JP6879242B2 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
JP6879242B2
JP6879242B2 JP2018054664A JP2018054664A JP6879242B2 JP 6879242 B2 JP6879242 B2 JP 6879242B2 JP 2018054664 A JP2018054664 A JP 2018054664A JP 2018054664 A JP2018054664 A JP 2018054664A JP 6879242 B2 JP6879242 B2 JP 6879242B2
Authority
JP
Japan
Prior art keywords
valve
circumferential direction
valve body
annular groove
groove portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054664A
Other languages
Japanese (ja)
Other versions
JP2019167997A (en
Inventor
哲朗 満谷
哲朗 満谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018054664A priority Critical patent/JP6879242B2/en
Priority to PCT/JP2019/011205 priority patent/WO2019181863A1/en
Priority to DE112019001462.5T priority patent/DE112019001462T5/en
Publication of JP2019167997A publication Critical patent/JP2019167997A/en
Application granted granted Critical
Publication of JP6879242B2 publication Critical patent/JP6879242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
    • F16K15/145Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery the closure elements being shaped as a solids of revolution, e.g. cylindrical or conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1825Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/041Construction of housing; Use of materials therefor of sliding valves cylindrical slide valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34436Features or method for avoiding malfunction due to foreign matters in oil
    • F01L2001/3444Oil filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Check Valves (AREA)

Description

本発明は、弁装置に関する。 The present invention relates to a valve device.

従来、流体の流れを制御可能な弁装置が知られている。例えば特許文献1には、油圧アクチュエータに供給する作動流体を制御する弁装置が開示されている。特許文献1の弁装置は、筒部材およびチェック弁を備えている。筒部材は、内周壁から径方向外側へ凹みつつ周方向に延びて環状に形成された環状溝部、および、環状溝部の底面と外壁とを連通する流入穴を有している。 Conventionally, a valve device capable of controlling the flow of a fluid is known. For example, Patent Document 1 discloses a valve device that controls a working fluid supplied to a hydraulic actuator. The valve device of Patent Document 1 includes a tubular member and a check valve. The tubular member has an annular groove portion formed in an annular shape extending in the circumferential direction while denting radially outward from the inner peripheral wall, and an inflow hole communicating the bottom surface of the annular groove portion with the outer wall.

特許第6005959号公報Japanese Patent No. 6005959

特許文献1の弁装置では、流入穴は、環状溝部の周方向に等間隔で複数形成されている。チェック弁は、単一の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成された弁本体を有し、弁本体の周方向が環状溝部の底面の周方向に沿うよう環状溝部に設けられ、流入穴を経由して筒部材の内側へ向かう流体の流れを許容し、筒部材の内側から流入穴へ向かう流体の流れを規制可能である。なお、チェック弁は、流入穴を経由して筒部材の内側へ向かう流体の流れにより径が縮小し開弁する。また、弁本体の周方向の両端部のそれぞれには周方向に延びる長穴が形成されており、互いに重なった2つの長穴を通るよう環状溝部の底面から突出するピンが設けられている。ここで、ピンは、長穴を係止することにより、弁本体の外径が筒部材の内周壁の内径より小さくならないよう規制している。また、チェック弁は、弁本体の軸方向の長さである幅が他の部位の幅より大きい幅広部を有している。幅広部は、弁本体の周方向に略等間隔で複数形成されている。 In the valve device of Patent Document 1, a plurality of inflow holes are formed at equal intervals in the circumferential direction of the annular groove portion. The check valve has a valve body formed in a tubular shape by winding a single plate material so that the longitudinal direction is along the circumferential direction, and the annular groove portion is formed so that the circumferential direction of the valve body is along the circumferential direction of the bottom surface of the annular groove portion. It is possible to allow the flow of fluid toward the inside of the tubular member via the inflow hole and regulate the flow of fluid from the inside of the tubular member toward the inflow hole. The check valve opens with a reduced diameter due to the flow of fluid toward the inside of the tubular member via the inflow hole. Further, elongated holes extending in the circumferential direction are formed at both ends of the valve body in the circumferential direction, and pins protruding from the bottom surface of the annular groove portion are provided so as to pass through two elongated holes overlapping each other. Here, the pin regulates the outer diameter of the valve body so as not to be smaller than the inner diameter of the inner peripheral wall of the tubular member by locking the elongated hole. Further, the check valve has a wide portion in which the width, which is the axial length of the valve body, is larger than the width of other portions. A plurality of wide portions are formed at substantially equal intervals in the circumferential direction of the valve body.

特許文献1の弁装置では、チェック弁は、径が縮小する開弁時、環状溝部の内側において振れ回り振動するおそれがある。このとき、チェック弁が、環状溝部の周方向の特定の箇所において径方向外側へ寄った場合、一部の幅広部が環状溝部から径方向内側すなわち内周壁側へ飛び出るおそれがある。この状態で、チェック弁が拡径するよう閉弁すると、幅広部が筒部材の内周壁と環状溝部との角部に衝突し、弁本体または筒部材の内周壁が損傷するおそれがある。特に、弁装置が、高速で回転する回転体に設けられて使用される場合、チェック弁の振れ回りが発生し易く、上記問題が顕著になるおそれがある。 In the valve device of Patent Document 1, the check valve may swing around and vibrate inside the annular groove portion when the valve is opened when the diameter is reduced. At this time, if the check valve is moved outward in the radial direction at a specific portion in the circumferential direction of the annular groove portion, a part of the wide portion may protrude inward in the radial direction, that is, toward the inner peripheral wall side from the annular groove portion. If the check valve is closed so as to expand its diameter in this state, the wide portion may collide with the corner portion between the inner peripheral wall of the tubular member and the annular groove portion, and the valve body or the inner peripheral wall of the tubular member may be damaged. In particular, when the valve device is provided on a rotating body that rotates at high speed and is used, the check valve tends to swing around, and the above problem may become remarkable.

本発明の目的は、チェック弁と筒部材の内周壁との衝突による損傷を抑制可能な弁装置を提供することにある。 An object of the present invention is to provide a valve device capable of suppressing damage due to a collision between a check valve and an inner peripheral wall of a tubular member.

本発明に係る弁装置(11)は、筒部材(50)とチェック弁(71、72)と回転規制部(90)とを備えている。筒部材は、内周壁(54)から径方向外側へ凹みつつ周方向に延びて環状に形成された環状溝部(55、511、512)、および、環状溝部の周方向に不等間隔で複数形成され環状溝部の底面(550)と外壁(53、531、532)とを連通する流入穴(ORs、OAs)を有している。チェック弁は、単一の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成された弁本体(700)を有し、弁本体の周方向が環状溝部の底面の周方向に沿うよう環状溝部に設けられ、流入穴を経由して筒部材の内側へ向かう流体の流れを許容し、筒部材の内側から流入穴へ向かう流体の流れを規制可能である。回転規制部は、環状溝部の周方向における弁本体の回転位置を所定範囲内に規制可能である。 The valve device (11) according to the present invention includes a tubular member (50), check valves (71, 72), and a rotation control unit (90). A plurality of tubular members are formed in an annular groove portion (55, 511, 512) formed in an annular direction while denting radially outward from the inner peripheral wall (54) and at irregular intervals in the circumferential direction of the annular groove portion. It has inflow holes (ORs, OAs) that communicate the bottom surface (550) of the annular groove portion and the outer wall (53, 531, 532). The check valve has a valve body (700) formed in a tubular shape by winding a single plate material so that the longitudinal direction is along the circumferential direction, and the circumferential direction of the valve body is along the circumferential direction of the bottom surface of the annular groove portion. It is provided in the annular groove portion so as to allow the flow of fluid toward the inside of the tubular member via the inflow hole, and can regulate the flow of fluid from the inside of the tubular member toward the inflow hole. The rotation regulating unit can regulate the rotation position of the valve body in the circumferential direction of the annular groove portion within a predetermined range.

チェック弁は、弁本体の周方向の一部に形成された幅狭部(710)、および、弁本体の周方向の幅狭部以外の部位に形成され弁本体の軸方向の長さである幅が幅狭部の幅より大きい幅広部(721、722)を有している。幅広部の少なくとも一部、環状溝部の周方向において隣り合う流入穴間の距離のうち最大距離となる区間である最大距離区間(Sbd)内に位置する。 The check valve is formed in a portion other than the narrow portion (710) formed in a part of the valve body in the circumferential direction and the narrow portion in the circumferential direction of the valve body, and is the axial length of the valve body. It has a wide portion (721, 722) whose width is larger than the width of the narrow portion . At least a portion of the width wide portion, it located a maximum distance interval (Sbd) within a period of maximum distance among distances between the inflow holes adjacent in the circumferential direction of the annular groove.

流体が流入穴を経由して筒部材の内側へ向かうとき、チェック弁は、外周壁が流体により押され、縮径しつつ開弁する。ここで、流入穴は環状溝部の周方向に不等間隔で複数形成され、幅広部の少なくとも一部最大距離区間内に位置するため、チェック弁が開弁すると、幅広部は、最大距離区間において少なくとも一部が環状溝部の底面に押し付けられる。これにより、環状溝部の内側におけるチェック弁の振れ回りを抑制するとともに、幅広部が環状溝部から径方向内側すなわち内周壁側へ飛び出るのを抑制できる。そのため、チェック弁の閉弁時に幅広部が筒部材の内周壁と環状溝部との角部に衝突するのを抑制できる。したがって、チェック弁と筒部材の内周壁との衝突による損傷を抑制できる。 When the fluid goes to the inside of the tubular member through the inflow hole, the outer peripheral wall of the check valve is pushed by the fluid and the check valve opens while reducing the diameter. Here, the inflow hole is formed in plurality at unequal intervals in the circumferential direction of the annular groove, at least in part, because that you located a maximum distance in the interval of width wide portion, the check valve is opened, the wide portion, At least part of it is pressed against the bottom surface of the annular groove in the maximum distance section. As a result, it is possible to suppress the runout of the check valve inside the annular groove portion and to prevent the wide portion from jumping out from the annular groove portion to the inner side in the radial direction, that is, to the inner peripheral wall side. Therefore, it is possible to prevent the wide portion from colliding with the corner portion between the inner peripheral wall of the tubular member and the annular groove portion when the check valve is closed. Therefore, damage due to collision between the check valve and the inner peripheral wall of the tubular member can be suppressed.

第1実施形態による弁装置を適用したバルブタイミング調整装置を示す断面図。FIG. 5 is a cross-sectional view showing a valve timing adjusting device to which the valve device according to the first embodiment is applied. 図1のII−II線断面図。FIG. 1 is a sectional view taken along line II-II of FIG. 第1実施形態による弁装置を示す断面図。The cross-sectional view which shows the valve device by 1st Embodiment. 図3のIV−IV線断面図。FIG. 3 is a sectional view taken along line IV-IV of FIG. 第1実施形態による弁装置の回転規制部およびその近傍を示す断面斜視図。The cross-sectional perspective view which shows the rotation regulation part of the valve device by 1st Embodiment and the vicinity thereof. 第1実施形態による弁装置のチェック弁を示す斜視図。The perspective view which shows the check valve of the valve device by 1st Embodiment. 第1実施形態による弁装置のチェック弁を展開した状態を示す図。The figure which shows the state which expanded the check valve of the valve device by 1st Embodiment. 比較形態による弁装置のチェック弁を展開した状態を示す図。The figure which shows the state which expanded the check valve of the valve device by the comparative form. 第1実施形態による弁装置の作動時の状態を示す断面図。The cross-sectional view which shows the state at the time of operation of the valve device by 1st Embodiment. 第2実施形態による弁装置のチェック弁を示す斜視図。The perspective view which shows the check valve of the valve device by 2nd Embodiment. 第3実施形態による弁装置の回転規制部およびその近傍を示す断面図。The cross-sectional view which shows the rotation regulation part of the valve device by 3rd Embodiment and the vicinity thereof.

以下、本発明の複数の実施形態による弁装置およびバルブタイミング調整装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。また、複数の実施形態において実質的に同一の構成部位は、同一または同様の作用効果を奏する。 Hereinafter, a valve device and a valve timing adjusting device according to a plurality of embodiments of the present invention will be described with reference to the drawings. In the plurality of embodiments, substantially the same constituent parts are designated by the same reference numerals, and the description thereof will be omitted. In addition, substantially the same constituent sites in a plurality of embodiments exhibit the same or similar effects.

(第1実施形態)
第1実施形態による弁装置、および、それを用いたバルブタイミング調整装置を図1、2に示す。バルブタイミング調整装置10は、内燃機関としてのエンジン1のクランク軸2に対するカム軸3の回転位相を変化させることによって、カム軸3が開閉駆動する吸気弁4または排気弁5のうち吸気弁4のバルブタイミングを調整するものである。バルブタイミング調整装置10は、クランク軸2からカム軸3までの動力伝達経路に設けられている。クランク軸2は、「駆動軸」に対応する。カム軸3は、「従動軸」に対応する。吸気弁4、排気弁5は、「バルブ」に対応する。
(First Embodiment)
The valve device according to the first embodiment and the valve timing adjusting device using the valve device are shown in FIGS. 1 and 2. The valve timing adjusting device 10 is the intake valve 4 of the intake valve 4 or the exhaust valve 5 in which the cam shaft 3 is driven to open and close by changing the rotation phase of the cam shaft 3 with respect to the crank shaft 2 of the engine 1 as an internal combustion engine. It adjusts the valve timing. The valve timing adjusting device 10 is provided in the power transmission path from the crankshaft 2 to the camshaft 3. The crankshaft 2 corresponds to a "drive shaft". The camshaft 3 corresponds to a "driven shaft". The intake valve 4 and the exhaust valve 5 correspond to "valves".

バルブタイミング調整装置10の構成について図1、2に基づき説明する。バルブタイミング調整装置10は、位相変換部PC、作動油供給源OS、「弁装置」としての作動油制御部OC、オイル排出部OD、遅角供給油路RRs、進角供給油路RAs、ドレン油路としての遅角ドレン油路RRdおよび進角ドレン油路RAd等を備えている。 The configuration of the valve timing adjusting device 10 will be described with reference to FIGS. 1 and 2. The valve timing adjusting device 10 includes a phase conversion unit PC, a hydraulic oil supply source OS, a hydraulic oil control unit OC as a "valve device", an oil discharge unit OD, a retard angle supply oil passage RRs, an advance angle supply oil passage RAs, and a drain. It is provided with a retarded drain oil passage RRd and an advanced drain oil passage RAd as oil passages.

