JP6881141B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6881141B2
JP6881141B2 JP2017153481A JP2017153481A JP6881141B2 JP 6881141 B2 JP6881141 B2 JP 6881141B2 JP 2017153481 A JP2017153481 A JP 2017153481A JP 2017153481 A JP2017153481 A JP 2017153481A JP 6881141 B2 JP6881141 B2 JP 6881141B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
battery
mass
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153481A
Other languages
Japanese (ja)
Other versions
JP2019033003A (en
Inventor
彰 齊藤
彰 齊藤
英輝 萩原
英輝 萩原
浩二 高畑
浩二 高畑
大樹 加藤
大樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017153481A priority Critical patent/JP6881141B2/en
Publication of JP2019033003A publication Critical patent/JP2019033003A/en
Application granted granted Critical
Publication of JP6881141B2 publication Critical patent/JP6881141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、非水電解質二次電池に関する。 The present disclosure relates to a non-aqueous electrolyte secondary battery.

特開2014−103098号公報(特許文献1)には、非水電解質二次電池(以下、単に「電池」とも記す)が過充電状態(高電圧状態)になった際に生じる種々の問題を抑制するために、正極合材層にリン酸塩等の無機リン酸化合物を添加する技術が提案されている。特許文献1において、具体的なリン酸塩としてリン酸三リチウム(LiPO)が開示されている。粒子状のリン酸三リチウムは、電池が過充電状態になった際に、非水電解質の分解によって生じた酸(たとえば、フッ化水素)を当該粒子表面にて吸着するため、過充電時の発熱を抑制することが可能となる。 Japanese Unexamined Patent Publication No. 2014-103098 (Patent Document 1) describes various problems that occur when a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “battery”) is in an overcharged state (high voltage state). In order to suppress it, a technique of adding an inorganic phosphoric acid compound such as a phosphate to the positive electrode mixture layer has been proposed. Patent Document 1 discloses trilithium phosphate (Li 3 PO 4) as a specific phosphate. When the battery is overcharged, the particulate trilithium phosphate adsorbs the acid (for example, hydrogen fluoride) generated by the decomposition of the non-aqueous electrolyte on the surface of the particles, so that it is during overcharging. It is possible to suppress heat generation.

特開2014−103098号公報Japanese Unexamined Patent Publication No. 2014-103098

過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池の開発が望まれている。特許文献1において開示されている電池は、過充電時の発熱を抑制することは可能であるが、電池抵抗値を抑制できるかについては懸念がある。したがって、特許文献1において開示されている電池は、電池抵抗値の抑制において改善の余地がある。 It is desired to develop a battery that suppresses heat generation at the time of overcharging and suppresses the battery resistance value at the same time. The battery disclosed in Patent Document 1 can suppress heat generation during overcharging, but there is concern about whether the battery resistance value can be suppressed. Therefore, the battery disclosed in Patent Document 1 has room for improvement in suppressing the battery resistance value.

本開示の目的は、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池を提供することにある。 An object of the present disclosure is to provide a battery that suppresses heat generation during overcharging and suppresses a battery resistance value.

以下、本開示の技術的構成および作用メカニズムが説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により、特許請求の範囲が限定されるべきではない。 Hereinafter, the technical configuration and the mechanism of action of the present disclosure will be described. However, the mechanism of action of the present disclosure includes estimation. The scope of claims should not be limited by the correctness of the mechanism of action.

本開示に係る非水電解質二次電池は、正極、負極、および非水電解質を含む非水電解質二次電池である。正極は正極合材層を含み、正極合材層は粒子状のリン酸三リチウム(LiPO)を含み、非水電解質はジメチルカーボネート(DMC)を含む。正極合材層に含まれるリン酸三リチウムの比表面積は1.3m/g以上5.4m/g以下であり、非水電解質に含まれるジメチルカーボネートの濃度は24質量%以上31質量%以下である。なお、本明細書中において「比表面積」とは、たとえば窒素ガスを用いたBET法等の従来公知技術によって測定された表面積を示す。 The non-aqueous electrolyte secondary battery according to the present disclosure is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode contains a positive electrode mixture layer, the positive electrode mixture layer contains particulate trilithium phosphate (Li 3 PO 4 ), and the non-aqueous electrolyte contains dimethyl carbonate (DMC). The specific surface area of trilithium phosphate contained in the positive electrode mixture layer is 1.3 m 2 / g or more and 5.4 m 2 / g or less, and the concentration of dimethyl carbonate contained in the non-aqueous electrolyte is 24% by mass or more and 31% by mass. It is as follows. In the present specification, the “specific surface area” refers to the surface area measured by a conventionally known technique such as the BET method using nitrogen gas.

正極合材層がリン酸三リチウムを含むことにより、電池の過充電時において電池の発熱が抑制されるものと考えられる。本開示の新知見は、正極に含まれる粒子状のリン酸三リチウムの比表面積と、非水電解質中に含まれるジメチルカーボネートの濃度との組み合わせを適切に管理することにより、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池を得られるということにある。すなわち、正極合材層に含まれる粒子状のリン酸三リチウムの比表面積を1.3m/g以上5.4m/g以下としつつ、非水電解質に含まれるジメチルカーボネートの濃度を24質量%以上31質量%以下となるよう管理することにより、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池が提供されると期待される。 It is considered that the heat generation of the battery is suppressed when the battery is overcharged because the positive electrode mixture layer contains trilithium phosphate. The new findings of the present disclosure are that heat generation during overcharging is generated by appropriately controlling the combination of the specific surface area of particulate trilithium phosphate contained in the positive electrode and the concentration of dimethyl carbonate contained in the non-aqueous electrolyte. The purpose is to obtain a battery in which both the suppression of the above and the suppression of the battery resistance value are compatible. That is, the specific surface area of the particulate trilithium phosphate contained in the positive electrode mixture layer is 1.3 m 2 / g or more and 5.4 m 2 / g or less, and the concentration of dimethyl carbonate contained in the non-aqueous electrolyte is 24 mass by mass. By managing the content to be% or more and 31% by mass or less, it is expected that a battery having both suppression of heat generation during overcharging and suppression of battery resistance value will be provided.

