヤとして、C:0.01〜0.1質量%,Si:0.1〜2.0質量%,Mn:0.1〜2.0質量%,Ni:0.6質量%以下,Cr:11.0〜25.0質量%,さらに必要に応じてTi:0.01〜0.5質量%,Nb:0.1〜1.0質量%,Zr:0.1〜1.0質量%,V:0.1〜1.0質量%のうち一種以上を含み、さらに必要に応じてMo:0.1〜3.0質量%を含有し残部がFeおよび不可避的不純物からなる鋼組成を有するソリッドワイヤを用いることを特徴とする。
なお、本発明を適用する亜鉛系合金めっき鋼材とは、亜鉛めっき鋼板の他に、Zn−Al系合金めっき鋼板、Zn−Al−Mg系合金めっき鋼板、Zn−Al−Mg−Si系合金めっき鋼板等を含むものである。
In order to achieve the object, the welding method of the zinc-based alloy plated steel material of the present invention, when welding steel members, at least one of which is a zinc-based alloy plated steel material, as a welding wire, C: 0.01 to 0.1% by mass, Si: 0.1-2.0 mass%, Mn: 0.1-2.0 mass%, Ni: 0.6 mass% or less, Cr: 11.0-25.0 mass%, and Ti: 0.01-0.5 mass%, Nb: 0.1-1.0 mass% as necessary %, Zr: 0.1 to 1.0% by mass, V: 0.1 to 1.0% by mass, and if necessary, Mo: 0.1 to 3.0% by mass, with the balance being Fe and inevitable impurities It is characterized by using the solid wire which has .
The zinc-based alloy-plated steel material to which the present invention is applied is not only a zinc-plated steel plate, but also a Zn-Al-based alloy-plated steel plate, a Zn-Al-Mg-based alloy-plated steel plate, and a Zn-Al-Mg-Si-based alloy plating. Includes steel plates and the like.

本発明方法では、溶接金属をフェライト系ステンレス鋼組成としている。このため、亜鉛系合金めっき鋼材の母材の熱膨張率と溶接金属の熱膨張率が近似するため、溶接接合後に、溶接部あるいはその近傍での割れ発生を抑制することができる。また、溶接金属がフェライト系ステンレス鋼組成を有しているために耐食性にも優れている。
したがって、亜鉛系合金めっき鋼材を素材とした溶接構造物として、所望に接合強度を発現し、かつ耐食性を維持したものを安定的に提供することができる。
In the method of the present invention, the weld metal has a ferritic stainless steel composition. For this reason, since the coefficient of thermal expansion of the base material of the zinc-based alloy plated steel material and the coefficient of thermal expansion of the weld metal approximate, it is possible to suppress the occurrence of cracks at or near the welded part after welding joining. Moreover, since the weld metal has a ferritic stainless steel composition, it has excellent corrosion resistance.
Therefore, it is possible to stably provide a welded structure made of a zinc-based alloy plated steel material that exhibits desired joint strength and maintains corrosion resistance.

本発明者等は、亜鉛系合金めっき鋼材を素材とした溶接構造物を製造する際、溶接部における耐食性の低下がなく、しかも溶接部およびその近傍での割れの発生を抑制する手段について、鋭意検討した。その過程で、フェライト系ステンレス鋼組成の溶接金属の有用性を見出した。
まず、溶接金属を、従来の普通鋼組成とした場合、溶接部の耐食性が低下することは言うまでもない。また、特許文献1で提案されているようなオーステナイト系ステンレス鋼組成とした場合、溶接条件によっては溶接部あるいはその近傍に割れが生じやすいことは前記した通りである。
The present inventors have earnestly devised means for producing a welded structure made of a zinc-based alloy-plated steel material so that there is no reduction in corrosion resistance in the welded part and suppresses the occurrence of cracks in the welded part and its vicinity. investigated. In the process, we found the usefulness of weld metal with ferritic stainless steel composition.
First, when the weld metal has a conventional ordinary steel composition, it goes without saying that the corrosion resistance of the welded portion decreases. Moreover, when it is set as the austenitic stainless steel composition as proposed by patent document 1, it is as above-mentioned that a crack is easy to produce in a welding part or its vicinity depending on welding conditions.