位相変換部PCは、ハウジング20、ベーンロータ30を有している。ハウジング20は、ギア部21およびケース22を有している。ケース22は、筒部221、板部222、223を有している。筒部221は、筒状に形成されている。板部222は、筒部221の一端を塞ぐよう筒部221と一体に形成されている。板部223は、筒部221の他端を塞ぐよう設けられている。これにより、ハウジング20の内側に空間200が形成されている。板部223は、ボルト12により筒部221に固定されている。ギア部21は、板部223の外縁部に形成されている。 The phase conversion unit PC has a housing 20 and a vane rotor 30. The housing 20 has a gear portion 21 and a case 22. The case 22 has a tubular portion 221 and a plate portion 222, 223. The tubular portion 221 is formed in a tubular shape. The plate portion 222 is integrally formed with the tubular portion 221 so as to close one end of the tubular portion 221. The plate portion 223 is provided so as to close the other end of the tubular portion 221. As a result, the space 200 is formed inside the housing 20. The plate portion 223 is fixed to the cylinder portion 221 by a bolt 12. The gear portion 21 is formed on the outer edge portion of the plate portion 223.

板部223は、カム軸3の端部に嵌合している。カム軸3は、ハウジング20を回転可能に支持している。チェーン6は、ギア部21とクランク軸2とに巻き掛けられている。ギア部21は、クランク軸2と連動して回転する。ケース22は、筒部221から径方向内側に突き出す複数の隔壁部23を形成している。ケース22の板部222の中央には、ケース22の外側の空間に開口する開口部24が形成されている。開口部24は、ベーンロータ30に対してカム軸3とは反対側に位置する。 The plate portion 223 is fitted to the end portion of the cam shaft 3. The cam shaft 3 rotatably supports the housing 20. The chain 6 is wound around the gear portion 21 and the crankshaft 2. The gear portion 21 rotates in conjunction with the crankshaft 2. The case 22 forms a plurality of partition wall portions 23 protruding inward in the radial direction from the tubular portion 221. An opening 24 that opens into the space outside the case 22 is formed in the center of the plate portion 222 of the case 22. The opening 24 is located on the side opposite to the cam shaft 3 with respect to the vane rotor 30.

ベーンロータ30は、ボス31、および、複数のベーン32を有している。ボス31は、筒状であり、カム軸3の端部に固定されている。ベーン32は、ボス31から径方向外側に向かって各隔壁部23間に突き出している。ハウジング20の内側の空間200は、ベーン32により遅角室201と進角室202とに仕切られている。すなわち、ハウジング20は、ベーンロータ30との間に遅角室201および進角室202を形成している。遅角室201は、ベーン32に対して周方向の一方に位置している。進角室202は、ベーン32に対して周方向の他方に位置している。ベーンロータ30は、遅角室201および進角室202の油圧に応じて、ハウジング20に対して遅角方向または進角方向へ相対回転する。 The vane rotor 30 has a boss 31 and a plurality of vanes 32. The boss 31 has a tubular shape and is fixed to the end of the cam shaft 3. The vane 32 projects radially outward from the boss 31 between the partition walls 23. The space 200 inside the housing 20 is divided into a retard chamber 201 and an advance chamber 202 by a vane 32. That is, the housing 20 forms a retard chamber 201 and an advance chamber 202 with the vane rotor 30. The retard chamber 201 is located on one side of the vane 32 in the circumferential direction. The advance chamber 202 is located on the other side of the vane 32 in the circumferential direction. The vane rotor 30 rotates relative to the housing 20 in the retard direction or the advance direction according to the hydraulic pressure of the retard chamber 201 and the advance chamber 202.

本実施形態では、作動油制御部OCは、弁装置11である。弁装置11は、スリーブ400、スプール60、「チェック弁」としての遅角供給チェック弁71および進角供給チェック弁72、回転規制部90等を備えている。弁装置11は、流体としての作動油の流れを制御し、遅角室201および進角室202への作動油の供給、ならびに、遅角室201および進角室202からの作動油の排出を制御する。 In the present embodiment, the hydraulic oil control unit OC is the valve device 11. The valve device 11 includes a sleeve 400, a spool 60, a check valve 71 as a "check valve", an advance check valve 72, a rotation control unit 90, and the like. The valve device 11 controls the flow of the hydraulic oil as a fluid, supplies the hydraulic oil to the retard chamber 201 and the advance chamber 202, and discharges the hydraulic oil from the retard chamber 201 and the advance chamber 202. Control.

本実施形態では、弁装置11は、ハウジング20およびベーンロータ30の中央部に設けられている(図1、2参照)。すなわち、弁装置11は、少なくとも一部がハウジング20の内側に位置するよう設けられている。スリーブ400は、アウタースリーブ40、「筒部材」としてのインナースリーブ50を有している。 In this embodiment, the valve device 11 is provided at the center of the housing 20 and the vane rotor 30 (see FIGS. 1 and 2). That is, the valve device 11 is provided so that at least a part thereof is located inside the housing 20. The sleeve 400 has an outer sleeve 40 and an inner sleeve 50 as a "cylinder member".

アウタースリーブ40は、例えば鉄を含む比較的硬度が高い材料により略円筒状に形成されている。アウタースリーブ40は、内周壁が略円筒面状に形成されている。図3に示すように、アウタースリーブ40の一方の端部の外周壁には、ねじ部41が形成されている。アウタースリーブ40の他方の端部側には、外周壁から径方向外側へ環状に延びる係止部49が形成されている。 The outer sleeve 40 is formed in a substantially cylindrical shape by a material having a relatively high hardness including iron, for example. The outer sleeve 40 has an inner peripheral wall formed in a substantially cylindrical surface shape. As shown in FIG. 3, a threaded portion 41 is formed on the outer peripheral wall of one end of the outer sleeve 40. On the other end side of the outer sleeve 40, a locking portion 49 extending radially outward from the outer peripheral wall is formed.

カム軸3のバルブタイミング調整装置10側の端部には、軸穴部100、供給穴部101が形成されている。軸穴部100は、カム軸3のバルブタイミング調整装置10側の端面の中央からカム軸3の軸方向に延びるようにして形成されている。供給穴部101は、カム軸3の外壁から径方向内側に延びて軸穴部100に連通するよう形成されている。 A shaft hole portion 100 and a supply hole portion 101 are formed at the end of the camshaft 3 on the valve timing adjusting device 10 side. The shaft hole portion 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 10 side. The supply hole portion 101 is formed so as to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole portion 100.

カム軸3の軸穴部100の内壁には、アウタースリーブ40のねじ部41にねじ結合可能な軸側ねじ部110が形成されている。アウタースリーブ40は、ベーンロータ30のボス31の内側を通り、ねじ部41がカム軸3の軸側ねじ部110に結合するようにしてカム軸3に固定される。このとき、係止部49は、ベーンロータ30のボス31のカム軸3とは反対側の端面を係止する。これにより、ベーンロータ30は、カム軸3と係止部49とに挟み込まれるようにしてカム軸3に固定される。このように、アウタースリーブ40は、ベーンロータ30の中央部に設けられる。 On the inner wall of the shaft hole portion 100 of the cam shaft 3, a shaft-side threaded portion 110 that can be screwed to the threaded portion 41 of the outer sleeve 40 is formed. The outer sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the cam shaft 3 so that the screw portion 41 is coupled to the shaft side screw portion 110 of the cam shaft 3. At this time, the locking portion 49 locks the end surface of the vane rotor 30 on the side opposite to the cam shaft 3 of the boss 31. As a result, the vane rotor 30 is fixed to the cam shaft 3 so as to be sandwiched between the cam shaft 3 and the locking portion 49. In this way, the outer sleeve 40 is provided at the center of the vane rotor 30.

本実施形態では、作動油供給源OSは、オイルポンプ8である。また、オイル排出部ODは、オイルパン7である。オイルポンプ8は、供給穴部101に接続される。オイルポンプ8は、オイルパン7に貯留されている作動油を汲み上げ、供給穴部101に供給する。これにより、軸穴部100には、作動油が流入する。 In this embodiment, the hydraulic oil supply source OS is the oil pump 8. The oil discharge unit OD is the oil pan 7. The oil pump 8 is connected to the supply hole 101. The oil pump 8 pumps the hydraulic oil stored in the oil pan 7 and supplies it to the supply hole 101. As a result, hydraulic oil flows into the shaft hole portion 100.

「筒部材」としてのインナースリーブ50は、例えばアルミニウムを含む比較的硬度が低い材料により略円筒状に形成されている。つまり、インナースリーブ50は、アウタースリーブ40よりも硬度が低い材料により形成されている。インナースリーブ50は、外周壁が略円筒面状に形成されている。 The inner sleeve 50 as the "cylindrical member" is formed in a substantially cylindrical shape by a material having a relatively low hardness, for example, aluminum. That is, the inner sleeve 50 is made of a material having a hardness lower than that of the outer sleeve 40. The outer peripheral wall of the inner sleeve 50 is formed in a substantially cylindrical surface shape.

図3に示すように、インナースリーブ50は、外周壁がアウタースリーブ40の内周壁に嵌合するようアウタースリーブ40の内側に設けられている。インナースリーブ50は、アウタースリーブ40に対し相対移動不能である。 As shown in FIG. 3, the inner sleeve 50 is provided inside the outer sleeve 40 so that the outer peripheral wall fits into the inner peripheral wall of the outer sleeve 40. The inner sleeve 50 is immovable relative to the outer sleeve 40.

インナースリーブ50の一端には、スリーブ封止部51が設けられている。スリーブ封止部51は、インナースリーブ50の一端を塞いでいる。 A sleeve sealing portion 51 is provided at one end of the inner sleeve 50. The sleeve sealing portion 51 closes one end of the inner sleeve 50.

スプール60は、例えば金属により略円筒状に形成されている。スプール60は、外周壁がインナースリーブ50の内周壁54と摺動し、軸方向に往復移動可能なようインナースリーブ50の内側に設けられている。 The spool 60 is formed of, for example, a metal in a substantially cylindrical shape. The spool 60 is provided inside the inner sleeve 50 so that the outer peripheral wall slides on the inner peripheral wall 54 of the inner sleeve 50 and can reciprocate in the axial direction.

スプール60の一端には、スプール封止部62が設けられている。スプール封止部62は、スプール60の一端を塞いでいる。インナースリーブ50の内側におけるスリーブ封止部51とスプール60の他端との間には、容積可変空間Svが形成されている。容積可変空間Svは、スプール60がインナースリーブ50に対し軸方向へ移動するとき、容積が変化する。すなわち、スリーブ封止部51は、スプール60との間に、容積が変化する容積可変空間Svを形成している。 A spool sealing portion 62 is provided at one end of the spool 60. The spool sealing portion 62 closes one end of the spool 60. A variable volume space Sv is formed between the sleeve sealing portion 51 inside the inner sleeve 50 and the other end of the spool 60. The volume of the variable volume space Sv changes when the spool 60 moves in the axial direction with respect to the inner sleeve 50. That is, the sleeve sealing portion 51 forms a volume variable space Sv whose volume changes with the spool 60.

容積可変空間Svには、スプリング63が設けられている。スプリング63は、所謂コイルスプリングであり、一端がスリーブ封止部51に当接し、他端がスプール60の他端に当接している。スプリング63は、スプール60をスリーブ封止部51とは反対側へ付勢している。 A spring 63 is provided in the variable volume space Sv. The spring 63 is a so-called coil spring, one end of which is in contact with the sleeve sealing portion 51 and the other end of which is in contact with the other end of the spool 60. The spring 63 urges the spool 60 to the side opposite to the sleeve sealing portion 51.

アウタースリーブ40の他方の端部の径方向内側には、係止部65が設けられている。係止部65は有底筒状に形成され、外周壁がアウタースリーブ40の内周壁に嵌合するよう設けられている。係止部65の底部の中央には、穴部が形成されており、当該穴部の内側にスプール封止部62が位置している。 A locking portion 65 is provided inside the other end of the outer sleeve 40 in the radial direction. The locking portion 65 is formed in a bottomed tubular shape, and the outer peripheral wall is provided so as to fit into the inner peripheral wall of the outer sleeve 40. A hole is formed in the center of the bottom of the locking portion 65, and the spool sealing portion 62 is located inside the hole.

係止部65は、底部により、スプール60の一端を係止可能である。係止部65は、スプール60のスリーブ封止部51とは反対側への移動を規制可能である。これにより、スプール60は、インナースリーブ50の内側からの脱落が抑制されている。 The locking portion 65 can lock one end of the spool 60 by the bottom portion. The locking portion 65 can regulate the movement of the spool 60 to the side opposite to the sleeve sealing portion 51. As a result, the spool 60 is prevented from falling off from the inside of the inner sleeve 50.

スプール60は、係止部65に当接する位置から、スリーブ封止部51に当接する位置まで、軸方向に移動可能である。すなわち、係止部65に当接する位置(図3参照)から、スリーブ封止部51に当接する位置までが、スリーブ400に対する移動可能範囲である。以下、このスプール60の移動可能範囲を「ストローク区間」と呼ぶ。 The spool 60 can move in the axial direction from the position where it abuts on the locking portion 65 to the position where it abuts on the sleeve sealing portion 51. That is, the movable range with respect to the sleeve 400 is from the position of contact with the locking portion 65 (see FIG. 3) to the position of contact with the sleeve sealing portion 51. Hereinafter, the movable range of the spool 60 is referred to as a “stroke section”.

図3に示すように、インナースリーブ50のスリーブ封止部51側の端部は、外径がアウタースリーブ40の内径より小さく形成されている。これにより、インナースリーブ50のスリーブ封止部51側の端部の外周壁とアウタースリーブ40の内周壁との間には、略円筒状の空間である筒状空間St1が形成されている。 As shown in FIG. 3, the outer diameter of the end of the inner sleeve 50 on the sleeve sealing portion 51 side is formed to be smaller than the inner diameter of the outer sleeve 40. As a result, a tubular space St1 which is a substantially cylindrical space is formed between the outer peripheral wall of the end portion of the inner sleeve 50 on the sleeve sealing portion 51 side and the inner peripheral wall of the outer sleeve 40.

また、インナースリーブ50には、環状凹部Htが形成されている。環状凹部Htは、インナースリーブ50の外周壁の係止部49に対応する位置から径方向内側へ環状に凹むよう形成されている。これにより、環状凹部Htとアウタースリーブ40の内周壁との間には、環状の空間である環状空間St2が形成されている。 Further, the inner sleeve 50 is formed with an annular recess Ht. The annular recess Ht is formed so as to be annularly recessed inward in the radial direction from a position corresponding to the locking portion 49 of the outer peripheral wall of the inner sleeve 50. As a result, an annular space St2, which is an annular space, is formed between the annular recess Ht and the inner peripheral wall of the outer sleeve 40.