図1は、製造例1〜28に対する、過充電耐性の評価試験における発熱温度、および電池抵抗値測定試験における抵抗値を示す図である。FIG. 1 is a diagram showing the heat generation temperature in the overcharge resistance evaluation test and the resistance value in the battery resistance value measurement test for Production Examples 1 to 28. 図2は、製造例1’〜28’に対する、過充電耐性の評価試験における発熱温度、および電池抵抗値測定試験における抵抗値を示す図である。FIG. 2 is a diagram showing the heat generation temperature in the overcharge resistance evaluation test and the resistance value in the battery resistance value measurement test for Production Examples 1'to 28'.

以下、本開示の実施形態(以下「本実施形態」と記される)が説明される。ただし、以下の説明は、本開示の発明の範囲を限定するものではない。 Hereinafter, embodiments of the present disclosure (hereinafter referred to as “the present embodiment”) will be described. However, the following description does not limit the scope of the invention of the present disclosure.

<非水電解質二次電池の構成>
本開示の非水電解質二次電池は、以下に説明する正極、負極および非水電解質を含む限り、従来公知の構成を備えることができる。従来公知の構成とは、たとえば正極と、負極と、正極と負極との間に配置されたセパレータとを有する電極群を備え、この電極群が非水電解質と共に電池ケースに配置される構成等をいう。電極群は、扁平に巻回した形態(巻回電極群)とすることができる。
<Structure of non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present disclosure can have a conventionally known configuration as long as it includes a positive electrode, a negative electrode and a non-aqueous electrolyte described below. The conventionally known configuration includes, for example, a configuration in which an electrode group having a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode is provided, and the electrode group is arranged in a battery case together with a non-aqueous electrolyte. Say. The electrode group can be in a flatly wound form (wound electrode group).

<正極>
本実施形態に係る正極は正極合材層を含み、正極合材層は粒子状のリン酸三リチウムを含む。すなわち、正極は粒子状のリン酸三リチウムを含む正極合材層を含んでいる。加えて、正極合材層に含まれる粒子状のリン酸三リチウムの比表面積は1.3m/g以上5.4m/g以下である。正極に含まれる粒子状のリン酸三リチウムの比表面積が1.3m/g未満の場合や5.4m/gよりも大きい場合には、過充電時において発熱が抑制されない懸念があり、加えて電池抵抗値も抑制されない懸念がある。本実施形態における正極は、粒子状のリン酸三リチウムを含む正極合材層を含み、かつ、当該粒子状のリン酸三リチウムの比表面積が1.3m/g以上5.4m/g以下である限り、従来公知の構成を備えることができる。従来公知の構成とは、たとえば正極集電体と、正極集電体の主面上に形成された正極合材層とを含む構成である。正極集電体は、たとえばアルミニウム(Al)箔等であってもよい。正極集電体は、たとえば10〜30μmの厚さを有してもよい。
<Positive electrode>
The positive electrode according to the present embodiment includes a positive electrode mixture layer, and the positive electrode mixture layer contains particulate trilithium phosphate. That is, the positive electrode contains a positive electrode mixture layer containing particulate trilithium phosphate. In addition, the specific surface area of particulate trilithium phosphate contained in the positive electrode mixture layer is 1.3 m 2 / g or more and 5.4 m 2 / g or less. If the specific surface area of the particulate tricalcium phosphate lithium contained in the positive electrode is greater than 1.3 m 2 / of less than g and 5.4 m 2 / g, there is a concern that the heat generation is not suppressed at the time of overcharge, In addition, there is a concern that the battery resistance value will not be suppressed. The positive electrode in the present embodiment includes a positive electrode mixture layer containing particulate trilithium phosphate, and the specific surface area of the particulate trilithium phosphate is 1.3 m 2 / g or more and 5.4 m 2 / g. As long as it is as follows, a conventionally known configuration can be provided. The conventionally known configuration includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the main surface of the positive electrode current collector. The positive electrode current collector may be, for example, an aluminum (Al) foil or the like. The positive electrode current collector may have a thickness of, for example, 10 to 30 μm.

《正極合材層》
正極合材層は、粒子状のリン酸三リチウムを含む。正極合材層はリン酸三リチウムに加え、従来公知の構成として正極活物質、導電材、およびバインダを含む。正極合材層は、たとえば80〜98重量%の正極活物質、1〜15重量%以下の導電材、および1〜5重量%以下のバインダを含み、かつ、上記正極活物質100質量部に対して0.5〜10質量部のリン酸三リチウムを含んでもよいし、上記正極活物質100質量部に対して1〜8質量部のリン酸三リチウムを含んでもよいし、上記正極活物質100質量部に対して1.5〜6質量部のリン酸三リチウムを含んでもよい。正極合材層は、たとえば30〜200μmの厚さを有してもよい。正極合材層は、正極活物質、導電材、およびバインダに加えて後述する金属元素を含んでもよい。
<< Positive electrode mixture layer >>
The positive electrode mixture layer contains particulate trilithium phosphate. In addition to trilithium phosphate, the positive electrode mixture layer contains a positive electrode active material, a conductive material, and a binder as conventionally known configurations. The positive electrode mixture layer contains, for example, 80 to 98% by mass of the positive electrode active material, 1 to 15% by mass or less of the conductive material, and 1 to 5% by mass or less of the binder, and is based on 100 parts by mass of the positive electrode active material. It may contain 0.5 to 10 parts by mass of trilithium phosphate, 1 to 8 parts by mass of trilithium phosphate with respect to 100 parts by mass of the positive electrode active material, or the positive electrode active material 100. It may contain 1.5 to 6 parts by mass of trilithium phosphate with respect to parts by mass. The positive electrode mixture layer may have a thickness of, for example, 30 to 200 μm. The positive electrode mixture layer may contain a metal element described later in addition to the positive electrode active material, the conductive material, and the binder.