溶接金属をオーステナイト系ステンレス鋼組成とした場合に割れが生じやすい要因の一つとして、母材普通鋼組成のものと比べて、熱膨張率の違いが挙げられる。
例えば、C:0.08質量%,Si:0.38質量%,Mn:1.08質量%,Ni:8.17質量%,Cr:18.50質量%のオーステナイト系ステンレス鋼の熱膨張係数は17/℃×10-6程度である。
一方、C:0.1質量%,Si:0.005質量%,Mn:0.5質量%の低炭素鋼の熱膨張係数は11.6/℃×10-6程度である。この差が、溶接後の溶接部あるいはその近傍での割れ発生の要因とも言える。
When the weld metal has an austenitic stainless steel composition, one of the factors that are likely to cause cracking is a difference in the coefficient of thermal expansion compared to the base metal normal steel composition.
For example, the thermal expansion coefficient of austenitic stainless steel of C: 0.08 mass%, Si: 0.38 mass%, Mn: 1.08 mass%, Ni: 8.17 mass%, Cr: 18.50 mass% is about 17 / ° C. × 10 −6 is there.
On the other hand, the thermal expansion coefficient of low carbon steel with C: 0.1% by mass, Si: 0.005% by mass, and Mn: 0.5% by mass is about 11.6 / ° C. × 10 −6 . This difference can be said to be a cause of cracking at or near the welded portion after welding.

そこで、溶接金属としてフェライト系ステンレス鋼組成のものの使用を想定した。
現実の溶接、特にアーク溶接を行う際には、溶接金属を溶接ワイヤとして供給するので、溶接ワイヤとして、フェライト系ステンレス鋼組成のものを使用する。
その成分組成としては、C:0.01〜0.1質量%,Si:0.1〜2.0質量%,Mn:0.1〜2.0質量%,Ni:0.6質量%以下,Cr:11.0〜25.0質量%,さらに必要に応じてTi:0.01〜0.5質量%,Nb:0.1〜1.0質量%,Zr:0.1〜1.0質量%,V:0.1〜1.0質量%のうち一種以上を含み、さらに必要に応じてMo:0.1〜3.0質量%を含有し残部がFeおよび不可避的不純物からなる鋼組成の溶接ワイヤを用いる。
Therefore, it was assumed that a weld metal having a ferritic stainless steel composition was used.
When performing actual welding, particularly arc welding, since a weld metal is supplied as a welding wire, a ferritic stainless steel composition is used as the welding wire.
As its component composition, C: 0.01 to 0.1% by mass, Si: 0.1 to 2.0% by mass, Mn: 0.1 to 2.0% by mass, Ni: 0.6% by mass or less, Cr: 11.0 to 25.0% by mass, and further if necessary Ti: 0.01-0.5% by mass, Nb: 0.1-1.0% by mass, Zr: 0.1-1.0% by mass, V: One or more of 0.1-1.0% by mass, and Mo: 0.1-3.0% by mass as necessary A welding wire having a steel composition that contains Fe and the balance of inevitable impurities is used.

ここで、成分組成を上記のように限定した理由を説明する。なお、以下に示す「%」は、特に説明がない限り、「質量%」を意味するものとする。
C:0.01〜0.1%
Cは各種元素と化合物を作り、強度を増す元素であり、溶接金属の熱膨張係数を下げるが、その効果を得るために0.01%以上含有させる。ただし、0.1%を超える含有は溶接金属の強度を過剰に増加させるとともに、熱膨張係数を下げすぎ鋼材母材との差を生じさせ、溶接部およびその近傍に割れを生じさせる事があるため0.1%以下とした。
Here, the reason for limiting the component composition as described above will be described. The “%” shown below means “mass%” unless otherwise specified.
C: 0.01 to 0.1%
C is an element that forms a compound with various elements and increases the strength, and lowers the thermal expansion coefficient of the weld metal. However, if the content exceeds 0.1%, the strength of the weld metal is excessively increased, the coefficient of thermal expansion is lowered too much, causing a difference from the steel base material, and cracking may occur in the weld and its vicinity. % Or less.