また、インナースリーブ50には、流路溝部52が形成されている。流路溝部52は、インナースリーブ50の外周壁から径方向内側へ凹み、かつ、インナースリーブ50の軸方向へ延びるようにして形成されている。流路溝部52は、軸方向供給油路RsAを形成している。すなわち、軸方向供給油路RsAは、アウタースリーブ40とインナースリーブ50との界面T1においてスリーブ400の軸方向に延びるよう形成されている。軸方向供給油路RsAは、一端が筒状空間St1に接続し、他端が環状空間St2に接続している。 Further, the inner sleeve 50 is formed with a flow path groove portion 52. The flow path groove portion 52 is formed so as to be recessed inward in the radial direction from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50. The flow path groove portion 52 forms an axial supply oil passage RsA. That is, the axial supply oil passage RsA is formed so as to extend in the axial direction of the sleeve 400 at the interface T1 between the outer sleeve 40 and the inner sleeve 50. One end of the axial supply oil passage RsA is connected to the tubular space St1 and the other end is connected to the annular space St2.

また、インナースリーブ50には、環状溝部55が形成されている。環状溝部55は、遅角環状溝部511、進角環状溝部512を有している。遅角環状溝部511は、インナースリーブ50の内周壁54の筒状空間St1の端部に対応する位置から径方向外側へ凹みつつ周方向に延びて環状に形成されている。進角環状溝部512は、インナースリーブ50の内周壁54の環状凹部Htに対応する位置から径方向外側へ凹みつつ周方向に延びて環状に形成されている。 Further, the inner sleeve 50 is formed with an annular groove portion 55. The annular groove portion 55 has a retarded annular groove portion 511 and an advance angle annular groove portion 512. The retarded annular groove portion 511 is formed in an annular shape so as to extend in the circumferential direction while being recessed radially outward from a position corresponding to the end portion of the tubular space St1 of the inner peripheral wall 54 of the inner sleeve 50. The advance annular groove portion 512 is formed in an annular shape so as to extend in the circumferential direction while being recessed radially outward from a position corresponding to the annular recess Ht of the inner peripheral wall 54 of the inner sleeve 50.

スリーブ400は、「流入穴」としての遅角供給開口部ORs、「流入穴」としての進角供給開口部OAs、遅角開口部OR、進角開口部OAを有している。 The sleeve 400 has a retarded angle supply opening ORs as an "inflow hole", an advance angle supply opening OAs as an "inflow hole", a retarded angle opening OR, and an advance angle opening OA.

遅角供給開口部ORsは、インナースリーブ50の遅角環状溝部511の底面550と、インナースリーブ50の外壁53のうち筒状空間St1の端部に対応する外壁である遅角外壁531とを連通するよう形成されている。これにより、遅角供給開口部ORsは、インナースリーブ50の内側の空間と筒状空間St1および軸方向供給油路RsAとを接続している。ここで、遅角環状溝部511の底面550、および、遅角外壁531は、略円筒状に形成されている。 The retard angle supply openings ORs communicate the bottom surface 550 of the retard angle annular groove portion 511 of the inner sleeve 50 and the retard angle outer wall 531 which is an outer wall corresponding to the end portion of the tubular space St1 in the outer wall 53 of the inner sleeve 50. It is formed to do. As a result, the retard angle supply openings ORs connect the space inside the inner sleeve 50 with the tubular space St1 and the axial supply oil passage RsA. Here, the bottom surface 550 of the retarded annular groove portion 511 and the retarded outer wall 531 are formed in a substantially cylindrical shape.

また、図4に示すように、遅角供給開口部ORsは、遅角環状溝部511の周方向に複数形成されている。本実施形態では、遅角供給開口部ORsは、5つ形成されている。5つの遅角供給開口部ORsは、1番目から5番目までが周方向に45度の等間隔で形成され、5番目から1番目までが180度の間隔となるよう形成されている。つまり、遅角供給開口部ORsは、遅角環状溝部511の周方向の全範囲のうち概ね半分の範囲に形成されている。すなわち、遅角供給開口部ORsは、遅角環状溝部511の周方向における特定の部位に偏って形成されている。このように、遅角供給開口部ORsは、遅角環状溝部511の周方向の全範囲においては、不等間隔で複数形成されている。 Further, as shown in FIG. 4, a plurality of retard angle supply openings ORs are formed in the circumferential direction of the retard angle annular groove portion 511. In this embodiment, five retard angle supply openings ORs are formed. The five retarded angle supply openings ORs are formed so that the first to fifth positions are formed at equal intervals of 45 degrees in the circumferential direction, and the fifth to first positions are formed at intervals of 180 degrees. That is, the retard angle supply openings ORs are formed in approximately half of the entire circumferential range of the retard angle annular groove portion 511. That is, the retard angle supply openings ORs are formed unevenly in a specific portion in the circumferential direction of the retard angle annular groove portion 511. As described above, a plurality of retard angle supply openings ORs are formed at unequal intervals in the entire circumferential direction of the retard angle annular groove portion 511.

進角供給開口部OAsは、インナースリーブ50の進角環状溝部512の底面550と、インナースリーブ50の外壁53のうち環状凹部Htに対応する外壁である進角外壁532とを連通するよう形成されている。これにより、進角供給開口部OAsは、インナースリーブ50の内側の空間と環状空間St2および軸方向供給油路RsAとを接続している。ここで、進角環状溝部512の底面550、および、進角外壁532は、略円筒状に形成されている。 The advance angle supply opening OAs is formed so as to communicate the bottom surface 550 of the advance angle annular groove portion 512 of the inner sleeve 50 and the advance angle outer wall 532 which is an outer wall corresponding to the annular recess Ht in the outer wall 53 of the inner sleeve 50. ing. As a result, the advance angle supply opening OAs connects the space inside the inner sleeve 50 with the annular space St2 and the axial supply oil passage RsA. Here, the bottom surface 550 of the advance angle annular groove portion 512 and the advance angle outer wall 532 are formed in a substantially cylindrical shape.

また、進角供給開口部OAsは、遅角供給開口部ORsと同様、進角環状溝部512の周方向に複数形成されている。本実施形態では、進角供給開口部OAsは、5つ形成されている。5つの進角供給開口部OAsは、1番目から5番目までが周方向に45度の等間隔で形成され、5番目から1番目までが180度の間隔となるよう形成されている。つまり、進角供給開口部OAsは、進角環状溝部512の周方向の全範囲のうち概ね半分の範囲に形成されている。すなわち、進角供給開口部OAsは、進角環状溝部512の周方向における特定の部位に偏って形成されている。このように、進角供給開口部OAsは、進角環状溝部512の周方向の全範囲においては、不等間隔で複数形成されている。 Further, a plurality of advance angle supply openings OAs are formed in the circumferential direction of the advance angle annular groove portion 512, similarly to the retard angle supply opening openings ORs. In this embodiment, five advance angle supply openings OAs are formed. The five advance feed openings OAs are formed so that the first to fifth are formed at equal intervals of 45 degrees in the circumferential direction, and the fifth to first are formed at intervals of 180 degrees. That is, the advance angle supply opening OAs is formed in approximately half of the entire circumferential range of the advance angle annular groove portion 512. That is, the advance angle supply opening OAs is formed unevenly at a specific portion in the circumferential direction of the advance angle annular groove portion 512. As described above, a plurality of advance angle supply openings OAs are formed at unequal intervals in the entire circumferential direction of the advance angle annular groove portion 512.

遅角開口部ORは、スリーブ400の径方向に延びてインナースリーブ50の内側の空間とアウタースリーブ40の外側の空間とを接続するよう形成されている。遅角開口部ORは、スリーブ400の周方向に複数形成されている。遅角開口部ORは、遅角油路301を経由して遅角室201に連通している。 The retarded opening OR is formed so as to extend in the radial direction of the sleeve 400 and connect the space inside the inner sleeve 50 and the space outside the outer sleeve 40. A plurality of retard angle openings OR are formed in the circumferential direction of the sleeve 400. The retard angle opening OR communicates with the retard angle chamber 201 via the retard angle oil passage 301.

進角開口部OAは、スリーブ400の径方向に延びてインナースリーブ50の内側の空間とアウタースリーブ40の外側の空間とを接続するよう形成されている。進角開口部OAは、遅角開口部ORに対し係止部49側に形成されている。進角開口部OAは、スリーブ400の周方向に複数形成されている。進角開口部OAは、進角油路302を経由して進角室202に連通している。 The advance opening OA is formed so as to extend in the radial direction of the sleeve 400 and connect the space inside the inner sleeve 50 and the space outside the outer sleeve 40. The advance opening OA is formed on the locking portion 49 side with respect to the retard opening OR. A plurality of advance angle openings OA are formed in the circumferential direction of the sleeve 400. The advance angle opening OA communicates with the advance angle chamber 202 via the advance angle oil passage 302.

スプール60は、遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAs、ドレン開口部Od1、Od2を有している。遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAsは、それぞれ、スプール60の外周壁から径方向内側へ凹むようにして環状に形成されている。遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAsは、この順でスプール60の軸方向に並ぶよう形成されている。また、遅角ドレン凹部HRdと進角ドレン凹部HAdとは、一体に形成されている。遅角ドレン凹部HRdおよび進角ドレン凹部HAdは、インナースリーブ50の内周壁との間に特定空間Ssを形成している。すなわち、スプール60は、スリーブ400との間に特定空間Ssを形成している。 The spool 60 has a retard angle supply recess HRs, a retard angle drain recess HRd, an advance angle drain recess HAd, an advance angle supply recess HAs, and drain openings Od1 and Od2. The retard angle supply recess HRs, the retard angle drain recess HRd, the advance angle drain recess HAd, and the advance angle supply recess HAs are each formed in an annular shape so as to be recessed inward in the radial direction from the outer peripheral wall of the spool 60. The retard angle supply recess HRs, the retard angle drain recess HRd, the advance angle drain recess HAd, and the advance angle supply recess HAs are formed so as to be arranged in this order in the axial direction of the spool 60. Further, the retarded drain recess HRd and the advanced drain recess HAd are integrally formed. The retarded drain recess HRd and the advanced drain recess HAd form a specific space Ss with the inner peripheral wall of the inner sleeve 50. That is, the spool 60 forms a specific space Ss with the sleeve 400.

ドレン開口部Od1は、スプール60の内側の空間と遅角ドレン凹部HRdおよび進角ドレン凹部HAd、すなわち、特定空間Ssとを連通するよう形成されている。ドレン開口部Od2は、スプール60のスプール封止部62側の端部において内側の空間と外側の空間とを連通するよう形成されている。なお、ドレン開口部Od1、Od2は、それぞれ、スプール60の周方向に複数形成されている。 The drain opening Od1 is formed so as to communicate the space inside the spool 60 with the retarded drain recess HRd and the advanced drain recess HAd, that is, the specific space Ss. The drain opening Od2 is formed so as to communicate the inner space and the outer space at the end of the spool 60 on the spool sealing portion 62 side. A plurality of drain openings Od1 and Od2 are formed in the circumferential direction of the spool 60, respectively.

遅角供給油路RRsは、弁装置11を経由してオイルポンプ8と遅角室201とを接続している。進角供給油路RAsは、弁装置11を経由してオイルポンプ8と進角室202とを接続している。ドレン油路としての遅角ドレン油路RRdは、遅角室201とオイルパン7とを接続している。ドレン油路としての進角ドレン油路RAdは、進角室202とオイルパン7とを接続している。 The retard angle supply oil passages RRs connect the oil pump 8 and the retard angle chamber 201 via the valve device 11. The advance angle supply oil passage RAs connects the oil pump 8 and the advance angle chamber 202 via the valve device 11. The retard angle drain oil passage RRd as a drain oil passage connects the retard angle chamber 201 and the oil pan 7. The advance angle drain oil passage RAd as a drain oil passage connects the advance angle chamber 202 and the oil pan 7.

遅角供給油路RRsは、供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、遅角供給開口部ORs、遅角環状溝部511、遅角供給凹部HRs、遅角開口部OR、遅角油路301を経由して、オイルポンプ8と遅角室201とを接続している。 The retard angle supply oil passages RRs include a supply hole portion 101, a shaft hole portion 100, a tubular space St1, an axial supply oil passage RsA, a retard angle supply opening ORs, a retard angle annular groove portion 511, a retard angle supply recess HRs, and a retard. The oil pump 8 and the retarded chamber 201 are connected via the corner opening OR and the retarded oil passage 301.

進角供給油路RAsは、供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、進角供給開口部OAs、進角環状溝部512、進角供給凹部HAs、進角開口部OA、進角油路302を経由して、オイルポンプ8と進角室202とを接続している。 The advance angle supply oil passage RAs includes a supply hole portion 101, a shaft hole portion 100, a tubular space St1, an axial supply oil passage RsA, an advance angle supply opening OAs, an advance angle annular groove portion 512, an advance angle supply recess HAs, and an advance angle supply recess HAs. The oil pump 8 and the advance chamber 202 are connected via the corner opening OA and the advance oil passage 302.

遅角ドレン油路RRdは、遅角油路301、遅角開口部OR、遅角ドレン凹部HRd、ドレン開口部Od1、Od2を経由して、遅角室201とオイルパン7とを接続している。 The retard angle drain oil passage RRd connects the retard angle chamber 201 and the oil pan 7 via the retard angle oil passage 301, the retard angle opening OR, the retard angle drain recess HRd, the drain openings Od1 and Od2. There is.

進角ドレン油路RAdは、進角油路302、進角開口部OA、進角ドレン凹部HAd、ドレン開口部Od1、Od2を経由して、進角室202とオイルパン7とを接続している。このように、遅角供給油路RRs、進角供給油路RAs、遅角ドレン油路RRd、進角ドレン油路RAdは、一部が弁装置11の内部に形成されている。 The advance drain oil passage RAd connects the advance chamber 202 and the oil pan 7 via the advance oil passage 302, the advance opening OA, the advance drain recess HAd, the drain openings Od1 and Od2. There is. As described above, a part of the retard angle supply oil passage RRs, the advance angle supply oil passage RAs, the retard angle drain oil passage RRd, and the advance angle drain oil passage RAd is formed inside the valve device 11.

スプール60が係止部65に当接しているとき(図3参照)、すなわち、スプール60がストローク区間の一方の端部に位置するとき、スプール60が遅角開口部ORを開いているため、オイルポンプ8は、遅角供給油路RRsの供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、遅角供給開口部ORs、遅角環状溝部511、遅角供給凹部HRs、遅角開口部OR、遅角油路301を経由して遅角室201に連通する。これにより、オイルポンプ8から遅角供給油路RRsを経由して遅角室201に作動油を供給することができる。また、このとき、進角室202は、進角ドレン油路RAdの進角油路302、進角開口部OA、進角ドレン凹部HAd、ドレン開口部Od1、Od2を経由してオイルパン7に連通する。これにより、進角室202から進角ドレン油路RAdを経由してオイルパン7に作動油を排出することができる。 When the spool 60 is in contact with the locking portion 65 (see FIG. 3), that is, when the spool 60 is located at one end of the stroke section, the spool 60 has the retard opening OR open. The oil pump 8 includes a supply hole portion 101 of a retard angle supply oil passage RRs, a shaft hole portion 100, a tubular space St1, an axial supply oil passage RsA, a retard angle supply opening ORs, a retard angle annular groove portion 511, and a retard angle supply. It communicates with the retard angle chamber 201 via the recess HRs, the retard angle opening OR, and the retard angle oil passage 301. As a result, the hydraulic oil can be supplied from the oil pump 8 to the retard angle chamber 201 via the retard angle supply oil passage RRs. At this time, the advance chamber 202 is connected to the oil pan 7 via the advance oil passage 302 of the advance drain oil passage RAd, the advance opening OA, the advance drain recess HAd, the drain openings Od1 and Od2. Communicate. As a result, the hydraulic oil can be discharged from the advance angle chamber 202 to the oil pan 7 via the advance angle drain oil passage RAd.

