JP6883267B2 - Manufacturing method of carbon material - Google Patents

Manufacturing method of carbon material Download PDF

Info

Publication number
JP6883267B2
JP6883267B2 JP2018071641A JP2018071641A JP6883267B2 JP 6883267 B2 JP6883267 B2 JP 6883267B2 JP 2018071641 A JP2018071641 A JP 2018071641A JP 2018071641 A JP2018071641 A JP 2018071641A JP 6883267 B2 JP6883267 B2 JP 6883267B2
Authority
JP
Japan
Prior art keywords
carbon material
material precursor
acrylamide
mol
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018071641A
Other languages
Japanese (ja)
Other versions
JP2019026827A (en
Inventor
卓也 森下
卓也 森下
研一 林田
研一 林田
野村 和弘
和弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to US16/043,271 priority Critical patent/US11001660B2/en
Publication of JP2019026827A publication Critical patent/JP2019026827A/en
Application granted granted Critical
Publication of JP6883267B2 publication Critical patent/JP6883267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素材料の製造方法に関する。 The present invention relates to a method for producing a carbon material.

炭素材料の1種である炭素繊維の製造方法としては、従来から、ポリアクリロニトリルを紡糸して得られる炭素繊維前駆体に耐炎化処理を施した後、炭化処理を施す方法が主として採用されている(例えば、特公昭37−4405号公報(特許文献1)、特開2015−74844号公報(特許文献2)、特開2016−40419号公報(特許文献3)、特開2016−113726号公報(特許文献4))。この方法に用いられるポリアクリロニトリルは安価な汎用溶媒に溶解しにくいため、重合や紡糸の際に、ジメチルスルホキシドやN,N−ジメチルアセトアミド等の高価な溶媒を使用する必要があり、炭素繊維の製造コストが高くなるという問題があった。 As a method for producing carbon fiber, which is one of the carbon materials, a method in which a carbon fiber precursor obtained by spinning polyacrylonitrile is subjected to a flame resistance treatment and then carbonized is mainly adopted. (For example, Japanese Patent Application Laid-Open No. 37-4405 (Patent Document 1), Japanese Patent Application Laid-Open No. 2015-74444 (Patent Document 2), Japanese Patent Application Laid-Open No. 2016-40419 (Patent Document 3), Japanese Patent Application Laid-Open No. 2016-113726 (Patent Document 3). Patent Document 4)). Since polyacrylonitrile used in this method is difficult to dissolve in an inexpensive general-purpose solvent, it is necessary to use an expensive solvent such as dimethyl sulfoxide or N, N-dimethylacetamide during polymerization or spinning, and carbon fiber production. There was a problem that the cost was high.

一方、ポリアクリルアミドは水溶性のポリマーであり、重合や成形加工(フィルム化、シート化、紡糸等)の際に、安価で環境負荷の小さい水を溶媒として使用することができるため、炭素材料の製造コストの削減が期待される。 On the other hand, polyacrylamide is a water-soluble polymer, and since it is possible to use inexpensive and environmentally friendly water as a solvent during polymerization and molding (film formation, sheet formation, spinning, etc.), it is a carbon material. It is expected to reduce manufacturing costs.

また、特開2013−103992号公報(特許文献5)には、アクリロニトリル単位96〜97.5質量部と、アクリルアミド単位2.5〜4質量部と、カルボン酸含有ビニルモノマー0.01〜0.5質量部とからなるポリアクリロニトリル系共重合体からなる炭素材料前駆体繊維が記載されている。 Further, Japanese Patent Application Laid-Open No. 2013-103992 (Patent Document 5) describes acrylonitrile units of 96 to 97.5 parts by mass, acrylamide units of 2.5 to 4 parts by mass, and carboxylic acid-containing vinyl monomers of 0.01 to 0. Described are carbon material precursor fibers made of a polyacrylonitrile-based copolymer consisting of 5 parts by mass.

特公昭37−4405号公報Tokukousho 37-4405 特開2015−74844号公報JP-A-2015-74844 特開2016−40419号公報Japanese Unexamined Patent Publication No. 2016-40419 特開2016−113726号公報Japanese Unexamined Patent Publication No. 2016-113726 特開2013−103992号公報Japanese Unexamined Patent Publication No. 2013-103992

しかしながら、ポリアクリルアミドを用いて作製した炭素材料前駆体は炭化収率が低いという問題があった。また、特許文献5に記載のポリアクリロニトリル系共重合体は、アクリルアミド単位を含有するものの、水には不溶であり、重合や成形加工の際に、N,N−ジメチルアセトアミド等の高価な溶媒を使用する必要があるため、炭素繊維の製造コストが高くなるという問題があった。 However, the carbon material precursor produced using polyacrylamide has a problem that the carbonization yield is low. Further, although the polyacrylonitrile-based copolymer described in Patent Document 5 contains an acrylamide unit, it is insoluble in water, and an expensive solvent such as N, N-dimethylacetamide may be used during polymerization or molding. Since it is necessary to use it, there is a problem that the production cost of carbon fiber becomes high.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、アクリルアミド系共重合体からなり、高い炭化収率を有する炭素材料前駆体又はそれを含有する炭素材料前駆体組成物を用いた炭素材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and uses a carbon material precursor composed of an acrylamide-based copolymer and having a high carbonization yield or a carbon material precursor composition containing the same . It is an object of the present invention to provide a method for producing a carbonized material.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、アクリルアミド系モノマー単位とシアン化ビニル系モノマー単位とを特定の割合で含有するアクリルアミド/シアン化ビニル系共重合体を用いることによって、水性溶媒又は水系混合溶媒に対する可溶性と高い炭化収率とを兼ね備えた炭素材料前駆体が得られることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors use an acrylamide / vinyl cyanide copolymer containing an acrylamide-based monomer unit and a vinyl cyanide-based monomer unit in a specific ratio. As a result, they have found that a carbon material precursor having both solubility in an aqueous solvent or an aqueous mixed solvent and a high carbonization yield can be obtained, and have completed the present invention.

すなわち、本発明の炭素材料の製造方法は、アクリルアミド系モノマー単位50〜99.9モル%とシアン化ビニル系モノマー単位0.1〜50モル%とを含有するアクリルアミド/シアン化ビニル系共重合体からなる炭素材料前駆体又は前記炭素材料前駆体と酸及びその塩からなる群から選択される少なくとも1種の添加成分とを含有する炭素材料前駆体組成物に炭化処理を施すことを特徴とする。また、本発明の炭素材料の製造方法においては、前記アクリルアミド/シアン化ビニル系共重合体が水性溶媒又は水系混合溶媒に可溶であることが好ましく、さらに、前記添加成分の含有量が前記炭素材料前駆体100質量部に対して0.1〜40質量部であることが好ましい。また、本発明の炭素材料の製造方法においては、前記炭化処理の前に、前記炭素材料前駆体又は前記炭素材料前駆体組成物に耐炎化処理を施すことが好ましい。 That is , the method for producing a carbon material of the present invention is an acrylamide / vinyl cyanide copolymer containing 50 to 99.9 mol% of an acrylamide monomer unit and 0.1 to 50 mol% of a vinyl cyanide monomer unit. and wherein the carbonization treatment is subjected to a carbon material precursor or the carbon material precursor composition comprising at least one additive component selected from the carbon material precursor with an acid, and the group consisting of a salt consisting of .. Further, in the method for producing a carbon material of the present invention, it is preferable that the acrylamide / vinyl cyanide copolymer is soluble in an aqueous solvent or an aqueous mixed solvent, and the content of the additive component is the carbon. It is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the material precursor. In the method of producing a carbon material of the present invention, prior to the carbonization treatment, it is preferable that the flame resistant treatment applied to the carbon material precursor or the carbon material precursor composition.

なお、本発明において、水性溶液とは、溶媒として水性溶媒(水、アルコール等、及びこれらの混合溶媒)を含有する溶液であり、水系混合溶液とは、溶媒として水系混合溶媒(前記水性溶媒と有機溶媒(テトラヒドロフラン等)との混合溶媒)を含有する溶液である。また、前記水系混合溶媒中の有機溶媒の含有量としては、前記水性溶媒に不溶又は難溶なアクリルアミド/シアン化ビニル系共重合体が有機溶媒を混合することによって溶解する量であれば特に制限はない。 In the present invention, the aqueous solution is a solution containing an aqueous solvent (water, alcohol, etc., and a mixed solvent thereof) as a solvent, and the aqueous mixed solution is an aqueous mixed solvent (with the aqueous solvent) as a solvent. A solution containing a mixed solvent with an organic solvent (such as tetrahydrofuran). The content of the organic solvent in the aqueous mixed solvent is particularly limited as long as the amount of the acrylamide / vinyl cyanide copolymer insoluble or sparingly soluble in the aqueous solvent is dissolved by mixing the organic solvent. There is no.