Siはフェライトを生成し、溶接金属の脱酸剤として使用され、その効果を得るために0.1%以上含有させる。ただし、2.0%を超える含有は溶接金属中に化合物が生成し溶接金属の靭性を低下させる事があるため2.0%以下とした。   Si produces ferrite and is used as a deoxidizer for weld metals, and is contained in an amount of 0.1% or more in order to obtain the effect. However, if the content exceeds 2.0%, a compound is formed in the weld metal and the toughness of the weld metal may be reduced.

Mn:0.1〜2.0%
Mnは溶接金属の脱酸脱硫作用があり、その効果を得るために0.1%以上含有させる。ただし、2.0%を超える含有はオーステナイトを生成し溶接金属の熱膨張係数を増加させ鋼材母材との差を生じ、溶接部およびその近傍に割れを生じさせる事があるため2.0%以下とした。
Mn: 0.1-2.0%
Mn has a deoxidizing and desulfurizing action of the weld metal, and in order to obtain the effect, 0.1% or more is contained. However, if the content exceeds 2.0%, austenite is generated, the coefficient of thermal expansion of the weld metal is increased, and a difference from the steel base material is caused.

Ni:0.6%以下
Niは溶接金属の耐食性を増し、オーステナイトを生成する元素であるが、0.6%を超える含有は溶接金属の熱膨張係数が増加し鋼材母材との差を生じさせ、溶接部およびその近傍に割れを生じさせる事があるため0.6%以下とした。
なお、通常、ステンレス鋼では、Niは不可避的に含まれており、規定していない場合であっても少量の含有を許容している(例えばJIS G4304等)ので、本明細書にあっては、下限値は規定しないこととした。
Ni: 0.6% or less Ni is an element that increases the corrosion resistance of the weld metal and generates austenite. However, if it exceeds 0.6%, the thermal expansion coefficient of the weld metal increases and causes a difference from the steel base material. In addition, since it may cause cracks in the vicinity thereof, the content was made 0.6% or less.
Usually, in stainless steel, Ni is inevitably contained, and even if not specified, a small amount is allowed (for example, JIS G4304). The lower limit was not specified.

Cr:11.0〜25.0%
Crは溶接金属の耐食性を増し、13%以上含有すると著しく耐食性が向上する。また、フェライトを生成する元素である。これらの効果を得るために11%以上含有していればよいがフェライトを生成させ熱膨張係数を鋼材母材と近似させるためには16%以上の含有が好ましい。ただし、25%を超える含有は溶接金属中に化合物が生成し溶接金属の靭性を低下させる事があるため25%以下とした。
Cr: 11.0-25.0%
Cr increases the corrosion resistance of the weld metal, and if it is contained at 13% or more, the corrosion resistance is remarkably improved. It is also an element that produces ferrite. In order to obtain these effects, the content should be 11% or more. However, in order to generate ferrite and approximate the thermal expansion coefficient to the steel base material, the content is preferably 16% or more. However, if the content exceeds 25%, a compound is formed in the weld metal and the toughness of the weld metal may be lowered, so the content was made 25% or less.

Ti:0.01〜0.5%
Tiはフェライトを生成する元素であり、結晶粒を微細化し脱酸効果もあるので、必要に応じて含ませる。これらの効果を得るために0.01%以上含有させる。ただし、0.5%を超える含有は溶接金属の靭性を低下させる事があるため0.5%以下とした。
Ti: 0.01 to 0.5%
Ti is an element that generates ferrite, and has a deoxidizing effect by refining crystal grains. Therefore, Ti is included as necessary. To obtain these effects, 0.01% or more is contained. However, if the content exceeds 0.5%, the toughness of the weld metal may be lowered, so the content was made 0.5% or less.