スプール60が係止部65とスリーブ封止部51との間に位置しているとき、すなわち、スプール60がストローク区間の中間に位置するとき、オイルポンプ8は、進角供給油路RAsの供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、進角供給開口部OAs、進角環状溝部512、進角供給凹部HAs、進角開口部OA、進角油路302を経由して進角室202に連通する。なお、このとき、遅角供給油路RRsによりオイルポンプ8と遅角室201とは連通している。これにより、オイルポンプ8から遅角供給油路RRs、進角供給油路RAsを経由して遅角室201、進角室202に作動油を供給することができる。ただし、スプール60により遅角ドレン油路RRdおよび進角ドレン油路RAdは閉じられている、すなわち、遮断されているため、作動油は遅角室201および進角室202からオイルパン7に排出されない。 When the spool 60 is located between the locking portion 65 and the sleeve sealing portion 51, that is, when the spool 60 is located in the middle of the stroke section, the oil pump 8 supplies the lead angle supply oil passage RAs. Hole 101, Shaft hole 100, Cylindrical space St1, Axial supply oil passage RsA, Advance angle supply opening OAs, Advance angle annular groove 512, Advance angle supply recess HAs, Advance angle opening OA, Advance angle oil passage It communicates with the advance chamber 202 via 302. At this time, the oil pump 8 and the retard angle chamber 201 communicate with each other by the retard angle supply oil passage RRs. As a result, hydraulic oil can be supplied from the oil pump 8 to the retard angle chamber 201 and the advance angle chamber 202 via the retard angle supply oil passage RRs and the advance angle supply oil passage RAs. However, since the retard angle drain oil passage RRd and the advance angle drain oil passage RAd are closed by the spool 60, that is, they are shut off, the hydraulic oil is discharged from the retard angle chamber 201 and the advance angle chamber 202 to the oil pan 7. Not done.

スプール60がスリーブ封止部51に当接しているとき、すなわち、スプール60がストローク区間の他方の端部に位置するとき、遅角室201は、遅角ドレン油路RRdの遅角油路301、遅角開口部OR、遅角ドレン凹部HRd、ドレン開口部Od1、Od2を経由してオイルパン7に連通する。なお、このとき、進角供給油路RAsによりオイルポンプ8と進角室202とは連通している。これにより、遅角室201から遅角ドレン油路RRdを経由してオイルパン7に作動油を排出することができるとともに、オイルポンプ8から進角供給油路RAsを経由して進角室202に作動油を供給することができる。 When the spool 60 is in contact with the sleeve sealing portion 51, that is, when the spool 60 is located at the other end of the stroke section, the retard chamber 201 is the retard oil passage 301 of the retard drain oil passage RRd. , The retard angle opening OR, the retard angle drain recess HRd, and the drain openings Od1 and Od2 are communicated with the oil pan 7. At this time, the oil pump 8 and the advance chamber 202 communicate with each other by the advance angle supply oil passage RAs. As a result, the hydraulic oil can be discharged from the retard chamber 201 to the oil pan 7 via the retard drain oil passage RRd, and the advance chamber 202 is discharged from the oil pump 8 via the advance supply oil passage RAs. Can be supplied with hydraulic oil.

アウタースリーブ40のスリーブ封止部51側の端部の内側、すなわち、遅角供給油路RRsおよび進角供給油路RAsの途中には、フィルタ66が設けられている。フィルタ66は、例えば円板状のメッシュである。フィルタ66は、作動油に含まれる異物を捕集可能である。そのため、フィルタ66の下流側、すなわち、オイルポンプ8とは反対側に異物が流れるのを抑制することができる。 A filter 66 is provided inside the end of the outer sleeve 40 on the sleeve sealing portion 51 side, that is, in the middle of the retard angle supply oil passage RRs and the advance angle supply oil passage RAs. The filter 66 is, for example, a disk-shaped mesh. The filter 66 can collect foreign matter contained in the hydraulic oil. Therefore, it is possible to suppress the flow of foreign matter to the downstream side of the filter 66, that is, the side opposite to the oil pump 8.

「チェック弁」としての遅角供給チェック弁71は、弁本体700を有している。弁本体700は、単一の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成されている。より具体的には、弁本体700は、例えば長方形の金属薄板を長手方向が周方向に沿うよう曲げて巻くことにより略円筒状に形成されている。弁本体700は、径方向に弾性変形可能である。図6は、遅角供給チェック弁71の斜視図である。なお、弁本体700は、周方向において両端部が重なるようにして形成されている。 The check valve 71 as a "check valve" has a valve body 700. The valve body 700 is formed in a tubular shape by winding a single plate member so that the longitudinal direction is along the circumferential direction. More specifically, the valve body 700 is formed in a substantially cylindrical shape, for example, by bending and winding a rectangular thin metal plate so that the longitudinal direction is along the circumferential direction. The valve body 700 is elastically deformable in the radial direction. FIG. 6 is a perspective view of the retard angle supply check valve 71. The valve body 700 is formed so that both ends overlap in the circumferential direction.

遅角供給チェック弁71は、弁本体700の周方向が遅角環状溝部511の底面550の周方向に沿うよう遅角環状溝部511に設けられ、遅角供給開口部ORsを経由してインナースリーブ50の内側へ向かう作動油の流れを許容し、インナースリーブ50の内側から遅角供給開口部ORsへ向かう作動油の流れを規制可能である。 The retard angle supply check valve 71 is provided in the retard angle annular groove portion 511 so that the circumferential direction of the valve body 700 is along the circumferential direction of the bottom surface 550 of the retard angle annular groove portion 511, and the inner sleeve is provided via the retard angle supply opening ORs. It is possible to allow the flow of hydraulic oil toward the inside of the inner sleeve 50 and regulate the flow of hydraulic oil from the inside of the inner sleeve 50 toward the retarded angle supply openings ORs.

より具体的には、作動油が遅角供給油路RRsにおいて遅角供給開口部ORs側から遅角供給凹部HRs側へ流れるとき、遅角供給チェック弁71の弁本体700は、外周壁が作動油により押され径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。これにより、遅角供給チェック弁71の弁本体700の外周壁が遅角供給開口部ORsおよび遅角環状溝部511の底面550から離間し、作動油は、遅角供給チェック弁71を経由して遅角供給凹部HRs側へ流れることができる。このとき、弁本体700は、両端部の重なり範囲の長さを拡大しながら一部が重なった状態を維持している。 More specifically, when the hydraulic oil flows from the retard angle supply opening ORs side to the retard angle supply recess HRs side in the retard angle supply oil passage RRs, the outer peripheral wall of the valve body 700 of the retard angle supply check valve 71 operates. It is deformed so that it is pushed by oil and shrinks inward in the radial direction, that is, the inner diameter shrinks. As a result, the outer peripheral wall of the valve body 700 of the check valve 71 for the retard angle is separated from the retard angle supply opening ORs and the bottom surface 550 of the annular groove portion 511 for the retard angle, and the hydraulic oil passes through the check valve 71 for the retard angle supply. It can flow to the retarded angle supply recess HRs side. At this time, the valve body 700 maintains a partially overlapped state while expanding the length of the overlapping range at both ends.

遅角供給油路RRsを流れる作動油の流量が所定値以下になると、遅角供給チェック弁71の弁本体700は、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。さらに、作動油が遅角供給凹部HRs側から遅角供給開口部ORs側へ流れる場合、遅角供給チェック弁71の弁本体700の内周壁が作動油により径方向外側へ押され、弁本体700の外周壁が遅角供給開口部ORsおよび遅角環状溝部511の底面550に当接する。これにより、遅角供給凹部HRs側から遅角供給開口部ORs側への作動油の流れが規制される。ここで、遅角環状溝部511の底面550は、「弁座面」に対応している。 When the flow rate of the hydraulic oil flowing through the retard angle supply oil passage RRs becomes equal to or less than a predetermined value, the valve body 700 of the retard angle supply check valve 71 is deformed so as to expand outward in the radial direction, that is, to expand the inner diameter. Further, when the hydraulic oil flows from the retarded angle supply recess HRs side to the retarded angle supply opening ORs side, the inner peripheral wall of the valve body 700 of the retarded angle supply check valve 71 is pushed outward in the radial direction by the hydraulic oil, and the valve body 700. The outer peripheral wall of the is abutted against the retarded angle supply openings ORs and the bottom surface 550 of the retarded annular groove 511. As a result, the flow of hydraulic oil from the retard angle supply recess HRs side to the retard angle supply opening ORs side is restricted. Here, the bottom surface 550 of the retarded annular groove portion 511 corresponds to the "valve seat surface".

このように、遅角供給チェック弁71は、逆止弁として機能し、遅角供給開口部ORs側から遅角供給凹部HRs側への作動油の流れを許容し、遅角供給凹部HRs側から遅角供給開口部ORs側への作動油の流れを規制可能である。 In this way, the retard angle supply check valve 71 functions as a check valve, allows the flow of hydraulic oil from the retard angle supply opening ORs side to the retard angle supply recess HRs side, and allows the hydraulic oil to flow from the retard angle supply recess HRs side. It is possible to regulate the flow of hydraulic oil to the retarded angle supply opening ORs side.

進角供給チェック弁72は、遅角供給チェック弁71と同様、弁本体700を有している。進角供給チェック弁72の弁本体700の構成は、遅角供給チェック弁71の弁本体700の構成と同様である(図6参照)。 The advance angle supply check valve 72 has a valve body 700 like the retard angle supply check valve 71. The configuration of the valve body 700 of the advance check valve 72 is the same as the configuration of the valve body 700 of the check valve 71 (see FIG. 6).

進角供給チェック弁72は、弁本体700の周方向が進角環状溝部512の底面550の周方向に沿うよう進角環状溝部512に設けられ、進角供給開口部OAsを経由してインナースリーブ50の内側へ向かう作動油の流れを許容し、インナースリーブ50の内側から進角供給開口部OAsへ向かう作動油の流れを規制可能である。 The advance angle supply check valve 72 is provided in the advance angle annular groove portion 512 so that the circumferential direction of the valve body 700 is along the circumferential direction of the bottom surface 550 of the advance angle annular groove portion 512, and the inner sleeve is provided via the advance angle supply opening OAs. It is possible to allow the flow of hydraulic oil toward the inside of the inner sleeve 50 and regulate the flow of hydraulic oil from the inside of the inner sleeve 50 toward the advance angle supply opening OAs.

より具体的には、作動油が進角供給油路RAsにおいて進角供給開口部OAs側から進角供給凹部HAs側へ流れるとき、進角供給チェック弁72の弁本体700は、外周壁が作動油により押され径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。これにより、進角供給チェック弁72の弁本体700の外周壁が進角供給開口部OAsおよび進角環状溝部512の底面550から離間し、作動油は、進角供給チェック弁72を経由して進角供給凹部HAs側へ流れることができる。このとき、弁本体700は、両端部の重なり範囲の長さを拡大しながら一部が重なった状態を維持している。 More specifically, when the hydraulic oil flows from the advance angle supply opening OAs side to the advance angle supply recess HAs side in the advance angle supply oil passage RAs, the outer peripheral wall of the valve body 700 of the advance angle supply check valve 72 operates. It is deformed so that it is pushed by oil and shrinks inward in the radial direction, that is, the inner diameter shrinks. As a result, the outer peripheral wall of the valve body 700 of the advance angle supply check valve 72 is separated from the advance angle supply opening OAs and the bottom surface 550 of the advance angle annular groove portion 512, and the hydraulic oil passes through the advance angle supply check valve 72. It can flow to the lead angle supply recess HAs side. At this time, the valve body 700 maintains a partially overlapped state while expanding the length of the overlapping range at both ends.

進角供給油路RAsを流れる作動油の流量が所定値以下になると、進角供給チェック弁72の弁本体700は、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。さらに、作動油が進角供給凹部HAs側から進角供給開口部OAs側へ流れる場合、進角供給チェック弁72の弁本体700の内周壁が作動油により径方向外側へ押され、弁本体700の外周壁が進角供給開口部OAsおよび進角環状溝部512の底面550に当接する。これにより、進角供給凹部HAs側から進角供給開口部OAs側への作動油の流れが規制される。ここで、進角環状溝部512の底面550は、「弁座面」に対応している。 When the flow rate of the hydraulic oil flowing through the advance angle supply oil passage RAs becomes equal to or less than a predetermined value, the valve body 700 of the advance angle supply check valve 72 is deformed so as to expand outward in the radial direction, that is, to increase the inner diameter. Further, when the hydraulic oil flows from the advance angle supply recess HAs side to the advance angle supply opening OAs side, the inner peripheral wall of the valve body 700 of the advance angle supply check valve 72 is pushed outward in the radial direction by the hydraulic oil, and the valve body 700. The outer peripheral wall of the above abuts the advance angle supply opening OAs and the bottom surface 550 of the advance angle annular groove portion 512. As a result, the flow of hydraulic oil from the advance angle supply recess HAs side to the advance angle supply opening OAs side is regulated. Here, the bottom surface 550 of the advance angle annular groove portion 512 corresponds to the "valve seat surface".

このように、進角供給チェック弁72は、逆止弁として機能し、進角供給開口部OAs側から進角供給凹部HAs側への作動油の流れを許容し、進角供給凹部HAs側から進角供給開口部OAs側への作動油の流れを規制可能である。 In this way, the advance angle supply check valve 72 functions as a check valve, allows the flow of hydraulic oil from the advance angle supply opening OAs side to the advance angle supply recess HAs side, and allows the flow of hydraulic oil from the advance angle supply recess HAs side. The flow of hydraulic oil to the advance supply opening OAs side can be regulated.

