JP6881209B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6881209B2
JP6881209B2 JP2017197483A JP2017197483A JP6881209B2 JP 6881209 B2 JP6881209 B2 JP 6881209B2 JP 2017197483 A JP2017197483 A JP 2017197483A JP 2017197483 A JP2017197483 A JP 2017197483A JP 6881209 B2 JP6881209 B2 JP 6881209B2
Authority
JP
Japan
Prior art keywords
temperature
air
fuel ratio
dither control
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197483A
Other languages
English (en)
Other versions
JP2019070365A (ja
Inventor
勇喜 野瀬
勇喜 野瀬
良行 正源寺
良行 正源寺
英二 生田
英二 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017197483A priority Critical patent/JP6881209B2/ja
Priority to CN201811138932.7A priority patent/CN109653889B/zh
Priority to US16/152,862 priority patent/US10837384B2/en
Publication of JP2019070365A publication Critical patent/JP2019070365A/ja
Application granted granted Critical
Publication of JP6881209B2 publication Critical patent/JP6881209B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関する。
たとえば特許文献1には、触媒装置(排気浄化装置)の昇温要求がある場合、一部の気筒を、その空燃比が理論空燃比よりもリッチとなるリッチ燃焼気筒とし、残りの気筒を、その空燃比が理論空燃比よりもリーンとなるリーン燃焼気筒とするディザ制御を実行する制御装置が記載されている。
特開2004−218541号公報
ところで、上記ディザ制御の実行中においては、昇温対象とされる排気浄化装置の温度をモニタすべく、ディザ制御による昇温効果を反映した排気浄化装置の温度である実温度を推定することが考えられる。しかし、ディザ制御の実行中において様々な処理の実行や停止を決定する場合には、ディザ制御を実行しなかったと仮定した場合に本来、排気浄化装置の温度はどれくらいの値になりうるかといった情報を用いた方が良い場合があり、推定された実温度のみから上記実行や停止を決定したのでは、その決定を適切に行うことができないおそれがある。
以下、上記課題を解決するための手段およびその作用効果について記載する。
1.温度推定モジュールは、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理を実行する内燃機関の制御装置に適用され、前記ディザ制御処理の実行中に、前記内燃機関の動作点に基づき前記ディザ制御処理が実行されていないと仮定した場合の前記排気浄化装置の温度である仮想温度を推定する仮想温度推定処理と、前記ディザ制御処理の実行中に、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差および前記内燃機関の動作点に基づき、前記排気浄化装置の実温度を推定する実温度推定処理と、を実行する。
上記構成では、排気浄化装置の実温度を推定するのみならず、ディザ制御を実行しない場合に排気浄化装置の温度が内燃機関の動作点に応じて定まることに鑑みて仮想温度を推定している。このため、実温度のみを推定する場合と比較すると、ディザ制御の実行や停止の決定をより適切に行うことができる。
2.内燃機関の制御装置は、上記1記載の温度推定モジュールを備え、前記仮想温度推定処理および前記実温度推定処理に加えて、前記仮想温度と規定温度との大小比較の結果に応じて、前記ディザ制御処理を停止する第1停止処理を実行する。
上記構成では、第1停止処理を、仮想温度と規定温度との大小比較に応じて実行するため、内燃機関の現在の運転状態がディザ制御処理を停止するのに適切な状態であるか否かを判定してディザ制御処理を停止することができる。
3.上記2記載の内燃機関の制御装置において、前記排気浄化装置は、触媒を備え、前記仮想温度と前記規定温度との大小比較によって、前記仮想温度が前記規定温度以上であると判定されることを条件に、所定の診断処理を実行し、前記第1停止処理は、前記所定の診断処理が実行される場合、前記ディザ制御処理を停止する処理を含む。
診断処理には、排気浄化装置の触媒が活性状態となっていることなど、排気浄化装置の温度が規定温度以上であることを要求するものがある。また、診断処理には、ディザ制御処理の停止を要求するものがある。ここで、仮にこうした診断処理(所定の診断処理)について、その実行条件が成立するか否かを実温度の推定値に基づき判定する場合には、所定の診断処理の実行条件が成立したとしてディザ制御処理を停止することにより、排気浄化装置の温度が規定温度未満となるおそれがある。そして、その場合、ディザ制御処理の実行および停止のハンチングが生じるおそれがある。そこで上記構成では、所定の診断処理の実行条件が成立するか否かを仮想温度に基づき判定することにより、ハンチングが生じることを抑制できる。
4.上記2記載の内燃機関の制御装置において、前記排気浄化装置の温度が前記規定温度以上であることを条件に、前記排気浄化装置の再生処理のためにディザ制御処理を実行し、前記第1停止処理は、前記仮想温度が前記規定温度未満である場合、前記再生処理のための前記ディザ制御処理を停止する処理を含む。
上記構成では、排気浄化装置の温度が規定温度以上であることを条件に、再生処理のためにディザ制御処理を実行する。この条件によれば、規定温度を調整することにより、仮にディザ制御処理を実行したとしても排気浄化装置の温度を再生処理にとって必要な下限温度まで上昇させることができない場合にディザ制御処理が実行されることを抑制できる。ここで、仮に、ディザ制御処理の開始後には、排気浄化装置の温度が上記下限温度に満たないことを条件にディザ制御処理を停止する場合には、排気浄化装置の温度が下限温度へと到達する過程であるのか、このままディザ制御処理を継続しても下限温度に到達しないのか等の判定処理が必要となり、制御が煩雑化する。これに対し、上記構成では、第1停止処理に仮想温度を利用することにより、制御が煩雑化することを抑制できる。
さらに、上記構成では、ディザ制御処理を実行していない場合にディザ制御処理を実行するか否かを判定する際と、ディザ制御処理を実行しているときにディザ制御処理を停止するか否かを判定する際とに、いずれもディザ制御が実行されていない場合の温度の大きさを用いている。このため、ディザ制御処理の実行中に実温度を用いる場合と比較すると、判定値にヒステリシスを設けるなどしてディザ制御処理の実行、停止のハンチング対策を容易に実行できる。
5.上記4記載の内燃機関の制御装置において、前記実温度推定処理は、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差および前記内燃機関の動作点に基づき定常状態における前記実温度である定常実温度を推定する処理と、現在の前記実温度の推定値が前記定常実温度を下回る場合、時間の経過とともに前記実温度の推定値を前記定常実温度へと収束させる処理と、を含む。