Nb:0.1〜1.0%
Nbは溶接金属中のCやNを安定化する作用があり耐粒界腐食性があるので、必要に応じて含ませる。その効果をえるために0.1%以上含有する。ただし、1.0%を超える含有は溶接金属中に金属間化合物を析出し、溶接金属の靭性を低下させる事があるため1.0%以下とした。
Nb: 0.1-1.0%
Nb has the effect of stabilizing C and N in the weld metal and has intergranular corrosion resistance, so it is included as necessary. In order to obtain the effect, it contains 0.1% or more. However, if the content exceeds 1.0%, an intermetallic compound is precipitated in the weld metal, which may reduce the toughness of the weld metal.

Zr:0.1〜1.0%
Zrはフェライトを生成する元素であり、クロム炭化物の析出による耐食性の劣化を改善する効果があるので、必要に応じて含ませる。これらの効果を得るために0.1%以上含有させる。ただし、1.0%を超える含有は溶接金属の強度を増加させ、溶接部およびその近傍に割れを生じさせる事があるため1.0%以下とした。
Zr: 0.1 to 1.0%
Zr is an element that produces ferrite, and has the effect of improving the deterioration of corrosion resistance due to the precipitation of chromium carbide, so is included as necessary. In order to obtain these effects, 0.1% or more is contained. However, if the content exceeds 1.0%, the strength of the weld metal is increased, and cracks may occur in the welded portion and its vicinity, so the content was made 1.0% or less.

V:0.1〜1.0%
Vは耐食性向上および結晶粒を微細化し粘り強くする効果があるので、必要に応じて含ませる。これらの効果を得るために0.1%以上含有させる。ただし、1.0%を超える含有は溶接金属の強度を増加させ、溶接部およびその近傍に割れを生じさせる事があるため1.0%以下とした。
V: 0.1-1.0%
V has the effect of improving the corrosion resistance and making the crystal grains fine and tenacious, so it is included as necessary. In order to obtain these effects, 0.1% or more is contained. However, if the content exceeds 1.0%, the strength of the weld metal is increased, and cracks may occur in the welded portion and its vicinity, so the content was made 1.0% or less.

Mo:0.1〜3.0%
Moは高温加熱時に結晶粒の粗大化を防ぎ靭性低下を防止する。また、耐食性を向上させる。したがって、必要に応じて含ませる。これらの効果を得るために0.1%以上含有させる。ただし、3.0%を超える含有は溶接金属の強度を増加させ、溶接部およびその近傍に割れを生じさせる事があるため3.0%以下とした。
Mo: 0.1-3.0%
Mo prevents coarsening of crystal grains during high-temperature heating and prevents a decrease in toughness. Moreover, corrosion resistance is improved. Therefore, it is included as necessary. In order to obtain these effects, 0.1% or more is contained. However, if the content exceeds 3.0%, the strength of the weld metal is increased, and cracks may occur in the welded portion and its vicinity, so the content was made 3.0% or less.

本発明のフェライト系ステンレスワイヤは上記成分の溶接金属を形成する溶接ワイヤとして、ステンレス素線そのもののソリッドワイヤおよびステンレス外皮の内部に金属成分調整用の金属粉、アーク安定・金属成分調整用のスラグ成分(全ワイヤ質量に対して、TiO2:4.0〜7.0質量%,SiO2:1.5〜3.5質量%を含有し、スラグ成分の合計量が5.5〜10.5質量%)を内包したフラックス入りワイヤのいずれも適用可能である。 The ferritic stainless steel wire of the present invention is a welding wire for forming a weld metal of the above components, a solid wire of the stainless steel wire itself, a metal powder for adjusting the metal component inside the stainless steel sheath, and a slag for adjusting the arc stability and adjusting the metal component Any of the flux-cored wires containing the components (containing TiO 2 : 4.0 to 7.0 mass%, SiO 2 : 1.5 to 3.5 mass% and the total amount of slag components is 5.5 to 10.5 mass% with respect to the total wire mass) Is also applicable.