次に、「チェック弁」としての遅角供給チェック弁71の構成等について、詳細に説明する。図5〜7に示すように、遅角供給チェック弁71は、幅狭部710、幅広部721、幅広部722、弁穴部731、弁穴部732を有している。幅狭部710は、弁本体700の周方向の一部である中央に形成されている。幅広部721は、弁本体700の幅狭部710以外の部位である弁本体700の周方向の一方の端部に形成されている。幅広部722は、弁本体700の幅狭部710以外の部位である弁本体700の周方向の他方の端部に形成されている。幅広部721および幅広部722は、弁本体700の軸方向の長さである幅w2が幅狭部710の幅w1より大きい(図6、7参照)。なお、幅広部721と幅広部722とは、遅角供給チェック弁71が遅角環状溝部511に設けられた状態において、互いに弁本体700の周方向で重なっている(図4、5参照)。ここで、幅広部721は、幅広部722に対し径方向外側に位置している。 Next, the configuration of the retarded angle supply check valve 71 as the "check valve" and the like will be described in detail. As shown in FIGS. 5 to 7, the check valve 71 having a retard angle supply has a narrow portion 710, a wide portion 721, a wide portion 722, a valve hole portion 731, and a valve hole portion 732. The narrow portion 710 is formed in the center, which is a part of the valve body 700 in the circumferential direction. The wide portion 721 is formed at one end in the circumferential direction of the valve body 700, which is a portion other than the narrow portion 710 of the valve body 700. The wide portion 722 is formed at the other end of the valve body 700 in the circumferential direction, which is a portion other than the narrow portion 710 of the valve body 700. In the wide portion 721 and the wide portion 722, the width w2, which is the axial length of the valve body 700, is larger than the width w1 of the narrow portion 710 (see FIGS. 6 and 7). The wide portion 721 and the wide portion 722 overlap each other in the circumferential direction of the valve body 700 in a state where the check valve 71 is provided in the retard annular groove portion 511 (see FIGS. 4 and 5). Here, the wide portion 721 is located radially outward with respect to the wide portion 722.

弁穴部731は、幅広部721を板厚方向に貫くよう形成されている。弁穴部732は、幅広部722を板厚方向に貫くよう形成されている。弁穴部731、弁穴部732は、いずれも、弁本体700の周方向に延びる長穴状に形成されている。弁穴部731と弁穴部732とは、遅角供給チェック弁71が遅角環状溝部511に設けられた状態において、互いに少なくとも一部が弁本体700の周方向で重なっている(図4、5参照)。 The valve hole portion 731 is formed so as to penetrate the wide portion 721 in the plate thickness direction. The valve hole portion 732 is formed so as to penetrate the wide portion 722 in the plate thickness direction. Both the valve hole portion 731 and the valve hole portion 732 are formed in an elongated hole shape extending in the circumferential direction of the valve body 700. At least a part of the valve hole portion 731 and the valve hole portion 732 overlap each other in the circumferential direction of the valve body 700 in a state where the check valve 71 is provided in the retarded annular groove portion 511 (FIG. 4, FIG. 5).

図4に示すように、回転規制部90は、インナースリーブ50に設けられている。回転規制部90は、例えば金属により形成され、規制突起部91、鍔部92を有している。規制突起部91は、略円柱状に形成されている。鍔部92は、規制突起部91の一方の端部から径方向外側へ環状に延びるよう形成されている。 As shown in FIG. 4, the rotation restricting portion 90 is provided on the inner sleeve 50. The rotation regulating portion 90 is formed of, for example, metal, and has a regulating protrusion 91 and a flange portion 92. The regulation protrusion 91 is formed in a substantially columnar shape. The flange portion 92 is formed so as to extend radially outward from one end of the regulation protrusion 91 in an annular shape.

インナースリーブ50には、規制穴部93が形成されている。規制穴部93は、遅角供給開口部ORsと同様、インナースリーブ50の遅角環状溝部511の底面550と、インナースリーブ50の外壁53のうち筒状空間St1の端部に対応する外壁である遅角外壁531とを連通するよう形成されている。ここで、規制穴部93は、遅角環状溝部511の周方向の一部において等間隔(45度)で5つ並ぶ遅角供給開口部ORsのうち3番目のものに対し、インナースリーブ50の軸を挟んで反対側に形成されている。 A regulation hole 93 is formed in the inner sleeve 50. Similar to the retard angle supply opening ORs, the regulation hole portion 93 is an outer wall corresponding to the bottom surface 550 of the retard angle annular groove portion 511 of the inner sleeve 50 and the end portion of the tubular space St1 of the outer wall 53 of the inner sleeve 50. It is formed so as to communicate with the retarded outer wall 531. Here, the regulation hole portion 93 is the inner sleeve 50 with respect to the third of the five retard angle supply openings ORs arranged at equal intervals (45 degrees) in a part of the circumferential direction of the retard angle annular groove portion 511. It is formed on the opposite side of the shaft.

規制穴部93の内径は、規制突起部91の外径よりやや大きい。また、弁穴部731および弁穴部732の短手方向の大きさは規制突起部91の外径よりやや大きく、弁穴部731および弁穴部732の長手方向の大きさは規制突起部91の外径より十分大きい。回転規制部90は、規制突起部91が規制穴部93の内側に位置し、鍔部92がインナースリーブ50の外側に位置するようインナースリーブ50に設けられている。ここで、規制突起部91は、遅角供給チェック弁71の弁穴部731および弁穴部732を通るよう遅角環状溝部511の底面550からインナースリーブ50の径方向内側へ延びている。そのため、弁本体700は、弁穴部731または弁穴部732が規制突起部91に係止されることにより、遅角環状溝部511の周方向における回転位置が規制される。つまり、弁本体700は、遅角環状溝部511の周方向において、弁穴部731または弁穴部732が規制突起部91により係止される範囲で回転可能である。また、弁本体700は、開弁時、両端部(幅広部721、幅広部722)の重なり面積を拡大させながら縮径する。ここで、弁穴部731および弁穴部732のそれぞれの端部が規制突起部91に係止されると、弁本体700の縮径が規制される。 The inner diameter of the regulation hole 93 is slightly larger than the outer diameter of the regulation protrusion 91. Further, the size of the valve hole portion 731 and the valve hole portion 732 in the lateral direction is slightly larger than the outer diameter of the regulation protrusion portion 91, and the size of the valve hole portion 731 and the valve hole portion 732 in the longitudinal direction is the regulation protrusion portion 91. It is sufficiently larger than the outer diameter of. The rotation regulating portion 90 is provided on the inner sleeve 50 so that the regulating protrusion 91 is located inside the regulating hole portion 93 and the flange portion 92 is located outside the inner sleeve 50. Here, the regulation protrusion 91 extends radially inward from the bottom surface 550 of the retard annular groove portion 511 so as to pass through the valve hole portion 731 and the valve hole portion 732 of the retard angle supply check valve 71. Therefore, in the valve body 700, the valve hole portion 731 or the valve hole portion 732 is locked to the regulation protrusion 91, so that the rotational position of the retarded annular groove portion 511 in the circumferential direction is restricted. That is, the valve body 700 can rotate in the circumferential direction of the retarded annular groove portion 511 within a range in which the valve hole portion 731 or the valve hole portion 732 is locked by the regulation protrusion 91. Further, when the valve is opened, the valve body 700 is reduced in diameter while expanding the overlapping area of both end portions (wide portion 721 and wide portion 722). Here, when the respective ends of the valve hole portion 731 and the valve hole portion 732 are locked to the regulation protrusion 91, the diameter reduction of the valve body 700 is regulated.

上述のように、回転規制部90は、遅角環状溝部511の周方向における遅角供給チェック弁71の弁本体700の回転位置を所定範囲内に規制可能である。より具体的には、回転規制部90は、幅広部721、幅広部722の少なくとも一部が、遅角環状溝部511の周方向において隣り合う遅角供給開口部ORs間の距離のうち最大距離となる区間である最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制する(図4参照)。そのため、遅角環状溝部511の周方向の特定の部位に偏って配置された遅角供給開口部ORsからインナースリーブ50の内側へ作動油が流入すると、弁本体700は、径が縮小して開弁するとともに、幅広部721、幅広部722が遅角環状溝部511の底面550のうち最大距離区間Sbdに対応する部位に押し付けられる(図9参照)。これにより、遅角環状溝部511の内側における遅角供給チェック弁71の振れ回りを抑制するとともに、幅広部721、幅広部722が遅角環状溝部511から径方向内側すなわち内周壁54側へ飛び出るのを抑制できる。そのため、遅角供給チェック弁71の閉弁時に幅広部721、幅広部722がインナースリーブ50の内周壁54と遅角環状溝部511との角部に衝突するのを抑制できる。なお、ベーンロータ30の中央部に設けられた弁装置11は、エンジン1の運転中、高速で回転するため、遅角供給チェック弁71の開弁時、弁本体700は、遠心力によっても、遅角環状溝部511の底面550のうち最大距離区間Sbdに対応する部位側に押し付けられた状態が維持される。 As described above, the rotation restricting unit 90 can regulate the rotation position of the valve body 700 of the retard angle supply check valve 71 in the circumferential direction of the retard angle annular groove portion 511 within a predetermined range. More specifically, in the rotation regulating unit 90, at least a part of the wide portion 721 and the wide portion 722 is the maximum distance among the distances between the retard angle supply openings ORs adjacent to each other in the circumferential direction of the retard angle annular groove portion 511. The rotation position of the valve body 700 is regulated so as to be located within the maximum distance section Sbd which is the section (see FIG. 4). Therefore, when the hydraulic oil flows into the inner sleeve 50 from the retarded angle supply openings ORs arranged unevenly in a specific portion in the circumferential direction of the retarded angle annular groove portion 511, the diameter of the valve body 700 is reduced and opened. Along with the valve, the wide portion 721 and the wide portion 722 are pressed against the portion of the bottom surface 550 of the retarded annular groove portion 511 corresponding to the maximum distance section Sbd (see FIG. 9). As a result, the swing of the retard supply check valve 71 inside the retarded annular groove portion 511 is suppressed, and the wide portion 721 and the wide portion 722 protrude from the retarded annular groove portion 511 in the radial direction, that is, toward the inner peripheral wall 54 side. Can be suppressed. Therefore, it is possible to prevent the wide portion 721 and the wide portion 722 from colliding with the corner portion between the inner peripheral wall 54 of the inner sleeve 50 and the retarded annular groove portion 511 when the check valve 71 is closed. Since the valve device 11 provided at the center of the vane rotor 30 rotates at a high speed during the operation of the engine 1, when the retard angle supply check valve 71 is opened, the valve body 700 is delayed due to centrifugal force. The state of being pressed against the portion of the bottom surface 550 of the angular annular groove portion 511 corresponding to the maximum distance section Sbd is maintained.

進角供給チェック弁72も、遅角供給チェック弁71と同様の構成であり、弁本体700には、幅狭部710、幅広部721、幅広部722、弁穴部731、弁穴部732が形成されている(図示せず)。また、進角環状溝部512にも、遅角環状溝部511と同様、回転規制部90が設けられている(図示せず)。この回転規制部90は、進角環状溝部512の周方向における進角供給チェック弁72の弁本体700の回転位置を所定範囲内に規制可能である。具体的な規制範囲は、遅角環状溝部511に設けられた回転規制部90と同様のため、説明を省略する。 The advance angle supply check valve 72 has the same configuration as the retard angle supply check valve 71, and the valve body 700 includes a narrow portion 710, a wide portion 721, a wide portion 722, a valve hole portion 731, and a valve hole portion 732. It is formed (not shown). Further, the advance angle annular groove portion 512 is also provided with the rotation restricting portion 90 (not shown) as in the retard angle annular groove portion 511. The rotation regulating unit 90 can regulate the rotation position of the valve body 700 of the advance angle supply check valve 72 in the circumferential direction of the advance angle annular groove portion 512 within a predetermined range. Since the specific regulation range is the same as that of the rotation regulation portion 90 provided in the retarded annular groove portion 511, the description thereof will be omitted.

次に、比較形態による弁装置のチェック弁を示すことにより、比較形態に対する本実施形態の優位な点を明らかにする。図8に示すように、比較形態による遅角供給チェック弁71は、幅狭部710、幅狭部711、幅狭部712、幅広部721、幅広部722、弁穴部731、弁穴部732を有している。幅狭部710は、弁本体700の周方向の一部である中央に形成されている。幅狭部711は、弁本体700の周方向の一方の端部に形成されている。幅狭部712は、弁本体700の周方向の他方の端部に形成されている。幅広部721は、弁本体700の幅狭部710、幅狭部711、幅狭部712以外の部位である幅狭部710と幅狭部711との間に形成されている。幅広部722は、弁本体700の幅狭部710、幅狭部711、幅狭部712以外の部位である幅狭部710と幅狭部712との間に形成されている。弁穴部731は、幅狭部711を板厚方向に貫くよう形成されている。弁穴部732は、幅狭部712を板厚方向に貫くよう形成されている。 Next, by showing the check valve of the valve device according to the comparative embodiment, the advantages of the present embodiment over the comparative embodiment will be clarified. As shown in FIG. 8, the check valve 71 according to the comparative form has a narrow portion 710, a narrow portion 711, a narrow portion 712, a wide portion 721, a wide portion 722, a valve hole portion 731, and a valve hole portion 732. have. The narrow portion 710 is formed in the center, which is a part of the valve body 700 in the circumferential direction. The narrow portion 711 is formed at one end of the valve body 700 in the circumferential direction. The narrow portion 712 is formed at the other end of the valve body 700 in the circumferential direction. The wide portion 721 is formed between the narrow portion 710 and the narrow portion 711, which are portions other than the narrow portion 710, the narrow portion 711, and the narrow portion 712 of the valve body 700. The wide portion 722 is formed between the narrow portion 710 and the narrow portion 712, which are portions other than the narrow portion 710, the narrow portion 711, and the narrow portion 712 of the valve body 700. The valve hole portion 731 is formed so as to penetrate the narrow portion 711 in the plate thickness direction. The valve hole portion 732 is formed so as to penetrate the narrow portion 712 in the plate thickness direction.

比較形態において、幅広部721および幅広部722は、弁本体700の軸方向の長さである幅w4が幅狭部710、幅狭部711、幅狭部712の幅w3より大きい(図8参照)。ここで、比較形態において、弁穴部731、弁穴部732が形成された幅狭部711、幅狭部712の剛性を、本実施形態の弁穴部731、弁穴部732が形成された幅広部721、幅広部722の剛性と同程度に確保する場合、幅狭部710、幅狭部711、幅狭部712の幅w3を、本実施形態の幅広部721、幅広部722の幅w2(図6、7参照)と同じにする必要がある。そうすると、比較形態の幅広部721、幅広部722の幅w4は、本実施形態の幅広部721、幅広部722の幅w2より大きくなる。そのため、比較形態の弁本体700の軸方向の長さ(幅w4)が大きくなるおそれがある。 In the comparative form, in the wide portion 721 and the wide portion 722, the width w4, which is the axial length of the valve body 700, is larger than the width w3 of the narrow portion 710, the narrow portion 711, and the narrow portion 712 (see FIG. 8). ). Here, in the comparative embodiment, the valve hole portion 731 and the valve hole portion 732 of the present embodiment are formed with the rigidity of the narrow portion 711 and the narrow portion 712 in which the valve hole portion 731 is formed. When ensuring the same degree of rigidity as the wide portion 721 and the wide portion 722, the width w3 of the narrow portion 710, the narrow portion 711, and the narrow portion 712 is set to the width w2 of the wide portion 721 and the wide portion 722 of the present embodiment. It should be the same as (see FIGS. 6 and 7). Then, the width w4 of the wide portion 721 and the wide portion 722 of the comparative embodiment becomes larger than the width w2 of the wide portion 721 and the wide portion 722 of the present embodiment. Therefore, the axial length (width w4) of the valve body 700 in the comparative form may increase.

