JP6875114B2 - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP6875114B2
JP6875114B2 JP2016237353A JP2016237353A JP6875114B2 JP 6875114 B2 JP6875114 B2 JP 6875114B2 JP 2016237353 A JP2016237353 A JP 2016237353A JP 2016237353 A JP2016237353 A JP 2016237353A JP 6875114 B2 JP6875114 B2 JP 6875114B2
Authority
JP
Japan
Prior art keywords
ferromagnet
present
hydrogen
producing hydrogen
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016237353A
Other languages
Japanese (ja)
Other versions
JP2018090882A (en
Inventor
武次 廣田
武次 廣田
Original Assignee
武次 廣田
武次 廣田
廣田 亜夕美
廣田 亜夕美
廣田 武士
廣田 武士
渡邊 宏紀
渡邊 宏紀
畠田 洋平
畠田 洋平
望月 邦彦
望月 邦彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武次 廣田, 武次 廣田, 廣田 亜夕美, 廣田 亜夕美, 廣田 武士, 廣田 武士, 渡邊 宏紀, 渡邊 宏紀, 畠田 洋平, 畠田 洋平, 望月 邦彦, 望月 邦彦 filed Critical 武次 廣田
Priority to JP2016237353A priority Critical patent/JP6875114B2/en
Publication of JP2018090882A publication Critical patent/JP2018090882A/en
Application granted granted Critical
Publication of JP6875114B2 publication Critical patent/JP6875114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水を電気分解することによって水素を得る水素の製造方法に関する。 The present invention relates to a method for producing hydrogen, which obtains hydrogen by electrolyzing water.

近年、燃料電池技術などの展開によって水素の需要が急激に高まってきている。現在、工業的な水素の製造は、主に炭化水素を水蒸気改質したり部分酸化したりする炭化水素ガス分解法によって行われている。 In recent years, the demand for hydrogen has been rapidly increasing due to the development of fuel cell technology and the like. Currently, industrial hydrogen production is mainly carried out by a hydrocarbon gas decomposition method in which hydrocarbons are steam reformed or partially oxidized.

最近では、風力発電や太陽光発電などの自然エネルギーによって発生させた電力によって水を電気分解し、もって水素(及び酸素)を製造する手段も提案されている(例えば、下記特許文献1、2参照。)。 Recently, a means for producing hydrogen (and oxygen) by electrolyzing water with electric power generated by natural energy such as wind power generation and solar power generation has been proposed (see, for example, Patent Documents 1 and 2 below). .).

特開2012‐131697号公報Japanese Unexamined Patent Publication No. 2012-131697 特開2014‐203274号公報Japanese Unexamined Patent Publication No. 2014-203274

しかしながら、不安定要素が多い自然エネルギーを利用した電気分解では、安定的な水素の製造・供給を担保することができない。又、電気分解により水素を製造するためには、電気抵抗値が高い水に電流を通す必要があるため、電極間電圧を高くしたり、電解槽を電極間距離が短い比較的小型のものとしたりする必要がある。そのため、電気分解による大量の水素の製造は困難とされていた。 However, stable hydrogen production and supply cannot be guaranteed by electrolysis using natural energy, which has many unstable elements. Further, in order to produce hydrogen by electrolysis, it is necessary to pass an electric current through water having a high electric resistance value, so that the voltage between the electrodes is increased or the electrolytic cell is made relatively small with a short distance between the electrodes. I need to do it. Therefore, it has been difficult to produce a large amount of hydrogen by electrolysis.

本発明は、前記技術的課題を解決するために開発されたものであって、電気分解により効率良く水素を得るための新規な水素の製造方法を提供することを目的とする。 The present invention has been developed to solve the above technical problems, and an object of the present invention is to provide a novel method for producing hydrogen for efficiently obtaining hydrogen by electrolysis.

前記技術的課題を解決するための本発明の水素の製造方法は、水を電気分解することによって水素を得る水素の製造方法であって、電解槽に貯められた水中に強磁性体を配し、前記強磁性体に磁場をかけながら電気分解を行うことを特徴とする(以下、「本発明製造方法」と称する。)。 The method for producing hydrogen of the present invention for solving the above technical problem is a method for producing hydrogen in which hydrogen is obtained by electrolyzing water, and a ferromagnetic material is arranged in water stored in an electrolytic cell. , The above-mentioned ferromagnetic material is electrolyzed while applying a magnetic field (hereinafter, referred to as "the production method of the present invention").