TiO 2 :4.0〜7.0質量%
TiO2はアークの安定性、溶接金属成分を整えるのに必要な成分であるが、4.0%未満だとその効果が現れないため、4.0%以上含有させる。ただし、7.0%を超えると粘性が低下して溶接金属の形状がいびつになり外観が損なわれるため7.0%以下とした。
TiO 2: 4.0 to 7.0 mass%
TiO 2 is a component necessary for adjusting the stability of the arc and the weld metal component, but if it is less than 4.0%, the effect does not appear, so 4.0% or more is contained. However, if it exceeds 7.0%, the viscosity decreases, the shape of the weld metal becomes distorted, and the appearance is impaired.

SiO 2 :1.5〜3.5質量%
SiO2は溶接金属を覆うスラグ形成に必要な成分であるが、1.5%未満だと溶接金属を十分に覆うようなスラグ形成が困難であり、溶接金属の酸化防止効果が得られないため、1.5%以上含有させる。ただし、3.5%を超えるとスラグの剥離性が劣化し作業性が損なわれるため3.5%以下とした。
SiO 2 : 1.5 to 3.5% by mass
SiO 2 is a component necessary for forming a slag covering the weld metal, but if it is less than 1.5%, it is difficult to form a slag that sufficiently covers the weld metal, and the antioxidant effect of the weld metal cannot be obtained. Contain at least%. However, if it exceeds 3.5%, the slag peelability deteriorates and the workability is impaired.

本発明において、亜鉛系合金めっき鋼材の母材に軟鋼、高張力鋼、低合金鋼、ステンレス鋼材等について、鋼材成分を特に規定する必要はない。   In this invention, it is not necessary to prescribe | regulate especially a steel material component about mild steel, high-tensile steel, low alloy steel, stainless steel materials, etc. to the base material of zinc-based alloy plating steel materials.

また、本発明は、溶接継手の形態が突合せ継手、すみ肉継手等、いずれの継手に対しても適用可能である。上述したように亜鉛系合金めっき鋼材と溶接金属の熱膨張率が異なった場合、母材部または溶着金属に引張応力が働き、溶接部あるいはその近傍で割れが発生する。したがって、本発明は、熱膨張率の差異により母材部または溶着金属に引張応力が働き易い施工方法である、亜鉛系合金めっき鋼材と丸棒鋼を円周状にすみ肉溶接する施工法に適用する事により、溶接部あるいはその近傍での割れ発生を抑制する効果が顕著となる。   In addition, the present invention can be applied to any joint such as a butt joint and a fillet joint in the form of a weld joint. As described above, when the thermal expansion coefficients of the zinc-based alloy-plated steel material and the weld metal are different, tensile stress acts on the base metal part or the weld metal, and cracks occur at or near the weld part. Therefore, the present invention is applied to a construction method in which fillet welding of a zinc-based alloy-plated steel material and a round bar steel is performed in a circumferential shape, which is a construction method in which tensile stress is easily applied to a base metal part or a weld metal due to a difference in thermal expansion coefficient. By doing, the effect which suppresses the crack generation | occurrence | production in a welding part or its vicinity becomes remarkable.

また、溶接方法はMIGアーク溶接、MAGアーク溶接、炭酸ガスアーク溶接のいずれにも適用可能である。溶接条件、施工状態については特に限定する必要はない。   The welding method can be applied to any of MIG arc welding, MAG arc welding, and carbon dioxide arc welding. There is no need to specifically limit welding conditions and construction conditions.