また、本発明の炭素材料前駆体が高い炭化収率を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の炭素材料前駆体においては、シアン化ビニル系モノマー単位が存在することによって、加熱処理において、アクリルアミド系モノマー単位同士による環化反応よりも、アクリルアミド系モノマー単位とシアン化ビニル系モノマー単位による環化反応や、シアン化ビニル系モノマー単位同士による環化反応が優先的に進行することにより、ポリマー鎖に剛直な環状構造が導入されて耐熱性が向上し、また、このような環状構造によって、ポリマー鎖の末端からの連鎖的な熱分解が抑制されることにより、熱安定性が向上するため、炭化収率が向上すると推察される。さらに、本発明の炭素材料前駆体組成物においては、添加成分である酸やその塩がアクリルアミド系モノマー単位同士の脱水反応を触媒することにより環状構造が形成され、アクリルアミド/シアン化ビニル系共重合体の構造が耐熱性の高い構造に変換されるため、炭素材料前駆体の炭化収率が更に高くなると推察される。 Moreover, the reason why the carbon material precursor of the present invention shows a high carbonization yield is not always clear, but the present inventors infer as follows. That is, in the carbon material precursor of the present invention, the presence of the vinyl cyanide-based monomer unit causes the acrylamide-based monomer unit and the vinyl cyanide-based monomer to be present in the heat treatment rather than the cyclization reaction between the acrylamide-based monomer units. By preferentially proceeding with the cyclization reaction by units and the cyclization reaction between vinyl cyanide-based monomer units, a rigid cyclic structure is introduced into the polymer chain to improve heat resistance, and such cyclics are also obtained. It is presumed that the structure suppresses the chained thermal decomposition from the end of the polymer chain, thereby improving the thermal stability and thus improving the carbonization yield. Further, in the carbon material precursor composition of the present invention, an acid or a salt thereof, which is an additive component, catalyzes a dehydration reaction between acrylamide-based monomer units to form a cyclic structure, and an acrylamide / vinyl cyanide-based copolymer weight is formed. Since the combined structure is converted into a structure with high heat resistance, it is presumed that the carbonization yield of the carbon material precursor is further increased.

本発明によれば、アクリルアミド系共重合体からなり、高い炭化収率を有する炭素材料前駆体を得ることが可能となる。また、このような本発明の炭素材料前駆体を用いることによって、低コストで安全な水性溶媒又は水系混合溶媒を用いて効率よく炭素材料を製造することが可能となる。 According to the present invention, it is possible to obtain a carbon material precursor which is composed of an acrylamide-based copolymer and has a high carbonization yield. Further, by using such a carbon material precursor of the present invention, it becomes possible to efficiently produce a carbon material using a low-cost and safe aqueous solvent or an aqueous mixed solvent.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof.

〔炭素材料前駆体〕
先ず、本発明の炭素材料前駆体について説明する。本発明の炭素材料前駆体は、アクリルアミド系モノマー単位50〜99.9モル%とシアン化ビニル系モノマー単位0.1〜50モル%とを含有するアクリルアミド/シアン化ビニル系共重合体からなるものである。
[Carbon material precursor]
First, the carbon material precursor of the present invention will be described. The carbon material precursor of the present invention comprises an acrylamide / vinyl cyanide copolymer containing 50 to 99.9 mol% of an acrylamide monomer unit and 0.1 to 50 mol% of a vinyl cyanide monomer unit. Is.

(アクリルアミド/シアン化ビニル系共重合体)
本発明に用いられるアクリルアミド/シアン化ビニル系共重合体は、全モノマー単位100モル%に対して、アクリルアミド系モノマー単位を50〜99.9モル%の割合で、シアン化ビニル系モノマー単位を0.1〜50モル%の割合で含有するものである。このようなアクリルアミド/シアン化ビニル系共重合体は水性溶媒又は水系混合溶媒に可溶である。一方、アクリルアミド系モノマー単位の割合が前記下限未満になると(シアン化ビニル系モノマー単位が前記上限を超えると)、アクリルアミド/シアン化ビニル系共重合体が水性溶媒又は水系混合溶媒に溶解しない。他方、アクリルアミド系モノマー単位の割合が前記上限を超えると(シアン化ビニル系モノマー単位が前記下限未満になると)、高い炭化収率を有する炭素材料前駆体が得られない。さらに、前記共重合体の水性溶媒又は水系混合溶媒に対する可溶性の観点から、アクリルアミド系モノマー単位の含有量の下限としては、60モル%以上が好ましく、70モル%以上がより好ましく、シアン化ビニル系モノマー単位の含有量の上限としては、40モル%以下が好ましく、30モル%以下がより好ましい。また、炭素材料前駆体の炭化収率が向上するという観点から、アクリルアミド系モノマー単位の含有量の上限としては、99モル%以下が好ましく、97モル%以下がより好ましく、95モル%以下が更に好ましく、90モル%以下が特に好ましく、シアン化ビニル系モノマー単位の含有量の下限としては、1モル%以上が好ましく、3モル%以上がより好ましく、5モル%以上が更に好ましく、10モル%以上が特に好ましい。
(Acrylamide / vinyl cyanide copolymer)
The acrylamide / vinyl cyanide copolymer used in the present invention contains 50 to 99.9 mol% of acrylamide monomer units and 0 vinyl cyanide monomer units with respect to 100 mol% of all monomer units. It is contained in a proportion of 1 to 50 mol%. Such an acrylamide / vinyl cyanide copolymer is soluble in an aqueous solvent or an aqueous mixed solvent. On the other hand, when the ratio of the acrylamide-based monomer unit is less than the lower limit (when the vinyl cyanide-based monomer unit exceeds the upper limit), the acrylamide / vinyl cyanide-based copolymer is not dissolved in the aqueous solvent or the aqueous solvent. On the other hand, when the ratio of the acrylamide-based monomer unit exceeds the upper limit (when the vinyl cyanide-based monomer unit becomes less than the lower limit), a carbon material precursor having a high carbonization yield cannot be obtained. Further, from the viewpoint of solubility of the copolymer in an aqueous solvent or an aqueous mixed solvent, the lower limit of the content of the acrylamide-based monomer unit is preferably 60 mol% or more, more preferably 70 mol% or more, and vinyl cyanide-based. The upper limit of the content of the monomer unit is preferably 40 mol% or less, more preferably 30 mol% or less. From the viewpoint of improving the carbonization yield of the carbon material precursor, the upper limit of the content of the acrylamide-based monomer unit is preferably 99 mol% or less, more preferably 97 mol% or less, and further preferably 95 mol% or less. Preferably, 90 mol% or less is particularly preferable, and the lower limit of the content of the vinyl cyanide-based monomer unit is preferably 1 mol% or more, more preferably 3 mol% or more, further preferably 5 mol% or more, and 10 mol%. The above is particularly preferable.

前記アクリルアミド系モノマーとしては、例えば、アクリルアミド;N−メチルアクリルアミド、N−エチルアクリルアミド、N−n−プロピルアクリルアミド、N−イソプロピルアクリルアミド、N−n−ブチルアクリルアミド、N−tert−ブチルアクリルアミド等のN−アルキルアクリルアミド;N−シクロヘキシルアクリルアミド等のN−シクロアルキルアクリルアミド;N,N−ジメチルアクリルアミド等のジアルキルアクリルアミド;ジメチルアミノエチルアクリルアミド、ジメチルアミノプロピルアクリルアミド等のジアルキルアミノアルキルアクリルアミド;N−(ヒドロキシメチル)アクリルアミド、N−(ヒドロキシエチル)アクリルアミド等のヒドロキシアルキルアクリルアミド;N−フェニルアクリルアミド等のN−アリールアクリルアミド;ジアセトンアクリルアミド;N,N’−メチレンビスアクリルアミド等のN,N’−アルキレンビスアクリルアミド;メタクリルアミド;N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−n−プロピルメタクリルアミド、N−イソプロピルメタクリルアミド、N−n−ブチルメタクリルアミド、N−tert−ブチルメタクリルアミド等のN−アルキルメタクリルアミド;N−シクロヘキシルメタクリルアミド等のN−シクロアルキルメタクリルアミド;N,N−ジメチルメタクリルアミド等のジアルキルメタクリルアミド;ジメチルアミノエチルメタクリルアミド、ジメチルアミノプロピルメタクリルアミド等のジアルキルアミノアルキルメタクリルアミド;N−(ヒドロキシメチル)メタクリルアミド、N−(ヒドロキシエチル)メタクリルアミド等のヒドロキシアルキルメタクリルアミド;N−フェニルメタクリルアミド等のN−アリールメタクリルアミド;ジアセトンメタクリルアミド;N,N’−メチレンビスメタクリルアミド等のN,N’−アルキレンビスメタクリルアミドが挙げられる。これらのアクリルアミド系モノマーは1種を単独で使用しても2種以上を併用してもよい。また、これらのアクリルアミド系モノマーの中でも、水性溶媒又は水系混合溶媒への溶解性が高いという観点から、アクリルアミド;ジアルキルアクリルアミド、メタクリルアミド、ジアルキルメタクリルアミドが好ましく、アクリルアミドが特に好ましい。 Examples of the acrylamide-based monomer include acrylamide; N-methylacrylamide, N-ethylacrylamide, Nn-propylacrylamide, N-isopropylacrylamide, Nn-butylacrylamide, N-tert-butylacrylamide and the like. Alkylacrylamide; N-cycloalkylacrylamide such as N-cyclohexylacrylamide; Dialkylacrylamide such as N, N-dimethylacrylamide; Dialkylaminoalkylacrylamide such as dimethylaminoethylacrylamide and dimethylaminopropylacrylamide; N- (hydroxymethyl) acrylamide, Hydroxyalkyl acrylamide such as N- (hydroxyethyl) acrylamide; N-aryl acrylamide such as N-phenyl acrylamide; Diacetone acrylamide; N, N'-alkylene bis acrylamide such as N, N'-methylenebis acrylamide; Methulamide; N-alkyl methacrylates such as N-methylmethacrylate, N-ethylmethacrylate, Nn-propylmethacrylate, N-isopropylmethacrylate, Nn-butylmethalkamide, N-tert-butylmethacrylate; N. N-Cycloalkylmethacrylates such as -cyclohexylmethacrylamide; dialkylmethacrylates such as N, N-dimethylmethacrylicamide; dialkylaminoalkylmethacrylates such as dimethylaminoethylmethacrylate and dimethylaminopropylaceramamide; N- (hydroxymethyl) ) Hydroxyalkyl methacrylates such as methacrylamides and N- (hydroxyethyl) methacrylamides; N-arylmethacrylates such as N-phenylmethacrylates; diacetonemethacrylates; N, N'-methylenebismethacrylates and the like. N'-alkylene bismethacrylamide can be mentioned. These acrylamide-based monomers may be used alone or in combination of two or more. Among these acrylamide-based monomers, acrylamide; dialkylacrylamide, methacrylamide, and dialkylmethacrylamide are preferable, and acrylamide is particularly preferable, from the viewpoint of high solubility in an aqueous solvent or an aqueous mixed solvent.