本発明製造方法においては、前記強磁性体として鉄を用いることが好ましい態様となる。 In the production method of the present invention, it is preferable to use iron as the ferromagnet.

本発明製造方法においては、前記強磁性体に永久磁石を接触させることによって、前記強磁性体に磁場をかけることが好ましい態様となる。 In the manufacturing method of the present invention, it is preferable to apply a magnetic field to the ferromagnet by bringing a permanent magnet into contact with the ferromagnet.

前記本発明製造方法によれば、電気分解により効率良く水素を得ることができる。 According to the production method of the present invention, hydrogen can be efficiently obtained by electrolysis.

図1は、本発明製造方法を実行するための装置1の概略を示す正面図である。FIG. 1 is a front view showing an outline of an apparatus 1 for executing the manufacturing method of the present invention. 図2は、強磁性体を示す斜視図(a)と、断面図(b)である。FIG. 2 is a perspective view (a) and a cross-sectional view (b) showing a ferromagnet.

以下、本発明の実施形態を説明するが、本発明はこの実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to this embodiment.

<実施形態>
図1に、本発明製造方法を実行するための装置1を示す。本発明製造方法では、電解槽2に貯められた水中に強磁性体10を配し、前記強磁性体10に磁場をかけながら電気分解を行う。本実施形態においては、水に接触させた電極(陽極3P、陰極3N)3間に電圧をかけることによって電気分解を行った。
<Embodiment>
FIG. 1 shows an apparatus 1 for executing the manufacturing method of the present invention. In the production method of the present invention, the ferromagnet 10 is arranged in the water stored in the electrolytic cell 2, and electrolysis is performed while applying a magnetic field to the ferromagnet 10. In the present embodiment, electrolysis was performed by applying a voltage between the electrodes (anode 3P, cathode 3N) 3 in contact with water.

図2(a)、(b)に、本実施形態において用いた前記強磁性体10を示す。前記強磁性体10は、鉄製のパンチングメタルを箱型に成形した容器11と、前記容器11内の空間を占有するようにして配したスチールウール12と、を具備する。本発明製造方法を実行するにあたり、前記強磁性体10は、前記電解槽2に貯められた水中に配される。この際、前記強磁性体10は、前記陽極3Pと前記陰極3N間に配することが好ましい。 2 (a) and 2 (b) show the ferromagnet 10 used in this embodiment. The ferromagnet 10 includes a container 11 formed by forming an iron punching metal into a box shape, and steel wool 12 arranged so as to occupy a space inside the container 11. In carrying out the production method of the present invention, the ferromagnet 10 is placed in water stored in the electrolytic cell 2. At this time, the ferromagnetic material 10 is preferably arranged between the anode 3P and the cathode 3N.

又、本発明製造方法を実行するにあたっては、前記強磁性体10に磁場をかける。本実施形態においては、前記強磁性体10の容器11内壁に複数個の磁石Mを接触させる(張り付ける)ことによって、前記強磁性体10(容器11及びスチールウール12)に磁場をかけた。 Further, in executing the manufacturing method of the present invention, a magnetic field is applied to the ferromagnetic material 10. In the present embodiment, a magnetic field is applied to the ferromagnet 10 (container 11 and steel wool 12) by bringing a plurality of magnets M into contact (attaching) to the inner wall of the container 11 of the ferromagnet 10.

[実施例1]
前記構成を有する装置1を用い、下記条件にて、本発明製造方法を実行した。
‐条件‐
電解槽2:330×330×250mm(=0.027m
電極3:ステンレス電極(陰極3N)、炭素電極(陽極3P)
電極間距離:200mm
印加電圧:24V
強磁性体10:容器11のサイズ(110×150×260mm)
磁石M:フェライト磁石(磁束密度0.3T)×12個
水:0.2%水酸化カリウム水溶液(12.45リットル、水温27℃)
[Example 1]
The production method of the present invention was carried out under the following conditions using the apparatus 1 having the above configuration.
-conditions-
Electrolytic cell 2: 330 x 330 x 250 mm (= 0.027 m 3 )
Electrode 3: Stainless steel electrode (cathode 3N), carbon electrode (anode 3P)
Distance between electrodes: 200 mm
Applied voltage: 24V
Ferromagnet 10: Size of container 11 (110 x 150 x 260 mm)
Magnet M: Ferrite magnet (magnetic flux density 0.3T) x 12 Water: 0.2% potassium hydroxide aqueous solution (12.45 liters, water temperature 27 ° C)