(正極活物質、導電材およびバインダ)
正極活物質、導電材およびバインダは特に限定されるべきではない。正極活物質は、たとえばLiCoO、LiNiO、LiNi1/3Co1/3Mn1/3(NCM)、LiMnO、LiMn、LiFePO等であってもよい。導電材は、たとえばアセチレンブラック(AB)、ファーネスブラック、気相成長炭素繊維(VGCF)、黒鉛等であってもよい。バインダは、たとえばポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)等であってもよい。
(Positive electrode active material, conductive material and binder)
The positive electrode active material, the conductive material and the binder should not be particularly limited. The positive electrode active material may be, for example, LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM), LiMnO 2 , LiMn 2 O 4 , LiFePO 4, or the like. The conductive material may be, for example, acetylene black (AB), furnace black, vapor-grown carbon fiber (VGCF), graphite or the like. The binder may be, for example, polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), or the like.

(金属元素)
正極合材層は、一般的なリチウム電池と同様に、Si、Na、K、Cl、Fe、Cu、Zn、Pb、Ni、Co、およびCr等の金属元素を含んでもよい。これらの金属元素は、後述するペースト状の正極合材層を調製する際にリン酸三リチウムの粉末に含まれているものであり得る。これらの元素が正極合材層に含まれている場合であっても、過充電時の発熱は抑制されるものと考えられる。また、生産性の低下や反応抵抗の増加などのリン酸三リチウムの添加によって生じ得る問題の発生の抑制が期待される。
(Metallic element)
The positive electrode mixture layer may contain metal elements such as Si, Na, K, Cl, Fe, Cu, Zn, Pb, Ni, Co, and Cr, as in a general lithium battery. These metal elements may be contained in the trilithium phosphate powder when preparing the paste-like positive electrode mixture layer described later. Even when these elements are contained in the positive electrode mixture layer, it is considered that heat generation during overcharging is suppressed. In addition, it is expected to suppress the occurrence of problems that may occur due to the addition of trilithium phosphate, such as a decrease in productivity and an increase in reaction resistance.

<負極>
負極は、負極合材層および負極集電体を含む。負極集電体は、たとえば、銅(Cu)箔等でよい。負極集電体は、たとえば、5〜20μm程度の厚さを有してもよい。負極合材層は、負極集電体の表面に形成されている。負極合材層は、たとえば10〜150μm程度の厚さを有してもよい。負極合材層は、負極活物質およびバインダ材等を含有する。負極合材層は、たとえば95〜99質量%の負極活物質、および1〜5質量%のバインダを含有する。
<Negative electrode>
The negative electrode includes a negative electrode mixture layer and a negative electrode current collector. The negative electrode current collector may be, for example, a copper (Cu) foil or the like. The negative electrode current collector may have a thickness of, for example, about 5 to 20 μm. The negative electrode mixture layer is formed on the surface of the negative electrode current collector. The negative electrode mixture layer may have a thickness of, for example, about 10 to 150 μm. The negative electrode mixture layer contains a negative electrode active material, a binder material, and the like. The negative electrode mixture layer contains, for example, 95 to 99% by mass of the negative electrode active material and 1 to 5% by mass of the binder.

負極活物質およびバインダは特に限定されるべきではない。負極活物質は、たとえば黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、珪素、酸化珪素、錫、酸化錫等であってもよい。バインダは、たとえば、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等であってもよい。 Negative electrode active materials and binders should not be particularly limited. The negative electrode active material may be, for example, graphite, graphitizable carbon, non-graphitizable carbon, silicon, silicon oxide, tin, tin oxide or the like. The binder may be, for example, carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), or the like.

<非水電解質>
非水電解質は、非水溶媒および支持塩を含む。非水電解質は、非水溶媒として24質量%以上31質量%以下のジメチルカーボネート(DMC)を含む。非水電解質に含まれるジメチルカーボネートの含有量が24質量%未満の場合や31質量%よりも大きい場合には、過充電時において発熱が抑制されない懸念や、電池抵抗値が抑制されない懸念がある。本実施形態における非水電解質は、24質量%以上31質量%以下のDMCを含む限り、従来公知の構成を備えることができる。従来公知の構成とは、非水溶媒、支持塩、および添加剤を含む構成である。非水溶媒は、たとえば環状カーボネートと鎖状カーボネートとの混合物でよい。環状カーボネートと鎖状カーボネートとの混合比は、体積比で、たとえば環状カーボネート:鎖状カーボネート=1:9〜5:5でよい。環状カーボネートとしては、たとえばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等であってもよい。鎖状カーボネートは、たとえばエチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等であってもよい。支持塩は、たとえばヘキサフルオロ燐酸リチウム(LiPF)、テトラフルオロ硼酸リチウム(LiBF)等のLi塩でよい。Li塩の濃度は、たとえば0.5〜2.0mоl/L程度でよい。非水電解質は、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)等の添加剤を含んでいてもよい。
<Non-aqueous electrolyte>
Non-aqueous electrolyte includes non-aqueous solvent and supporting salt. The non-aqueous electrolyte contains 24% by mass or more and 31% by mass or less of dimethyl carbonate (DMC) as a non-aqueous solvent. When the content of dimethyl carbonate contained in the non-aqueous electrolyte is less than 24% by mass or more than 31% by mass, there is a concern that heat generation is not suppressed during overcharging and that the battery resistance value is not suppressed. The non-aqueous electrolyte in the present embodiment can have a conventionally known configuration as long as it contains 24% by mass or more and 31% by mass or less of DMC. The conventionally known configuration is a configuration containing a non-aqueous solvent, a supporting salt, and an additive. The non-aqueous solvent may be, for example, a mixture of cyclic carbonate and chain carbonate. The mixing ratio of the cyclic carbonate and the chain carbonate may be a volume ratio, for example, cyclic carbonate: chain carbonate = 1: 9 to 5: 5. The cyclic carbonate may be, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) or the like. The chain carbonate may be, for example, ethyl methyl carbonate (EMC), diethyl carbonate (DEC) or the like. The supporting salt may be a Li salt such as lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4). The concentration of the Li salt may be, for example, about 0.5 to 2.0 mL / L. The non-aqueous electrolyte may contain additives such as vinylene carbonate (VC) and cyclohexylbenzene (CHB).

