JP6880542B2 - 軸受装置 - Google Patents

軸受装置 Download PDF

Info

Publication number
JP6880542B2
JP6880542B2 JP2015150776A JP2015150776A JP6880542B2 JP 6880542 B2 JP6880542 B2 JP 6880542B2 JP 2015150776 A JP2015150776 A JP 2015150776A JP 2015150776 A JP2015150776 A JP 2015150776A JP 6880542 B2 JP6880542 B2 JP 6880542B2
Authority
JP
Japan
Prior art keywords
bearing
bearing portion
main body
upper bearing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150776A
Other languages
English (en)
Other versions
JP2017032028A (ja
Inventor
亮介 江副
亮介 江副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015150776A priority Critical patent/JP6880542B2/ja
Publication of JP2017032028A publication Critical patent/JP2017032028A/ja
Application granted granted Critical
Publication of JP6880542B2 publication Critical patent/JP6880542B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は軸受機構に関するものであり、特に静圧軸受に関するものである。
生産設備や輸送機器など様々な装置の稼働部において軸受や案内機構が用いられている。軸受や案内機構には、転がり軸受、滑り軸受、流体潤滑軸受およびその他の軸受が用いられる。高速で高精度な動作が要求されるような用途では、静圧軸受が用いられることが多い。静圧軸受では、回転や摺動等の相対的に運動している2表面の間の潤滑に、空気や油などの流体が用いられる。静圧軸受は、局部的な接触による案内ではなく、流体表面での案内であるため高い案内精度を得ることができる。
軸受の基本特性である剛性および負荷容量は、軸受面の面積に比例し、軸受間の間隔であるエアギャップに反比例する。軸受面の面積は、装置の大きさや加工精度の面において設計上の制約が大きい。したがって、安定した高い特性を得るためには、軸受間の間隔、および、流体の供給や排出を行う給気部や排気部の構造等の最適な設計を行い、使用環境下において適切する必要がある。
一方で、軸受装置の動作時には軸受の動力からの伝熱、周辺の温度変化およびエアギャップ内の流体摩擦による温度上昇等によって軸受の部材の熱膨張が生じる。軸受の部材の熱膨張が生じると、軸受間のエアギャップが変化して軸受の剛性等の特性に変動が生じる。また、軸受の部材の膨張によって軸受面の接触も生じうる。そのため、実使用環境において性能を維持して安定して軸受装置を稼働させるためには、軸受の剛性等の特性を実使用環境において維持する必要がある。そのような背景から、軸受装置において実際に使用が想定される環境下において安定した特性を得る技術の開発が行われている。軸受装置において実使用環境において安定した特性を得るための技術としては、例えば、特許文献1のような技術が開示されている。
特許文献1は、スラスト軸受機構を備えたスピンドル装置に関するものである。特許文献1のスピンドル装置は、軸部に備えられたフランジ部と、軸受本体および軸受部との間にスラスト隙間が形成されている。特許文献1の軸受機構では、軸受本体とフランジ部付近の軸受部に互いに熱膨張係数の近い部材が用いられている。特許文献1は、軸受本体と軸受部の部材の熱膨張係数を近くすることで低温下においてスラスト隙間が狭くなりすぎて、フランジ部と軸受が接触する状態を避けることができるとしている。
特開2013−7393号公報
しかしながら、特許文献1の技術は次のような点で十分ではない。特許文献1の軸受機構では、低温下で軸受本体が収縮した際にフランジ部周辺の軸受部の変形によりスラスト隙間が狭くなることを抑制している。そのため、特許文献1の軸受機構では温度上昇時には、軸受本体および軸受部が熱膨張しフランジ部を受けるスラスト隙間が狭くなる恐れがある。フランジ部を受けるスラスト隙間が狭くなると、フランジと軸受の接触や剛性等の特性の変動が生じる。そのため、特許文献1の軸受機構は、連続稼働等による温度上昇時に安定した稼働状態を得られない恐れがある。よって、特許文献1の技術は、軸受装置において実使用環境において安定した特性を得るための技術としては十分ではない。
本発明は、上述の課題を解決するため、連続稼働等によって温度が上昇したたような環境下において、十分な特性を有する軸受装置を得ることを目的としている。
上記の課題を解決するため、本発明の軸受装置は、第1の軸受部と、第2の軸受部を備えている。第1の軸受部は、第1の材料で形成された第1の層と、第1の材料よりも熱膨張係数が小さい第2の材料で形成された第2の層を積層した領域を有する。第2の軸受部は、第1の軸受部と空隙を介して対向または嵌合する。第1の軸受部および第2の軸受部の少なくとも一方は、回転または摺動の動作手段を有する。また、第2の層は、第1の軸受部の第2の軸受部の側に形成されている。