[比較例1]
電解槽2内に強磁性体10を配置しなかった以外は、前記実施例1と同様にして電気分解を行った。
[Comparative Example 1]
Electrolysis was carried out in the same manner as in Example 1 except that the ferromagnetic material 10 was not arranged in the electrolytic cell 2.

[比較例2]
前記強磁性体10から磁石Mを取り外し、前記強磁性体10のみを前記電解槽2内に配置した以外は、前記実施例1と同様にして電気分解を行った。
前記実施例1及び比較例の双方につき60分の電気分解を行った結果を下記表1に示す。
[Comparative Example 2]
Electrolysis was carried out in the same manner as in Example 1 except that the magnet M was removed from the ferromagnet 10 and only the ferromagnet 10 was placed in the electrolytic cell 2.
The results of 60 minutes of electrolysis in both Example 1 and Comparative Example are shown in Table 1 below.

Figure 0006875114
Figure 0006875114

表1に示す結果から解るように、電解槽2内に配した強磁性体10に磁場をかけながら電気分解する実施例1は、比較例1や比較例2と同じ電圧を印加したにもかかわらず、電解槽2中を流れる電流の値が大きくなっており、結果として発生する水素の量が多くなることが確認された。これより、本発明製造方法によれば、電気分解により効率よく水素を得ることができることが認められた。 As can be seen from the results shown in Table 1, in Example 1 in which the ferromagnetic material 10 arranged in the electrolytic cell 2 is electrolyzed while applying a magnetic field, the same voltage as in Comparative Example 1 and Comparative Example 2 is applied. However, it was confirmed that the value of the current flowing through the electrolytic cell 2 was large, and as a result, the amount of hydrogen generated was large. From this, it was confirmed that hydrogen can be efficiently obtained by electrolysis according to the production method of the present invention.

[実施例2]
‐条件‐
電解槽2:1200×700×1000mm(=0.84m
電極3:炭素電極(陽極3P、陰極3N)
電極間距離:1000mm
印加電圧:20〜42.8V
入力電流:42〜110A
強磁性体10:容器11のサイズ(150×600×500mm)
磁石M:フェライト磁石(磁束密度0.3T)×36個
水:0.2%水酸化カリウム水溶液(800リットル、水温45℃)
[Example 2]
-conditions-
Electrolytic cell 2: 1200 x 700 x 1000 mm (= 0.84 m 3 )
Electrode 3: Carbon electrode (anode 3P, cathode 3N)
Distance between electrodes: 1000 mm
Applied voltage: 20-42.8V
Input current: 42 to 110A
Ferromagnet 10: Size of container 11 (150 x 600 x 500 mm)
Magnet M: Ferrite magnet (magnetic flux density 0.3T) x 36 Water: 0.2% potassium hydroxide aqueous solution (800 liters, water temperature 45 ° C)

前記条件にて、本発明製造方法を実行した際、前記強磁性体10に流れる電流(強磁性体内部電流)を測定した結果を下記表2に示す。 Table 2 below shows the results of measuring the current (internal current of the ferromagnet) flowing through the ferromagnet 10 when the manufacturing method of the present invention was executed under the above conditions.

Figure 0006875114
Figure 0006875114

表2に示す結果から解るように、電解槽2内を流れる電流の85%以上が、強磁性体10内を流れていることが確認された。即ち、本発明製造方法の実行中、磁場をかけられた強磁性体10内を電流が流れ得ることから、電解槽2中に存する水のみかけの電気抵抗値が相対的に下げられ、結果として、発生する水素の量が増加していると考えられる。 As can be seen from the results shown in Table 2, it was confirmed that 85% or more of the current flowing in the electrolytic cell 2 was flowing in the ferromagnetic material 10. That is, since the electric current can flow in the ferromagnet 10 to which the magnetic field is applied during the execution of the manufacturing method of the present invention, the apparent electric resistance value of water existing in the electrolytic cell 2 is relatively lowered, and as a result, , It is considered that the amount of hydrogen generated is increasing.