一方、本実施形態では、弁穴部731、弁穴部732が幅広部721、幅広部722に形成されているため(図6、7参照)、幅広部721、幅広部722の剛性を確保しつつ、弁本体700の軸方向の長さ(幅w2)を小さくすることができる。 On the other hand, in the present embodiment, since the valve hole portion 731 and the valve hole portion 732 are formed in the wide portion 721 and the wide portion 722 (see FIGS. 6 and 7), the rigidity of the wide portion 721 and the wide portion 722 is ensured. At the same time, the axial length (width w2) of the valve body 700 can be reduced.

スプール60のカム軸3とは反対側には、リニアソレノイド9が設けられる。リニアソレノイド9は、スプール封止部62に当接するようにして設けられる。リニアソレノイド9は、通電により、スプール封止部62を介してスプール60をスプリング63の付勢力に抗してカム軸3側へ押圧する。これにより、スプール60は、ストローク区間においてスリーブ400に対する軸方向の位置が変化する。 A linear solenoid 9 is provided on the side of the spool 60 opposite to the cam shaft 3. The linear solenoid 9 is provided so as to come into contact with the spool sealing portion 62. When energized, the linear solenoid 9 presses the spool 60 toward the cam shaft 3 side against the urging force of the spring 63 via the spool sealing portion 62. As a result, the position of the spool 60 in the axial direction with respect to the sleeve 400 changes in the stroke section.

容積可変空間Svは、遅角ドレン油路RRdおよび進角ドレン油路RAdに連通している。そのため、容積可変空間Svは、遅角ドレン油路RRdおよび進角ドレン油路RAdのドレン開口部Od2を経由して大気に開放されている。これにより、容積可変空間Svの圧力を大気圧と同等にすることができる。そのため、スプール60の軸方向の移動を円滑にすることができる。 The variable volume space Sv communicates with the retard angle drain oil passage RRd and the advance angle drain oil passage RAd. Therefore, the variable volume space Sv is open to the atmosphere via the drain opening Od2 of the retard angle drain oil passage RRd and the advance angle drain oil passage RAd. Thereby, the pressure of the volume variable space Sv can be made equal to the atmospheric pressure. Therefore, the spool 60 can be smoothly moved in the axial direction.

本実施形態は、ロックピン33をさらに備えている(図1、2参照)。ロックピン33は、有底円筒状に形成され、ベーン32に形成された収容穴部321に軸方向に往復移動可能に収容されている。ロックピン33の内側には、スプリング34が設けられている。スプリング34は、ロックピン33をケース22の板部222側へ付勢している。ケース22の板部222のベーン32側には、嵌入凹部25が形成されている。 The present embodiment further includes a lock pin 33 (see FIGS. 1 and 2). The lock pin 33 is formed in a bottomed cylindrical shape, and is housed in a housing hole portion 321 formed in the vane 32 so as to be reciprocally movable in the axial direction. A spring 34 is provided inside the lock pin 33. The spring 34 urges the lock pin 33 toward the plate portion 222 side of the case 22. A fitting recess 25 is formed on the vane 32 side of the plate portion 222 of the case 22.

ロックピン33は、ハウジング20に対しベーンロータ30が最遅角位置にあるとき、嵌入凹部25に嵌入可能である。ロックピン33が嵌入凹部25に嵌入しているとき、ハウジング20に対するベーンロータ30の相対回転が規制される。一方、ロックピン33が嵌入凹部25に嵌入していないとき、ハウジング20に対するベーンロータ30の相対回転が許容される。 The lock pin 33 can be fitted into the fitting recess 25 when the vane rotor 30 is at the most retarded position with respect to the housing 20. When the lock pin 33 is fitted in the fitting recess 25, the relative rotation of the vane rotor 30 with respect to the housing 20 is restricted. On the other hand, when the lock pin 33 is not fitted in the fitting recess 25, the relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.

ベーン32のロックピン33と進角室202との間には、進角室202に連通するピン制御油路304が形成されている(図2参照)。進角室202からピン制御油路304に流入する作動油の圧力は、ロックピン33がスプリング34の付勢力に抗して嵌入凹部25から抜け出す方向に働く。 A pin control oil passage 304 communicating with the advance chamber 202 is formed between the lock pin 33 of the vane 32 and the advance chamber 202 (see FIG. 2). The pressure of the hydraulic oil flowing from the advance chamber 202 into the pin control oil passage 304 acts in the direction in which the lock pin 33 escapes from the fitting recess 25 against the urging force of the spring 34.

以上のように構成されたバルブタイミング調整装置10では、進角室202に作動油が供給されると、ピン制御油路304に作動油が流入し、ロックピン33が嵌入凹部25から抜け出し、ハウジング20に対するベーンロータ30の相対回転が許容された状態となる。 In the valve timing adjusting device 10 configured as described above, when the hydraulic oil is supplied to the advance chamber 202, the hydraulic oil flows into the pin control oil passage 304, the lock pin 33 comes out of the fitting recess 25, and the housing The relative rotation of the vane rotor 30 with respect to 20 is allowed.

次に、バルブタイミング調整装置10の作動について説明する。バルブタイミング調整装置10は、リニアソレノイド9の駆動により弁装置11のスプール60を押圧し、弁装置11を、オイルポンプ8と遅角室201とを接続しつつ進角室202とオイルパン7とを接続する第1作動状態と、オイルポンプ8と進角室202とを接続しつつ遅角室201とオイルパン7とを接続する第2作動状態と、オイルポンプ8と遅角室201および進角室202とを接続しつつ遅角室201および進角室202とオイルパン7との間を遮断し位相変換部PCの位相を保持する位相保持状態と、に作動させる。 Next, the operation of the valve timing adjusting device 10 will be described. The valve timing adjusting device 10 presses the spool 60 of the valve device 11 by driving the linear solenoid 9, and connects the valve device 11 to the advance chamber 202 and the oil pan 7 while connecting the oil pump 8 and the retard chamber 201. The first operating state for connecting the oil pump 8 and the advance chamber 202, and the second operating state for connecting the retard chamber 201 and the oil pan 7 while connecting the oil pump 8 and the advance chamber 202, and the oil pump 8 and the retard chamber 201 and the advance. While connecting to the corner chamber 202, the retard chamber 201, the advance chamber 202, and the oil pan 7 are cut off from each other to maintain the phase of the phase conversion unit PC.

第1作動状態では、遅角供給油路RRsを経由して遅角室201に作動油が供給されつつ、進角ドレン油路RAdを経由して進角室202から作動油がオイルパン7に戻される。第2作動状態では、進角供給油路RAsを経由して進角室202に作動油が供給されつつ、遅角ドレン油路RRdを経由して遅角室201から作動油がオイルパン7に戻される。位相保持状態では、遅角供給油路RRsおよび進角供給油路RAsを経由して遅角室201および進角室202に作動油が供給されつつ、遅角室201および進角室202の作動油の排出が規制される。 In the first operating state, the hydraulic oil is supplied to the retard chamber 201 via the retard supply oil passage RRs, and the hydraulic oil is supplied to the oil pan 7 from the advance chamber 202 via the advance drain oil passage RAd. Returned. In the second operating state, the hydraulic oil is supplied to the advance chamber 202 via the advance feed oil passage RAs, and the hydraulic oil is supplied to the oil pan 7 from the retard chamber 201 via the retard drain oil passage RRd. Returned. In the phase holding state, the retard chamber 201 and the advance chamber 202 are operated while hydraulic oil is supplied to the retard chamber 201 and the advance chamber 202 via the retard supply oil passage RRs and the advance supply oil passage RAs. Oil emissions are regulated.

バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも進角側である場合、弁装置11を第1作動状態とする。これにより、ベーンロータ30がハウジング20に対して遅角方向へ相対回転し、カム軸3の回転位相が遅角側へ変化する。 When the rotation phase of the cam shaft 3 is on the advance angle side of the target value, the valve timing adjusting device 10 puts the valve device 11 in the first operating state. As a result, the vane rotor 30 rotates relative to the housing 20 in the retard direction, and the rotation phase of the cam shaft 3 changes to the retard side.

また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも遅角側である場合、弁装置11を第2作動状態とする。これにより、ベーンロータ30がハウジング20に対して進角方向へ相対回転し、カム軸3の回転位相が進角側へ変化する。 Further, the valve timing adjusting device 10 puts the valve device 11 in the second operating state when the rotation phase of the cam shaft 3 is on the retard side of the target value. As a result, the vane rotor 30 rotates relative to the housing 20 in the advance angle direction, and the rotation phase of the cam shaft 3 changes to the advance angle side.

また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値と一致する場合、弁装置11を位相保持状態とする。これにより、カム軸3の回転位相が保持される。 Further, the valve timing adjusting device 10 puts the valve device 11 in the phase holding state when the rotation phase of the cam shaft 3 matches the target value. As a result, the rotation phase of the cam shaft 3 is maintained.

以上説明したように、<1>本実施形態による弁装置11は、筒部材としてのインナースリーブ50とチェック弁としての遅角供給チェック弁71および進角供給チェック弁72と回転規制部90とを備えている。インナースリーブ50は、内周壁54から径方向外側へ凹みつつ周方向に延びて環状に形成された環状溝部55としての遅角環状溝部511および進角環状溝部512、ならびに、遅角環状溝部511、進角環状溝部512の周方向に不等間隔で複数形成され遅角環状溝部511、進角環状溝部512の底面550と外壁53とを連通する流入穴としての遅角供給開口部ORs、進角供給開口部OAsを有している。遅角供給チェック弁71、進角供給チェック弁72は、単一の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成された弁本体700を有し、弁本体700の周方向が遅角環状溝部511、進角環状溝部512の底面550の周方向に沿うよう遅角環状溝部511、進角環状溝部512に設けられ、遅角供給開口部ORs、進角供給開口部OAsを経由してインナースリーブ50の内側へ向かう作動油の流れを許容し、インナースリーブ50の内側から遅角供給開口部ORs、進角供給開口部OAsへ向かう作動油の流れを規制可能である。回転規制部90は、遅角環状溝部511、進角環状溝部512の周方向における弁本体700の回転位置を所定範囲内に規制可能である。 As described above, <1> The valve device 11 according to the present embodiment includes an inner sleeve 50 as a tubular member, a check valve 71 as a check valve, an advance check valve 72, and a rotation control unit 90. I have. The inner sleeve 50 includes a retarded annular groove 511 and an advance annular groove 512 as an annular groove 55 formed in an annular direction while being recessed radially outward from the inner peripheral wall 54, and a retarded annular groove 511. A plurality of retarded annular grooves 511 formed at irregular intervals in the circumferential direction of the advanced annular groove 512, retarded supply openings ORs as inflow holes communicating the bottom surface 550 of the advanced annular groove 512 and the outer wall 53, and advance angles. It has a supply opening OAs. The retard angle supply check valve 71 and the advance angle supply check valve 72 have a valve body 700 formed in a tubular shape by winding a single plate material so that the longitudinal direction is along the circumferential direction, and the valve body 700 has a circumferential direction. Are provided in the retarded annular groove 511 and the advanced annular groove 512 so as to follow the circumferential direction of the bottom surface 550 of the retarded annular groove 511 and the advance annular groove 512, and provide the retard supply opening ORs and the advance supply opening OAs. It is possible to allow the flow of hydraulic oil toward the inside of the inner sleeve 50 via the inner sleeve 50, and regulate the flow of hydraulic oil from the inside of the inner sleeve 50 toward the retard angle supply opening ORs and the advance angle supply opening OAs. The rotation regulating unit 90 can regulate the rotation position of the valve body 700 in the circumferential direction of the retarded annular groove portion 511 and the advancing annular groove portion 512 within a predetermined range.

遅角供給チェック弁71、進角供給チェック弁72は、それぞれ、弁本体700の周方向の一部に形成された幅狭部710、および、弁本体700の周方向の幅狭部710以外の部位に形成され弁本体700の軸方向の長さである幅w2が幅狭部710の幅w1より大きい幅広部721、幅広部722を有している。回転規制部90は、幅広部721、幅広部722の少なくとも一部が、遅角環状溝部511、進角環状溝部512の周方向において隣り合う遅角供給開口部ORs、進角供給開口部OAs間の距離のうち最大距離となる区間である最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制する。 The retard angle supply check valve 71 and the advance angle supply check valve 72 are other than the narrow portion 710 formed in a part of the valve body 700 in the circumferential direction and the narrow portion 710 in the circumferential direction of the valve body 700, respectively. It has a wide portion 721 and a wide portion 722 in which the width w2 formed at the portion and which is the axial length of the valve body 700 is larger than the width w1 of the narrow portion 710. In the rotation regulating portion 90, at least a part of the wide portion 721 and the wide portion 722 is between the retard angle supply opening ORs and the advance angle supply opening OAs, which are adjacent to each other in the circumferential direction of the retard angle annular groove portion 511 and the advance angle annular groove portion 512. The rotation position of the valve body 700 is regulated so as to be located within the maximum distance section Sbd, which is the section that is the maximum distance among the distances of.