上記構成では、リッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差および動作点が同一であっても、実温度が時間とともに変化する。このため、実温度が再生処理にとって必要な下限温度に満たないことを条件にディザ制御処理を停止する場合には、実温度が今後、さらに上昇するか否か等を判定する必要があり、制御が煩雑化する。このため、第1停止処理が仮想温度を用いることのメリットが特に大きい。
6.上記2〜5のいずれか1項に記載の内燃機関の制御装置において、前記実温度が前記規定温度よりも高い所定温度以上である場合、前記ディザ制御処理を停止する第2停止処理を実行する。
ディザ制御処理によって排気浄化装置を昇温した結果、排気浄化装置の温度が過度に上昇する場合には、ディザ制御処理を停止することが望ましい。この処理の判定は、実温度を用いることが適切であることから、上記構成では、第2停止処理に実温度を用いた。
7.上記2〜6のいずれか1つに記載の内燃機関の制御装置において、前記内燃機関は、車両に搭載されるものであり、前記実温度推定処理は、車速が高い場合に低い場合よりも前記実温度を低く推定する処理であり、前記仮想温度推定処理は、車速が高い場合に低い場合よりも前記仮想温度を低く推定する処理である。
内燃機関の動作点によって、排気温度および排気流量がある程度定まり、これにより、ディザ制御処理を実行しない場合の排気浄化装置の温度を把握することができる。ここで、ディザ制御処理を実行する場合、その昇温能力は、リッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差に応じて定まる。このため、この差と動作点とによれば、ディザ制御処理の実行時における排気浄化装置の実温度を把握することができる。ただし、排気浄化装置の実温度やディザ制御処理の実行中にディザ制御処理を実行していないと仮定した場合の仮想温度は、排気浄化装置の放熱量にも依存するため、車速に依存する。このため、たとえば、第1停止処理等の実行の可否判定を上記実温度の推定値や仮想温度の推定値によらずに動作点等に応じて行う場合には、排気浄化装置の温度の把握精度が低いことに起因して、第1停止処理等の実行の判定が誤判定となるおそれがある。このため、仮想温度の推定値や実温度の推定値に基づき判定することのメリットが特に大きい。
一実施形態にかかる内燃機関の制御装置および内燃機関を示す図。 同実施形態にかかる制御装置が実行する処理の一部を示すブロック図。 同実施形態にかかる温度推定処理の手順を示す流れ図。 同実施形態にかかる診断処理の手順を示す流れ図。 同実施形態にかかる要求値出力処理の手順を示す流れ図。 同実施形態にかかる要求値出力処理の手順を示す流れ図。 同実施形態が解決する課題を示すタイムチャート。 同実施形態が解決する課題を示すタイムチャート。
以下、内燃機関の制御装置にかかる一実施形態について図面を参照しつつ説明する。
図1に示す内燃機関10は、車両に搭載される。内燃機関10において、吸気通路12から吸入された空気は、過給機14を介して気筒#1〜#4のそれぞれの燃焼室16に流入する。気筒#1〜#4のそれぞれには、燃料を噴射する燃料噴射弁18と、火花放電を生じさせる点火装置20とが設けられている。燃焼室16において、空気と燃料との混合気は、燃焼に供され、燃焼に供された混合気は、排気として、排気通路22に排出される。排気通路22のうちの過給機14の下流には、酸素吸蔵能力を有した三元触媒24が設けられている。
制御装置30は、内燃機関10を制御対象とし、その制御量(トルク、排気成分等)を制御するために、燃料噴射弁18や点火装置20等の内燃機関10の操作部を操作する。この際、制御装置30は、三元触媒24の上流側に設けられた空燃比センサ40によって検出される空燃比(上流側空燃比Afu)や、三元触媒24の下流側に設けられた空燃比センサ42によって検出される空燃比(下流側空燃比Afd)を参照する。また、制御装置30は、クランク角センサ44の出力信号Scrや、エアフローメータ46によって検出される吸入空気量Ga、水温センサ48によって検出される内燃機関10の冷却水の温度(水温THW)、車速センサ50によって検出される車速SPDを参照する。制御装置30は、CPU32、ROM34、およびRAM36を備えており、ROM34に記憶されたプログラムをCPU32が実行することにより上記制御量の制御を実行する。
図2に、ROM34に記憶されたプログラムをCPU32が実行することにより実現される処理の一部を示す。
ベース噴射量算出処理M10は、クランク角センサ44の出力信号Scrに基づき算出された回転速度NEと吸入空気量Gaとに基づき、燃焼室16における混合気の空燃比を目標空燃比に開ループ制御するための操作量である開ループ操作量として、ベース噴射量Qbを算出する処理である。
目標値設定処理M12は、燃焼室16における混合気の空燃比を上記目標空燃比に制御するためのフィードバック制御量の目標値Af*を設定する処理である。
フィードバック処理M14は、フィードバック制御量である上流側空燃比Afuを目標値Af*にフィードバック制御するための操作量であるフィードバック操作量KAFを算出する処理である。本実施形態では、目標値Af*と上流側空燃比Afuとの差を入力とする比例要素、積分要素、および微分要素の各出力値の和を、ベース噴射量Qbの補正比率δとし、フィードバック操作量KAFを、「1+δ」とする。
要求噴射量算出処理M16は、ベース噴射量Qbにフィードバック操作量KAFを乗算することによってベース噴射量Qbを補正し、要求噴射量Qdを算出する処理である。
要求値出力処理M18は、内燃機関10の気筒#1〜#4のそれぞれから排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等としつつも、燃焼対象とする混合気の空燃比を気筒間で異ならせるディザ制御の噴射量補正要求値αを算出して出力する。ここで、本実施形態にかかるディザ制御では、第1の気筒#1〜第4の気筒#4のうちの1つの気筒を、混合気の空燃比を理論空燃比よりもリッチとするリッチ燃焼気筒とし、残りの3つの気筒を、混合気の空燃比を理論空燃比よりもリーンとするリーン燃焼気筒とする。そして、リッチ燃焼気筒における噴射量を、上記要求噴射量Qdの「1+α」倍とし、リーン燃焼気筒における噴射量を、要求噴射量Qdの「1−(α/3)」倍とする。リーン燃焼気筒とリッチ燃焼気筒との上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、内燃機関10の各気筒#1〜#4から排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等とすることができる。なお、上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、各気筒において燃焼対象とされる混合気の燃空比の平均値の逆数が目標空燃比となる。なお、燃空比とは、空燃比の逆数のことである。
補正係数算出処理M20は、「1」に、噴射量補正要求値αを加算して、リッチ燃焼気筒に関し、要求噴射量Qdの補正係数を算出する処理である。ディザ補正処理M22は、要求噴射量Qdに補正係数「1+α」を乗算することによって、リッチ燃焼気筒とされる気筒#wの噴射量指令値Q*を算出する処理である。ここで、「w」は、「1」〜「4」のいずれかを意味する。
乗算処理M24は、噴射量補正要求値αを「−1/3」倍する処理であり、補正係数算出処理M26は、「1」に、乗算処理M24の出力値を加算して、リーン燃焼気筒に関し、要求噴射量Qdの補正係数を算出する処理である。ディザ補正処理M28は、要求噴射量Qdに補正係数「1−(α/3)」を乗算することによって、リーン燃焼気筒とされる気筒#x,#y,#zの噴射量指令値Q*を算出する処理である。ここで、「x」,「y」,「z」は、「1」〜「4」のいずれかであって、且つ、「w」,「x」,「y」,「z」は、互いに異なるものとする。