表1に示す鋼板と表2に示す溶接ワイヤを用い、図1に示す形態のすみ肉溶接を行った。なお、表1で示しためっき鋼板の厚さは3.2mmであり、めっきを施していない丸棒鋼の径は20.0mmである。また、溶接条件は表3に示す通りとし、溶接ビードが一部重なり合うような溶接を行った。
そして、溶接ビードが重なるラップ部とその反対側の溶接ビードが重なっていないシングル部の断面について目視観察を行った。めっき鋼板母材または溶接金属に割れがなかったものを○とし、割れが認められたものを×で評価した。
その結果を表4に示す。
The fillet welding of the form shown in FIG. 1 was performed using the steel plate shown in Table 1 and the welding wire shown in Table 2. In addition, the thickness of the plated steel plate shown in Table 1 is 3.2 mm, and the diameter of the round bar steel not plated is 20.0 mm. The welding conditions were as shown in Table 3, and welding was performed so that the weld beads partially overlapped.
And the visual observation was performed about the cross section of the lap | wrap part which a welding bead overlaps, and the single part which the welding bead of the other side does not overlap. The case where there was no crack in the plated steel base material or the weld metal was evaluated as “◯”, and the case where crack was observed was evaluated as “×”.
The results are shown in Table 4.

Figure 0005187833
Figure 0005187833

Figure 0005187833
Figure 0005187833

Figure 0005187833
Figure 0005187833

Figure 0005187833
Figure 0005187833

表4に見られる通り、フェライト系ステンレス鋼組成の溶接ワイヤを用いた場合には、どのようなめっき素材であっても溶接部に割れは無かったが、オーステナイト系ステンレス鋼組成の溶接ワイヤを用いた場合には、全てのめっき素材で溶接部に割れが発生していた。また、二相系ステンレス鋼組成の溶接ワイヤを用いた場合には、炭素量が多いめっき鋼板を溶接する際に、割れが生じやすいことがわかる。溶接金属部と母材金属部の熱膨張に差異が生じた結果と推測される。   As can be seen in Table 4, when a welding wire with a ferritic stainless steel composition was used, there was no cracking in the welded part regardless of the plating material, but a welding wire with an austenitic stainless steel composition was used. In such a case, cracks occurred in the welded portion of all the plating materials. Moreover, when using the welding wire of a duplex stainless steel composition, it turns out that a crack tends to occur when welding a plated steel plate having a large amount of carbon. This is presumably due to the difference in thermal expansion between the weld metal part and the base metal part.

実施例で行った溶接試験方法を説明する図The figure explaining the welding test method performed in the Example

符号の説明Explanation of symbols

1:亜鉛系合金めっき鋼板 2:丸棒鋼 3:溶接金属 1: Zinc-based alloy-plated steel sheet 2: Round bar steel 3: Weld metal

Claims (3)

少なくとも一方が亜鉛系合金めっき鋼材である鋼材同士を溶接接合する際、溶接ワイヤ として、C:0.01〜0.1質量%,Si:0.1〜2.0質量%,Mn:0.1〜2.0質量%,Ni:0.6質量%以下,Cr:11.0〜25.0質量%を含み、残部がFeおよび不可避的不純物からなる鋼組成を有するソリッドワイヤを用いることを特徴とする亜鉛系合金めっき鋼材の溶接方法。When welding steel materials, at least one of which is a zinc-based alloy plated steel material, as welding wires , C: 0.01 to 0.1 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.1 to 2.0 mass%, Ni: 0.6 mass %, Cr: 11.0 to 25.0% by mass , a solid wire having a steel composition comprising the balance of Fe and unavoidable impurities is used. さらに、Ti:0.01〜0.5質量%,Nb:0.1〜1.0質量%,Zr:0.1〜1.0質量%,V:0.1〜1.0質量%のうち一種以上を含む鋼組成を有するソリッドワイヤを用いる請求項1に記載の亜鉛系合金めっき鋼材の溶接方法。Furthermore, the solid wire which has the steel composition which contains 1 or more types among Ti: 0.01-0.5 mass%, Nb: 0.1-1.0 mass%, Zr: 0.1-1.0 mass%, V: 0.1-1.0 mass% is used. The method for welding zinc-based alloy-plated steel as described in 1. 上記に加えMo:0.1〜3.0質量%の鋼組成を有するソリッドワイヤを用いる請求項1または2に記載の亜鉛系合金めっき鋼材の溶接方法。The welding method for zinc-based alloy plated steel according to claim 1 or 2, wherein a solid wire having a steel composition of Mo: 0.1 to 3.0% by mass is used in addition to the above.
JP2008063491A 2008-03-13 2008-03-13 Welding method for zinc-based alloy plated steel Active JP5187833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063491A JP5187833B2 (en) 2008-03-13 2008-03-13 Welding method for zinc-based alloy plated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063491A JP5187833B2 (en) 2008-03-13 2008-03-13 Welding method for zinc-based alloy plated steel