前記シアン化ビニル系モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル、2−ヒドロキシエチルアクリロニトリル、クロロアクリロニトリル、クロロメタクリロニトリル、メトキシアクリロニトリル、メトキシメタクリロニトリルが挙げられる。これらのシアン化ビニル系モノマーは1種を単独で使用しても2種以上を併用してもよい。また、これらのシアン化ビニル系モノマーの中でも、炭素材料前駆体の炭化収率が向上するという観点から、アクリロニトリルが好ましい。 Examples of the vinyl cyanide-based monomer include acrylonitrile, methacrylonitrile, 2-hydroxyethylacrylonitrile, chloroacrylonitrile, chloromethacrylonitrile, methoxyacrylonitrile, and methoxymethacrylonitrile. These vinyl cyanide-based monomers may be used alone or in combination of two or more. Further, among these vinyl cyanide-based monomers, acrylonitrile is preferable from the viewpoint of improving the carbonization yield of the carbon material precursor.

また、本発明に用いられるアクリルアミド/シアン化ビニル系共重合体においては、本発明の効果を損なわない範囲において、アクリルアミド系モノマー単位及びシアン化ビニル系モノマー単位以外の他の重合性モノマー単位が含まれていてもよい。このような他の重合性モノマー単位の含有量としては、アクリルアミド/シアン化ビニル系共重合体の全モノマー単位に対して、49.9モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。前記他の重合性モノマーとしては、アクリル酸、メタクリル酸、イタコン酸等の不飽和カルボン酸及びその塩;無水マレイン酸、イタコン酸無水物等の不飽和カルボン酸無水物;アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル;スチレン、α−メチルスチレン、塩化ビニル、ビニルアルコール等のビニル系モノマー;エチレン、プロピレン等のオレフィン系モノマーが挙げられる。 Further, the acrylamide / vinyl cyanide copolymer used in the present invention contains a polymerizable monomer unit other than the acrylamide monomer unit and the vinyl cyanide monomer unit as long as the effect of the present invention is not impaired. It may be. The content of such other polymerizable monomer units is preferably 49.9 mol% or less, more preferably 40 mol% or less, and more preferably 30 mol% or less, based on all the monomer units of the acrylamide / vinyl cyanide copolymer. More preferably, it is mol% or less. Examples of the other polymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid and itaconic acid and salts thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic acid anhydride; methyl acrylate and methacrylic acid. Unsaturated carboxylic acid esters such as methyl; vinyl monomers such as styrene, α-methylstyrene, vinyl chloride and vinyl alcohol; olefin monomers such as ethylene and propylene can be mentioned.

このようなアクリルアミド/シアン化ビニル系共重合体からなる本発明の炭素材料前駆体を製造する方法としては、溶液重合、懸濁重合、沈殿重合、分散重合、乳化重合(例えば、逆相乳化重合)等の公知の重合方法を採用することができる。溶液重合を採用する場合、溶媒としては、原料のモノマー及び得られるアクリルアミド/シアン化ビニル系共重合体が溶解するものであれば特に制限はないが、低コストで安全に製造できるという観点から、前記水性溶媒(水、アルコール等、及びこれらの混合溶媒等)又は前記水系混合溶媒(前記水性溶媒と有機溶媒(テトラヒドロフラン等)との混合溶媒)を使用することが好ましく、前記水性溶媒を使用することがより好ましく、水を使用することが特に好ましい。また、重合開始剤としては従来公知の重合開始剤を使用することができるが、溶媒として前記水性溶媒又は前記水系混合溶媒を使用する場合には、4,4’−アゾビス(4−シアノ吉草酸)、過硫酸アンモニウム、過硫酸カリウム等の前記水性溶媒又は前記水系混合溶媒(好ましくは前記水性溶媒、より好ましくは水)に可溶なラジカル重合開始剤が好ましい。 Examples of the method for producing the carbon material precursor of the present invention composed of such an acrylamide / vinyl cyanide copolymer include solution polymerization, suspension polymerization, precipitation polymerization, dispersion polymerization, and emulsion polymerization (for example, reverse phase emulsion polymerization). ) And other known polymerization methods can be adopted. When solution polymerization is adopted, the solvent is not particularly limited as long as it dissolves the raw material monomer and the obtained acrylamide / vinyl cyanide copolymer, but from the viewpoint of safe production at low cost. It is preferable to use the aqueous solvent (water, alcohol, etc., a mixed solvent thereof, etc.) or the aqueous mixed solvent (a mixed solvent of the aqueous solvent and an organic solvent (tetrahydrofuran, etc.)), and the aqueous solvent is used. It is more preferable, and it is particularly preferable to use water. A conventionally known polymerization initiator can be used as the polymerization initiator, but when the aqueous solvent or the aqueous mixed solvent is used as the solvent, 4,4'-azobis (4-cyanovaleric acid) ), The aqueous solvent such as ammonium persulfate and potassium persulfate, or the aqueous mixed solvent (preferably the aqueous solvent, more preferably water) is soluble in the radical polymerization initiator.

〔炭素材料前駆体組成物〕
次に、本発明の炭素材料前駆体組成物について説明する。本発明の炭素材料前駆体組成物は、前記本発明の炭素材料前駆体と、酸及びその塩からなる群から選択される少なくとも1種の添加成分とを含有するものである。本発明の炭素材料前駆体に、酸及びその塩からなる群から選択される少なくとも1種の添加成分を添加することによって、炭化収率が更に向上する。
[Carbon material precursor composition]
Next, the carbon material precursor composition of the present invention will be described. The carbon material precursor composition of the present invention contains the carbon material precursor of the present invention and at least one additive component selected from the group consisting of an acid and a salt thereof. By adding at least one additive component selected from the group consisting of an acid and a salt thereof to the carbon material precursor of the present invention, the carbonization yield is further improved.

本発明の炭素材料前駆体組成物において、このような添加成分の含有量としては、炭化収率がより向上するという観点から、前記炭素材料前駆体100質量部に対して0.1〜40質量部が好ましく、0.1〜30質量部がより好ましく、0.2〜25質量部が更に好ましく、0.3〜20質量部が特に好ましい。 In the carbon material precursor composition of the present invention, the content of such an additive component is 0.1 to 40% by mass with respect to 100 parts by mass of the carbon material precursor from the viewpoint of further improving the carbonization yield. Parts are preferable, 0.1 to 30 parts by mass is more preferable, 0.2 to 25 parts by mass is further preferable, and 0.3 to 20 parts by mass is particularly preferable.

前記酸としては、リン酸、ポリリン酸、ホウ酸、ポリホウ酸、硫酸、硝酸、炭酸、塩酸等の無機酸、シュウ酸、クエン酸、スルホン酸、酢酸等の有機酸が挙げられる。また、このような酸の塩としては、金属塩(例えば、ナトリウム塩、カリウム塩)、アンモニウム塩、アミン塩等が挙げられ、アンモニウム塩、アミン塩が好ましく、アンモニウム塩がより好ましい。特に、これらの添加成分のうち、得られる炭素材料前駆体の炭化収率が更に向上するという観点から、リン酸、ポリリン酸、ホウ酸、ポリホウ酸、硫酸、及びこれらのアンモニウム塩が好ましく、リン酸、ポリリン酸、及びこれらのアンモニウム塩が特に好ましい。 Examples of the acid include inorganic acids such as phosphoric acid, polyphosphoric acid, boric acid, polyboric acid, sulfuric acid, nitric acid, carbonic acid and hydrochloric acid, and organic acids such as oxalic acid, citric acid, sulfonic acid and acetic acid. Examples of such acid salts include metal salts (for example, sodium salts and potassium salts), ammonium salts, amine salts and the like, with ammonium salts and amine salts being preferred, and ammonium salts being more preferred. In particular, among these additive components, phosphoric acid, polyphosphoric acid, boric acid, polyboric acid, sulfuric acid, and ammonium salts thereof are preferable from the viewpoint of further improving the carbonization yield of the obtained carbon material precursor, and phosphorus is preferable. Acids, polyphosphoric acids, and ammonium salts thereof are particularly preferred.