噴射量操作処理M30は、ディザ補正処理M22が出力する噴射量指令値Q*に基づき、リッチ燃焼気筒とされる気筒#wの燃料噴射弁18の操作信号MS1を生成して、同燃料噴射弁18に出力し、同燃料噴射弁18から噴射される燃料量が噴射量指令値Q*に応じた量となるように燃料噴射弁18を操作する。また、噴射量操作処理M30は、ディザ補正処理M28が出力する噴射量指令値Q*に基づき、リーン燃焼気筒とされる気筒#x,#y,#zの燃料噴射弁18の操作信号MS1を生成して、同燃料噴射弁18に出力し、同燃料噴射弁18から噴射される燃料量が噴射量指令値Q*に応じた量となるように燃料噴射弁18を操作する。
硫黄被毒量算出処理M32は、要求噴射量Qdに基づき、三元触媒24の硫黄被毒量DSを算出する処理である。詳しくは、硫黄被毒量算出処理M32は、要求噴射量Qdが多い場合に少ない場合よりも硫黄被毒量DSの増加量ΔDSを大きい量に算出し、増加量ΔDSを積算することにより、硫黄被毒量DSを算出する処理である。
温度推定処理M34は、第1触媒温度Tc1および第2触媒温度Tc2を算出する処理である。
図3に、温度推定処理M34の手順を示す。図3に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」が付与された数字によってステップ番号を表現する。
図3に示す一連の処理において、CPU32は、まず内燃機関10の動作点を定める一対のパラメータである回転速度NEおよび負荷率KLに基づき、動作点に応じて定まるベース温度Tbを算出する(S10)。ここで、負荷率KLは、燃焼室16に充填される空気量を定めるパラメータであり、基準流入空気量に対する、1気筒の1燃焼サイクル当たりの流入空気量の比である。ちなみに、基準流入空気量は、回転速度NEに応じて可変設定される量としてもよい。CPU32は、負荷率KLが大きい場合に小さい場合よりもベース温度Tbを高い値に算出する。また、CPU32は、回転速度NEが大きい場合に小さい場合よりもベース温度Tbを高い値に算出する。
詳しくは、回転速度NEおよび負荷率KLを入力変数としベース温度Tbを出力変数とするマップデータをROM34に記憶しておき、CPU32によりベース温度Tbをマップ演算する。なお、マップデータとは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。またマップ演算は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応するマップデータの出力変数の値を演算結果とし、一致しない場合、マップデータに含まれる複数の出力変数の値の補間によって得られる値を演算結果とする処理とすればよい。
次にCPU32は、回転速度NE、負荷率KLおよび点火装置20による放電火花の出力タイミング(点火時期)のMBT(Minimum advance for the Best Torque)からの遅角量afに基づき、点火時期遅角補正量ΔTaを算出する(S12)。点火時期遅角補正量ΔTaは、ベース温度Tbの増加補正量であり、遅角量afが大きい場合に小さい場合よりもベース温度Tbをより大きい値に補正する。詳しくは、回転速度NE,負荷率KLおよび遅角量afを入力変数とし点火時期遅角補正量ΔTaを出力変数とするマップデータをROM34に記憶しておき、CPU32により点火時期遅角補正量ΔTaをマップ演算する。
次にCPU32は、車速SPDに基づき、ベース温度Tbを減少補正するための車速補正量ΔTvを算出する(S14)。CPU32は、車速SPDが高い場合に低い場合よりも車速補正量ΔTvを大きい値とすることにより、ベース温度Tbをより小さい値に補正する。詳しくは、車速SPDを入力変数とし車速補正量ΔTvを出力変数とするマップデータをROM34に記憶しておき、CPU32により車速補正量ΔTvをマップ演算すればよい。
次にCPU32は、ベース温度Tbを点火時期遅角補正量ΔTaによって増加補正し、車速補正量ΔTvによって減少補正することによって、第1定常触媒温度Ts1を算出する(S16)。
次にCPU32は、第1触媒温度Tc1を、第1定常触媒温度Ts1に収束する温度として算出する(S18)。詳しくは、第1定常触媒温度Ts1と第1触媒温度Tc1との指数移動平均処理によって、第1触媒温度Tc1を算出する。具体的には、CPU32は、第1定常触媒温度Ts1から第1触媒温度Tc1を減算した値に係数βを乗算したものと、第1触媒温度Tc1との和を、第1触媒温度Tc1に代入する。ここで、係数βは、「1」よりも小さい値である。第1触媒温度Tc1は、ディザ制御が実行されているか否かにかかわらずディザ制御が実行されていない場合の温度の推定値となっている。すなわち、第1触媒温度Tc1は、ディザ制御が実行されていない場合には、三元触媒24の実温度の推定値となり、ディザ制御が実行されている場合には、ディザ制御が実行されていないと仮定した場合の三元触媒24の仮想的な温度(仮想温度)の推定値となる。
なお、ベース温度Tbの設定において述べたことから明らかなように、第1定常触媒温度Ts1や第1触媒温度Tc1は、負荷率KLが大きい場合に小さい場合よりも高い値となる。また、第1定常触媒温度Ts1や第1触媒温度Tc1は、回転速度NEが大きい場合に小さい場合よりも高い値となる。
次にCPU32は、ディザ制御を実行しているか否かを判定する(S20)。この処理は、噴射量補正要求値αが「0」よりも大きいか否かの判定処理となる。そしてCPU32は、実行していると判定する場合(S20:YES)、回転速度NE、負荷率KLおよび噴射量補正要求値αに基づき、ベース温度Tbを増加補正するディザ補正量ΔDを算出する(S22)。CPU32は、噴射量補正要求値αが大きい場合には小さい場合よりもリッチ燃焼気筒の空燃比とリーン燃焼気筒の空燃比との差が大きくなり、リッチ燃焼気筒から排出されて三元触媒24に流入する未燃燃料の量とリーン燃焼気筒から排出されて三元触媒24に流入する酸素の量とが大きくなることに鑑み、ディザ補正量ΔDを大きい値とする。また、CPU32は、回転速度NEが大きい場合には小さい場合よりも単位時間当たりの排気流量が多くなることに鑑み、ディザ補正量ΔDを大きい値とする。また、CPU32は、負荷率KLが大きい場合には小さい場合よりも、ディザ補正量ΔDを小さい値とする。
次にCPU32は、ベース温度Tbを点火時期遅角補正量ΔTaおよびディザ補正量ΔDによって増加補正し、車速補正量ΔTvによって減少補正することによって、第2定常触媒温度Ts2を算出する(S24)。次にCPU32は、第2触媒温度Tc2を、第2定常触媒温度Ts2へと収束する温度として算出する(S26)。詳しくは、第2定常触媒温度Ts2と第2触媒温度Tc2との指数移動平均処理によって、第2触媒温度Tc2を算出する。具体的には、CPU32は、第2定常触媒温度Ts2から第2触媒温度Tc2を減算した値に係数βを乗算したものと、第2触媒温度Tc2との和を、第2触媒温度Tc2に代入する(S26)。第2触媒温度Tc2は、三元触媒24の実温度の推定値である。
ここで、ベース温度Tbの設定において述べたことから明らかなように、第2定常触媒温度Ts2や第2触媒温度Tc2は、負荷率KLが大きい場合に小さい場合よりも高い値となる。また、第2定常触媒温度Ts2や第2触媒温度Tc2は、回転速度NEが大きい場合に小さい場合よりも高い値となる。また、ディザ補正量ΔDの設定から明らかなように、第2定常触媒温度Ts2や第2触媒温度Tc2は、噴射量補正要求値αが大きい場合に小さい場合よりも高い値となる。
なお、CPU32は、S26の処理が完了する場合や、S20において否定判定する場合には、図3に示す一連の処理を一旦終了する。
第1触媒温度Tc1や第2触媒温度Tc2は、上記要求値出力処理M18や図2に示す診断処理M36の入力となる。
図4に、診断処理M36の手順を示す。図4に示す処理は、ROM34に記憶されたプログラムをCPU32が、たとえば所定周期で繰り返し実行することにより実現される。