<セパレータ>
セパレータは、電気絶縁性の多孔質膜である。セパレータは、正極と負極とを電気的に隔離する。セパレータは、たとえば5〜30μmの厚さを有してもよい。セパレータは、たとえば多孔質ポリエチレン(PE)膜、多孔質ポリプロピレン(PP)膜等により構成され得る。セパレータは、多層構造を含んでもよい。たとえばセパレータは、多孔質PP膜、多孔質PE膜、および多孔質PP膜がこの順序で積層されることにより構成されていてもよい。セパレータは、その表面に耐熱層を含んでいてもよい。耐熱層は、耐熱材料を含む。耐熱材料としては、たとえばアルミナ等の金属酸化物粒子、ポリイミド等の高融点樹脂等が挙げられる。
<Separator>
The separator is an electrically insulating porous membrane. The separator electrically separates the positive electrode and the negative electrode. The separator may have a thickness of, for example, 5 to 30 μm. The separator may be composed of, for example, a porous polyethylene (PE) film, a porous polypropylene (PP) film, or the like. The separator may include a multi-layer structure. For example, the separator may be composed of a porous PP film, a porous PE film, and a porous PP film laminated in this order. The separator may include a heat-resistant layer on its surface. The heat-resistant layer contains a heat-resistant material. Examples of the heat-resistant material include metal oxide particles such as alumina and a refractory resin such as polyimide.

<電池ケース>
電池ケースは、たとえば角形(扁平直方体)であってもよいし、円筒形であってもよいし、袋状であってもよい。たとえばアルミニウム(Al)、Al合金等の金属が電池ケースを構成する。ただし、電池ケースが所定の密閉性を有する限り、たとえば金属および樹脂の複合材が電池ケースを構成してもよい。金属および樹脂の複合材としては、たとえばアルミラミネートフィルム等が挙げられる。電池ケースは、外部端子、注液孔、ガス排出弁、電流遮断機構(CID)等を備えていてもよい。
<Battery case>
The battery case may be, for example, square (flat rectangular parallelepiped), cylindrical, or bag-shaped. For example, a metal such as aluminum (Al) or an Al alloy constitutes a battery case. However, as long as the battery case has a predetermined airtightness, for example, a composite material of metal and resin may form the battery case. Examples of the metal and resin composite material include an aluminum laminated film and the like. The battery case may include an external terminal, a liquid injection hole, a gas discharge valve, a current cutoff mechanism (CID), and the like.

<用途>
本開示に係る電池は、たとえばハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等の動力電源として用いられる。ただし、本開示に係る非水電解質二次電池の用途は、車載用途に限定されるべきではなく、あらゆる用途に適用可能である。
<Use>
The battery according to the present disclosure is used as a power source for a hybrid vehicle (HV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), or the like. However, the use of the non-aqueous electrolyte secondary battery according to the present disclosure should not be limited to in-vehicle use, and can be applied to all uses.

以下、非水電解液電池を具体的に作製した例について、製造例として説明される。なお、製造例7〜21および製造例13’〜21’が本開示の実施例に相当し、その他の製造例(製造例1〜6、製造例22〜28、製造例7’〜12’および製造例22’〜28’)が比較例に相当する。ただし以下の例は、本開示の範囲を限定するものではない。 Hereinafter, an example in which a non-aqueous electrolyte battery is specifically manufactured will be described as a manufacturing example. In addition, Production Examples 7 to 21 and Production Examples 13'to 21'correspond to the Examples of the present disclosure, and other Production Examples (Production Examples 1 to 6, Production Examples 22 to 28, Production Examples 7'to 12'and Production Examples 22'to 28') correspond to Comparative Examples. However, the following examples do not limit the scope of the present disclosure.

<非水電解液二次電池の製造>
《製造例1》
1.正極の製造
以下の材料が準備された。
正極活物質:NCM
導電材:AB
バインダ:PVdF
添加剤:粒子状のLiPO(比表面積0.99m/g)
溶媒:N−メチル−ピロリドン(NMP)
正極集電箔:Al箔(厚さ15μm)
<Manufacturing of non-aqueous electrolyte secondary batteries>
<< Manufacturing Example 1 >>
1. 1. Manufacture of positive electrode The following materials were prepared.
Positive electrode active material: NCM
Conductive material: AB
Binder: PVdF
Additive: Particulate Li 3 PO 4 (specific surface area 0.99 m 2 / g)
Solvent: N-methyl-pyrrolidone (NMP)
Positive electrode current collector foil: Al foil (thickness 15 μm)