本発明によると、連続稼働等によって温度が上昇したたような環境下において、十分な特性を得ることができる。
本発明の第1の実施形態の構成の概要を示す図である。 本発明の第2の実施形態の軸受装置の構成を示す斜視図である。 本発明の第2の実施形態の軸受装置の構成を示す断面図である。 本発明の第2の実施形態における温度上昇時の軸受装置の状態を示す図である。 本発明の第3の実施形態の軸受装置の構成を示す斜視図である。 本発明の第3の実施形態の軸受装置の構成を示す断面図である。 本発明の第4の実施形態の軸受装置の構成を示す斜視図である。 本発明の第4の実施形態の軸受装置の構成を示す断面図である。
(第1の実施形態)
本発明の第1の実施形態について図を参照して詳細に説明する。図1は、本実施形態の軸受装置の構成の概要を示した図である。本実施形態の軸受装置は、第1の軸受部1と、第2の軸受部2を備えている。第1の軸受部1は、第1の材料で形成された第1の層3と、第1の材料よりも熱膨張係数が小さい第2の材料で形成された第2の層4とを積層した領域を有する。第2の軸受部2は、第1の軸受部1と空隙を介して対向または嵌合する。第1の軸受部1および第2の軸受部2の少なくとも一方は、回転または摺動の動作手段を有する。また、第2の層4は、第1の軸受部1の第2の軸受部2の側に形成されている。
本実施形態の軸受装置の第1の軸受部1は、熱膨張係数が互いに異なる2つの材料が積層された構造を有している。また、第2の軸受部2と空隙を介して対向する側の第2の層4の材料の熱膨張係数に比べ、反対側の第1の層3の材料の熱膨張係数の方が大きい。そのため、温度が上昇したときには、第2の層4に比べて第1の層3の方が大きく膨張しようとするので、第1の軸受部1は、第2の軸受部2側とは反対側の面の面積を広くするように反った構造となる。第1の軸受部1が第2の軸受部2側とは反対側の面の面積を広くするように反った状態となると、第1の軸受部1の端部では、第1の軸受部1と第2の軸受部2の距離が近くなる。第1の軸受部1と第2の軸受部2の距離が近くなることにより、本実施形態の軸受装置は、温度上昇時等に高い剛性を得ることができる。その結果、本実施形態の軸受装置では、連続稼働等によって温度が上昇したたような環境下において、十分な特性を得ることができる。
(第2の実施形態)
本発明の第2の実施形態について図を参照して詳細に説明する。図2および図3は、本実施形態の軸受装置の構成の概要を示したものである。図2は、本実施形態の軸受装置の斜視図である。また、図3は、本実施形態の軸受装置の断面図である。
本実施形態の軸受装置は、下側軸受部11と、上側軸受本体部12と、上側軸受端部13を備えている。また、図3に示す通り、下側軸受部11は、給気部14を備えている。また、下側軸受部11と、上側軸受本体部12および上側軸受端部13との間には、エアギャップ15が形成されている。下側軸受部11と、上側軸受本体部12および上側軸受端部13との間に形成されているエアギャップ15の端部は、排気部16として備えられている。
本実施形態の軸受装置は、下側軸受部11と、上側軸受本体部12および上側軸受端部13で形成された上側軸受部がエアギャップ15を介して平面で対向または嵌合したスラスト軸受機構を有する。本実施形態の軸受装置では、エアギャップ15には潤滑油等の流体が充てんされ、流体の静圧によって軸受部間の間隔が維持され、軸受部が回転や摺動の動作を行う。
下側軸受部11は、スラスト軸受としてしての機能を有する。本実施形態の下側軸受部11は、ステンレス鋼であるSUS(Steel Use Stainless)304で形成されている。本実施形態で用いているSUS304の熱膨張係数は、17.3ppmである。下側軸受部11は、SUS304以外のステンレス鋼やその他の金属で形成されていてもよい。また、下側軸受部11には、給気部14が形成されている。本実施形態の下側軸受部11は、第1の実施形態の第2の軸受部2に相当する。
上側軸受本体部12は、上側軸受端部13との組み合わせによりスラスト軸受としての機能を有する。下側軸受部11と、上側軸受本体部12および上側軸受端部13は、エアギャップ15を介して互いに平面で対向または嵌合している。本実施形態の上側軸受本体部12は、下側軸受部11と同じ材質、すなわち、ステンレス鋼であるSUS304で形成されている。そのため、本実施形態の上側軸受本体部12の熱膨張係数は、17.3ppmである。上側軸受本体部12は、SUS304以外のステンレス鋼やその他の金属で形成されていてもよい。また、下側軸受部11と上側軸受本体部12は、互いに異なるステンレス鋼やその他の金属で形成されていてもよい。
上側軸受端部13は、上側軸受本体部12との組み合わせによりスラスト軸受としての機能を有する。また、上側軸受端部13は、エアギャップ15の間隔を調整する部材としての機能を有する。上側軸受端部13は、上側軸受本体部12の排気部16付近の、下側軸受部11の側に形成されている。排気部16付近では、互いに異なる金属で形成された上側軸受本体部12と上側軸受端部13が、積層されている。すなわち、排気部16付近では、上側軸受本体部12と上側軸受端部13で形成されているスラスト軸受は、バイメタル構造を有している。
上側軸受端部13は、上側軸受本体部12よりも熱膨張係数が小さな金属を用いて形成されている。上側軸受端部13に用いられている材料の熱膨張係数は、上側軸受本体部12に用いられている材料の熱膨張係数の半分未満であることが好ましい。本実施形態では、上側軸受端部13は、チタンで形成されている。本実施形態の上側軸受端部13に用いられているチタンの熱膨張係数は8.0ppmである。上側軸受端部13は、チタン以外の金属で形成されていてもよい。