図4に示す一連の処理において、CPU32は、まず、三元触媒24の劣化検出処理が、車両の推力を生成する原動機の駆動を許可するスイッチであるメインスイッチがオフ状態からオン状態に切り替えられた後に実行されたか否かを判定する(S30)。ここで車両のメインスイッチとは、たとえば上記原動機が内燃機関10のみである場合、イグニッションスイッチに相当する。CPU32は、未だ実行されていないと判定する場合(S30:NO)、水温THWが閾値THWth以上であるか否かを判定する(S32)。そして、CPU32は、閾値THWth以上であると判定する場合(S32:YES)、第1触媒温度Tc1が第1温度Tcth1以上であるか否かを判定する(S34)。この処理は、三元触媒24の劣化の検出処理をするのに適した温度であるか否かを判定する処理である。三元触媒24の劣化検出処理は、三元触媒24の酸素吸蔵能力の低下を検出するものであるが、三元触媒24の温度が低い場合には酸素吸蔵能力を発揮できないため、低温に起因して劣化していると誤判定するおそれがある。このため、劣化の検出処理の実行条件に、第1触媒温度Tc1が第1温度Tcth1以上である旨の条件を加えている。
CPU32は、第1温度Tcth1以上であると判定する場合(S34:YES)、劣化検出処理を実行する(S36)。ここでは、目標空燃比を理論空燃比よりもリッチとした状態からリーンとした状態に切り替えた後、下流側空燃比Afdがリーンとなるまでの時間に基づき、三元触媒24の酸素吸蔵能力を把握すればよい。またたとえば、目標空燃比を理論空燃比よりもリーンとした状態からリッチとした状態に切り替えた後、下流側空燃比Afdがリッチとなるまでの時間に基づき、三元触媒24の酸素吸蔵能力を把握してもよい。
次にCPU32は、把握した酸素吸蔵能力の大小に基づき三元触媒24が劣化しているか否かを判定する(S38)。そしてCPU32は、劣化していると判定する場合(S38:YES)、ユーザに、車両を修理工場に持って行って内燃機関10を修理してもらうように促すべく、図1に示す警告灯52を操作して警告処理を実行する(S40)。
なお、CPU32は、S40の処理が完了する場合や、S30の処理において肯定判定する場合、S32,S34,S38の処理において否定判定する場合には、図4に示す一連の処理を一旦終了する。
図5に、要求値出力処理M18のうち、特に、三元触媒24の暖機処理に関する処理の手順を示す。図5に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。
図5に示す一連の処理において、CPU32は、まず上記メインスイッチがオフ状態からオン状態に切り替えられてからの吸入空気量Gaの積算値である積算空気量InGaを算出する(S50)。次にCPU32は、積算空気量InGaが第1規定値Inth1以上である旨の条件(ア)と、積算空気量InGaが第2規定値Inth2以下である旨の条件(イ)との論理積が真であるか否かを判定する(S52)。ここで、第2規定値Inth2は、第1規定値Inth1よりも大きい。なお、条件(ア)は、三元触媒24の上流側の端部の温度が活性温度となっていると判定される条件である。また、条件(イ)は、三元触媒24の全体が未だ活性状態となっていないと判定される条件である。
CPU32は、論理積が真であると判定する場合(S52:YES)、三元触媒24の劣化検出処理を実行しているときであるか否かを判定する(S54)。この処理は、ディザ制御を禁止するか否かの判定処理である。すなわち、ディザ制御を実行する場合、ディザ制御を実行しない場合と比較して排気成分の制御性が低下することなどから、三元触媒24の酸素吸蔵能力を評価する精度が低下するおそれがある。このため、本実施形態では、触媒劣化検出処理を実行していないことを、ディザ制御の実行を許可する条件に含めている。
CPU32は、劣化検出を実行していないと判定する場合(S54:NO)、内燃機関の動作点に応じて噴射量補正要求値αを算出する(S56)。CPU32は、内燃機関10の動作点が図5に示す比較的低負荷の領域Aに入らないときには、噴射量補正要求値αをゼロとする。これは、領域A以外では、ディザ制御を実行しなくても排気温度がある程度高いためである。また、CPU32は、内燃機関10の動作点が領域Aに入る場合、動作点に応じて噴射量補正要求値αをゼロよりも大きい値で可変設定する。ここでは、たとえば、回転速度NEが大きい場合に小さい場合よりも、単位時間当たりの排気流量が大きくなることに鑑み、噴射量補正要求値αを小さい値に設定することも可能である。またたとえば、負荷率KLが大きい場合に小さい場合よりも、単位時間当たりの排気流量が大きくなることに鑑み、噴射量補正要求値αを小さい値に設定することも可能である。具体的には、CPU32は、回転速度NEおよび負荷率KLを入力変数とし噴射量補正要求値αを出力変数とするマップデータをROM34に記憶しておき、CPU32により噴射量補正要求値αをマップ演算すればよい。
これに対し、CPU32は、触媒劣化検出処理の実行中であると判定する場合(S54:YES)、噴射量補正要求値αにゼロを代入する(S58)。
なお、CPU32は、S56,S58の処理が完了する場合や、S52の処理において否定判定する場合には、図5に示す一連の処理を一旦終了する。
図6に、要求値出力処理M18のうち、特に、硫黄被毒回復処理に関する処理の手順を示す。図6に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。
図6に示す一連の処理において、CPU32は、まず硫黄被毒量DSが規定量DSth以上であるか否かを判定する(S60)。CPU32は、規定量DSth以上であると判定する場合(S60:YES)、噴射量補正要求値αがゼロよりも大きいか否かを判定する(S62)。そしてCPU32は、ゼロよりも大きいと判定する場合(S62:YES)、第2触媒温度Tc2が所定温度TcH以上であるか否かを判定する(S64)。ここで、所定温度TcHは、硫黄被毒回復処理にとって適切な温度の上限値以上に設定されている。この処理は、ディザ制御によって三元触媒24の温度が過度に昇温されているか否かを判定するための処理である。
CPU32は、所定温度TcH未満であると判定する場合(S64:NO)やS62の処理において否定判定する場合には、第1触媒温度Tc1が基準温度TcR以上であるか否かを判定する(S66)。ここで、基準温度TcRは、硫黄被毒回復処理を行う上で必要な三元触媒24の温度の下限値よりも低い温度であり、ディザ制御によって三元触媒24の温度を下限値以上にできると想定される温度である。
CPU32は、基準温度TcR以上であると判定する場合(S66:YES)、内燃機関10の動作点に応じて噴射量補正要求値αを算出する(S68)。CPU32は、内燃機関10の動作点が、負荷が比較的大きい領域Bに入らないときにはゼロとする。これは、領域Bよりも低負荷領域において硫黄被毒回復処理を実行するためには、ディザ制御による昇温能力を非常に高くすべく、噴射量補正要求値αを、クランク軸の回転変動がユーザに違和感を与えるレベルの値とする必要が生じるためである。なお、CPU32は、内燃機関10の動作点が領域Bに入る場合、噴射量補正要求値αを、回転速度NEおよび負荷率KLに応じてゼロよりも大きい値で可変設定する。具体的には、CPU32は、回転速度NEおよび負荷率KLを入力変数とし噴射量補正要求値αを出力変数とするマップデータをROM34に記憶しておき、CPU32により噴射量補正要求値αをマップ演算すればよい。
なお、噴射量補正要求値αがゼロよりも大きい値に設定される場合、三元触媒24の温度が硫黄被毒回復処理を行う上で必要な温度の下限値以上に必ずなることを意味しない。これは、三元触媒24の温度が、内燃機関10の動作点と噴射量補正要求値αとによって一義的に定まるものではなく、車速SPDや点火時期の遅角量af等に依存して変動するものであるためである。こうしたすべての要因を考慮して、噴射量補正要求値αがゼロよりも大きい値である場合に三元触媒24の温度が硫黄被毒回復処理を行う上で必要な温度の下限値以上に必ずなるように設定したのでは、ディザ制御が実行されにくくなる。また、噴射量補正要求値αがゼロよりも大きい場合、三元触媒24の温度は、上記所定温度TcHを超えて上昇し得る。これは、三元触媒24の温度が所定温度TcHを超えない設定とする場合には、たとえば車速SPDが高い場合にディザ制御によって三元触媒24の温度を硫黄被毒回復処理を行う上で必要な温度の下限値以上に昇温できないおそれがあることなどに鑑みたものである。