このような本発明の炭素材料前駆体組成物を製造する方法としては、溶融状態の前記炭素材料前駆体に前記添加成分を直接混合する方法(溶融混合)、前記炭素材料前駆体と前記添加成分とをドライブレンドする方法(乾式混合)、前記添加成分を含有する水性溶液又は水系混合溶液、或いは前記炭素材料前駆体は完全溶解していないが前記添加成分は溶解している溶液に所望の形状(例えば、フィルム状、シート状、繊維状)に成形した前記炭素材料前駆体を浸漬したり、通過させたりする方法等を採用することも可能であるが、使用する前記炭素材料前駆体及び前記添加成分が前記水性溶媒又は前記水系混合溶媒に可溶であり、前記炭素材料前駆体と前記添加成分とを均一に混合することができるという観点から、前記炭素材料前駆体と前記添加成分とを前記水性溶媒又は前記水系混合溶媒中で混合する方法(湿式混合)が好ましい。また、湿式混合としては、前記炭素材料前駆体の製造に際し、前述の重合を前記水性溶媒中又は前記水系混合溶媒中で行なった場合に、重合後等に前記添加成分を混合する方法も採用することができる。さらに、得られる溶液から前記溶媒を除去することによって本発明の炭素材料前駆体組成物を回収し、これを後述する炭素材料の製造に用いることができるほか、前記溶媒を除去することなく、得られる溶液をそのまま後述する炭素材料の製造に用いることもできる。また、前記湿式混合においては、より低コストで安全に炭素材料前駆体組成物を製造できるという観点から、溶媒として前記水性溶媒を使用することが好ましく、水を使用することがより好ましい。さらに、前記溶媒を除去する方法としては特に制限はなく、減圧留去、再沈殿、熱風乾燥、真空乾燥、凍結乾燥等の公知の方法のうちの少なくとも1つの方法を採用することができる。 Examples of the method for producing such a carbon material precursor composition of the present invention include a method of directly mixing the additive component with the carbon material precursor in a molten state (melt mixing), the carbon material precursor and the additive component. A method of dry blending (dry mixing), an aqueous solution or an aqueous mixed solution containing the additive component, or a desired shape in a solution in which the carbon material precursor is not completely dissolved but the additive component is dissolved. It is also possible to adopt a method of immersing or passing the carbon material precursor molded into (for example, film-like, sheet-like, fibrous-like), but the carbon material precursor to be used and the above-mentioned From the viewpoint that the additive component is soluble in the aqueous solvent or the aqueous mixed solvent and the carbon material precursor and the additive component can be uniformly mixed, the carbon material precursor and the additive component are mixed. The method of mixing in the aqueous solvent or the aqueous mixed solvent (wet mixing) is preferable. Further, as the wet mixing, a method of mixing the additive components after the polymerization when the above-mentioned polymerization is carried out in the aqueous solvent or the water-based mixed solvent in the production of the carbon material precursor is also adopted. be able to. Further, the carbon material precursor composition of the present invention can be recovered by removing the solvent from the obtained solution, and this can be used for the production of the carbon material described later, and the carbon material precursor composition can be obtained without removing the solvent. The resulting solution can be used as it is in the production of a carbon material described later. Further, in the wet mixing, it is preferable to use the aqueous solvent as the solvent, and it is more preferable to use water, from the viewpoint that the carbon material precursor composition can be safely produced at a lower cost. Further, the method for removing the solvent is not particularly limited, and at least one of known methods such as distillation under reduced pressure, reprecipitation, hot air drying, vacuum drying, and freeze drying can be adopted.

〔炭素材料の製造方法〕
次に、本発明の炭素材料の製造方法について説明する。本発明の炭素材料の製造方法としては、前記本発明の炭素材料前駆体又は前記本発明の炭素材料前駆体組成物に、直接炭化処理を施すことも可能であるが、耐炎化処理を施し、次いで、炭化処理を施すことが好ましい。
[Manufacturing method of carbon material]
Next, the method for producing the carbon material of the present invention will be described. As a method for producing a carbon material of the present invention, the carbon material precursor of the present invention or the carbon material precursor composition of the present invention may be directly carbonized, but may be flame-resistant. Then, it is preferable to carry out carbonization treatment.

本発明の炭素材料の好ましい製造方法においては、先ず、本発明の炭素材料前駆体又は炭素材料前駆体組成物に酸化性雰囲気下(例えば、空気中)で加熱処理を施す(耐炎化処理)。これにより、アクリルアミド系モノマー単位とシアン化ビニル系モノマー単位による環化反応や、シアン化ビニル系モノマー単位同士による環化反応が進行して、炭素材料前駆体を構成する前記アクリルアミド/シアン化ビニル系共重合体の構造が耐熱性の高い構造に変換されるため、炭素材料前駆体の炭化収率が向上する。特に、前記炭素材料前駆体組成物においては、添加成分である酸やその塩の触媒作用により、アクリルアミド系モノマー単位同士の脱水反応が促進されるため、環状構造が形成されやすく、アクリルアミド/シアン化ビニル系共重合体の構造が耐熱性の高い構造に変換されやすいため、炭素材料前駆体の炭化収率が更に高くなる。このような耐炎化処理における加熱温度としては500℃以下が好ましく、耐熱性の高い構造に効率的に変換され、炭化処理による炭化収率が向上するという観点から、150〜450℃がより好ましく、200〜400℃が更に好ましく、300〜400℃が特に好ましく、310〜400℃が最も好ましい。また、耐炎化処理における加熱時間としては特に制限はなく、長時間(例えば1時間超)の加熱も可能であるが、コスト低減の観点から1〜60分間が好ましい。 In the preferred method for producing a carbon material of the present invention, first, the carbon material precursor or the carbon material precursor composition of the present invention is heat-treated in an oxidizing atmosphere (for example, in air) (flame resistance treatment). As a result, the cyclization reaction between the acrylamide-based monomer unit and the vinyl cyanide-based monomer unit and the cyclization reaction between the vinyl cyanide-based monomer units proceed, and the acrylamide / vinyl cyanide-based precursor constituting the carbon material precursor proceeds. Since the structure of the copolymer is converted into a structure having high heat resistance, the carbonization yield of the carbon material precursor is improved. In particular, in the carbon material precursor composition, the dehydration reaction between the acrylamide-based monomer units is promoted by the catalytic action of the acid or its salt as an additive component, so that a cyclic structure is easily formed and acrylamide / cyanation is formed. Since the structure of the vinyl-based copolymer is easily converted into a structure having high heat resistance, the carbonization yield of the carbon material precursor is further increased. The heating temperature in such a flame-resistant treatment is preferably 500 ° C. or lower, and more preferably 150 to 450 ° C. from the viewpoint of efficiently converting to a structure having high heat resistance and improving the carbonization yield by the carbonization treatment. 200 to 400 ° C. is more preferable, 300 to 400 ° C. is particularly preferable, and 310 to 400 ° C. is most preferable. Further, the heating time in the flame resistance treatment is not particularly limited, and heating for a long time (for example, more than 1 hour) is possible, but from the viewpoint of cost reduction, 1 to 60 minutes is preferable.

次に、このようにして耐炎化処理が施された炭素材料前駆体(耐炎化炭素材料前駆体)又は炭素材料前駆体組成物(耐炎化炭素材料前駆体組成物)に、不活性雰囲気下(窒素、アルゴン、ヘリウム等の不活性ガス中)、前記耐炎化処理における加熱温度よりも高い温度で加熱処理を施す(炭化処理)。これにより、耐炎化炭素材料前駆体が炭化し、所望の炭素材料が得られる。このような炭化処理における加熱温度としては500℃以上が好ましく、1000℃以上がより好ましい。また、加熱温度の上限としては3000℃以下が好ましく、2000℃以下がより好ましい。さらに、炭化処理における加熱時間としては特に制限はないが、1〜60分間が好ましく、1〜30分間がより好ましい。また、前記炭化処理においては、例えば、先に1000℃未満の温度で加熱処理を行なった後、1000℃以上の温度で加熱処理を行うといったように、複数回の加熱処理を行うこともできる。なお、本発明の炭素材料の製造方法においては、前記耐炎化処理を施さずに、このような炭化処理を、本発明の炭素材料前駆体又は炭素材料前駆体組成物に直接施すことも可能である。 Next, the carbon material precursor (flame-resistant carbon material precursor) or the carbon material precursor composition (flame-resistant carbon material precursor composition) subjected to the flame-resistant treatment in this manner is placed under an inert atmosphere (in an inert atmosphere). The heat treatment is carried out at a temperature higher than the heating temperature in the flame-resistant treatment (in an inert gas such as nitrogen, argon or helium) (carbonization treatment). As a result, the flame-resistant carbon material precursor is carbonized, and a desired carbon material is obtained. The heating temperature in such carbonization treatment is preferably 500 ° C. or higher, more preferably 1000 ° C. or higher. The upper limit of the heating temperature is preferably 3000 ° C. or lower, more preferably 2000 ° C. or lower. Further, the heating time in the carbonization treatment is not particularly limited, but is preferably 1 to 60 minutes, more preferably 1 to 30 minutes. Further, in the carbonization treatment, a plurality of heat treatments can be performed, for example, first heat treatment is performed at a temperature of less than 1000 ° C., and then heat treatment is performed at a temperature of 1000 ° C. or higher. In the method for producing a carbon material of the present invention, it is also possible to directly apply such a carbonization treatment to the carbon material precursor or the carbon material precursor composition of the present invention without performing the flame resistance treatment. is there.