なお、本実施形態においては、強磁性体10として、鉄製の容器11及びスチールウール12を用いているが、強磁性体10としてコバルトやニッケルなどの他の素材を用いて本発明製造方法を実行しても、同様の結果が得られることが確認されている。本発明において、「強磁性体」とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを有する金属材料を意味し、例えば、鉄系金属(鉄、及び鉄を母材とする合金)、コバルト系金属(コバルト、及びコバルトを母材とする合金)、及びニッケル系金属(ニッケル、及びニッケルを母材とする合金)等を挙げることができる。 In the present embodiment, the iron container 11 and the steel wool 12 are used as the ferromagnet 10, but the production method of the present invention is carried out using other materials such as cobalt and nickel as the ferromagnet 10. However, it has been confirmed that similar results can be obtained. In the present invention, the "ferromagnet" means a metal material in which adjacent spins are aligned in the same direction and have a large magnetic moment as a whole. For example, iron-based metals (iron and iron as a mother). (Alloys used as materials), cobalt-based metals (cobalt and alloys based on cobalt), nickel-based metals (alloys based on nickel and nickel), and the like can be mentioned.

又、本発明製造方法においては、前記強磁性体10のサイズが大きくなるにつれ、又、かける磁場が大きくなるにつれ、電解槽2内のみかけの電気抵抗値が下がり、より水素の発生が効率良くなることが確認されている。前記強磁性体10のサイズは、電極間距離に応じて80%〜95%程度とすることが好ましく、かける磁場については、0.1T以上とすることが好ましい。 Further, in the production method of the present invention, as the size of the ferromagnet 10 increases and the applied magnetic field increases, the apparent electric resistance value in the electrolytic cell 2 decreases, and hydrogen is generated more efficiently. It has been confirmed that The size of the ferromagnet 10 is preferably about 80% to 95% depending on the distance between the electrodes, and the applied magnetic field is preferably 0.1 T or more.

更に、前記強磁性体10に磁場をかける手段(磁石M)についても特に限定されるものではなく、フェライト磁石、サマリウムコバルト磁石、ネオジウム磁石等の永久磁石の他、電磁石を用いることもできる。 Further, the means for applying a magnetic field to the ferromagnetic material 10 (magnet M) is not particularly limited, and an electromagnet can be used in addition to a permanent magnet such as a ferrite magnet, a samarium-cobalt magnet, or a neodium magnet.

ところで、本発明製造方法における「水」とは、純水のみを意味するのではなく、電解質を溶かした水溶液等も「水」の範疇に入る。 By the way, "water" in the production method of the present invention does not mean only pure water, but also an aqueous solution in which an electrolyte is dissolved falls into the category of "water".

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 It should be noted that the present invention can be practiced in various other forms without departing from its spirit or key features. Therefore, the above examples are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is shown by the scope of claims, and is not bound by the text of the specification. Furthermore, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.

本発明は、電気分解にて水素を得る手段として好適に用いることができる。 The present invention can be suitably used as a means for obtaining hydrogen by electrolysis.

1 装置
2 電解槽
3 電極
10 強磁性体
11 容器
12 スチールウール
M 磁石

1 Device 2 Electrolytic cell 3 Electrode 10 Ferromagnet 11 Container 12 Steel wool M magnet

Claims (3)

水を電気分解することによって水素を得る水素の製造方法であって、
電解槽に貯められた水中に強磁性体を陽極又は陰極のいずれの電極とも非接触の状態で配し、前記強磁性体に接触させた永久磁石による磁場をかけながら電気分解を行うことを特徴とする水素の製造方法。
A method for producing hydrogen that obtains hydrogen by electrolyzing water.
A feature is that a ferromagnet is placed in water stored in an electrolytic cell in a non-contact state with either an electrode or a cathode electrode, and electrolysis is performed while applying a magnetic field with a permanent magnet in contact with the ferromagnet. The method of producing hydrogen.
請求項1に記載の水素の製造方法において、
陽極と陰極との間に前記強磁性体を配する水素の製造方法。
In the method for producing hydrogen according to claim 1,
A method for producing hydrogen in which the ferromagnet is arranged between an anode and a cathode.
請求項1又は2に記載の水素の製造方法において、
前記強磁性体からなる箱体内にスチールウールを内在させる水素製造方法。
In the method for producing hydrogen according to claim 1 or 2.
A method for producing hydrogen in which steel wool is contained in a box made of the ferromagnet.
JP2016237353A 2016-12-07 2016-12-07 Hydrogen production method Active JP6875114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237353A JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237353A JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Publications (2)