これに対しCPU32は、S60,S66の処理において否定判定する場合や、S64の処理において肯定判定する場合には、噴射量補正要求値αにゼロを代入する(S70)。
なお、CPU32は、S68,S70の処理が完了する場合には、図6に示す一連の処理を一旦終了する。
ここで、本実施形態の作用を説明する。
図7は、三元触媒24の実温度の推定値のみを用いて劣化検出処理を実行する場合における実温度、ディザ制御の実行の有無、および劣化検出処理の実行の有無の推移を示す。
図7に示すように、時刻t1において劣化検出処理が実行されると、時刻t2にディザ制御が停止される。これにより実温度が低下し、時刻t3に第1温度Tcth1を下回る。これにより、劣化検出処理が停止することから時刻t4にディザ制御が再開される。そして時刻t5において実温度が第1温度Tcth1以上となることにより劣化検出処理が実行されると、時刻t6においてディザ制御が停止される。
このように、実温度のみを用いる場合には、ディザ制御が停止することによって三元触媒24の実温度が第1温度Tcth1を下回るか否かを考慮しないため、劣化検出処理の開始および停止やディザ制御の開始および停止のハンチングが生じるおそれがある。これに対し、本実施形態では、触媒劣化検出の実行の可否判定に、ディザ制御の実行時であってもディザ制御を実行してないと仮定した場合の温度である第1触媒温度Tc1を用いる。これにより、ディザ制御を停止させることで三元触媒24の温度がとりうると想定される温度に基づき触媒劣化検出の実行の可否判定ができることから、ハンチングが生じることを抑制できる。
図8に、硫黄被毒回復処理時の三元触媒24の第1触媒温度Tc1および第2触媒温度Tc2、および第2触媒温度Tc2のみを用いて実行の可否判定をする場合のディザ制御の実行の有無の推移を示す。
図8に示すように、時刻t1において、第1触媒温度Tc1が基準温度TcRとなることにより、ディザ制御を開始すると、三元触媒24の温度が上昇することから、第2触媒温度Tc2が大きく上昇し、硫黄被毒回復処理のための下限温度TcLと所定温度TcHとの間に入る。その後、内燃機関10の運転状態が変化することによって、排気が上昇しにくい動作点となったり車速SPDが上昇して三元触媒24の放熱量が増加したりすると第1触媒温度Tc1および第2触媒温度Tc2が低下し、時刻t2に、第1触媒温度Tc1が基準温度TcR未満となり、第2触媒温度Tc2が下限温度TcL未満となる。ただし、第2触媒温度Tc2に基づきディザ制御の停止の可否判定をする場合、実温度を示す第2触媒温度Tc2が下限温度TcL未満となったことを持って直ちにディザ制御を停止することは困難である。なぜなら、時刻t2よりも前であってもディザ制御の実行中に第2触媒温度Tc2は下限温度TcL未満となっている期間があるためである。そして、第2触媒温度Tc2が下限温度TcL未満となっても直ちにディザ制御を停止できないなら、ディザ制御が無駄に継続され、燃料消費量が増加する。
これに対し本実施形態では、ディザ制御の実行中に第1触媒温度Tc1が基準温度TcR未満となる場合、ディザ制御を停止することにより、三元触媒24の温度を下限温度TcL以上にできないにもかかわらずディザ制御が継続されることを抑制できる。
以上説明した本実施形態によれば、さらに以下に記載する効果が得られる。
(1)第2触媒温度Tc2を、第2定常触媒温度Ts2へと収束する値として算出した。この場合、第2触媒温度Tc2は、内燃機関10の動作点等によって一義的に定まらず、時間の経過に伴って変化するため、第2触媒温度Tc2が下限温度TcLに満たないことを条件にディザ制御を停止する場合には、実温度が今後、さらに上昇するか否か等を判定する必要があり、制御が煩雑化する。このため、第1触媒温度Tc1に基づきディザ制御を停止するか否かを判定することのメリットが特に大きい。
(2)三元触媒24の温度は、内燃機関10の動作点のみによっては定まらず、車速SPDに依存する。このため、内燃機関10の動作点に応じて、ディザ制御を実行するか停止するかの判定や触媒の劣化検出の実行の可否判定をする場合には、その判定精度を高くすることが困難である。これに対し、本実施形態では、第1触媒温度Tc1や第2触媒温度Tc2を、車速SPDが高い場合に低い場合よりも低い値とし、これらに基づきディザ制御を実行するか停止するかの判定や触媒の劣化検出の実行の可否判定をすることにより、同判定を高精度に行うことができる。
<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。以下では、「課題を解決するための手段」の欄に記載した解決手段の番号毎に、対応関係を示している。「1」排気浄化装置は、三元触媒24に対応し、ディザ制御処理は、噴射量補正要求値αがゼロよりも大きい場合における、補正係数算出処理M20、ディザ補正処理M22、乗算処理M24、補正係数算出処理M26、ディザ補正処理M28、噴射量操作処理M30に対応する。仮想温度推定処理は、ディザ制御が実行されているときにおけるS10〜S18の処理に対応し、実温度推定処理は、ディザ制御が実行されているときにおけるS10〜S14,S22〜S26の処理に対応する。温度推定モジュールは、温度推定処理M34を実現するROM34およびCPU32に対応する。[2]第1停止処理は、S54の処理において肯定判定する場合のS58の処理や、S66の処理において否定判定する場合のS70の処理に対応する。[3]所定の診断処理は、診断処理M36に対応し、第1停止処理は、S54の処理において肯定判定する場合のS58の処理に対応する。[4]再生処理は、硫黄被毒回復処理に対応し、第1停止処理は、S66の処理において否定判定する場合のS70の処理に対応する。[5]定常実温度は、第2定常触媒温度Ts2に対応し、収束させる処理は、S26の処理に対応する。[6]第2停止処理は、S64の処理において肯定判定する場合のS70の処理に対応する。[7]S16,S24の処理において車速補正量ΔTvが用いられていることに対応する。
<その他の実施形態>
なお、上記実施形態の各事項の少なくとも1つを、以下のように変更してもよい。
・「実温度推定処理、仮想温度推定処理について」
上記実施形態では、ベース温度Tbを、回転速度NEおよび負荷率KLの2つのパラメータに基づき算出したが、これに限らない。たとえば、燃料にアルコールが混ざる可能性があるなら、上記2つのパラメータに加えて、アルコール濃度センサによるアルコール濃度の検出値等を用いて、アルコール濃度が大きい場合に小さい場合よりもベース温度Tbを大きい値に算出してもよい。また、たとえば、排気通路22と吸気通路12とを接続するEGR通路を備える場合、EGR通路から吸気通路12に流入する排気の流量を吸入空気量Gaで割ったEGR率と、上記2つのパラメータとに基づき、EGR率が大きい場合に小さい場合よりもベース温度Tbを小さい値に算出してもよい。さらに、上記4つのパラメータの全てによってベース温度Tbを算出してもよい。これは、たとえば、4つのパラメータを入力変数とし、ベース温度Tbを出力変数とするマップデータをROM34に記憶しておき、CPU32によりベース温度Tbをマップ演算することにより実現できる。またこれに代えて、回転速度NEおよび負荷率KLを入力変数とし、基本値Tb0を出力変数とするマップデータと、アルコール濃度を入力変数としアルコール補正量を出力変数とするマップデータと、EGR率を入力変数としEGR補正量を出力変数とするマップデータとをROM34に記憶しておいてもよい。この場合、CPU32により、基本値、アルコール補正量およびEGR補正量をマップ演算し、基本値をアルコール補正量およびEGR補正量にて補正することによってベース温度Tbを算出することができる。