また、本実施形態の上側軸受端部13は、上側軸受本体部12と接合され一体の部材として形成されている。例えば、上側軸受端部13は、上側軸受本体部12に溶接や接着によって接合される。上側軸受本体部12と上側軸受端部13が接合されていることで、熱膨張係数の違いによる変形の効果が向上する。
上側軸受本体部12と上側軸受端部13は、分離可能な部材として形成されていてもよい。上側軸受本体部12と上側軸受端部13を分離可能な状態で軸受を形成することで、どちらかに傷がついた場合などに、該当する部材のみを交換することができる。上側軸受本体部12と上側軸受端部13が分離可能な構成とした場合には、上側軸受端部13は、中心付近側と周辺側を含む2か所以上において、上側軸受本体部12に固定具で固定されることが望ましい。2か以上で固定することで、上側軸受本体部12が熱膨張する際に自由度が抑制されて反りを生じる効果が高くなるからである。
本実施形態では、上側軸受本体部12に熱膨張係数が大きく、硬度が高いSUS304が用いられている。また、上側軸受端部13に熱膨張係数が小さく、硬度が低いチタンが用いられている。そのため、急に流体の供給が停止するような異常が発生した際には、上側軸受端部13が下側軸受部11と接触して傷づく可能性が高い。そのような場合には、上側軸受端部13を交換するのみで、軸受として再び使用することが可能となり得る。静圧軸受には高い表面精度が要求されるので、部材ごとの交換を可能な構成とすることで保守性が向上する。
本実施形態の上側軸受本体部12および上側軸受端部13によって形成される軸受は、第1の実施形態の第1の軸受部1に相当する。また、上側軸受本体部12は、第1の実施形態の第1の軸受部1の第1の層3に相当する。上側軸受端部13は、第1の実施形態の第1の軸受部1の第2の層4に相当する。
給気部14は、エアギャップ15に加圧された流体を供給する経路としての機能を有する。本実施形態の軸受装置では、給気部14は、下側軸受部11に備えられている。給気部14は、流体の供給管と接続されている。給気部14を介して共有された加圧された流体は、エアギャップ15に充てんされ、排気部16から排出される。給気部14は、複数、備えられていてもよい。流体には、加圧された気体や潤滑油等が用いられる。
エアギャップ15は、下側軸受部11と、上側軸受本体部12および上側軸受端部13の間に形成された空隙である。稼働時は、エアギャップ15に、給気部14を介して加圧された流体が充てんされる。エアギャップ15は、下側軸受部11と、上側軸受本体部12および上側軸受端部13の間隔がマイクロメートルのオーダーとなるように形成される。また、本実施形態では、稼働時の温度上昇によって、排気部16付近の下側軸受部11と上側軸受端部13の間隔は、軸受装置の中心付近の下側軸受部11と上側軸受本体部12の間隔に比べて狭くなる。
エアギャップ15の間隔は、軸受装置に要求される剛性特性に応じて設定される。エアギャップ15の間隔とは、下側軸受部11の平面と、上側軸受本体部12および上側軸受端部13が形成する平面との距離のことをいう。本実施形態のエアギャップ15の間隔は、軸受装置が実際に使用される環境下で想定される温度における下側軸受部11、上側軸受本体部12および上側軸受端部13の変形量を考慮して設定される。すなわち、上側軸受本体部12および上側軸受端部13の熱膨張によって部材が反った場合の対向側の下側軸受部11との距離を考慮してエアギャップ15の間隔が設定される。
本実施形態の軸受装置では、上側軸受本体部12の材料の熱膨張係数は、上側軸受端部13の材料の熱膨張係数に比べて大きい。よって、軸受装置の稼働時に温度が上昇した際に、上側軸受本体部12は、上側軸受端部13よりも大きく熱膨張しようとする。しかし、上側軸受本体部12と上側軸受端部13が一体の部材として形成されているので、上側軸受本体部12は、膨張する際に上側軸受端部13の影響を受ける。その際に、上側軸受本体部12の方が大きく膨張するので上側軸受本体部12および上側軸受端部13は、エアギャップ15とは反対側の面が凸状態となるように変形し反った形状となる。すなわち、温度上昇とともに、エアギャップ15の周辺付近における下側軸受部11と上側軸受端部13の間隔が、中心付近における下側軸受部11と上側軸受本体部12の間隔に比べて狭くなる構造となる。
エアギャップ15の周辺付近、すなわち、排気部16付近のエアギャップ15の間隔が狭くなるので、本実施形態の軸受装置は、温度上昇時に排気絞りと同様の構造を有する。すなわち、本実施形態の軸受装置では、排気部16の周辺を熱膨張係数の異なる2物質を接続したバイメタル構造にすることで、温度上昇を利用して軸受特性を高剛性化することができる。
また、本実施形態の軸受装置は、熱膨張係数の異なる上側軸受端部13を周辺付近、すなわち、排気部16の付近にのみ備えている。排気部16以外の部分には、対向側の下側軸受部11と熱膨張係数が同じ材料で形成された上側軸受部12単層とすることでエアギャップ15の温度による間隔の変動の見積もりおよび制御が容易となる。その結果、エアギャップ15の平均的な間隔を精度よく制御できるようになるので、軸受装置の剛性が安定する。また、排気部16付近では、エアギャップ15の間隔を狭めて剛性を上げているので、上側軸受端部13を排気部16付近に備えることで、軸受装置全体として、剛性の安定した制御と、剛性の向上を両立することができる。
排気部16は、エアギャップ15に充てんされた流体を排出する機能を有する。排気部16は、下側軸受部11と、上側軸受本体部12および上側軸受端部13の間に形成されたエアギャップ15の端部に形成されている。