作動油が遅角供給開口部ORs、進角供給開口部OAsを経由してインナースリーブ50の内側へ向かうとき、遅角供給チェック弁71、進角供給チェック弁72は、外周壁が作動油により押され、縮径しつつ開弁する。ここで、遅角供給開口部ORs、進角供給開口部OAsは遅角環状溝部511、進角環状溝部512の周方向に不等間隔で複数形成され、回転規制部90は幅広部721、幅広部722の少なくとも一部が最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制するため、遅角供給チェック弁71、進角供給チェック弁72が開弁すると、幅広部721、幅広部722は、最大距離区間Sbdにおいて少なくとも一部が遅角環状溝部511、進角環状溝部512の底面550に押し付けられる。これにより、遅角環状溝部511、進角環状溝部512の内側における遅角供給チェック弁71、進角供給チェック弁72の振れ回りを抑制するとともに、幅広部721、幅広部722が遅角環状溝部511、進角環状溝部512から径方向内側すなわち内周壁54側へ飛び出るのを抑制できる。そのため、遅角供給チェック弁71、進角供給チェック弁72の閉弁時に幅広部721、幅広部722がインナースリーブ50の内周壁54と遅角環状溝部511、進角環状溝部512との角部に衝突するのを抑制できる。したがって、遅角供給チェック弁71、進角供給チェック弁72とインナースリーブ50の内周壁54との衝突による損傷を抑制できる。 When the hydraulic oil goes to the inside of the inner sleeve 50 via the retard angle supply opening ORs and the advance angle supply opening OAs, the outer peripheral walls of the retard angle supply check valve 71 and the advance angle supply check valve 72 are due to the hydraulic oil. It is pushed and the valve is opened while reducing the diameter. Here, a plurality of the retard angle supply opening ORs and the advance angle supply opening OAs are formed at unequal intervals in the circumferential direction of the retard angle annular groove portion 511 and the advance angle annular groove portion 512, and the rotation restricting portion 90 has a wide portion 721 and a wide portion. In order to regulate the rotation position of the valve body 700 so that at least a part of the portion 722 is located within the maximum distance section Sbd, when the retard angle supply check valve 71 and the advance angle supply check valve 72 are opened, the wide portion 721 and the wide portion 721 are wide. At least a part of the portion 722 is pressed against the bottom surface 550 of the retarded annular groove portion 511 and the advanced angle annular groove portion 512 in the maximum distance section Sbd. As a result, the retard angle supply check valve 71 and the advance angle supply check valve 72 inside the retard angle annular groove portion 511 and the advance angle annular groove portion 512 are suppressed from swinging, and the wide portion 721 and the wide portion 722 are formed into the retard angle annular groove portion. 511, it is possible to prevent the advance angle annular groove portion 512 from jumping out in the radial direction, that is, toward the inner peripheral wall 54 side. Therefore, when the check valve 71 for the retard and the check valve 72 for the advance angle are closed, the wide portion 721 and the wide portion 722 are the corner portions of the inner peripheral wall 54 of the inner sleeve 50 and the annular groove portion 511 for the advance angle and the annular groove portion 512 for the advance angle. Can be suppressed from colliding with. Therefore, damage due to the collision between the check valve 71 for the retard angle and the check valve 72 for the advance angle and the inner peripheral wall 54 of the inner sleeve 50 can be suppressed.

また、<2>本実施形態では、遅角供給チェック弁71、進角供給チェック弁72は、弁本体700の周方向の一部において弁本体700を板厚方向に貫くよう形成された弁穴部731、弁穴部732を有している。回転規制部90は、弁穴部731、弁穴部732を通るよう遅角環状溝部511、進角環状溝部512の底面550からインナースリーブ50の径方向内側へ延びる規制突起部91を有し、規制突起部91が弁穴部731、弁穴部732を係止することにより弁本体700の回転位置を規制する。そのため、回転規制部90を、比較的簡単に構成することができる。 <2> In the present embodiment, the check valve 71 for the retard angle and the check valve 72 for the advance angle supply are valve holes formed so as to penetrate the valve body 700 in the plate thickness direction in a part of the circumferential direction of the valve body 700. It has a portion 731 and a valve hole portion 732. The rotation regulating portion 90 has a retarded annular groove portion 511 so as to pass through the valve hole portion 731 and the valve hole portion 732, and a regulating protrusion 91 extending radially inward from the bottom surface 550 of the advancing annular groove portion 512. The regulation protrusion 91 regulates the rotation position of the valve body 700 by locking the valve hole portion 731 and the valve hole portion 732. Therefore, the rotation regulation unit 90 can be relatively easily configured.

また、<3>本実施形態では、弁穴部731、弁穴部732は、幅広部721、幅広部722に形成されている。そのため、弁穴部731、弁穴部732が形成された幅広部721、幅広部722の剛性を確保しつつ、弁本体700の軸方向の長さを小さくすることができる。 <3> In the present embodiment, the valve hole portion 731 and the valve hole portion 732 are formed in the wide portion 721 and the wide portion 722. Therefore, the axial length of the valve body 700 can be reduced while ensuring the rigidity of the valve hole portion 731, the wide portion 721 in which the valve hole portion 732 is formed, and the wide portion 722.

また、<4>本実施形態では、弁穴部731は弁本体700の周方向の一方の端部に形成され、弁穴部732は弁本体700の周方向の他方の端部に形成されている。弁穴部731、弁穴部732は、いずれも弁本体700の周方向に延びる長穴状に形成され、互いに少なくとも一部が弁本体700の周方向で重なる。そのため、弁本体700は、遅角環状溝部511、進角環状溝部512の周方向において、弁穴部731または弁穴部732が規制突起部91により係止される範囲、すなわち、弁穴部731、弁穴部732の長手方向の長さの範囲で回転し得る。一方、弁本体700は、開弁時、遅角環状溝部511、進角環状溝部512に対し両端が相対移動するよう変形可能なため、開弁作動のバランスを向上することができる。 <4> In the present embodiment, the valve hole portion 731 is formed at one end of the valve body 700 in the circumferential direction, and the valve hole portion 732 is formed at the other end of the valve body 700 in the circumferential direction. There is. Both the valve hole portion 731 and the valve hole portion 732 are formed in an elongated hole shape extending in the circumferential direction of the valve body 700, and at least a part of the valve hole portion 731 and the valve hole portion 732 overlap each other in the circumferential direction of the valve body 700. Therefore, in the valve body 700, the valve hole portion 731 or the valve hole portion 732 is locked by the regulation protrusion 91 in the circumferential direction of the retard angle annular groove portion 511 and the advance angle annular groove portion 512, that is, the valve hole portion 731. , The valve hole portion 732 can rotate within the longitudinal length range. On the other hand, since the valve body 700 can be deformed so that both ends move relative to the retarded annular groove portion 511 and the advance angle annular groove portion 512 when the valve is opened, the balance of the valve opening operation can be improved.

(第2実施形態)
第2実施形態による弁装置のチェック弁を図10に示す。第2実施形態は、遅角供給チェック弁71、進角供給チェック弁72の構成が第1実施形態と異なる。
(Second Embodiment)
The check valve of the valve device according to the second embodiment is shown in FIG. In the second embodiment, the configurations of the check valve 71 for the retard angle supply and the check valve 72 for the advance angle supply are different from those in the first embodiment.

第2実施形態では、弁穴部731は、略円形に形成されている。弁穴部731の内径は、規制突起部91の外径よりやや大きい。そのため、弁本体700は、円形の弁穴部731が規制突起部91により係止されることで、回転が規制される。 In the second embodiment, the valve hole portion 731 is formed in a substantially circular shape. The inner diameter of the valve hole portion 731 is slightly larger than the outer diameter of the regulation protrusion 91. Therefore, the rotation of the valve body 700 is restricted by locking the circular valve hole portion 731 by the regulating protrusion 91.

弁穴部732は、弁本体700の周方向に延びる長穴状に形成されている。そのため、弁本体700の開閉弁時、幅広部722は、幅広部721の内側において、弁穴部732の長手方向の長さの範囲で幅広部721に対し相対移動しながら変形可能である。その他の構成は、第1実施形態と同様である。 The valve hole portion 732 is formed in an elongated hole shape extending in the circumferential direction of the valve body 700. Therefore, at the time of the on-off valve of the valve body 700, the wide portion 722 can be deformed while moving relative to the wide portion 721 within the length range of the valve hole portion 732 in the longitudinal direction inside the wide portion 721. Other configurations are the same as those in the first embodiment.

以上説明したように、<5>本実施形態では、弁穴部731は弁本体700の周方向の一方の端部に形成され、弁穴部732は弁本体700の周方向の他方の端部に形成されている。弁穴部731は、円形に形成されている。弁穴部732は、弁本体700の周方向に延びる長穴状に形成されている。弁穴部731、弁穴部732は、互いに少なくとも一部が弁本体700の周方向で重なる。そのため、円形の弁穴部731を規制突起部91により係止することで、弁本体700の回転を規制することができる。 As described above, <5> In the present embodiment, the valve hole portion 731 is formed at one end in the circumferential direction of the valve body 700, and the valve hole portion 732 is formed at the other end in the circumferential direction of the valve body 700. Is formed in. The valve hole portion 731 is formed in a circular shape. The valve hole portion 732 is formed in an elongated hole shape extending in the circumferential direction of the valve body 700. At least a part of the valve hole portion 731 and the valve hole portion 732 overlap each other in the circumferential direction of the valve body 700. Therefore, the rotation of the valve body 700 can be regulated by locking the circular valve hole portion 731 with the regulating protrusion 91.

ここで、仮に、幅広部722において弁穴部732を円形に形成し、幅広部721において弁穴部731を長穴状に形成した場合、弁本体700の開閉弁時、幅広部721は、幅広部722の外側において、弁穴部731の長手方向の長さの範囲で幅広部722に対し相対移動しながら変形可能である。しかしながら、幅広部721は、幅広部722と底面550とに挟まれているため、弁本体700の円滑な変形、すなわち、開閉弁作動が阻害されるおそれがある。これに対し、本実施形態では、幅広部721の内側に位置する幅広部722において弁穴部732が長穴状に形成されているため、弁本体700の開閉弁時、幅広部722は、幅広部721の内側において、弁穴部732の長手方向の長さの範囲で幅広部721に対し相対移動しながら変形可能である。よって、内側の弁穴部732を円形に形成し、外側の弁穴部731を長穴状に形成する場合と比べ、弁本体700の変形、すなわち、開閉弁作動を円滑にすることができる。 Here, if the valve hole portion 732 is formed in a circular shape in the wide portion 722 and the valve hole portion 731 is formed in a long hole shape in the wide portion 721, the wide portion 721 is wide when the valve body 700 is opened and closed. On the outside of the portion 722, the valve hole portion 731 can be deformed while moving relative to the wide portion 722 within the length range in the longitudinal direction. However, since the wide portion 721 is sandwiched between the wide portion 722 and the bottom surface 550, the smooth deformation of the valve body 700, that is, the operation of the on-off valve may be hindered. On the other hand, in the present embodiment, since the valve hole portion 732 is formed in a long hole shape in the wide portion 722 located inside the wide portion 721, the wide portion 722 is wide when the valve body 700 is opened and closed. Inside the portion 721, the valve hole portion 732 can be deformed while moving relative to the wide portion 721 within the range of the length in the longitudinal direction. Therefore, as compared with the case where the inner valve hole portion 732 is formed in a circular shape and the outer valve hole portion 731 is formed in an elongated hole shape, the deformation of the valve body 700, that is, the operation of the on-off valve can be smoothed.

(第3実施形態)
第3実施形態による弁装置の一部を図11に示す。第3実施形態は、チェック弁および回転規制部の構成等が第1実施形態と異なる。なお、図11では、スプール60、スプリング63等の図示を省略している。
(Third Embodiment)
A part of the valve device according to the third embodiment is shown in FIG. The third embodiment is different from the first embodiment in the configuration of the check valve and the rotation control unit. Note that in FIG. 11, the spool 60, the spring 63, and the like are not shown.

第3実施形態では、「チェック弁」としての遅角供給チェック弁71は、第1実施形態で示した弁穴部731、弁穴部732を有していない。環状溝部55の遅角環状溝部511は、幅狭溝部551、幅広溝部552を有している。幅狭溝部551は、遅角環状溝部511の周方向の一部に形成されている。幅広溝部552は、遅角環状溝部511の周方向の幅狭溝部551以外の部位に形成され、遅角環状溝部511の軸方向の長さである幅w12が幅狭溝部551の幅w11より大きい。なお、幅広溝部552は、遅角環状溝部511の周方向において隣り合う遅角供給開口部ORs間の距離のうち最大距離となる区間である最大距離区間Sbd内に形成されている。 In the third embodiment, the check valve 71 as a "check valve" does not have the valve hole portion 731 and the valve hole portion 732 shown in the first embodiment. The retarded annular groove portion 511 of the annular groove portion 55 has a narrow groove portion 551 and a wide groove portion 552. The narrow groove portion 551 is formed in a part of the retarded annular groove portion 511 in the circumferential direction. The wide groove portion 552 is formed in a portion other than the width narrow groove portion 551 in the circumferential direction of the retard angle annular groove portion 511, and the width w12 which is the axial length of the retard angle annular groove portion 511 is larger than the width w11 of the narrow angle groove portion 551. .. The wide groove portion 552 is formed in the maximum distance section Sbd, which is the maximum distance among the distances between the retard angle supply openings ORs adjacent to each other in the circumferential direction of the retard angle annular groove portion 511.

回転規制部90は、幅狭溝部551と幅広溝部552との間に形成された規制段差面95を有している。回転規制部90は、規制段差面95が弁本体700の幅狭部710と幅広部721、幅広部722との間の段差面719を係止することにより弁本体700の回転位置を規制する。より具体的には、回転規制部90は、第1実施形態と同様、幅広部721、幅広部722の少なくとも一部が、最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制する。進角供給チェック弁72、進角環状溝部512、および、進角環状溝部512に設けられる回転規制部90の構成も、遅角供給チェック弁71、遅角環状溝部511、および、遅角環状溝部511に設けられる回転規制部90の構成と同様である。第3実施形態は、上述した点以外の構成は、第1実施形態と同様である。 The rotation regulating portion 90 has a regulating step surface 95 formed between the narrow groove portion 551 and the wide groove portion 552. The rotation regulating unit 90 regulates the rotation position of the valve body 700 by the regulation step surface 95 locking the step surface 719 between the narrow portion 710 of the valve body 700 and the wide portion 721 and the wide portion 722. More specifically, the rotation regulating unit 90 regulates the rotation position of the valve body 700 so that at least a part of the wide portion 721 and the wide portion 722 is located within the maximum distance section Sbd, as in the first embodiment. .. The configuration of the advance angle supply check valve 72, the advance angle annular groove portion 512, and the rotation restricting portion 90 provided in the advance angle annular groove portion 512 is also the same as the check valve 71, the retard angle annular groove portion 511, and the retard angle annular groove portion. The configuration is the same as that of the rotation control unit 90 provided in 511. The third embodiment has the same configuration as the first embodiment except for the above-mentioned points.

以上説明したように、本実施形態では、環状溝部55は、環状溝部55の周方向の一部に形成された幅狭溝部551、および、環状溝部55の周方向の幅狭溝部551以外の部位に形成され環状溝部55の軸方向の長さである幅が幅狭溝部551の幅より大きい幅広溝部552を有している。回転規制部90は、幅狭溝部551と幅広溝部552との間に形成された規制段差面95を有し、規制段差面95が弁本体700の幅狭部710と幅広部721、幅広部722との間の段差面719を係止することにより弁本体700の回転位置を規制する。そのため、第1実施形態と比べ、回転規制部90の部材点数を低減できる。 As described above, in the present embodiment, the annular groove portion 55 is a portion other than the narrow groove portion 551 formed in a part of the annular groove portion 55 in the circumferential direction and the narrow groove portion 551 in the circumferential direction of the annular groove portion 55. The annular groove portion 55 has a wide groove portion 552 having a width larger than the width of the narrow groove portion 551, which is the axial length of the annular groove portion 55. The rotation regulation portion 90 has a regulation step surface 95 formed between the narrow groove portion 551 and the wide groove portion 552, and the regulation step surface 95 is the narrow portion 710, the wide portion 721, and the wide portion 722 of the valve body 700. The rotation position of the valve body 700 is regulated by locking the stepped surface 719 between the valve body and the valve body 700. Therefore, the number of members of the rotation regulation unit 90 can be reduced as compared with the first embodiment.