また、本発明の炭素材料の製造方法においては、耐炎化処理の前に(耐炎化処理を施さなかった場合には炭化処理の前に)、使用する炭素材料前駆体又は炭素材料前駆体組成物を予め所望の形状(例えば、フィルム状、シート状、繊維状)に成形加工することが好ましい。このとき、炭素材料前駆体又は炭素材料前駆体組成物をそのまま加圧成形したり、溶融状態の炭素材料前駆体又は炭素材料前駆体組成物を用いて溶融成形(例えば、溶融キャスト成形、溶融押出成形、射出成形、溶融紡糸、スパンボンド、メルトブローン、遠心紡糸)してもよいが、本発明の炭素材料前駆体又は炭素材料前駆体組成物が前記水性溶媒又は前記水系混合溶媒に可溶であり、成形加工性が高まるという観点から、前記炭素材料前駆体又は前記炭素材料前駆体組成物を前記水性溶媒又は前記水系混合溶媒に溶解し、得られた水性溶液又は水系混合溶液を用いて成形すること、或いは、前述の重合後の炭素材料前駆体の溶液又は前述の湿式混合で得られる炭素材料前駆体組成物の溶液をそのまま若しくは所望の濃度に調整した後、成形すること、が好ましい。このような成形方法としては、溶液キャスト成形、湿式成形、乾式紡糸、湿式紡糸、乾湿式紡糸、ゲル紡糸、フラッシュ紡糸、又はエレクトロスピニングを行うことが好ましい。これにより、所望の形状の炭素材料前駆体又は炭素材料前駆体組成物を低コストで安全に製造することができる。また、より低コストで安全に炭素材料を製造することができるという観点から、溶媒として前記水性溶媒を使用することがより好ましく、水を使用することが特に好ましい。このように予め所望の形状に成形加工した炭素材料前駆体又は炭素材料前駆体組成物を用いることによって、所望の形状の炭素材料(例えば、炭素フィルム、炭素シート、炭素繊維)を製造することができる。 Further, in the method for producing a carbon material of the present invention, the carbon material precursor or the carbon material precursor composition to be used is used before the flameproofing treatment (before the carbonization treatment if the flameproofing treatment is not performed). Is preferably molded in advance into a desired shape (for example, film-like, sheet-like, fibrous). At this time, the carbon material precursor or the carbon material precursor composition is pressure-molded as it is, or the carbon material precursor or the carbon material precursor composition in a molten state is used for melt molding (for example, melt cast molding, melt extrusion). Molding, injection molding, melt spinning, spunbonding, melt blown, centrifugal spinning), but the carbon material precursor or carbon material precursor composition of the present invention is soluble in the aqueous solvent or the aqueous mixed solvent. From the viewpoint of enhancing molding processability, the carbon material precursor or the carbon material precursor composition is dissolved in the aqueous solvent or the aqueous mixed solvent, and the obtained aqueous solution or aqueous mixed solution is used for molding. Alternatively, it is preferable that the above-mentioned solution of the carbon material precursor after polymerization or the above-mentioned solution of the carbon material precursor composition obtained by the wet mixing is directly or adjusted to a desired concentration and then molded. As such a molding method, solution casting molding, wet molding, dry spinning, wet spinning, dry wet spinning, gel spinning, flash spinning, or electrospinning is preferable. Thereby, the carbon material precursor or the carbon material precursor composition having a desired shape can be safely produced at low cost. Further, from the viewpoint that the carbon material can be safely produced at a lower cost, it is more preferable to use the aqueous solvent as the solvent, and it is particularly preferable to use water. By using the carbon material precursor or the carbon material precursor composition that has been previously molded into a desired shape in this way, it is possible to produce a carbon material (for example, a carbon film, a carbon sheet, a carbon fiber) having a desired shape. it can.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、アクリルアミド/シアン化ビニル共重合体の組成は以下の方法により測定した。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The composition of the acrylamide / vinyl cyanide copolymer was measured by the following method.

13C−NMR測定>
アクリルアミド/シアン化ビニル系共重合体を重水に溶解(重水に不溶な場合には重水素化ジメチルスルホキシドに溶解)し、得られた溶液について、室温、周波数100MHzの条件で13C−NMR測定を行なった。得られる13C−NMRスペクトルにおいては、約121ppm〜約122ppmの位置にシアン化ビニル系モノマー単位のシアノ基の炭素原子に由来するピークが観測され、約177ppm〜約182ppmの位置にアクリルアミド系モノマー単位のカルボニル基の炭素原子に由来するピークが観測される。したがって、得られた13C−NMRスペクトルにおいて、これらのピークの積分強度の比を求め、この積分強度比から、アクリルアミド/シアン化ビニル系共重合体におけるアクリルアミド系モノマー単位とシアン化ビニル系モノマー単位との比を算出した。
< 13 C-NMR measurement>
The acrylamide / vinyl cyanide copolymer was dissolved in heavy water (dissolved in deuterated dimethyl sulfoxide if it was insoluble in heavy water), and the obtained solution was measured at 13 C-NMR at room temperature and a frequency of 100 MHz. I did. In the obtained 13 C-NMR spectrum, a peak derived from the carbon atom of the cyano group of the vinyl cyanide monomer unit was observed at a position of about 121 ppm to about 122 ppm, and an acrylamide monomer unit was observed at a position of about 177 ppm to about 182 ppm. A peak derived from the carbon atom of the carbonyl group of is observed. Therefore, in the obtained 13 C-NMR spectrum, the ratio of the integrated intensities of these peaks was obtained, and from this integrated intensity ratio, the acrylamide-based monomer unit and the vinyl cyanide-based monomer unit in the acrylamide / vinyl cyanide copolymer. The ratio with and was calculated.

また、実施例及び比較例で使用したアクリルアミド/シアン化ビニル共重合体は以下の方法により合成した。 The acrylamide / vinyl cyanide copolymer used in Examples and Comparative Examples was synthesized by the following method.

(合成例1)
アクリルアミド(AAm、和光純薬工業株式会社製)96.0g(1.35mol)及びアクリロニトリル(AN)23.9g(0.45mol)をイオン交換水480mlに溶解し、得られた水溶液に過硫酸アンモニウム4.11g及びテトラメチルエチレンジアミン6.75mlを添加して、窒素雰囲気下、50℃で3時間重合反応を行なった。得られた水溶液をメタノール中に投入して共重合物を析出させ、これを回収して真空乾燥させることにより、アクリルアミド/アクリロニトリル共重合体(AAm/AN)を得た。このAAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=75mol%/25mol%であった。
(Synthesis Example 1)
96.0 g (1.35 mol) of acrylamide (AAm, manufactured by Wako Pure Chemical Industries, Ltd.) and 23.9 g (0.45 mol) of acrylonitrile (AN) were dissolved in 480 ml of ion-exchanged water, and ammonium persulfate 4 was dissolved in the obtained aqueous solution. .11 g and 6.75 ml of tetramethylethylenediamine were added, and the polymerization reaction was carried out at 50 ° C. for 3 hours in a nitrogen atmosphere. The obtained aqueous solution was put into methanol to precipitate a copolymer, which was recovered and vacuum dried to obtain an acrylamide / acrylonitrile copolymer (AAm / AN). When the composition ratio of this AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 75 mol% / 25 mol%.

(合成例2)
アクリルアミド(AAm)の量を89.6g(1.26mol)に、アクリロニトリル(AN)の量を28.7g(0.54mol)に変更し、重合温度を70℃に変更した以外は合成例1と同様にしてアクリルアミド/アクリロニトリル共重合体(AAm/AN)を得た。このAAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=70mol%/30mol%であった。
(Synthesis example 2)
Synthesis Example 1 except that the amount of acrylamide (AAm) was changed to 89.6 g (1.26 mol), the amount of acrylonitrile (AN) was changed to 28.7 g (0.54 mol), and the polymerization temperature was changed to 70 ° C. In the same manner, an acrylamide / acrylonitrile copolymer (AAm / AN) was obtained. When the composition ratio of this AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 70 mol% / 30 mol%.