図2および図3において、上側軸受本体部12および上側軸受端部13を上側に、下側軸受部11を下側に示したが、上下は逆に設置されていてもよい。すわなち、下側軸受部11が上側、上側軸受本体部12および上側軸受端部13が下側に設置されていてもよい。また、上下方向ではなく横方向等に設置されていてもよい。また、吸気部14は、上側軸受本体部12に備えられていてもよい。
本実施形態の軸受装置の動作について説明する。本実施形態の軸受装置は、稼働時に給気部14から所定の流体が加圧されて供給される。本実施形態では所定の流体としては、潤滑油が用いられる。所定の流体は、加圧された気体や潤滑油以外の液体であってもよい。給気部14から供給された潤滑油はエアギャップ15に充てんされる。また、エアギャップ15に充てんされた潤滑油は、順次、排気部16から排出される。
エアギャップ15に潤滑油が充てんされると、潤滑流体膜の静圧によって軸受に作用する荷重が支えられる。下側軸受部11と、上側軸受本体部12および上側軸受端部13は、流体の静圧によって間隔を維持し、回転または摺動等の動作を行う。回転または摺動等の動作は、下側軸受部11と、上側軸受本体部12および上側軸受端部13で形成される上側軸受部の少なくとも一方が動くことによって行われる。
連続稼働を行っていると、動力からの伝熱、装置内の温度上昇および流体摩擦による温度上昇等によって、軸受装置の各部位の温度が上昇する。温度が上昇すると、軸受装置の各部位はそれぞれ熱膨張する。図4は、温度上昇時における本実施形態の軸受装置の状態を模式的に示したものである。
上側軸受本体部12および上側軸受端部13がそれぞれ熱膨張する際に、上側軸受本体部12は、上側軸受端部13よりも熱膨張係数が大きいのでより大きく膨張しようとする。上側軸受本体部12および上側軸受端部13は互いに接合された状態なので、上側軸受本体部12の上側軸受端部13との接合面側は自由に膨張することができない。一方で上側軸受本体部12の上側軸受端部13と反対側の面は自由に膨張することができる。よって、上側軸受本体部12は、熱膨張によって反った状態になる。上側軸受本体部12は、熱膨張によって反る際に、エアギャップ15とは反対側の面が山、エアギャップ15側の面が谷となるような構造を形成する。このような構造は、上側軸受本体部12がエアギャップ15とは反対側の面では、熱膨張で自由に面積を広くしようとする一方で、エアギャップ15側の面では上側軸受端部13との接合面に拘束されることで形成される。
上側軸受本体部12が反った状態になると、上側軸受本体部12に接合された上側軸受端部13は、エアギャップ15の周辺付近、すなわち、排気部16付近において下側軸受部11に近づいた状態になる。上側軸受端部13と下側軸受部11が近づいた状態になると、軸受装置の剛性が高くなる。よって、本実施形態の軸受装置は、温度の上昇とともに高剛性の状態で動作する。
また、本実施形態の軸受装置において上側軸受本体部12が熱膨張によって反ったことで中心付近においてエアギャップ15の間隔が広がった場合においても、周辺付近では間隔が狭くなっているので装置全体としては剛性の変動を抑制することができる。
本実施形態の軸受装置は、上側軸受本体部12と上側軸受端部13に互いに熱膨張係数の異なる金属を用いたバイメタル構造の軸受部を備えている。本実施形態の軸受装置は、エアギャップ15側の上側軸受端部13に熱膨張係数が小さな金属、エアギャップ15とは反対側の上側軸受本体部12に熱膨張係数が大きな金属を用いたバイメタル構造を備えている。そのため、本実施形態の軸受装置では、エアギャップとは反対側でより大きく膨張しようとするので、温度上昇時に周辺部のみエアギャップ15が狭くなった構造となる。本実施形態の軸受装置では、温度上昇時に周辺部のエアギャップ15が狭くなるので、剛性が高くなる。また、本実施形態の軸受装置は、軸受部の熱膨張による変形を用いて剛性を高めているので、剛性を高めるために他に特別な機構を必要としない。そのため、本実施形態の軸受装置では、装置構成の複雑化や装置の大型化を抑制しつつ、軸受の剛性を高めることができる。以上より、本実施形態の軸受装置では、装置構成の複雑化や装置の大型化を生じることなく、常温よりも温度が上昇することの多い実使用環境下において高い剛性を得ることができる。その結果、本実施形態の軸受装置では、連続稼働等によって温度が上昇したような環境下において、十分な特性を得ることができる。
(第3の実施形態)
本発明の第3の実施形態について図を参照して詳細に説明する。図5および図6は、本実施形態の軸受装置の構成の概要を示したものである。図5は、本実施形態の軸受装置の斜視図である。また、図6は、本実施形態の軸受装置の断面図である。第2の実施形態では、スラスト軸受機構に対応した軸受装置について説明したが、本実施形態の軸受装置は、エアスライドガイド機構に対応していることを特徴とする。
本実施形態の軸受装置は、ガイド部21と、ステージ本体部22と、ステージ端部23を備えている。また、図6に示す通り、ガイド部21は、給気部24を備えている。また、ガイド部21と、ステージ本体部22およびステージ端部23との間には、エアギャップ25が形成されている。給気部24、エアギャップ25および排気部26の機能は、第2の実施形態の同名称の部位とそれぞれ同様である。
本実施形態の軸受装置は、ステージ本体部22およびステージ端部23で形成されたステージの内部に、エアギャップ25を介してガイド部21を備えるエアスライドガイド機構を有する。本実施形態の軸受装置では、エアギャップ25に潤滑油等の流体が充てんされ、流体の静圧によってガイド部21と、ステージ本体部22およびステージ端部23との間隔が維持される。本実施形態の軸受装置では、ガイド部21の長軸方向に沿って、ステージ本体部22およびステージ端部23が動作を行う。