Publication Number Publication Date
JP2018090882A JP2018090882A (en) 2018-06-14
JP6875114B2 true JP6875114B2 (en) 2021-05-19

Family

ID=62564354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237353A Active JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP6875114B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
JPH01275788A (en) * 1988-04-28 1989-11-06 Ishii Sangyo Kk Method and apparatus for electrolysis of water by action of magnetic field
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
JP2003112042A (en) * 2001-10-03 2003-04-15 Ebara Jitsugyo Co Ltd Electrochemical apparatus and process
JP2006022398A (en) * 2004-07-06 2006-01-26 Nezugaseki Saiseki Kogyo Kk Apparatus for producing oxygen and hydrogen in water
JP2009167514A (en) * 2008-01-11 2009-07-30 Success Life Kk Generation apparatus of gaseous hydrogen and gaseous oxygen by electropulse cracking reaction
US20120097550A1 (en) * 2010-10-21 2012-04-26 Lockhart Michael D Methods for enhancing water electrolysis

Also Published As

Publication number Publication date
JP2018090882A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Darband et al. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting
Bezerra et al. Developing efficient catalysts for the OER and ORR using a combination of Co, Ni, and Pt oxides along with graphene nanoribbons and NiCo 2 O 4
Wu et al. NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities
Wang et al. MnOx‐decorated nickel‐iron phosphides Nanosheets: Interface modifications for robust overall water splitting at ultra‐high current densities
Liu et al. Coupling sub‐nanometric copper clusters with quasi‐amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction
Huang et al. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER
Shit et al. Binder-free growth of nickel-doped iron sulfide on nickel foam via electrochemical deposition for electrocatalytic water splitting
Lin et al. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis
Feng et al. Ultrathin two-dimensional free-standing sandwiched NiFe/C for high-efficiency oxygen evolution reaction
Liu et al. Cobalt-promoted formation of oxygen vacancy in NiFe layered double hydroxide nanosheet arrays for electrocatalytic/photovoltage-driven overall water splitting
Zhang et al. Earth‐abundant amorphous electrocatalysts for electrochemical hydrogen production: a review
Qi et al. Self-supported cobalt–nickel bimetallic telluride as an advanced catalyst for the oxygen evolution reaction
Sun et al. Ultrafast Electrodeposition of Ni− Fe Hydroxide Nanosheets on Nickel Foam as Oxygen Evolution Anode for Energy‐Saving Electrolysis of Na2CO3/NaHCO3
Anantharaj et al. Chemical leaching of inactive Cr and subsequent electrochemical resurfacing of catalytically active sites in stainless steel for high-rate alkaline hydrogen evolution reaction
Jiang et al. Insight into the catalytic activity of amorphous multimetallic catalysts under a magnetic field toward the oxygen evolution reaction
Liu et al. Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution
Zhang et al. Design strategies for large current density hydrogen evolution reaction
Farmani et al. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force
Xiao et al. In situ synthesis of core–shell-Ni3Fe (OH) 9/Ni3Fe hybrid nanostructures as highly active and stable bifunctional catalysts for water electrolysis
CN106884190A (en) A kind of preparation of classifying porous material and classifying porous material
JP6875114B2 (en) Hydrogen production method
El-Hallag et al. The effect of electrodeposition potential on catalytic properties of Ni nanoparticles for hydrogen evolution reaction (HER) in alkaline media
Zhang et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities
Wu et al. Amorphous Co-WP grown on carbon cloth as a bifunctional catalytic electrode for water splitting
JP6208992B2 (en) Alloy electrode for oxygen generation and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201021

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250