(合成例3)
アクリルアミド(AAm)の量を108.8g(1.53mol)に、アクリロニトリル(AN)の量を14.3g(0.27mol)に変更し、重合温度を70℃に変更した以外は合成例1と同様にしてアクリルアミド/アクリロニトリル共重合体(AAm/AN)を得た。このAAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=85mol%/15mol%であった。
(Synthesis Example 3)
Synthesis Example 1 except that the amount of acrylamide (AAm) was changed to 108.8 g (1.53 mol), the amount of acrylonitrile (AN) was changed to 14.3 g (0.27 mol), and the polymerization temperature was changed to 70 ° C. In the same manner, an acrylamide / acrylonitrile copolymer (AAm / AN) was obtained. When the composition ratio of this AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 85 mol% / 15 mol%.

(合成例4)
アクリルアミド(AAm)の量を115.2g(1.62mol)に、アクリロニトリル(AN)の量を9.56g(0.18mol)に変更し、重合温度を70℃に変更した以外は合成例1と同様にしてアクリルアミド/アクリロニトリル共重合体(AAm/AN)を得た。このAAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=90mol%/10mol%であった。
(Synthesis Example 4)
Synthesis Example 1 except that the amount of acrylamide (AAm) was changed to 115.2 g (1.62 mol), the amount of acrylonitrile (AN) was changed to 9.56 g (0.18 mol), and the polymerization temperature was changed to 70 ° C. In the same manner, an acrylamide / acrylonitrile copolymer (AAm / AN) was obtained. When the composition ratio of this AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 90 mol% / 10 mol%.

(合成例5)
アクリルアミド(AAm)の量を63.33g(0.89mol)に、アクリロニトリル(AN)の量を0.475g(0.0090mol)に、イオン交換水の量を900mlに、過硫酸アンモニウムの量を1.26gに、テトラメチルエチレンジアミンの量を6.75mlに変更し、重合温度を75℃に変更した以外は合成例1と同様にしてアクリルアミド/アクリロニトリル共重合体(AAm/AN)を得た。このAAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=99mol%/1mol%であった。
(Synthesis Example 5)
The amount of acrylamide (AAm) is 63.33 g (0.89 mol), the amount of acrylonitrile (AN) is 0.475 g (0.0090 mol), the amount of ion-exchanged water is 900 ml, and the amount of ammonium persulfate is 1. An acrylamide / acrylonitrile copolymer (AAm / AN) was obtained in the same manner as in Synthesis Example 1 except that the amount of tetramethylethylenediamine was changed to 6.75 ml and the polymerization temperature was changed to 75 ° C. in 26 g. When the composition ratio of this AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 99 mol% / 1 mol%.

(比較合成例1)
アクリルアミド(AAm)の量を51.2g(0.72mol)に、アクリロニトリル(AN)の量を57.3g(1.08mol)に変更した以外は合成例1と同様にして重合反応を行なったところ、生成したアクリルアミド/アクリロニトリル共重合体(AAm/AN)は水に溶解せず、析出した。このため、メタノールを用いた精製が困難であった。なお、前記AAm/AN共重合体の組成比を求めたところ、アクリルアミド単位/アクリロニトリル単位(AAm/AN)=40mol%/60mol%であった。
(Comparative Synthesis Example 1)
The polymerization reaction was carried out in the same manner as in Synthesis Example 1 except that the amount of acrylamide (AAm) was changed to 51.2 g (0.72 mol) and the amount of acrylonitrile (AN) was changed to 57.3 g (1.08 mol). , The produced acrylamide / acrylonitrile copolymer (AAm / AN) was not dissolved in water and precipitated. Therefore, purification using methanol has been difficult. When the composition ratio of the AAm / AN copolymer was determined, it was found that acrylamide unit / acrylonitrile unit (AAm / AN) = 40 mol% / 60 mol%.

(実施例1)
炭素材料前駆体として合成例1で得られたAAm/AN共重合体(AAm/AN=75mol%/25mol%)をそのまま使用した。
(Example 1)
The AAm / AN copolymer (AAm / AN = 75 mol% / 25 mol%) obtained in Synthesis Example 1 was used as it was as a carbon material precursor.

(実施例2)
炭素材料前駆体として合成例1で得られたAAm/AN共重合体(AAm/AN=75mol%/25mol%)を、炭素材料前駆体濃度が20質量%となるようにイオン交換水に溶解した。得られた水溶液に、前記炭素材料前駆体100質量部に対して2質量部のリン酸水素二アンモニウムを添加し、完全に溶解させた。得られた水溶液から水を減圧留去した後、得られた固体成分を真空乾燥して、AAm/AN共重合体及びリン酸水素二アンモニウムを含有する炭素材料前駆体組成物を得た。
(Example 2)
The AAm / AN copolymer (AAm / AN = 75 mol% / 25 mol%) obtained in Synthesis Example 1 as a carbon material precursor was dissolved in ion-exchanged water so that the carbon material precursor concentration was 20% by mass. .. To 100 parts by mass of the carbon material precursor, 2 parts by mass of diammonium hydrogen phosphate was added to the obtained aqueous solution, and the mixture was completely dissolved. After distilling off water from the obtained aqueous solution under reduced pressure, the obtained solid component was vacuum dried to obtain a carbon material precursor composition containing an AAm / AN copolymer and diammonium hydrogen phosphate.

(実施例3)
リン酸水素二アンモニウムの添加量を前記炭素材料前駆体100質量部に対して3質量部に変更した以外は実施例2と同様にして、AAm/AN共重合体及びリン酸水素二アンモニウムを含有する炭素材料前駆体組成物を得た。
(Example 3)
The AAm / AN copolymer and diammonium hydrogen phosphate were contained in the same manner as in Example 2 except that the amount of diammonium hydrogen phosphate added was changed to 3 parts by mass with respect to 100 parts by mass of the carbon material precursor. A carbon material precursor composition was obtained.

(実施例4)
リン酸水素二アンモニウムの添加量を前記炭素材料前駆体100質量部に対して20質量部に変更した以外は実施例2と同様にして、AAm/AN共重合体及びリン酸水素二アンモニウムを含有する炭素材料前駆体組成物を得た。
(Example 4)
The AAm / AN copolymer and diammonium hydrogen phosphate were contained in the same manner as in Example 2 except that the amount of diammonium hydrogen phosphate added was changed to 20 parts by mass with respect to 100 parts by mass of the carbon material precursor. A carbon material precursor composition was obtained.

(実施例5)
リン酸水素二アンモニウムの代わりにリン酸を、前記炭素材料前駆体100質量部に対して2質量部添加した以外は実施例2と同様にして、AAm/AN共重合体及びリン酸を含有する炭素材料前駆体組成物を得た。
(Example 5)
It contains an AAm / AN copolymer and phosphoric acid in the same manner as in Example 2 except that 2 parts by mass of phosphoric acid was added to 100 parts by mass of the carbon material precursor instead of diammonium hydrogen phosphate. A carbon material precursor composition was obtained.

(実施例6)
リン酸水素二アンモニウムの代わりにホウ酸を、前記炭素材料前駆体100質量部に対して2質量部添加した以外は実施例2と同様にして、AAm/AN共重合体及びホウ酸を含有する炭素材料前駆体組成物を得た。
(Example 6)
It contains an AAm / AN copolymer and boric acid in the same manner as in Example 2 except that boric acid was added in place of diammonium hydrogen phosphate by 2 parts by mass with respect to 100 parts by mass of the carbon material precursor. A carbon material precursor composition was obtained.

(実施例7)
炭素材料前駆体として合成例2で得られたAAm/AN共重合体(AAm/AN=70mol%/30mol%)をそのまま使用した。
(Example 7)
The AAm / AN copolymer (AAm / AN = 70 mol% / 30 mol%) obtained in Synthesis Example 2 was used as it was as a carbon material precursor.

(実施例8)
炭素材料前駆体として合成例2で得られたAAm/AN共重合体(AAm/AN=70mol%/30mol%)を用い、リン酸水素二アンモニウムの添加量を前記炭素材料前駆体100質量部に対して3質量部に変更した以外は実施例2と同様にして、AAm/AN共重合体及びリン酸水素二アンモニウムを含有する炭素材料前駆体組成物を得た。
(Example 8)
The AAm / AN copolymer (AAm / AN = 70 mol% / 30 mol%) obtained in Synthesis Example 2 was used as the carbon material precursor, and the amount of diammonium hydrogen phosphate added was added to 100 parts by mass of the carbon material precursor. On the other hand, a carbon material precursor composition containing an AAm / AN copolymer and diammonium hydrogen phosphate was obtained in the same manner as in Example 2 except that the weight was changed to 3 parts by mass.

(実施例9)
炭素材料前駆体として合成例3で得られたAAm/AN共重合体(AAm/AN=85mol%/15mol%)をそのまま使用した。
(Example 9)
The AAm / AN copolymer (AAm / AN = 85 mol% / 15 mol%) obtained in Synthesis Example 3 was used as it was as a carbon material precursor.