ガイド部21は、ステージ本体部22およびステージ端部23で形成されるステージが動作する際のガイドとしての機能を有する。本実施形態のガイド部21は、ステンレス鋼であるSUS304で形成されている。本実施形態で用いているSUS304の熱膨張係数は、17.3ppmである。ガイド部21は、SUS304以外のステンレスやその他の金属で形成されていてもよい。また、ガイド部21には、給気部24が形成されている。
ステージ本体部22は、ガイド部21の長軸方向に沿って動作する機能を有する。本実施形態のステージ本体部22は、ガイド部21と同じ材質、すなわち、SUS304で形成されている。そのため、本実施形態のステージ本体部22の熱膨張係数は、17.3ppmである。ステージ本体部22は、SUS304以外のステンレスやその他の金属で形成されていてもよい。また、ガイド部21とステージ本体部22は、互いに異なる金属で形成されていてもよい。
ステージ端部23は、ステージ本体部22とともにガイド部21の長軸方向に沿って動作する機能と、排気部26付近でのエアギャップ25の幅を調整する機能を有する。ステージ端部23は、排気部26の付近に形成されている。排気部26付近では、互いに異なる金属で形成されたステージ本体部22とステージ端部23が、積層されて形成されている。すなわち、排気部26付近では、ステージ本体部22とステージ端部23によって、バイメタル構造が形成されている。また、ステージ端部23は、ステージ本体部22に接合され、ステージ本体部22とステージ端部23は、一体の部材として形成されている。ステージ端部23は、例えば、ステージ本体部22に溶接や接着によって接合される。
ステージ本体部22とステージ端部23は、取り外し可能な別々の部材として形成されていてもよい。ステージ本体部22とステージ端部23が分離可能な構成とした場合には、ステージ端部23は、ステージ長軸方向の2か所以上において、ステージ本体部22に固定具で固定されることが望ましい。2か以上で固定することで、ステージ本体部22が熱膨張する際に自由度が抑制されて反りを生じる効果が高くなるからである。
ステージ端部23は、ステージ本体部22よりも熱膨張係数が小さな金属を用いて形成されている。ステージ端部23に用いられている材料の熱膨張係数は、ステージ本体部22に用いられている材料の熱膨張係数の半分未満であることが好ましい。本実施形態では、ステージ端部23は、チタンで形成されている。本実施形態のステージ端部23に用いられているチタンの熱膨張係数は8.0ppmである。ステージ端部23は、チタン以外の金属で形成されていてもよい。
本実施形態の軸受装置の動作について説明する。本実施形態の軸受装置は、第2の実施形態と同様に稼働時に給気部24から所定の流体が加圧されて供給される。本実施形態では所定の流体としては、潤滑油が用いられる。給気部24から供給された潤滑油はエアギャップ25に充てんされる。また、エアギャップ25に充てんされた潤滑油は、順次、排気部26から排出される。
エアギャップ25に潤滑油が充てんされると、潤滑流体膜の静圧によってガイド部21と、ステージ本体部22およびステージ端部23との間隔が維持される。ガイド部21と、ステージ本体部22およびステージ端部23で形成されるステージは、流体の静圧によって間隔を維持する。テージ本体部22およびステージ端部23で形成されるステージは、ガイド部21の長軸方向に沿って動作する。
連続稼働を行っていると、動力からの伝熱、装置内の温度上昇および流体摩擦による温度上昇等によって軸受装置の各部位の温度が上昇する。温度が上昇すると、軸受装置の各部位はそれぞれ熱膨張する。ステージ本体部22およびステージ端部23がそれぞれ熱膨張する際には、ステージ本体部22は、ステージ端部23よりも熱膨張係数が大きいのでより大きく膨張しようとする。ステージ本体部22およびステージ端部23が互いに接合された状態なので、ステージ本体部22は、熱膨張によって反った状態になる。
ステージ本体部22が反った状態になると、ステージ本体部22に接合されたステージ端部23は、ステージの端部、すなわち、排気部26付近においてガイド部21に近づいた状態になる。そのため、本実施形態の軸受装置は、実使用時等に温度が上昇した際に、ステージの端部の排気口26付近において剛性が高くなる。その結果、本実施形態の軸受装置は、実使用環境下で高い剛性を有する。
また、温度上昇時において、ステージの中心付近はガイド部21とステージ本体部22が互いに少し離れた状態になった場合にも、周辺付近では近づくため軸受装置全体では、温度上昇時の剛性の変化量は抑制される。
本実施形態では、ステージ本体部22とステージ端部23で形成されるステージ側が可動部として動作を行ったが、ガイド21側が動く構成としてもよい。また、吸気部24は、ステージ本体部22に備えられていてもよい。また、本実施形態ではステージ本体部22とステージ端部23で形成されるステージを可動部としてが、可動部はステージ以外のものであってもよい。