ベース温度Tbを算出する上で用いる内燃機関10の動作点を定めるパラメータとしては、回転速度NEおよび負荷率KLに限らない。たとえば負荷として、負荷率KLに代えて、ベース噴射量Qbを用いてもよく、またたとえばアクセル操作量を用いてもよい。また、動作点を回転速度NEおよび負荷によって規定するものに限らず、たとえば吸入空気量Gaによって規定してもよく、またたとえば負荷のみによって規定してもよい。
上記実施形態では、第1定常触媒温度Ts1は、ベース温度Tbに点火時期遅角補正量ΔTaを加算し、車速補正量ΔTvを減算した値とされたがこれに限らない。たとえば、過給機14による過給圧が高い場合に吸気バルブの開弁期間と排気バルブの開弁期間とのオーバーラップ期間において、吸気通路12から燃焼室に流入した空気が排気通路22へと吹き抜けるスカベンジが生じる場合には、スカベンジ率を用いた補正量にてベース温度Tbを補正してもよい。ここで、スカベンジ率とは、オーバーラップが生じている期間に吸気通路12から燃焼室16に流入した空気が燃焼室16において燃焼対象とされることなく排気通路22に流出する量(スカベンジ量)を、燃焼室16において燃焼対象となる空気量で割った値である。詳しくは、スカベンジ率が高い場合には低い場合よりもベース温度Tbを増加補正すればよい。これはたとえば、スカベンジ率を入力変数とし、スカベンジ補正量を出力変数とするマップデータをROM34に記憶しておき、CPU32によりスカベンジ補正量をマップ演算することにより実現できる。
上記実施形態では、点火時期遅角補正量ΔTaを、回転速度NEおよび負荷率KLと遅角量afとに基づき可変設定したがこれに限らない。たとえば、燃料にアルコールが混ざる可能性があるなら、アルコール濃度センサによるアルコール濃度の検出値等を加味して点火時期遅角補正量ΔTaを可変設定してもよい。
上記実施形態では、噴射量補正要求値αに加えて、回転速度NEおよび負荷率KLに基づきディザ補正量ΔDを算出したが、これに限らない。たとえば、噴射量補正要求値αのみからディザ補正量ΔDを算出してもよく、またたとえば噴射量補正要求値αと回転速度NEのみからディザ補正量ΔDを算出してもよく、またたとえば噴射量補正要求値αと負荷率KLのみからディザ補正量ΔDを算出してもよい。
たとえば、図3の処理からS16〜S20の処理を削除し、ディザ補正量ΔDを、噴射量補正要求値αがゼロの場合にはゼロとなるものとすることにより、S26の処理によって、常時、三元触媒24の実温度の推定値を算出してもよい。
上記実施形態では、第2定常触媒温度Ts2の算出処理と第1定常触媒温度Ts1の算出処理とで、S10〜S14の処理を共有したが、これに限らない。ディザ制御が実行される場合に限って簡易な処理にてディザ制御が実行されないと仮定した場合の仮想温度を推定してもよい。すなわち、たとえば、仮想温度の推定は、ディザ制御が実行される場合に限って、ベース温度Tbから車速補正量ΔTvを減算した値を用いたり、ベース温度Tb自体としたりすればよい。
・「定常値(定常実温度等)へと収束させる処理について」
S18,S26の処理における係数βを、吸入空気量Gaやアルコール濃度に応じて可変設定してもよい。また、S18,S26の処理のように、指数移動平均処理値を用いること自体必須ではなく、たとえば、1次遅れフィルタや2次遅れフィルタ等を用いてもよい。
・「温度の推定対象について」
たとえば下記「排気浄化装置について」の欄に記載したように、GPFを備える場合、その温度を推定対象としてもよい。これは、上記と同様に実行することができる。
・「実温度の用途について」
上記実施形態では、ディザ制御の実行中において、実温度となる第2触媒温度Tc2を、硫黄被毒回復処理に限って利用したが、これに限らない。たとえば、三元触媒24の暖機処理において、第2触媒温度Tc2をモニタしてもよい。この場合、たとえば第2触媒温度Tc2がある程度高くなる場合、ディザ制御処理を停止する処理を行ってもよく、またたとえば、第2触媒温度Tc2が小さい場合と比較して噴射量補正要求値αを小さくしてもよい。
・「所定の診断処理について」
上記実施形態では、所定の診断処理として、三元触媒24の劣化検出処理を例示したがこれに限らない。たとえば、空燃比センサ40の異常診断処理であってもよい。これは、ディザ制御を停止した状態で、目標空燃比をリッチからリーンに変更したりリーンからリッチに変更したりするアクティブ空燃比制御を実行し、そのときの空燃比センサ40によって検出される上流側空燃比Afuの変化に基づき、空燃比センサ40の異常の有無を診断する処理とすればよい。この場合、診断処理の実行に伴って、三元触媒24の下流の排気の成分を悪化させないうえでは、三元触媒24が活性状態となり、酸素吸蔵能力を有することが有効であるため、三元触媒24の温度が規定温度以上であることを条件とすることが望ましい。
・「再生処理の実行条件に用いられる規定温度について」
上記実施形態では、ディザ制御をしていない場合にディザ制御を許可する温度と、ディザ制御を実行している場合にディザ制御を停止させる温度とを同一の基準温度TcRとしたが、これに限らない。たとえば、ディザ制御をしていない場合にディザ制御を許可する温度よりも、ディザ制御を実行している場合にディザ制御を停止させる温度を低くしてもよい。これにより、ディザ制御の実行および停止のハンチングを抑制できる。なお、ハンチングを抑制するこの設定は、ディザ制御の実行の有無にかかわらずディザ制御の実行の可否判定に第1触媒温度Tc1を用いることにより実現されたものである。
・「再生処理について」
再生処理としては、硫黄被毒回復処理に限らず、たとえば下記「排気浄化装置について」の欄に記載したようにGPFを備える場合、GPFに捕集された粒子状物質の量が規定量以上となることにより、粒子状物質を燃焼除去する処理であってもよい。
・「ディザ制御処理について」
上記実施形態では、回転速度NEおよび負荷率KLの2つのパラメータから噴射量補正要求値αを算出したが、これに限らない。たとえば、回転速度NEおよび負荷率KLに加えて、水温THWに基づき噴射量補正要求値αを算出してもよい。もっとも、回転速度NEおよび負荷率KLに基づくこと自体必須ではない。たとえば、水温THW、回転速度NEおよび負荷率KLの3つのパラメータのうちの少なくとも1つのパラメータのみに基づいて噴射量補正要求値αを可変設定してもよい。また、たとえば内燃機関10の動作点を特定するパラメータとして回転速度NEおよび負荷率KLを用いる代わりに、負荷としての負荷率KLに代えて、たとえば負荷としてのアクセル操作量を用いてもよい。また、回転速度NEおよび負荷に代えて、吸入空気量Gaに基づき噴射量補正要求値αを可変設定してもよい。
ディザ制御の実行領域において、噴射量補正要求値αを、内燃機関の動作点に基づき「0」よりも大きい値で可変設定すること自体必須ではない。たとえば、暖機処理用のゼロよりも大きい単一の値と、硫黄被毒回復処理用のゼロよりも大きい単一の値とを定めてもよい。
上記実施形態では、リッチ燃焼気筒の数よりもリーン燃焼気筒の数を多くしたが、これに限らない。たとえば、リッチ燃焼気筒の数とリーン燃焼気筒の数とを同一としてもよい。またたとえば、全ての気筒#1〜#4を、リーン燃焼気筒かリッチ燃焼気筒かにするものに限らず、たとえば1つの気筒の空燃比を目標空燃比としてもよい。さらに、1燃焼サイクル内で、筒内充填空気量が同一であるなら燃空比の平均値の逆数が目標空燃比となることも必須ではない。たとえば、上記実施形態のように4気筒の場合において、筒内充填空気量が同一であるなら、5ストロークにおける燃空比の平均値の逆数が目標空燃比となるようにしてもよく、3ストロークにおける燃空比の平均値の逆数が目標空燃比となるようにしてもよい。ただし、1燃焼サイクルにおいて、リッチ燃焼気筒とリーン燃焼気筒との双方が存在する期間が少なくとも2燃焼サイクルに1回以上は生じることが望ましい。換言すれば、所定期間において筒内充填空気量が同一であるなら燃空比の平均値の逆数を目標空燃比とする際、所定期間を2燃焼サイクル以下とすることが望ましい。ここで、たとえば所定期間を2燃焼サイクルとして2燃焼サイクルの間に1度だけリッチ燃焼気筒が存在する場合、リッチ燃焼気筒とリーン燃焼気筒との出現順序は、リッチ燃焼気筒をR、リーン燃焼気筒をLとすると、たとえば「R,L,L,L,L,L,L,L」となる。この場合、所定期間よりも短い1燃焼サイクルの期間であって「R,L,L,L」となる期間が設けられており、気筒#1〜#4のうちの一部がリーン燃焼気筒であり、別の気筒がリッチ燃焼気筒となっている。ただし、1燃焼サイクルとは異なる期間における燃空比の平均値の逆数を目標空燃比とする場合には、内燃機関が吸気行程において一旦吸入した空気の一部を吸気バルブが閉弁するまでに吸気通路に吹き戻す量が無視できることが望ましい。