(実施例10)
炭素材料前駆体として合成例3で得られたAAm/AN共重合体(AAm/AN=85mol%/15mol%)を用い、リン酸水素二アンモニウムの添加量を前記炭素材料前駆体100質量部に対して3質量部に変更した以外は実施例2と同様にして、AAm/AN共重合体及びリン酸水素二アンモニウムを含有する炭素材料前駆体組成物を得た。
(Example 10)
The AAm / AN copolymer (AAm / AN = 85 mol% / 15 mol%) obtained in Synthesis Example 3 was used as the carbon material precursor, and the amount of diammonium hydrogen phosphate added was added to 100 parts by mass of the carbon material precursor. On the other hand, a carbon material precursor composition containing an AAm / AN copolymer and diammonium hydrogen phosphate was obtained in the same manner as in Example 2 except that the weight was changed to 3 parts by mass.

(実施例11)
炭素材料前駆体として合成例4で得られたAAm/AN共重合体(AAm/AN=90mol%/10mol%)をそのまま使用した。
(Example 11)
The AAm / AN copolymer (AAm / AN = 90 mol% / 10 mol%) obtained in Synthesis Example 4 was used as it was as a carbon material precursor.

(実施例12)
炭素材料前駆体として合成例5で得られたAAm/AN共重合体(AAm/AN=99mol%/1mol%)をそのまま使用した。
(Example 12)
The AAm / AN copolymer (AAm / AN = 99 mol% / 1 mol%) obtained in Synthesis Example 5 was used as it was as a carbon material precursor.

(比較例1)
ポリアクリルアミドの10%水溶液(東京化成工業株式会社製、製品コード:A0140)を真空乾燥して水を除去し、ポリアクリルアミド(PAAm)を回収した。このPAAmをそのまま、炭素材料前駆体として使用した。
(Comparative Example 1)
A 10% aqueous solution of polyacrylamide (manufactured by Tokyo Chemical Industry Co., Ltd., product code: A0140) was vacuum dried to remove water, and polyacrylamide (PAAm) was recovered. This PAAm was used as it was as a carbon material precursor.

(比較例2)
炭素材料前駆体として比較合成例1で得られたAAm/AN共重合体(AAm/AN=40mol%/60mol%)をそのまま使用した。
(Comparative Example 2)
As the carbon material precursor, the AAm / AN copolymer (AAm / AN = 40 mol% / 60 mol%) obtained in Comparative Synthesis Example 1 was used as it was.

<炭化収率の測定>
実施例及び比較例で得られた炭素材料前駆体(実施例1、7、9、11、12、比較例1)又は炭素材料前駆体組成物(実施例2〜6、8、10)3mgを80℃で12時間真空乾燥した後、示差熱天秤(株式会社リガク製「TG8120」)を用いて、流量500ml/minの窒素気流中、昇温速度20℃/minで室温から1000℃まで加熱した。500℃及び1000℃における炭素材料前駆体の炭化収率を、前記真空乾燥後に炭素材料前駆体に吸着した水の影響を考慮し、150℃における炭素材料前駆体の質量を基準として、下記式:
炭化収率[%]=M/M150×100
〔M:温度T(500℃又は1000℃)における炭素材料前駆体の質量、M150:150℃における炭素材料前駆体の質量〕
により求めた。その結果を表1に示す。なお、比較例2で得られた炭素材料前駆体については、比較合成例2においてメタノールによる精製が困難であったため、炭化収率の測定は実施しなかった。
<Measurement of carbonization yield>
3 mg of the carbon material precursor (Examples 1, 7, 9, 11, 12, Comparative Example 1) or the carbon material precursor composition (Examples 2 to 6, 8, 10) obtained in Examples and Comparative Examples. After vacuum drying at 80 ° C. for 12 hours, it was heated from room temperature to 1000 ° C. at a heating rate of 20 ° C./min in a nitrogen stream with a flow rate of 500 ml / min using a differential heat balance (“TG8120” manufactured by Rigaku Co., Ltd.). .. The carbonization yield of the carbon material precursor at 500 ° C. and 1000 ° C. is based on the mass of the carbon material precursor at 150 ° C. in consideration of the influence of water adsorbed on the carbon material precursor after vacuum drying, and the following formula:
Carbonization yield [%] = M T / M 150 × 100
[M T: Mass of carbon material precursor at a temperature T (500 ° C. or 1000 ℃), M 150: the mass of the carbon material precursor at 0.99 ° C.]
Obtained by. The results are shown in Table 1. The carbonization yield of the carbon material precursor obtained in Comparative Example 2 was not measured because it was difficult to purify it with methanol in Comparative Synthesis Example 2.

<水への溶解性の測定>
実施例及び比較例で得られた炭素材料前駆体(実施例1、7、9、11、12、比較例1、2)又は炭素材料前駆体組成物(実施例2〜6、8、10)を、炭素材料前駆体濃度が10質量%となるようにイオン交換水に添加し、撹拌子を用いて室温で24時間撹拌した後、炭素材料前駆体の水への溶解性を観察した。その結果を表1に示す。
<Measurement of solubility in water>
Carbon material precursors (Examples 1, 7, 9, 11, 12, Comparative Examples 1 and 2) or carbon material precursor compositions obtained in Examples and Comparative Examples (Examples 2 to 6, 8 and 10). Was added to ion-exchanged water so that the concentration of the carbon material precursor was 10% by mass, and the mixture was stirred at room temperature for 24 hours using a stirrer, and then the solubility of the carbon material precursor in water was observed. The results are shown in Table 1.

Figure 0006883267
Figure 0006883267

表1に示したように、アクリルアミド系モノマー単位とシアン化ビニル系モノマー単位とのモル比が所定の範囲にあるアクリルアミド/シアン化ビニル系共重合体からなる本発明の炭素材料前駆体(実施例1、7、9、11、12)及び炭素材料前駆体組成物(実施例2〜6、8、10)は、水溶性であり、シアン化ビニル系モノマー単位を含まないポリアクリルアミドからなる炭素材料前駆体(比較例1)に比べて、加熱温度500℃及び1000℃のいずれにおいても炭化収率が高いことが確認された。一方、アクリルアミド系モノマー単位の割合が所定の範囲より小さいアクリルアミド/シアン化ビニル系共重合体からなる炭素材料前駆体(比較例2)は、水に不溶であることがわかった。 As shown in Table 1, the carbon material precursor of the present invention comprising an acrylamide / vinyl cyanide copolymer in which the molar ratio of the acrylamide monomer unit and the vinyl cyanide monomer unit is within a predetermined range (Example). 1, 7, 9, 11, 12) and the carbon material precursor composition (Examples 2 to 6, 8, 10) are water-soluble carbon materials composed of polyacrylamide containing no vinyl cyanide monomer unit. It was confirmed that the carbonization yield was higher at both the heating temperature of 500 ° C. and 1000 ° C. than the precursor (Comparative Example 1). On the other hand, it was found that the carbon material precursor (Comparative Example 2) composed of an acrylamide / vinyl cyanide copolymer in which the ratio of the acrylamide-based monomer unit was smaller than the predetermined range was insoluble in water.

また、実施例2〜6と実施例1、実施例8と実施例7、実施例10と実施例9とを対比すると明らかなように、アクリルアミド/シアン化ビニル系共重合体からなる炭素材料前駆体に所定量のリン酸、ホウ酸又はリン酸塩を添加した炭素材料前駆体組成物(実施例2〜6、8、10)は、リン酸塩を添加しなかった場合(実施例1、7、9)に比べて、炭化収率が大きく増加することがわかった。さらに、リン酸又はリン酸塩を添加した場合(実施例2、5)には、ホウ酸を添加した場合(実施例6)に比べても、炭化収率が大きく増加することがわかった。 Further, as is clear from comparison between Examples 2 to 6 and Example 1, Example 8 and Example 7, and Example 10 and Example 9, a carbon material precursor composed of an acrylamide / vinyl cyanide copolymer. The carbon material precursor composition (Examples 2 to 6, 8 and 10) in which a predetermined amount of phosphoric acid, boric acid or phosphate was added to the body was not added with phosphate (Example 1, Example 1). It was found that the carbonization yield was significantly increased as compared with 7 and 9). Furthermore, it was found that when phosphoric acid or phosphate was added (Examples 2 and 5), the carbonization yield was significantly increased as compared with the case where boric acid was added (Example 6).

(製造例1)
実施例1で得られた炭素材料前駆体を、濃度が30質量%となるようにイオン交換水に溶解した。得られた水溶液をシャーレ上にキャストした後、水を蒸発させ、炭素材料前駆体からなるフィルムを形成した。このフィルムは、厚みにムラがなく、表面外観に優れたものであった。
(Manufacturing Example 1)
The carbon material precursor obtained in Example 1 was dissolved in ion-exchanged water so as to have a concentration of 30% by mass. After casting the obtained aqueous solution onto a petri dish, the water was evaporated to form a film composed of a carbon material precursor. This film had no unevenness in thickness and had an excellent surface appearance.