Publications (2)

Publication Number Publication Date
JP2009214171A JP2009214171A (en) 2009-09-24
JP5187833B2 true JP5187833B2 (en) 2013-04-24

Family

ID=41186605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063491A Active JP5187833B2 (en) 2008-03-13 2008-03-13 Welding method for zinc-based alloy plated steel

Country Status (1)

Country Link
JP (1) JP5187833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546245B1 (en) 2013-12-26 2015-08-20 주식회사 포스코 Ferritic stainless steel sheet with excellent coating adhesion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035268A (en) * 2010-08-03 2012-02-23 Miki Seisakusho:Kk Welding method of galvanized steel
JP2020059059A (en) * 2018-10-12 2020-04-16 株式会社三五 Gas shield metal welding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154395A (en) * 1981-03-19 1982-09-24 Daido Steel Co Ltd Welding material
JPH09192879A (en) * 1996-01-10 1997-07-29 Daido Steel Co Ltd Ferritic stainless steel welding wire superior in weld crack resistance and its manufacture
JP2002035988A (en) * 2000-07-27 2002-02-05 Daido Steel Co Ltd Welding wire and welding methos using the same
JP2006035294A (en) * 2004-07-29 2006-02-09 Nippon Steel Corp Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP5098217B2 (en) * 2005-09-28 2012-12-12 新日鐵住金株式会社 Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
JP2007237227A (en) * 2006-03-08 2007-09-20 Taiyo Nippon Sanso Corp Mag welding method and shielding gas used therefor
JP5137412B2 (en) * 2007-02-13 2013-02-06 日鐵住金溶接工業株式会社 Gas shielded arc welding method for galvanized steel bar and stainless steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546245B1 (en) 2013-12-26 2015-08-20 주식회사 포스코 Ferritic stainless steel sheet with excellent coating adhesion

Also Published As

Publication number Publication date
JP2009214171A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JP6573056B1 (en) Solid wire for gas shielded arc welding to thin steel plate
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
JP4886440B2 (en) High strength weld metal with excellent low temperature toughness
KR101231949B1 (en) Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same
JP2008030121A (en) Stainless steel wire with flux core for welding zinc coated steel sheet
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP5137412B2 (en) Gas shielded arc welding method for galvanized steel bar and stainless steel plate
JP3433891B2 (en) Gas shielded arc welding wire for P-added sheet steel and MAG welding method
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP5187833B2 (en) Welding method for zinc-based alloy plated steel
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP6829111B2 (en) Filling material for TIG welding
KR101243006B1 (en) Aluminium plated ferritic stainless steel welding method
JP2007277717A (en) Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
JP2022102850A (en) SOLID WIRE FOR GAS SHIELD ARC WELDING USED FOR WELD OF LOW Si STEEL, JOINTING METHOD OF LOW Si STEEL, AND REPAIR METHOD OF LOW Si STEEL
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP4452205B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2024068661A (en) Solid wire for gas shielded arc welding, method for manufacturing gas shielded arc welding joint, and automobile suspension part
JP2021003732A (en) Solid wire for gas shield arc welding, and method for producing weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350