本実施形態の軸受装置は、ステージ本体部22とステージ端部23に互いに熱膨張係数の異なる金属を用いたバイメタル構造の軸受部を備えている。本実施形態の軸受装置は、ガイド部21と対向する側のステージ端部23に熱膨張係数が小さな金属、ガイド部21とは反対側のステージ本体部22に熱膨張係数が大きな金属を用いたバイメタル構造を備えている。そのため、本実施形態の軸受装置では、ガイド部21とは反対側でより大きく膨張しようとするので、温度上昇時にステージの端部の排気口26の周辺のみエアギャップ25が狭くなった構造となる。本実施形態の軸受装置では、温度上昇時にステージの端部でエアギャップ25が狭くなるので、剛性が高くなる。また、本実施形態の軸受装置は、ステージ本体部22の熱膨張による変形を用いて剛性を高めているので、剛性を高めるために他に特別な機構を必要としない。以上より、本実施形態の軸受装置では、装置構成の複雑化や装置の大型化を生じることなく、常温よりも温度が上昇することの多い実使用環境下において高い剛性を得ることができる。その結果、本実施形態の軸受装置では、連続稼働等によって温度が上昇したたような環境下において、十分な特性を得ることができる。
(第4の実施形態)
本発明の第4の実施形態について図を参照して詳細に説明する。図7および図8は、本実施形態の軸受装置の構成の概要を示したものである。本実施形態の軸受装置は、スピンドル機構を有していることを特徴とする。
本実施形態の軸受装置は、主軸部31と、回転体本体部32と、回転体端部33を備えている。また、図8に示す通り、主軸部31は、給気部34を備えている。また、主軸部31と、回転体本体部32および回転体端部33との間には、エアギャップ35が形成されている。給気部34、エアギャップ35および排気部36の機能は、第2の実施形態の同名称の部位とそれぞれ同様である。
本実施形態の軸受装置は、回転体本体部32および回転体端部33で形成された回転体の内部に、エアギャップ25を介して主軸部31を備えるスピンドル機構を有している。本実施形態の軸受装置では、エアギャップ35に潤滑油等の流体が充てんされ、流体の静圧によって主軸部31と、回転体本体部32および回転体端部33との間隔が維持される。本実施形態の軸受装置では、回転体本体部32および回転体端部33で形成された回転体が、主軸部31を回転中心とした円周方向の回転動作を行う。
主軸部31は、回転体本体部32および回転体端部33で形成された回転体の回転軸としての機能を有する。本実施形態の主軸部31は、ステンレス鋼であるSUS304で形成されている。本実施形態で用いているSUS304の熱膨張係数は、17.3ppmである。主軸部31は、SUS304以外のステンレス鋼やその他の金属で形成されていてもよい。また、主軸部31には、給気部34が形成されている。
回転体本体部32は、主軸部31を回転軸とした回転動作を行う回転体としての機能を有する。本実施形態の回転体本体部32は、主軸部31と同じ材質、すなわち、SUS304で形成されている。そのため、本実施形態の回転体本体部32の熱膨張係数は、17.3ppmである。回転体本体部32は、SUS304以外のステンレス鋼やその他の金属で形成されていてもよい。また、主軸部31と回転体本体部32は、互いに異なる金属で形成されていてもよい。
回転体端部33は、回転体本体部32とともに回転動作を行う機能と、排気部36付近でのエアギャップ35の間隔を調整する機能を有する。回転体端部33は、排気部36の付近に形成されている。排気部36付近では、互いに異なる金属で形成された回転体本体部32と回転体端部33が、積層されて形成されている。すなわち、排気部36付近では、回転体本体部32と回転体端部33によって、バイメタル構造が形成されている。本実施形態では、回転体端部33が回転体本体部32と接合され、回転体本体部32および回転体端部33は、一体の部材として形成されている。回転体端部33は、例えば、回転体本体部32に溶接や接着によって接合される。
回転体本体部32および回転体端部33は、取り外し可能な別々の部材として形成されていてもよい。回転体本体部32と回転体端部33が分離可能な構成とした場合には、回転体端部33は、回転体の長軸方向の2か所以上において、回転体本体部32に固定具で固定されることが望ましい。2か以上で固定することで、回転体本体部32が熱膨張する際に自由度が抑制されて反りを生じる効果が高くなるからである。
回転体端部33は、回転体本体部32よりも熱膨張係数が小さな金属を用いて形成されている。回転体端部33に用いられている材料の熱膨張係数は、回転体本体部32に用いられている材料の熱膨張係数の半分未満であることが好ましい。本実施形態では、回転体端部33は、チタンで形成されている。本実施形態の回転体端部33に用いられているチタンの熱膨張係数は8.0ppmである。回転体端部33は、チタン以外の金属で形成されていてもよい。
本実施形態の軸受装置の動作について説明する。本実施形態の軸受装置は、第2の実施形態と同様に稼働時に給気部34から所定の流体が加圧されて供給される。本実施形態では所定の流体としては、潤滑油が用いられる。給気部34から供給された潤滑油はエアギャップ35に充てんされる。また、エアギャップ25に充てんされた潤滑油は、順次、排気部36から排出される。
エアギャップ35に潤滑油が充てんされると、潤滑流体膜の静圧によって主軸部31と、回転体本体部32および回転体端部33との間隔が維持される。主軸部31と、回転体本体部32および回転体端部33は、流体の静圧によってエアギャップ35の間隔を維持する。回転体本体部32および回転体端部33で形成される回転体は、主軸部31の長軸を回転中心とした回転動作を行う。
連続稼働を行っていると、動力からの伝熱、装置内の温度上昇および流体摩擦による温度上昇等によって軸受装置の各部位の温度が上昇する。温度が上昇すると、軸受装置の各部位はそれぞれ熱膨張する。回転体本体部32および回転体端部33がそれぞれ熱膨張する際に、回転体本体部32は、回転体端部33よりも熱膨張係数が大きいのでより大きく膨張しようとする。回転体本体部32および回転体端部33が互いに接合された状態なので、回転体本体部32は、熱膨張によって反った状態になる。
