JP6874927B2 - Rudder for ships and ships - Google Patents

Rudder for ships and ships Download PDF

Info

Publication number
JP6874927B2
JP6874927B2 JP2017113971A JP2017113971A JP6874927B2 JP 6874927 B2 JP6874927 B2 JP 6874927B2 JP 2017113971 A JP2017113971 A JP 2017113971A JP 2017113971 A JP2017113971 A JP 2017113971A JP 6874927 B2 JP6874927 B2 JP 6874927B2
Authority
JP
Japan
Prior art keywords
rudder
section
horizontal cross
ship
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113971A
Other languages
Japanese (ja)
Other versions
JP2018203194A (en
Inventor
校優 木村
校優 木村
虎卓 山本
虎卓 山本
俊紀 澤田
俊紀 澤田
航平 瀬川
航平 瀬川
智 藤田
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui E&S Shipbuilding Co Ltd
Priority to JP2017113971A priority Critical patent/JP6874927B2/en
Publication of JP2018203194A publication Critical patent/JP2018203194A/en
Application granted granted Critical
Publication of JP6874927B2 publication Critical patent/JP6874927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、直進時の抗力が小さく、舵を切って舵角を取ったときに発生する舵力が大きい船舶用舵及び船舶に関する。 The present invention relates to a rudder for a ship and a ship having a small drag force when traveling straight and a large rudder force generated when the rudder is turned to take a steering angle.

船舶の操船においては、舵は必要不可欠な装置であり、船尾のプロペラ等の推進器の後方に舵を設けて、航行中に、操舵により舵角を取ったことで生じる舵の横力により、船体を前進方向に対して回頭させて旋回している。この舵においては、舵を切って舵角を取ったときに大きな揚力を発生させて舵力を大きくすることが望ましく、舵を大きくすることでこの舵力も大きくなるが、一般的に舵はプロペラの後方に設定されるため、十分なスペースを確保することが難しく、舵の大きさには制限が生じる。 The rudder is an indispensable device for maneuvering a ship, and the rudder is provided behind a propeller such as a stern propeller, and the lateral force of the rudder generated by steering the rudder angle during navigation The hull is turning in the forward direction. In this rudder, it is desirable to generate a large lift to increase the rudder force when the rudder is turned and the rudder angle is taken. Since it is set behind the rudder, it is difficult to secure sufficient space, and the size of the rudder is limited.

また、近年、船舶の主機から排出される排ガスに対する環境対策によって主機の馬力を小さくする傾向にある。そのため、小さい主機馬力であっても荒天時における操縦性能を満足させることができる舵の開発が望まれており、特に、これらの観点から既存の舵と同等の大きさでより高い舵力を得ることができる舵の開発が望まれている。 Further, in recent years, there has been a tendency to reduce the horsepower of the main engine by taking environmental measures against the exhaust gas emitted from the main engine of the ship. Therefore, it is desired to develop a rudder that can satisfy the maneuvering performance in stormy weather even with a small main engine horsepower. In particular, from these viewpoints, a higher rudder force can be obtained with the same size as the existing rudder. The development of a rudder that can be used is desired.

この高揚力舵としては、例えば、舵本体の後端部にフラットバーをその舵本体の後端部に対して幅方向に僅かに突出するように接続し、かつ、舵本体の水平断面形状を、前半部が舵外方に向かう突曲線の流線型で、後半部がその凸曲線から凹曲線に反転したフォロー形状に形成した高揚力舵が提案されている(例えば、特許文献1参照)。 As this high lift rudder, for example, a flat bar is connected to the rear end of the rudder body so as to slightly protrude in the width direction with respect to the rear end of the rudder body, and the horizontal cross-sectional shape of the rudder body is formed. A high-lift rudder has been proposed in which the first half of the rudder has a streamlined shape with a protruding curve toward the outside of the rudder, and the second half of the rudder has a follow shape that is inverted from a convex curve to a concave curve (see, for example, Patent Document 1).