(他の実施形態)
上述の実施形態では、回転規制部90が、幅広部721、幅広部722の少なくとも一部が環状溝部55の最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制する例を示した。これに対し、本発明の他の実施形態では、回転規制部90は、幅広部721、幅広部722の全ての部位が、最大距離区間Sbd内に位置するよう弁本体700の回転位置を規制することとしてもよい。つまり、回転規制部90は、幅広部721、幅広部722が遅角環状溝部511の周方向において遅角供給開口部ORsと重ならないよう弁本体700の回転位置を規制することとしてもよい。この場合、幅広部721、幅広部722が環状溝部55から径方向内側すなわち内周壁54側へ飛び出るのをより効果的に抑制できる。
(Other embodiments)
In the above-described embodiment, an example is shown in which the rotation restricting unit 90 restricts the rotation position of the valve body 700 so that at least a part of the wide portion 721 and the wide portion 722 is located within the maximum distance section Sbd of the annular groove portion 55. .. On the other hand, in another embodiment of the present invention, the rotation regulating unit 90 regulates the rotation position of the valve body 700 so that all the portions of the wide portion 721 and the wide portion 722 are located within the maximum distance section Sbd. It may be that. That is, the rotation restricting unit 90 may restrict the rotation position of the valve body 700 so that the wide portion 721 and the wide portion 722 do not overlap with the retard angle supply openings ORs in the circumferential direction of the retard angle annular groove portion 511. In this case, it is possible to more effectively prevent the wide portion 721 and the wide portion 722 from jumping out from the annular groove portion 55 in the radial direction, that is, toward the inner peripheral wall 54 side.

また、上述の実施形態では、弁穴部731、弁穴部732が、幅広部721、幅広部722に形成される例を示した。これに対し、本発明の他の実施形態では、弁穴部731、弁穴部732は、幅広部721、幅広部722以外の部位である幅狭部710に形成されていてもよい。 Further, in the above-described embodiment, an example is shown in which the valve hole portion 731 and the valve hole portion 732 are formed in the wide portion 721 and the wide portion 722. On the other hand, in another embodiment of the present invention, the valve hole portion 731 and the valve hole portion 732 may be formed in the narrow portion 710 which is a portion other than the wide portion 721 and the wide portion 722.

また、本発明の他の実施形態では、筒部材の流入穴は、環状溝部の周方向に不等間隔で配置されるのであれば、いくつ形成されていてもよい。 Further, in another embodiment of the present invention, any number of inflow holes of the tubular member may be formed as long as they are arranged at irregular intervals in the circumferential direction of the annular groove portion.

また、本発明の他の実施形態では、弁装置11は、全ての部位がハウジング20の外部に位置するよう設けられていてもよい。この場合、アウタースリーブ40は、ねじ部41を省略することができる。 Further, in another embodiment of the present invention, the valve device 11 may be provided so that all the portions are located outside the housing 20. In this case, the outer sleeve 40 can omit the screw portion 41.

また、本発明の他の実施形態では、チェーン6に代えて、例えばベルト等の伝達部材によりハウジング20とクランク軸2とが連結されていてもよい。 Further, in another embodiment of the present invention, the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt instead of the chain 6.

また、上述の実施形態では、ベーンロータ30がカム軸3の端部に固定され、ハウジング20がクランク軸2に連動して回転する例を示した。これに対し、本発明の他の実施形態では、ベーンロータ30がクランク軸2の端部に固定され、ハウジング20がカム軸3に連動して回転することとしてもよい。 Further, in the above-described embodiment, an example is shown in which the vane rotor 30 is fixed to the end of the cam shaft 3 and the housing 20 rotates in conjunction with the crank shaft 2. On the other hand, in another embodiment of the present invention, the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.

本発明のバルブタイミング調整装置10は、エンジン1の排気弁5のバルブタイミングを調整することとしてもよい。 The valve timing adjusting device 10 of the present invention may adjust the valve timing of the exhaust valve 5 of the engine 1.

また、本発明の弁装置は、例えば上記特許文献1の油圧アクチュエータ等に供給する作動流体を制御するのに用いてもよい。また、本発明の弁装置は、バルブタイミング調整装置以外の装置等に供給する流体を制御するのに用いてもよい。
このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
Further, the valve device of the present invention may be used to control the working fluid supplied to, for example, the hydraulic actuator of Patent Document 1. Further, the valve device of the present invention may be used to control the fluid supplied to a device other than the valve timing adjusting device.
As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.

11 弁装置、50 インナースリーブ(筒部材)、53 外壁、531 遅角外壁(外壁)、532 進角外壁(外壁)、54 内周壁、55 環状溝部、511 遅角環状溝部(環状溝部)、512 進角環状溝部(環状溝部)、550 底面、71 遅角供給チェック弁(チェック弁)、72 進角供給チェック弁(チェック弁)、700 弁本体、710 幅狭部、721、722 幅広部、90 回転規制部、ORs 遅角供給開口部(流入穴)、OAs 進角供給開口部(流入穴)、Sbd 最大距離区間 11 Valve device, 50 Inner sleeve (cylindrical member), 53 Outer wall, 53 Declared outer wall (outer wall), 532 Advance angle outer wall (outer wall), 54 Inner peripheral wall, 55 Annular groove, 511 Deviated annular groove (annular groove), 512 Advance angle annular groove part (annular groove part), 550 bottom surface, 71 check valve, 72 advance angle supply check valve (check valve), 700 valve body, 710 narrow part, 721, 722 wide part, 90 Rotation control part, ORs check valve opening (inflow hole), OAs advance angle supply opening (inflow hole), Sbd maximum distance section

Claims (7)

内周壁(54)から径方向外側へ凹みつつ周方向に延びて環状に形成された環状溝部(55、511、512)、および、前記環状溝部の周方向に不等間隔で複数形成され前記環状溝部の底面(550)と外壁(53、531、532)とを連通する流入穴(ORs、OAs)を有する筒部材(50)と、
単一の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成された弁本体(700)を有し、前記弁本体の周方向が前記環状溝部の底面の周方向に沿うよう前記環状溝部に設けられ、前記流入穴を経由して前記筒部材の内側へ向かう流体の流れを許容し、前記筒部材の内側から前記流入穴へ向かう流体の流れを規制可能なチェック弁(71、72)と、
前記環状溝部の周方向における前記弁本体の回転位置を所定範囲内に規制可能な回転規制部(90)と、を備え、
前記チェック弁は、前記弁本体の周方向の一部に形成された幅狭部(710)、および、前記弁本体の周方向の前記幅狭部以外の部位に形成され前記弁本体の軸方向の長さである幅が前記幅狭部の幅より大きい幅広部(721、722)を有し、
記幅広部の少なくとも一部、前記環状溝部の周方向において隣り合う前記流入穴間の距離のうち最大距離となる区間である最大距離区間(Sbd)内に位置する弁装置(11)。
An annular groove portion (55, 511, 512) formed in an annular direction extending from the inner peripheral wall (54) in the circumferential direction while denting outward in the radial direction, and a plurality of annular grooves formed at unequal intervals in the circumferential direction of the annular groove portion. A tubular member (50) having inflow holes (ORs, OAs) that communicate the bottom surface (550) of the groove and the outer wall (53, 531, 532).
The valve body (700) is formed in a tubular shape by winding a single plate material so that the longitudinal direction is along the circumferential direction, and the circumferential direction of the valve body is along the circumferential direction of the bottom surface of the annular groove portion. A check valve (71, which is provided in the annular groove portion and can allow the flow of fluid toward the inside of the tubular member via the inflow hole and regulate the flow of fluid from the inside of the tubular member toward the inflow hole. 72) and
A rotation regulating portion (90) capable of regulating the rotation position of the valve body in the circumferential direction of the annular groove portion within a predetermined range is provided.
The check valve is formed in a portion other than the narrow portion (710) formed in a part of the valve body in the circumferential direction and the narrow portion in the circumferential direction of the valve body, and is formed in the axial direction of the valve body. Has a wide portion (721, 722) in which the width, which is the length of the narrow portion, is larger than the width of the narrow portion.
At least in part, the valve device you located within a maximum distance interval (Sbd) is a section serving as a maximum distance among the distances between the inflow holes adjacent in the circumferential direction of the annular groove of the front Symbol wide portion (11) ..
前記幅広部は、前記弁本体の周方向の一方の端部および他方の端部に1つずつ形成され、 The wide portion is formed one by one at one end and the other end in the circumferential direction of the valve body.
前記幅狭部は、前記弁本体の周方向において2つの前記幅広部の間に1つ形成されている請求項1に記載の弁装置。 The valve device according to claim 1, wherein the narrow portion is formed between the two wide portions in the circumferential direction of the valve body.
前記幅広部の全ての部位は、前記最大距離区間内に位置する請求項1または2に記載の弁装置。 The valve device according to claim 1 or 2, wherein all the parts of the wide portion are located within the maximum distance section. 前記チェック弁は、前記弁本体の周方向の一部において前記弁本体を板厚方向に貫くよう形成された弁穴部(731、732)を有し、
前記回転規制部は、前記弁穴部を通るよう前記環状溝部の底面から前記筒部材の径方向内側へ延びる規制突起部(91)を有し、前記規制突起部が前記弁穴部を係止することにより前記弁本体の回転位置を規制する請求項1〜3のいずれか一項に記載の弁装置。
The check valve has valve holes (731, 732) formed so as to penetrate the valve body in the plate thickness direction in a part of the valve body in the circumferential direction.
The rotation restricting portion has a regulating protrusion (91) extending radially inward from the bottom surface of the annular groove portion so as to pass through the valve hole portion, and the regulating protrusion locks the valve hole portion. The valve device according to any one of claims 1 to 3, wherein the rotational position of the valve body is regulated by the valve device.
前記弁穴部は、前記幅広部に形成されている請求項に記載の弁装置。 The valve device according to claim 4 , wherein the valve hole portion is formed in the wide portion. 前記弁穴部は、前記弁本体の周方向の一方の端部に1つ、前記弁本体の周方向の他方の端部に1つ、前記弁本体に合計2つ形成されており、
2つの前記弁穴部は、いずれも前記弁本体の周方向に延びる長穴状に形成され、互いに少なくとも一部が前記弁本体の周方向で重なる請求項またはに記載の弁装置。
The valve hole portion is formed at one end in the circumferential direction of the valve body, one at the other end in the circumferential direction of the valve body, and a total of two in the valve body.
The valve device according to claim 4 or 5 , wherein each of the two valve hole portions is formed in an elongated hole shape extending in the circumferential direction of the valve body, and at least a part thereof overlaps with each other in the circumferential direction of the valve body.
前記弁穴部は、前記弁本体の周方向の一方の端部に1つ、前記弁本体の周方向の他方の端部に1つ、前記弁本体に合計2つ形成されており、
2つの前記弁穴部のうち一方は、円形に形成され、
2つの前記弁穴部のうち他方は、前記弁本体の周方向に延びる長穴状に形成され、
2つの前記弁穴部は、互いに少なくとも一部が前記弁本体の周方向で重なる請求項またはに記載の弁装置。
The valve hole portion is formed at one end in the circumferential direction of the valve body, one at the other end in the circumferential direction of the valve body, and a total of two in the valve body.
One of the two valve holes is formed in a circular shape.
The other of the two valve holes is formed in the shape of an elongated hole extending in the circumferential direction of the valve body.
The valve device according to claim 4 or 5 , wherein at least a part of the two valve holes overlap each other in the circumferential direction of the valve body.
JP2018054664A 2018-03-22 2018-03-22 Valve device Active JP6879242B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018054664A JP6879242B2 (en) 2018-03-22 2018-03-22 Valve device
PCT/JP2019/011205 WO2019181863A1 (en) 2018-03-22 2019-03-18 Valve device
DE112019001462.5T DE112019001462T5 (en) 2018-03-22 2019-03-18 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054664A JP6879242B2 (en) 2018-03-22 2018-03-22 Valve device

Publications (2)

Publication Number Publication Date
JP2019167997A JP2019167997A (en) 2019-10-03
JP6879242B2 true JP6879242B2 (en) 2021-06-02

Family

ID=67986539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054664A Active JP6879242B2 (en) 2018-03-22 2018-03-22 Valve device

Country Status (3)

Country Link
JP (1) JP6879242B2 (en)
DE (1) DE112019001462T5 (en)
WO (1) WO2019181863A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882891A (en) * 1974-06-19 1975-05-13 Abex Corp Check valve
US6899199B2 (en) * 2002-10-24 2005-05-31 Barnes Group Inc. Flapper finger valve assembly
DE102005013085B3 (en) * 2005-03-18 2006-06-01 Hydraulik-Ring Gmbh Hydraulic valve for automobile, has check valve with band formed of closed ring, which serves as opening-free band and is made of spring steel, where steel forms ring by overlap of section of bands at about one hundred and eighty degree
US8225818B1 (en) * 2011-03-22 2012-07-24 Incova Technologies, Inc. Hydraulic valve arrangement with an annular check valve element
GB201310830D0 (en) * 2013-06-18 2013-07-31 Univ Brunel Radial flow non-return fluid valve assembly
DE102014216175A1 (en) * 2014-08-14 2016-02-18 Schaeffler Technologies AG & Co. KG Check valve for a control valve of a camshaft adjuster

Also Published As

Publication number Publication date
WO2019181863A1 (en) 2019-09-26
DE112019001462T5 (en) 2020-12-17
JP2019167997A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US11248502B2 (en) Hydraulic oil control valve and valve timing adjustment device
JP6780573B2 (en) Valve timing adjuster
US10858965B2 (en) Valve timing adjustment device
US10858967B2 (en) Valve timing adjustment device and check valve
JP6733594B2 (en) Valve timing adjustment device
JP6645448B2 (en) Valve timing adjustment device
JP7040769B2 (en) Fluid control valve and valve timing adjustment device using this
JP7124775B2 (en) Hydraulic oil control valve and valve timing adjustment device
US11428126B2 (en) Valve timing adjustment device
JP2009185719A (en) Valve timing regulating device
JP7136455B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
JP2021085398A (en) Valve timing adjustment device
JP6879243B2 (en) Valve device
JP5920632B2 (en) Valve timing adjustment device
JP6879242B2 (en) Valve device
JP7251878B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
JP5601542B2 (en) Valve timing adjustment device
JP6947115B2 (en) Check valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6879242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250