回転体本体部32が反った状態になると、回転体本体部32に接合された回転体端部33は、回転体の端部、すなわち、排気部36付近において主軸部31に近づいた状態になる。そのため、回転体の端部では剛性が高くなる。その結果、本実施形態の軸受装置は、温度が常温よりも上昇するような実使用環境下で高い剛性を有する。
また、温度上昇時の反りによって、回転体の中心付近において主軸部31と回転体本体部32が互いに少し離れた状態になったような場合においても、周辺部では近づいた状態になるので、軸受装置全体では剛性の変化量は抑制される。
本実施形態では、回転体本体部32と回転体端部33で形成される回転体側が可動部として動作を行ったが、主軸部31側が動く構成としてもよい。また、吸気部34は、回転体本体部32に備えられていてもよい。
本実施形態の軸受装置は、回転体本体部32と回転体端部33に互いに熱膨張係数の異なる金属を用いたバイメタル構造の軸受部を備えている。本実施形態の軸受装置は、主軸部31と対向する側の回転体端部33に熱膨張係数が小さな金属、主軸部31とは反対側の回転体本体部32に熱膨張係数が大きな金属を用いたバイメタル構造を備えている。そのため、本実施形態の軸受装置では、主軸部31とは反対側でより大きく膨張しようとするので、温度上昇時に周辺部のみエアギャップ35が狭くなった構造となる。本実施形態の軸受装置では、温度上昇時に周辺部のエアギャップ35が狭くなるので、剛性が高くなる。また、本実施形態の軸受装置は、回転体本体部32の熱膨張による変形を用いて剛性を高めているので、剛性を高めるために他に特別な機構を必要としない。以上より、本実施形態の軸受装置では、装置構成の複雑化や装置の大型化を生じることなく、常温よりも温度が上昇することの多い実使用環境下において高い剛性を得ることができる。その結果、本実施形態の軸受装置では、連続稼働等によって温度が上昇したたような環境下において、十分な特性を得ることができる。
第2乃至第4の実施形態において、軸受部の部材は金属によって形成されていたが、軸受部の部材は、熱膨張に差のある樹脂またはセラミックの組み合わせによって形成されていてもよい。また、各部位の金属は、その他の金属や樹脂等によって表面が加工されていてもよい。
1 第1の軸受部
2 第2の軸受部
3 第1の層
4 第2の層
11 下側軸受部
12 上側軸受本体部
13 上側軸受端部
14 給気部
15 エアギャップ
16 排気部
21 ガイド部
22 ステージ本体部
23 ステージ端部
24 給気部
25 エアギャップ
26 排気部
31 主軸部
32 回転体本体部
33 回転体端部
34 給気部
35 エアギャップ
36 排気部

Claims (8)

  1. 第1の金属材料で形成された第1の層からなる中心付近の領域と、前記第1の層に前記第1の金属材料よりも熱膨張係数が小さい第2の金属材料で形成された第2の層が積層された周辺付近の領域とを有する第1の軸受部と、
    前記第1の軸受部と空隙を介して対向または嵌合する第2の軸受部とを備え、
    前記第1の軸受部および前記第2の軸受部の少なくとも一方が回転または摺動の動作手段を有し、
    前記第1の軸受部は、前記第2の軸受部側とは反対側の略全面および前記第2の軸受部側の中心付近が前記第1の層で形成され、
    前記第1の軸受部と前記第2の軸受部の間に形成される前記空隙の間隔が、温度が上昇した際に、前記第1の軸受部の変形によって中心付近よりも周辺付近において狭くなることを特徴とする軸受装置。
  2. 前記第1の軸受部または前記第2の軸受部に形成され、流体を注入する給気部と、
    前記第1の軸受部および前記第2の軸受部の間の前記空隙の前記周辺付近に形成され、前記流体を排出する排気部とをさらに備え、
    前記給気部および前記排気部はそれぞれ前記空隙に接続され、前記流体が前記空隙に充てんされていることを特徴とする請求項1に記載の軸受装置。
  3. 前記第1の軸受部の前記第1の層と前記第2の層とは互いに接合され、前記第1の軸受部は一体の部材として形成されていることを特徴とする請求項1または2に記載の軸受装置。
  4. 前記第1の軸受部は、前記第1の層と、前記第2の層とが互いに分離可能な部材として形成されていることを特徴とする請求項1または2に記載の軸受装置。
  5. 前記第2の軸受部は、スラスト軸受機構となるように前記第1の軸受部と前記空隙を介して互いに対向または嵌合していることを特徴とする請求項1から4いずれかに記載の軸受装置。
  6. 前記第2の軸受部は、前記第1の軸受部の内部に、前記第2の軸受部の長軸方向と、前記第1の軸受部の長軸方向がほぼ平行になるように備えられ、
    前記第2の軸受部の外周部と前記第1の軸受部の内周部の間に前記空隙を有することを特徴とする請求項1から4いずれかに記載の軸受装置。
  7. 前記第1の軸受部および前記第2の軸受部の少なくとも一方が、前記長軸方向に動作することを特徴とする請求項6に記載の軸受装置。
  8. 前記第1の軸受部および前記第2の軸受部の少なくとも一方が、前記長軸を回転中心として動作することを特徴とする請求項6に記載の軸受装置。
JP2015150776A 2015-07-30 2015-07-30 軸受装置 Active JP6880542B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150776A JP6880542B2 (ja) 2015-07-30 2015-07-30 軸受装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150776A JP6880542B2 (ja) 2015-07-30 2015-07-30 軸受装置