また、高揚力舵としては、舵ブレードが水平断面の輪郭において前方へ半円形状に突出させた前縁部と前縁部に連続して流線型に幅を増大させた後に最小幅部に向けて徐々に幅を減少させた中間部と中間部に連続して所定幅の後方端に向けて徐々に幅を増大させた魚尾後縁部からなる魚形水平断面形状をなす高揚力舵が提案されている(例えば、特許文献2参照)。 Further, as a high-lift rudder, the rudder blade continuously increases the width in a streamlined manner at the front edge portion and the front edge portion protruding forward in a semicircular shape in the contour of the horizontal cross section, and then toward the minimum width portion. A high lift rudder having a fish-shaped horizontal cross-sectional shape consisting of a middle part whose width is gradually reduced and a fish tail trailing edge whose width is gradually increased toward the rear end of a predetermined width is proposed. (See, for example, Patent Document 2).

特開2003−276689号公報Japanese Unexamined Patent Publication No. 2003-276689 特開2013−220697号公報Japanese Unexamined Patent Publication No. 2013-220697

しかしながら、上記の構成の高揚力舵においては、舵面に沿って流れる水流と抗力と舵力の関係を考察すると、まだまだ改善の余地があり、本発明者らは、多くの水槽実験や流体シミュレーション計算の結果から、船舶用舵の形状の工夫次第では、直進時の抗力を抑制しつつ、舵を切って舵角を取ったときの舵力をさらに増大させることができるとの知見を得た。 However, in the high-lift rudder with the above configuration, there is still room for improvement when considering the relationship between the water flow flowing along the control surface, drag and rudder force, and the present inventors have many tank experiments and fluid simulations. From the results of the calculation, it was found that depending on the shape of the rudder for ships, it is possible to further increase the rudder force when the rudder is turned and the rudder angle is taken, while suppressing the drag force when going straight. ..

本発明は、上記の状況を鑑みてなされたものであり、その目的は、直進時の抗力を抑制しつつ、舵を切って舵角を取ったときに発生する舵力をより増大させることができる船舶用舵及び船舶を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to further increase the steering force generated when the rudder is turned and the steering angle is taken while suppressing the drag force when traveling straight. The purpose is to provide a rudder and a ship that can be used.

上記の目的を達成するための本発明の船舶用舵は、当該船舶用舵の水平断面における最大幅から後方の形状に関して、標準曲率半径を当該船舶用舵の舵全体における舵最大幅の2倍以上で5倍以下の範囲内の長さで設定し、標準交差角を22度以上32度以下の範囲内の角度で設定すると共に、当該船舶用舵の水平断面形状における後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定したときに、当該船舶用舵の可動部の最下端から最上端までの領域の全部または一部の水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であることを特徴とする。 The marine steering wheel of the present invention for achieving the above object has a standard radius of curvature twice the maximum steering wheel width of the entire steering wheel of the marine steering wheel with respect to the shape rearward from the maximum width in the horizontal cross section of the marine steering wheel. With the above, the length is set within the range of 5 times or less, the standard intersection angle is set at the angle within the range of 22 degrees or more and 32 degrees or less, and the rear standard shape line in the horizontal cross-sectional shape of the ship steering wheel is set. An intersection on the left and right center lines of the marine steering wheel in a straight line that is in contact with the standard arc of the standard radius of curvature that emanates from the maximum width position and intersects with each other at the standard intersection angle behind the standard arc. And the distance between the two left and right side surface forming lines between the contact point with the standard arc and the intersection and the distance of 5% or more and 70% or less of the length of the horizontal cross section in the front-rear direction behind the intersection. A horizontal cross section of all or part of the area from the bottom edge to the top edge of the movable part of the ship's steering wheel when set as a symmetrical shape line consisting of a rear line segment that connects the moved points. The longest distance in the width direction between the rear cross-sectional outline line behind the maximum width position in this horizontal cross section and the rear standard shape line in this horizontal cross section is 3% or less of the maximum steering width. It is characterized by that.