プラネタリミキサにより、NCM、LiPO、AB、PVdFおよびNMPが混合された。これにより、ペースト状の正極合材(以下、「正極合材ペースト」と記載する)が調製された。正極合材ペーストにおけるLiPO以外の固形分組成は、質量比で「NCM:AB:PVdF=93:4:3」とされた。LiPOの添加量は、NCM100質量部に対して3質量部とされた。正極合材層用ペーストが正極集電体の表面に塗布され、乾燥された。これにより正極合材層が形成された。以上より、正極が形成された。正極は圧延され、帯状に裁断された。 NCM, Li 3 PO 4 , AB, PVdF and NMP were mixed by a planetary mixer. As a result, a paste-like positive electrode mixture (hereinafter, referred to as “positive electrode mixture paste”) was prepared. The solid content composition other than Li 3 PO 4 in the positive electrode mixture paste was set to "NCM: AB: PVdF = 93: 4: 3" in terms of mass ratio. The amount of Li 3 PO 4 added was 3 parts by mass with respect to 100 parts by mass of NCM. The paste for the positive electrode mixture layer was applied to the surface of the positive electrode current collector and dried. As a result, a positive electrode mixture layer was formed. From the above, the positive electrode was formed. The positive electrode was rolled and cut into strips.

2.負極の製造
以下の材料が準備された。
負極活物質:粉末黒鉛
増粘材:CMC
バインダ:SBR
溶媒:水
負極集電箔:Cu箔(厚さ10μm)
2. Manufacture of negative electrode The following materials were prepared.
Negative electrode active material: powdered graphite thickener: CMC
Binder: SBR
Solvent: Water Negative electrode current collector foil: Cu foil (thickness 10 μm)

攪拌装置の攪拌槽に、粉末黒鉛、CMC、SBRおよび水を投入し、攪拌することにより、ペースト状の負極合材(以下、「負極合材ペースト」と記載する)が調製された。負極合材ペーストにおいて固形分の配合は、質量比で「粉末黒鉛:CMC:SBR=98:1:1」とされた。負極合材層用ペーストが、負極集電体の表面に塗布され、乾燥された。これにより負極合材層が形成された。以上により、負極が形成された。負極は圧延され、帯状に裁断された。 A paste-like negative electrode mixture (hereinafter referred to as "negative electrode mixture paste") was prepared by putting powdered graphite, CMC, SBR and water into the stirring tank of the stirring device and stirring the mixture. In the negative electrode mixture paste, the solid content was set to "powdered graphite: CMC: SBR = 98: 1: 1" in terms of mass ratio. The paste for the negative electrode mixture layer was applied to the surface of the negative electrode current collector and dried. As a result, a negative electrode mixture layer was formed. As a result, the negative electrode was formed. The negative electrode was rolled and cut into strips.

3.非水系電解質の準備
以下の組成を有する電解液が準備された。非水電解質に含まれるDMCの濃度は21質量%とされた。
溶媒組成:[EC:DMC:EMC=[30]:21:[49](質量比)]
支持塩:LiPF(1.0mоl/L)
3. 3. Preparation of non-aqueous electrolyte An electrolyte solution having the following composition was prepared. The concentration of DMC contained in the non-aqueous electrolyte was 21% by mass.
Solvent composition: [EC: DMC: EMC = [30]: 21: [49] (mass ratio)]
Supporting salt: LiPF 6 (1.0 mol / L)

4.非水電解質二次電池の製造
帯状の正極、帯状の負極および帯状のセパレータ(PP/PE/PPの三層構造)がそれぞれ準備された。セパレータを挟んで、正極と負極とが対向するように、正極、セパレータ、負極、セパレータの順で積層され、さらに渦巻状に巻回された。これにより電極群が構成された。正極および負極に端子がそれぞれ接続された。電極群がアルミニウムからなる電池ケースに収納された。電池ケースに非水電解質が注入され、電池ケースが密閉された。以上より、非水電解質二次電池が製造された。電池は角形(奥行13.5mm×幅110mm×高さ91.5mm)であり、3.0〜4.1Vの電圧範囲で1.0Ahの容量を有するように設計されている。なお、製造例1にて製造された電池は、非水電解質に含まれるDMCの濃度が21質量%であり、正極に含まれる粒子状のLiPOの比表面積が0.99m/gとなる組み合わせになるよう管理されている。すなわち、非水電解質に含まれるDMCの濃度および正極に含まれる粒子状のLiPOの比表面積の組み合わせが、下記表1に示す組み合わせ例1に記載の組み合わせとなるよう管理されている。
4. Manufacture of non-aqueous electrolyte secondary battery A band-shaped positive electrode, a band-shaped negative electrode, and a band-shaped separator (PP / PE / PP three-layer structure) were prepared. The positive electrode, the separator, the negative electrode, and the separator were laminated in this order so that the positive electrode and the negative electrode faced each other with the separator interposed therebetween, and further wound in a spiral shape. This formed a group of electrodes. The terminals were connected to the positive electrode and the negative electrode, respectively. The electrode group was housed in a battery case made of aluminum. Non-aqueous electrolyte was injected into the battery case and the battery case was sealed. From the above, a non-aqueous electrolyte secondary battery was manufactured. The battery is square (depth 13.5 mm x width 110 mm x height 91.5 mm) and is designed to have a capacity of 1.0 Ah in the voltage range of 3.0 to 4.1 V. In the battery manufactured in Production Example 1, the concentration of DMC contained in the non-aqueous electrolyte was 21% by mass, and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode was 0.99 m 2 / g. It is managed so that it becomes a combination. That is, the combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode is controlled to be the combination described in Combination Example 1 shown in Table 1 below.

《製造例2〜28》
非水電解質に含まれるDMCの濃度および正極に含まれるLiPOの比表面積の組み合わせが、下記表1に示す組み合わせ例2〜28に記載の組み合わせとなるよう管理されたことを除いては、製造例1と同様に電池が製造された。
<< Manufacturing Examples 2-28 >>
Except that the combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of Li 3 PO 4 contained in the positive electrode was controlled to be the combination shown in Combination Examples 2 to 28 shown in Table 1 below. , A battery was manufactured in the same manner as in Production Example 1.