・「排気浄化装置について」
上記構成では、排気浄化装置として、三元触媒24を例示したがこれに限らない。たとえば、三元触媒24の下流にガソリンパティキュレートフィルタ(GPF)を備えてもよい。またたとえばGPFのみであってもよい。ただし、その場合、ディザ制御による昇温効果を高めるうえでは、GPFに、酸素吸蔵能力を付与することが望ましい。
・「排気の昇温要求について」
昇温要求としては、上記実施形態において例示したものに限らない。たとえば、「排気浄化装置について」の欄に記載したように、GPFを備えるものにあっては、GPFが捕集した粒子状物質を燃焼させるためにGPFの温度を上昇させる要求であってもよい。ちなみに、三元触媒24の下流にGPFを備える場合、リッチ燃焼気筒から排出された未燃燃料とリーン燃焼気筒から排出された酸素とを三元触媒24にて反応させ、その反応熱によって三元触媒24の下流の排気温を上昇させることによって、GPFを昇温させてもよい。またたとえば、排気通路22への凝縮水の付着を抑制すべく排気通路22を昇温するためにディザ制御による排気の昇温要求を生じさせてもよい。
・「制御装置について」
制御装置としては、CPU32とROM34とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)〜(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
・「温度推定モジュールについて」
上記実施形態では、温度推定モジュールを、制御装置を構成するCPU32およびROM34によって実現したがこれに限らない。たとえば、制御装置内に、2組のCPUおよびROMを備え、そのうちの1組のCPUおよびROMを温度推定モジュール専用としてもよい。もっとも、CPUおよびROMによって温度推定モジュールが実現されることは必須ではなく、たとえば、専用のハードウェア回路にて実現してもよい。
・「内燃機関について」
内燃機関としては、4気筒の内燃機関に限らない。たとえば直列6気筒の内燃機関であってもよい。またたとえば、V型の内燃機関等、第1の排気浄化装置と第2の排気浄化装置とを備え、それぞれによって排気が浄化される気筒が異なるものであってもよい。
・「そのほか」
燃料噴射弁としては、燃焼室16に燃料を噴射するものに限らず、たとえば吸気通路12に燃料を噴射するものであってもよい。ディザ制御の実行時に空燃比フィードバック制御をすることは必須ではない。
10…内燃機関、12…吸気通路、14…過給機、16…燃焼室、18…燃料噴射弁、20…点火装置、22…排気通路、24…三元触媒、30…制御装置、32…CPU、34…ROM、36…RAM、40,42…空燃比センサ、44…クランク角センサ、46…エアフローメータ、48…水温センサ、50…車速センサ、52…警告灯。

Claims (4)

  1. 複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、
    前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
    前記ディザ制御処理の実行中に、前記内燃機関の動作点に基づき前記ディザ制御処理が実行されていないと仮定した場合の前記排気浄化装置の温度である仮想温度を推定する仮想温度推定処理と、
    前記ディザ制御処理の実行中に、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差および前記内燃機関の動作点に基づき、前記排気浄化装置の実温度を推定する実温度推定処理と
    前記仮想温度と規定温度との大小比較の結果に応じて、前記ディザ制御処理を停止する第1停止処理と、を実行し、
    前記排気浄化装置の温度が前記規定温度以上であることを条件に、前記排気浄化装置の再生処理のために前記ディザ制御処理を実行し、
    前記第1停止処理は、前記仮想温度が前記規定温度未満である場合、前記再生処理のための前記ディザ制御処理を停止する処理を含み、
    前記実温度推定処理は、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差および前記内燃機関の動作点に基づき定常状態における前記実温度である定常実温度を推定する処理と、現在の前記実温度の推定値が前記定常実温度を下回る場合、時間の経過とともに前記実温度の推定値を前記定常実温度へと収束させる処理と、を含む内燃機関の制御装置。
  2. 複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、
    前記排気浄化装置は、触媒を備え、
    前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
    前記ディザ制御処理の実行中に、前記内燃機関の動作点に基づき前記ディザ制御処理が実行されていないと仮定した場合の前記排気浄化装置の温度である仮想温度を推定する仮想温度推定処理と、
    前記ディザ制御処理の実行中に、前記リッチ燃焼気筒の空燃比と前記リーン燃焼気筒の空燃比との差および前記内燃機関の動作点に基づき、前記排気浄化装置の実温度を推定する実温度推定処理と、
    前記仮想温度と規定温度との大小比較の結果に応じて、前記ディザ制御処理を停止する第1停止処理と、を実行し、
    前記仮想温度と前記規定温度との大小比較によって、前記仮想温度が前記規定温度以上であると判定されることを条件に、所定の診断処理を実行し、
    前記第1停止処理は、前記所定の診断処理が実行される場合、前記ディザ制御処理を停止する処理を含み、
    前記所定の診断処理は、前記触媒の劣化診断処理、または、前記触媒の上流に設けられた空燃比センサの異常診断処理である内燃機関の制御装置。
  3. 前記実温度が前記規定温度よりも高い所定温度以上である場合、前記ディザ制御処理を停止する第2停止処理を実行する請求項1または2記載の内燃機関の制御装置。
  4. 前記内燃機関は、車両に搭載されるものであり、
    前記実温度推定処理は、車速が高い場合に低い場合よりも前記実温度を低く推定する処理であり、
    前記仮想温度推定処理は、車速が高い場合に低い場合よりも前記仮想温度を低く推定する処理である請求項1〜3のいずれか1項に記載の内燃機関の制御装置。
JP2017197483A 2017-10-11 2017-10-11 内燃機関の制御装置 Active JP6881209B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017197483A JP6881209B2 (ja) 2017-10-11 2017-10-11 内燃機関の制御装置
CN201811138932.7A CN109653889B (zh) 2017-10-11 2018-09-28 温度推定模块、内燃机的控制装置及温度推定模块的工作方法
US16/152,862 US10837384B2 (en) 2017-10-11 2018-10-05 Temperature estimation module, control apparatus for internal combustion engine, and method for operating temperature estimation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197483A JP6881209B2 (ja) 2017-10-11 2017-10-11 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2019070365A JP2019070365A (ja) 2019-05-09