得られた炭素材料前駆体からなるフィルムに、空気雰囲気下、350℃で10分間の加熱処理(耐炎化処理)を施して耐炎化炭素材料前駆体からなるフィルムを得た。この耐炎化炭素材料前駆体からなるフィルムに、窒素ガス雰囲気下、1000℃で10分間の加熱処理(炭化処理)を施して炭素材料からなるフィルムを得た。 The obtained film made of carbon material precursor was heat-treated (flame-resistant treatment) at 350 ° C. for 10 minutes in an air atmosphere to obtain a film made of flame-resistant carbon material precursor. The film made of the flame-resistant carbon material precursor was heat-treated (carbonized) at 1000 ° C. for 10 minutes in a nitrogen gas atmosphere to obtain a film made of a carbon material.

(製造例2)
実施例2で得られた炭素材料前駆体組成物を、炭素材料前駆体濃度が30質量%となるようにイオン交換水に溶解し、水溶液を調製した。この水溶液を用いた以外は製造例1と同様にして、炭素材料前駆体組成物からなるフィルムを得た。このフィルムは、厚みにムラがなく、表面外観に優れたものであった。得られた炭素材料前駆体組成物からなるフィルムを用いた以外は製造例1と同様にして耐炎化処理及び炭化処理を行い、炭素材料からなるフィルムを得た。
(Manufacturing Example 2)
The carbon material precursor composition obtained in Example 2 was dissolved in ion-exchanged water so that the carbon material precursor concentration was 30% by mass to prepare an aqueous solution. A film made of a carbon material precursor composition was obtained in the same manner as in Production Example 1 except that this aqueous solution was used. This film had no unevenness in thickness and had an excellent surface appearance. A film made of a carbon material was obtained by performing a flame resistance treatment and a carbonization treatment in the same manner as in Production Example 1 except that a film made of the obtained carbon material precursor composition was used.

以上説明したように、本発明によれば、アクリルアミド系共重合体からなり、高い炭化収率を有する炭素材料前駆体を得ることが可能となる。 As described above, according to the present invention, it is possible to obtain a carbon material precursor which is composed of an acrylamide-based copolymer and has a high carbonization yield.

したがって、本発明の炭素材料の製造方法は、使用する炭素材料前駆体が水性溶媒又は水系混合溶媒に可溶であり、高い炭化収率を有するものであるため、低コストで安全な水性溶媒又は水系混合溶媒を用いて効率よく炭素材料を製造することが可能な方法として有用である。 Therefore, in the method for producing a carbon material of the present invention, since the carbon material precursor used is soluble in an aqueous solvent or an aqueous mixed solvent and has a high carbonization yield, a low-cost and safe aqueous solvent or It is useful as a method capable of efficiently producing a carbon material using an aqueous mixed solvent.

Claims (4)

アクリルアミド系モノマー単位50〜99.9モル%とシアン化ビニル系モノマー単位0.1〜50モル%とを含有するアクリルアミド/シアン化ビニル系共重合体からなる炭素材料前駆体又は前記炭素材料前駆体と酸及びその塩からなる群から選択される少なくとも1種の添加成分とを含有する炭素材料前駆体組成物に炭化処理を施すことを特徴とする炭素材料の製造方法。 A carbon material precursor composed of an acrylamide / vinyl cyanide copolymer containing 50 to 99.9 mol% of an acrylamide-based monomer unit and 0.1 to 50 mol% of a vinyl cyanide-based monomer unit, or the carbon material precursor. A method for producing a carbon material, which comprises subjecting a carbon material precursor composition containing at least one additive component selected from the group consisting of an acid and a salt thereof to a carbonization treatment. 前記アクリルアミド/シアン化ビニル系共重合体が水性溶媒又は水系混合溶媒に可溶であることを特徴とする請求項1に記載の炭素材料の製造方法。The method for producing a carbon material according to claim 1, wherein the acrylamide / vinyl cyanide copolymer is soluble in an aqueous solvent or an aqueous mixed solvent. 前記添加成分の含有量が前記炭素材料前駆体100質量部に対して0.1〜40質量部であることを特徴とする請求項1又は2に記載の炭素材料の製造方法。The method for producing a carbon material according to claim 1 or 2, wherein the content of the additive component is 0.1 to 40 parts by mass with respect to 100 parts by mass of the carbon material precursor. 前記炭化処理の前に、前記炭素材料前駆体又は前記炭素材料前駆体組成物に耐炎化処理を施すことを特徴とする請求項1〜3のうちのいずれか一項に記載の炭素材料の製造方法。 The production of the carbon material according to any one of claims 1 to 3, wherein the carbon material precursor or the carbon material precursor composition is subjected to a flame resistance treatment before the carbonization treatment. Method.
JP2018071641A 2017-07-27 2018-04-03 Manufacturing method of carbon material Active JP6883267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/043,271 US11001660B2 (en) 2017-07-27 2018-07-24 Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145668 2017-07-27
JP2017145668 2017-07-27

Publications (2)

Publication Number Publication Date
JP2019026827A JP2019026827A (en) 2019-02-21
JP6883267B2 true JP6883267B2 (en) 2021-06-09

Family

ID=65477739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018071641A Active JP6883267B2 (en) 2017-07-27 2018-04-03 Manufacturing method of carbon material

Country Status (1)

Country Link
JP (1) JP6883267B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998923B2 (en) * 2019-09-19 2022-01-18 株式会社豊田中央研究所 Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method
JP6998924B2 (en) * 2019-09-19 2022-01-18 株式会社豊田中央研究所 Method for manufacturing flame-resistant fiber and carbon fiber
JP7125959B2 (en) * 2020-04-28 2022-08-25 株式会社豊田中央研究所 Carbon material precursor, method for producing flame-resistant carbon material precursor, and method for producing carbon material
JP7405727B2 (en) 2020-10-28 2023-12-26 株式会社豊田中央研究所 Carbon material precursor, method for producing flame-resistant carbon material precursor, and method for producing carbon material
JP7319955B2 (en) * 2020-11-27 2023-08-02 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle
JP7343538B2 (en) 2021-03-18 2023-09-12 株式会社豊田中央研究所 Carbon fiber and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127017A (en) * 2007-11-28 2009-06-11 Hymo Corp Aqueous dispersion, and paper making method using the same
JP5171276B2 (en) * 2008-01-15 2013-03-27 ハイモ株式会社 Inkjet paper coating agent
JP5137080B2 (en) * 2008-09-03 2013-02-06 ハイモ株式会社 Process for producing water-soluble polymer of polyamidine
JP5741493B2 (en) * 2011-03-10 2015-07-01 三菱レイヨン株式会社 Filter material for purifying acrylonitrile-based polymer solution, method for producing acrylonitrile-based polymer solution using the filter material, etc.
JP6428023B2 (en) * 2013-08-01 2018-11-28 三菱ケミカル株式会社 Polyacrylonitrile-based partially cyclized polymer, polyacrylonitrile-based flame resistant polymer, polyacrylonitrile-based flame resistant fiber, carbon fiber, and production method thereof
JP2016186057A (en) * 2015-03-27 2016-10-27 東ソー株式会社 Water-soluble polymer and method for producing the same
JP2016186058A (en) * 2015-03-27 2016-10-27 東ソー株式会社 Water-soluble polymer

Also Published As

Publication number Publication date
JP2019026827A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6883267B2 (en) Manufacturing method of carbon material
JP6812957B2 (en) Carbon material precursor and method for producing carbon material using it
Zeng et al. Structure evolution mechanism of poly (acrylonitrile/itaconic acid/acrylamide) during thermal oxidative stabilization process
JP6998923B2 (en) Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method
JP6895089B2 (en) A precursor material for producing a carbon material, a precursor composition material for producing a carbon material containing the precursor material, and a method for producing a carbon material using them.
US11040882B2 (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP7166524B2 (en) Carbon material precursor compact, method for producing same, and method for producing carbon material using same
JP7172081B2 (en) Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
US11001660B2 (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
JP7137124B2 (en) Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP2018168480A (en) Carbon fiber precursor acrylic fiber and method for producing carbon fiber bundle
JP7168909B2 (en) Precursor material for producing carbon material and method for producing carbon material using the same
JP7069524B2 (en) A carbon material precursor composition, a method for producing the same, and a method for producing a carbon material using the same.
JP7116908B2 (en) Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP7168908B2 (en) Carbon material precursor and method for producing carbon material using the same
JP7232399B2 (en) Carbon material precursor composition, method for producing same, and method for producing carbon material using same
JP2021046631A (en) Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JP7125959B2 (en) Carbon material precursor, method for producing flame-resistant carbon material precursor, and method for producing carbon material
JP7405727B2 (en) Carbon material precursor, method for producing flame-resistant carbon material precursor, and method for producing carbon material
JP6998924B2 (en) Method for manufacturing flame-resistant fiber and carbon fiber
JP7319955B2 (en) Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle
JP6992448B2 (en) Carbon material precursor composition and method for producing carbon material using it
JPWO2019003914A1 (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP4881020B2 (en) Stereoregular polyacrylonitrile resin composition and method for producing the same
JPH03210309A (en) Production of high molecular weight acrylonitrile polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210219

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6883267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150