《製造例7’〜28’》
非水電解質に含まれるDMCの濃度および正極に含まれるLiPOの比表面積の組み合わせが、下記表2に示す組み合わせ例7’〜28’に記載の組み合わせとなるよう管理されたことを除いては、製造例1と同様に電池が製造された。ここで、組み合わせ例7’〜28’に関しては、非水電解質に含まれるDMCの濃度は下記表1に示す組み合わせ例7〜28と同一の濃度であるが、正極に含まれるLiPOの比表面積は表1に示す組み合わせ例1〜21と同一の比表面積となっている。すなわち、下記表1に示す組み合わせ例7〜28に記載の非水電解質に含まれるDMCの濃度と組み合わせる、正極に含まれるLiPOの比表面積をずらしたものが、下記表2に示す組み合わせ例7’〜28’に該当する。なお、非水電解質に含まれるDMCの濃度および正極に含まれるLiPOの比表面積の組み合わせが、組み合わせ例1’〜6’ に記載の組み合わせとなるよう管理された電池の製造は行っていないため、製造例1’〜6’は存在しない。
<< Manufacturing Example 7'-28'>>
Except that the combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of Li 3 PO 4 contained in the positive electrode was controlled to be the combination described in the combination examples 7'to 28'shown in Table 2 below. The battery was manufactured in the same manner as in Production Example 1. Here, regarding the combination examples 7'to 28', the concentration of DMC contained in the non-aqueous electrolyte is the same as that of the combination examples 7 to 28 shown in Table 1 below, but the concentration of Li 3 PO 4 contained in the positive electrode. The specific surface area is the same as that of Combination Examples 1 to 21 shown in Table 1. That is, the combination shown in Table 2 below is the combination in which the specific surface area of Li 3 PO 4 contained in the positive electrode is shifted, which is combined with the concentration of DMC contained in the non-aqueous electrolytes shown in Combination Examples 7 to 28 shown in Table 1 below. Examples 7'to 28'correspond to. Batteries are manufactured in which the combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of Li 3 PO 4 contained in the positive electrode is controlled to be the combination described in Combination Examples 1'to 6'. Since there is no such product, Production Examples 1'to 6'do not exist.

<過充電耐性の評価試験>
製造された各電池に対して、20Cの定電流で5.1Vまで充電を行うことによって各電池を過充電状態とし、各電池の電池ケース外側中心部の温度を測定することによって、過充電時の電池温度を測定した、そして過充電時の電池温度と充電前の電池温度との差から、発熱温度を求めた。結果は表1および表2の「発熱温度」の欄に示されている。発熱温度が小さいほど、過充電時に電池温度の上昇が抑えられたことを示している。すなわち、発熱温度が小さいほど、電池の過充電において発熱が抑制されていることを示す。
<Evaluation test of overcharge resistance>
When each manufactured battery is overcharged by charging it to 5.1V with a constant current of 20C, each battery is put into an overcharged state, and the temperature of the outer center of the battery case of each battery is measured. The heat generation temperature was calculated from the difference between the battery temperature at the time of overcharging and the battery temperature before charging. The results are shown in the "heat generation temperature" column of Tables 1 and 2. The smaller the heat generation temperature, the more the rise in battery temperature was suppressed during overcharging. That is, the smaller the heat generation temperature, the more the heat generation is suppressed in the overcharging of the battery.

<電池抵抗値測定試験>
製造された各電池をSOC20%の状態に調整した。次に、25℃の温度環境下で、各電池に対して125Aのレートで10秒間の定電流放電を行い、電圧降下を測定した。係る電圧降下量を放電電流値で除して、電池抵抗を求めた。結果は表1および表2の「抵抗値」の欄に示されている。
<Battery resistance measurement test>
Each manufactured battery was adjusted to a SOC of 20%. Next, in a temperature environment of 25 ° C., each battery was discharged with a constant current at a rate of 125 A for 10 seconds, and the voltage drop was measured. The battery resistance was obtained by dividing the voltage drop amount by the discharge current value. The results are shown in the "Resistance" column of Tables 1 and 2.

Figure 0006881141
Figure 0006881141

Figure 0006881141
Figure 0006881141

<結果>
非水電解質に含まれるDMCの濃度および正極に含まれる粒子状のLiPOの比表面積の組み合わせが、上記表1に示す組み合わせ例7〜21に記載の組み合わせとなるよう管理された製造例7〜21に係る電池は、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立されていることが上記表1および図1に示されている。この結果から、粒子状のLiPOを含む正極合材層を含む正極と、DMCを含む非水電解質とを備える電池において、LiPOの比表面積が1.3m/g以上5.4m/g以下であり、非水電解質に含まれるDMCの濃度が24質量%以上31質量%以下となるように管理された場合、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池が得られることが示された。
<Result>
A production example in which the combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode is controlled to be the combination shown in Combination Examples 7 to 21 shown in Table 1 above. It is shown in Table 1 and FIG. 1 above that the batteries according to 7 to 21 have both suppression of heat generation during overcharging and suppression of battery resistance value. From this result, in a battery including a positive electrode including a positive electrode mixture layer containing particulate Li 3 PO 4 and a non-aqueous electrolyte containing DMC, the specific surface area of Li 3 PO 4 is 1.3 m 2 / g or more 5 When it is 4 m 2 / g or less and the concentration of DMC contained in the non-aqueous electrolyte is controlled to be 24% by mass or more and 31% by mass or less, heat generation during overcharging is suppressed and the battery resistance value is suppressed. It was shown that a battery compatible with the above can be obtained.