JP6881209B2 true JP6881209B2 (ja) 2021-06-02

Family

ID=65992516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197483A Active JP6881209B2 (ja) 2017-10-11 2017-10-11 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US10837384B2 (ja)
JP (1) JP6881209B2 (ja)
CN (1) CN109653889B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911678B2 (ja) * 2017-09-27 2021-07-28 トヨタ自動車株式会社 内燃機関の制御装置
JP7057252B2 (ja) * 2018-08-08 2022-04-19 Dmg森精機株式会社 異常状態判定システム
JP6787463B1 (ja) * 2019-09-27 2020-11-18 トヨタ自動車株式会社 内燃機関の失火の有無の判定装置、内燃機関の排気通路に設けられた触媒の劣化度合いの判定装置、内燃機関の排気通路に設けられた触媒の暖機処理における異常の有無の判定装置、内燃機関の排気通路に設けられたフィルタに捕集されたpm堆積量の判定装置、および内燃機関の排気通路に設けられた空燃比センサの異常の有無の判定装置
JP6920004B2 (ja) * 2019-10-11 2021-08-18 トヨタ自動車株式会社 内燃機関の排気通路に設けられた触媒の温度の推定装置、内燃機関の排気通路に設けられた触媒の温度の推定システム、データ解析装置、および内燃機関の制御装置
JP6833952B1 (ja) * 2019-11-08 2021-02-24 三菱電機株式会社 エンジンの排気系温度推定装置
JP7333261B2 (ja) * 2019-12-23 2023-08-24 矢崎エナジーシステム株式会社 熱量計
CN114352424B (zh) * 2022-01-20 2022-12-20 浙江吉利控股集团有限公司 一种发动机排温控制***及控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355842B2 (ja) * 1995-01-06 2002-12-09 三菱自動車工業株式会社 内燃エンジンの排気浄化触媒装置及び排気浄化触媒の温度検出装置
US5845492A (en) 1995-09-18 1998-12-08 Nippondenso Co., Ltd. Internal combustion engine control with fast exhaust catalyst warm-up
JP2004218541A (ja) 2003-01-15 2004-08-05 Toyota Motor Corp 内燃機関の制御装置
JP4464613B2 (ja) * 2003-02-28 2010-05-19 三菱自動車工業株式会社 触媒温度推定装置及び触媒温度推定方法
JP2004353552A (ja) * 2003-05-29 2004-12-16 Denso Corp 内燃機関の触媒早期暖機制御装置
JP4155182B2 (ja) * 2003-12-09 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4162016B2 (ja) * 2006-06-08 2008-10-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008095542A (ja) * 2006-10-06 2008-04-24 Toyota Motor Corp 内燃機関の制御装置
EP2661546B1 (en) * 2011-01-07 2017-06-21 Delphi International Operations Luxembourg S.à r.l. Internal combustion engine with exhaust after treatment and its method of operation
JP5278464B2 (ja) * 2011-02-08 2013-09-04 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP5979173B2 (ja) * 2014-04-16 2016-08-24 トヨタ自動車株式会社 内燃機関の制御装置
JP6252525B2 (ja) * 2015-03-12 2017-12-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6270253B1 (ja) * 2016-10-19 2018-01-31 マツダ株式会社 エンジンの排気浄化制御装置
JP6565993B2 (ja) * 2017-09-22 2019-08-28 マツダ株式会社 エンジンの排気浄化装置

Also Published As

Publication number Publication date
CN109653889B (zh) 2021-10-29
JP2019070365A (ja) 2019-05-09
CN109653889A (zh) 2019-04-19
US10837384B2 (en) 2020-11-17
US20190107068A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6881209B2 (ja) 内燃機関の制御装置
JP6870560B2 (ja) 内燃機関の制御装置
CN109595086B (zh) 内燃机的控制装置及方法
CN110360016B (zh) 内燃机的控制装置及方法
JP2019019803A (ja) 内燃機関の制御装置
EP3462009A1 (en) Controller and control method for internal combustion engine
JP6888508B2 (ja) 内燃機関の制御装置
JP2019100296A (ja) 内燃機関の制御装置
CN109555611B (zh) 内燃机的控制装置和方法
US10982628B2 (en) Controller for internal combustion engine and control method for internal combustion engine
JP6866827B2 (ja) 内燃機関の制御装置
CN109386391B (zh) 内燃机的控制装置和控制方法
US20190136777A1 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP6737209B2 (ja) 内燃機関の制御装置
EP3462012B1 (en) Controller and control method for internal combustion engine
CN109296468B (zh) 内燃机的控制装置
US10823095B2 (en) Controller and control method for internal combustion engine
JP6965614B2 (ja) 内燃機関の制御装置
JP6885284B2 (ja) 内燃機関の制御装置
JP2022063656A (ja) 内燃機関の制御装置
JP2019027295A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151