Publications (2)

Publication Number Publication Date
JP2017032028A JP2017032028A (ja) 2017-02-09
JP6880542B2 true JP6880542B2 (ja) 2021-06-02

Family

ID=57989359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150776A Active JP6880542B2 (ja) 2015-07-30 2015-07-30 軸受装置

Country Status (1)

Country Link
JP (1) JP6880542B2 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042283Y1 (ja) * 1970-08-26 1975-12-01
JPS593071A (ja) * 1982-06-30 1984-01-09 三菱マテリアル株式会社 軸受装置
JPS5969523A (ja) * 1982-10-08 1984-04-19 Matsushita Electric Ind Co Ltd 流体軸受
JPS6356315U (ja) * 1986-09-30 1988-04-15
JPH0626741Y2 (ja) * 1989-05-08 1994-07-20 日本特殊陶業株式会社 セラミック軸受
JPH09317766A (ja) * 1996-05-27 1997-12-09 Tokyo Seimitsu Co Ltd 静圧空気軸受け式案内装置の両吹きパッドかじり防止装置
JP2000009142A (ja) * 1998-06-18 2000-01-11 Asahi Optical Co Ltd 軸受装置の製造方法および軸受装置
JP2003176821A (ja) * 2002-11-05 2003-06-27 Nsk Ltd 静圧多孔質軸受
JP3945446B2 (ja) * 2003-04-24 2007-07-18 株式会社デンソー セラミック担体とその製造方法
JP4210170B2 (ja) * 2003-07-29 2009-01-14 京セラ株式会社 真空対応型静圧気体軸受
JP4768577B2 (ja) * 2006-10-31 2011-09-07 シーケーディ株式会社 非接触支持装置
JP6177059B2 (ja) * 2013-09-05 2017-08-09 株式会社日立製作所 立軸ポンプ用軸受装置及び立軸ポンプ

Also Published As

Publication number Publication date
JP2017032028A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
Harnoy Bearing design in machinery: engineering tribology and lubrication
KR100826994B1 (ko) 발전기용 축봉장치
Kuznetsov et al. THD analysis of compliant journal bearings considering liner deformation
US20120211944A1 (en) Self-adjusting seal for rotating turbomachinery
US20060078239A1 (en) Wave bearings in high performance applications
Cheng et al. Behavior of hydrostatic and hydrodynamic noncontacting face seals
JP6921407B2 (ja) スラストフォイル軸受
JP6880542B2 (ja) 軸受装置
JP6800637B2 (ja) フォイル軸受
JP5819893B2 (ja) 複列ローラ軸受
CN103835945A (zh) 涡卷压缩机
JPWO2014020649A1 (ja) 直動装置
US9618036B2 (en) Tilting-pad bearing
KR101131920B1 (ko) 하이브리드 공기포일베어링
Chaudhari et al. A study of bearing and its types
JP2012127444A (ja) スラスト軸受
JP2019082195A (ja) フォイル軸受、フォイル軸受ユニット、ターボ機械
JP7114520B2 (ja) スラストフォイル軸受、フォイル軸受ユニット、ターボ機械及びフォイル
Dang et al. Behavior of a tilting–pad journal bearing with different load directions
KR100782374B1 (ko) 정밀 래디알 포일 베어링
JP5744645B2 (ja) 静圧気体軸受スピンドル
JP6952011B2 (ja) シール機構
JP2014058893A (ja) シール装置及びシール装置を備えたガスタービン
JP6565499B2 (ja) シール構造、回転駆動装置、搬送装置、工作機械および半導体製造装置
JP2020516820A (ja) 向上した効率のジャーナル軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150