非水電解質に含まれるDMCの濃度および正極に含まれる粒子状のLiPOの比表面積の組み合わせが、上記表1に示す組み合わせ例1〜6、組み合わせ例22〜28に記載の組み合わせとなるよう管理された製造例1〜6、製造例22〜28に係る電池は、過充電時の発熱の抑制および電池抵抗値の抑制において改善の余地があることが上記表1および図1に示されている。すなわち、粒子状のLiPOを含む正極合材層を含む正極と、DMCを含む非水電解質とを備える電池において、正極に含まれるLiPOの比表面積が1.3m/g以上5.4m/g以下ではなく、かつ、非水電解質に含まれるDMCの濃度が24質量%以上31質量%以下ではないように管理された場合は、過充電時の発熱の抑制および電池抵抗値の抑制において改善の余地があることが示された。 The combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode is the combination described in Combination Examples 1 to 6 and Combination Examples 22 to 28 shown in Table 1 above. It is shown in Table 1 and FIG. 1 above that the batteries according to Production Examples 1 to 6 and Production Examples 22 to 28 managed in this manner have room for improvement in suppressing heat generation during overcharging and suppressing the battery resistance value. ing. That is, in a battery including a positive electrode including a positive electrode mixture layer containing particulate Li 3 PO 4 and a non-aqueous electrolyte containing DMC, the specific surface area of Li 3 PO 4 contained in the positive electrode is 1.3 m 2 / g. above 5.4 m 2 / g and not below, and if the concentration of the DMC contained in the non-aqueous electrolyte is managed not in the following 31 wt% or more 24 wt%, inhibition and cell heat generated during overcharge It was shown that there is room for improvement in suppressing the resistance value.

非水電解質に含まれるDMCの濃度および正極に含まれる粒子状のLiPOの比表面積の組み合わせが、上記表2に示す組み合わせ例7’〜12’に記載の組み合わせとなるよう管理された製造例7’〜12’に係る電池は、電池抵抗値は抑制されているものの、過充電時の発熱の抑制において改善の余地があることが上記表2および図2に示されている。この結果から、粒子状のLiPOを含む正極合材層を含む正極と、DMCを含む非水電解質とを備える電池において、DMCの濃度が24質量%以上31質量%以下であるが、LiPOの比表面積が1.3m/g以上5.4m/g以下ではない組み合わせとなるよう管理された場合は、電池抵抗値は抑制されているものの、過充電時の発熱の抑制において改善の余地があることが示された。なお、正極に含まれるLiPOの比表面積が1.3m/g以上5.4m/g以下であり、非水電解質に含まれるDMCの濃度が24質量%以上31質量%以下の組合わせとなるよう管理された製造例13’〜21’に係る電池は、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立されていた。 The combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode was controlled to be the combination shown in Combination Examples 7'to 12'shown in Table 2 above. Tables 2 and 2 above show that the batteries according to Production Examples 7'to 12'have room for improvement in suppressing heat generation during overcharging, although the battery resistance value is suppressed. From this result, in the battery including the positive electrode including the positive electrode mixture layer containing the particulate Li 3 PO 4 and the non-aqueous electrolyte containing DMC, the concentration of DMC is 24% by mass or more and 31% by mass or less. When the specific surface area of Li 3 PO 4 is controlled so as not to be 1.3 m 2 / g or more and 5.4 m 2 / g or less, the battery resistance value is suppressed, but heat generation during overcharging is generated. It was shown that there is room for improvement in suppression. The specific surface area of Li 3 PO 4 contained in the positive electrode is 1.3 m 2 / g or more and 5.4 m 2 / g or less, and the concentration of DMC contained in the non-aqueous electrolyte is 24% by mass or more and 31% by mass or less. The batteries according to Production Examples 13'to 21', which were controlled to be combined, had both suppression of heat generation during overcharging and suppression of battery resistance value.

非水電解質に含まれるDMCの濃度および正極に含まれる粒子状のLiPOの比表面積の組み合わせが、上記表2に示す組み合わせ例22’〜27’に記載の組み合わせとなるよう管理された製造例22’〜27’に係る電池においても、電池抵抗値は抑制されているものの、過充電時の発熱の抑制において改善の余地があることが上記表2および図2に示されている。この結果から、粒子状のLiPOを含む正極合材層を含む正極と、DMCを含む非水電解質とを備える電池において、LiPOの比表面積が1.3m/g以上5.4m/g以下であるが、DMCの濃度が24質量%以上31質量%以下ではない組み合わせとなるよう管理された場合においても、電池抵抗値は抑制されるものの、過充電時の発熱の抑制において改善の余地があることが示された。なお、正極に含まれるLiPOの比表面積が1.3m/g以上5.4m/g以下ではなく、かつ、非水電解質に含まれるDMCの濃度が24質量%以上31質量%以下ではないように管理された製造例28’に係る電池は、過充電時の発熱の抑制および電池抵抗値の抑制において改善の余地があるものであった。 The combination of the concentration of DMC contained in the non-aqueous electrolyte and the specific surface area of the particulate Li 3 PO 4 contained in the positive electrode was controlled to be the combination shown in Combination Examples 22'to 27'shown in Table 2 above. Tables 2 and 2 above also show that although the battery resistance values are suppressed in the batteries according to Production Examples 22'to 27', there is room for improvement in suppressing heat generation during overcharging. From this result, the specific surface area of Li 3 PO 4 is 1.3 m 2 / g or more 5 in the battery including the positive electrode including the positive electrode mixture layer containing the particulate Li 3 PO 4 and the non-aqueous electrolyte containing DMC 5 Even when the combination is controlled so that the DMC concentration is not 24% by mass or more and 31% by mass or less, although it is 4 m 2 / g or less, the battery resistance value is suppressed, but the heat generation during overcharging is generated. It was shown that there is room for improvement in suppression. The specific surface area of Li 3 PO 4 contained in the positive electrode is not 1.3 m 2 / g or more and 5.4 m 2 / g or less, and the concentration of DMC contained in the non-aqueous electrolyte is 24% by mass or more and 31% by mass. The battery according to Production Example 28', which was controlled so as not to be as follows, had room for improvement in suppressing heat generation during overcharging and suppressing the battery resistance value.

以上の結果から、過充電時の発熱の抑制と、電池抵抗値の抑制とが両立された電池を得るためには、粒子状のLiPOを含む正極合材層を含む正極と、DMCを含む非水電解質とを備える電池において、正極合材層に含まれるLiPOの比表面積が1.3m/g以上5.4m/g以下であるという条件と、非水電解質に含まれるDMCの濃度が24質量%以上31質量%以下であるという条件の両条件を満たすよう管理される必要があることが示された。また、上記条件のうちいずれか一方が充足されていない電池は、電池抵抗値は抑制されているものの、過充電時の発熱の抑制において改善の余地がある傾向を示すことが示された。 From the above results, in order to obtain a battery that suppresses heat generation during overcharging and suppresses the battery resistance value, a positive electrode including a positive electrode mixture layer containing particulate Li 3 PO 4 and a DMC In a battery including a non-aqueous electrolyte containing the above, the condition that the specific surface area of Li 3 PO 4 contained in the positive electrode mixture layer is 1.3 m 2 / g or more and 5.4 m 2 / g or less, and the non-aqueous electrolyte It was shown that it is necessary to control so as to satisfy both of the conditions that the concentration of the contained DMC is 24% by mass or more and 31% by mass or less. Further, it was shown that a battery in which one of the above conditions is not satisfied tends to have room for improvement in suppressing heat generation during overcharging, although the battery resistance value is suppressed.

上記の実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲によって定められる技術的範囲は、特許請求の範囲と均等の意味および範囲内でのすべての変更を含む。 The above embodiments and examples are exemplary in all respects and are not restrictive. The technical scope defined by the claims includes all changes within the meaning and scope equivalent to the claims.

Claims (1)

正極、負極、および非水電解質を含む非水電解質二次電池であって、
前記正極は正極合材層を含み、
前記正極合材層は粒子状のリン酸三リチウムを含み、
前記非水電解質はジメチルカーボネートを含み、
前記正極合材層に含まれるリン酸三リチウムの比表面積は1.3m/g以上5.4m/g以下であり、
前記比表面積は、窒素ガスを用いたBET法によって測定される値であり、
前記非水電解質に含まれるジメチルカーボネートの濃度は24質量%以上31質量%以下である、
非水電解質二次電池。
A non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, and a non-aqueous electrolyte.
The positive electrode contains a positive electrode mixture layer and contains a positive electrode mixture layer.
The positive electrode mixture layer contains particulate trilithium phosphate and contains
The non-aqueous electrolyte contains dimethyl carbonate and contains
The specific surface area of trilithium phosphate contained in the positive electrode mixture layer is 1.3 m 2 / g or more and 5.4 m 2 / g or less.
The specific surface area is a value measured by the BET method using nitrogen gas, and is a value.
The concentration of dimethyl carbonate contained in the non-aqueous electrolyte is 24% by mass or more and 31% by mass or less.
Non-aqueous electrolyte secondary battery.
JP2017153481A 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery Active JP6881141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153481A JP6881141B2 (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153481A JP6881141B2 (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2019033003A JP2019033003A (en) 2019-02-28
JP6881141B2 true JP6881141B2 (en) 2021-06-02

Family

ID=65523629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153481A Active JP6881141B2 (en) 2017-08-08 2017-08-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6881141B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557240B2 (en) * 1993-04-28 2004-08-25 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2003308842A (en) * 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary battery
DE102005031485A1 (en) * 2004-07-09 2006-02-23 Continental Teves Ag & Co. Ohg Method for detecting a pressure loss in motor vehicle tires
CN101461088B (en) * 2006-05-31 2011-12-21 三洋电机株式会社 high-voltage charge type nonaqueous electrolyte secondary battery
CN101257133A (en) * 2007-02-27 2008-09-03 三洋电机株式会社 Non-aqueous electrolyte secondary battery
JP5858295B2 (en) * 2013-08-29 2016-02-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN107004895B (en) * 2014-11-28 2019-10-11 三洋电机株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019033003A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6287707B2 (en) Nonaqueous electrolyte secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP6536563B2 (en) Non-aqueous electrolyte secondary battery
JP6848330B2 (en) Non-aqueous electrolyte power storage element
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
JP2014086228A (en) Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
JP6380269B2 (en) Method for producing lithium ion secondary battery
JP2016018731A (en) Nonaqueous secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2018181772A (en) Nonaqueous electrolyte power storage element and manufacturing method thereof
JP6805940B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5820219B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP2016081609A (en) Nonaqueous electrolyte secondary battery
JP6899312B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP2018055886A (en) Carbon-coated positive electrode active material, method for manufacturing the same, positive electrode, and nonaqueous electrolyte power storage device
JPWO2019031598A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
JP6881141B2 (en) Non-aqueous electrolyte secondary battery
JP6120101B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2013037772A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP6801602B2 (en) Non-aqueous electrolyte secondary battery
CN113228367A (en) Nonaqueous electrolyte electricity storage element and method for manufacturing nonaqueous electrolyte electricity storage element
JP2020173998A (en) Non-aqueous electrolyte storage element and manufacturing method thereof
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP7159864B2 (en) NONAQUEOUS ELECTROLYTE STORAGE ELEMENT AND USAGE THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151