この構成によれば、水平断面における最大幅位置よりも後方の後方断面外形線に関して、標準曲率半径を舵最大幅の2倍以上で5倍以下の範囲内の長さで設定することにより、必要最低減の大きさになる。また、側面形成用線分の、船舶用舵の前後方向に対する傾斜角(すぼみ角度)が、標準交差角の半分となり、11度から16度程度となるので、つまり、標準円弧との接線から後方の幅がこのすぼみ角度の傾斜で徐々に減少する形状となる。これらの構成により、前方からこの船舶用舵に流入する水流を舵面に沿って後方側に円滑に流すことができるようになるので、剥離の発生を回避でき船舶用舵の抗力を低減することができる。 According to this configuration, it is necessary to set the standard radius of curvature within the range of 2 times or more and 5 times or less of the maximum rudder width for the rear cross-section outline behind the maximum width position in the horizontal cross section. It will be the largest reduction. In addition, the inclination angle (recess angle) of the side surface forming line segment with respect to the front-rear direction of the ship rudder is half of the standard intersection angle, which is about 11 to 16 degrees, that is, rearward from the tangent to the standard arc. The width of the shape gradually decreases with the inclination of this dent angle. With these configurations, the water flow flowing into the rudder for the ship from the front can be smoothly flowed to the rear side along the control surface, so that the occurrence of peeling can be avoided and the drag force of the rudder for the ship can be reduced. Can be done.

また、側面形成用線分と後部線分とがなす角度(=「180度」−「すぼみ角度」)が164度から169度程度となっているので、この側面形成用線分と後部線分とが交差する部位に大きな凹部を確保できて、舵を切って舵角を取ったときに、圧力が高い側の水流がこの部分に当たることになり、より大きな舵力を発揮できる。 Further, since the angle (= "180 degrees"-"recess angle") formed by the side surface forming line segment and the rear line segment is about 164 degrees to 169 degrees, the side surface forming line segment and the rear line segment are formed. A large recess can be secured at the intersection with and, and when the rudder is turned to take a steering angle, the water flow on the side with high pressure hits this part, and a larger steering force can be exerted.

さらに、当該船舶用舵の可動部の最下端から最上端までの領域の全部または一部の水平断面において、略同じ後方標準形状線に近い形状となるので、製造時の工作が容易となり、工作性が向上する。 Further, since the horizontal cross section of all or part of the region from the lowermost end to the uppermost end of the movable part of the ship rudder has a shape close to the substantially same rear standard shape line, the work at the time of manufacturing becomes easy and the work is carried out. Improves sex.

あるいは、上記の目的を達成するための本発明の船舶用舵は、当該船舶用舵の水平断面における最大幅から後方の形状に関して、標準曲率半径を当該船舶用舵の舵全体における舵最大幅の2倍以上で5倍以下の範囲内の長さで設定し、第1標準交差角を22度以上32度以下の範囲内の角度で設定し、第2標準交差角を前記第1標準交差角より4度以上で10度以下の範囲内で小さく設定すると共に、当該船舶用舵の水平断面形状における第1後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記第1標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定し、当該船舶用舵の水平断面形状における第2後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記第2標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定し、かつ、当該船舶用舵の上下方向に関して、当該船舶用舵の可動部の最下端と最上端の間を4等分し、下から第1領域、第2領域、第3領域、第4領域とすると共に、前記第1領域と前記第4領域を合わせた両端側領域の全部または一部の水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記第1後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であり、かつ、前記第2領域と前記第3領域を合わせた中央側領域の1つの水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記第2後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であり、かつ、上下で当該水平断面をはさむ2つの水平断面から当該水平断面に向かって後方断面外形が連続的に拡張されているように構成している。 Alternatively, the marine steering wheel of the present invention for achieving the above object has a standard radius of curvature of the maximum steering wheel width of the marine steering wheel as a whole with respect to the shape rearward from the maximum width in the horizontal cross section of the marine steering wheel. Set the length within the range of 2 times or more and 5 times or less, set the first standard intersection angle at an angle within the range of 22 degrees or more and 32 degrees or less, and set the second standard intersection angle as the first standard intersection angle. The first rear standard shape line in the horizontal cross-sectional shape of the ship's steering wheel is set to be smaller within the range of 4 degrees or more and 10 degrees or less, and the standard arc of the standard radius of curvature that emanates from the maximum width position to the rear. Left and right 2 between the intersection on the left and right center lines of the marine steering wheel in a straight line that is in contact with the standard arc and intersects with each other at the first standard intersection angle behind the standard arc, and the contact point with the standard arc. From two side surface forming lines and a rear line that connects the intersection and points that have moved backward from the intersection by a distance of 5% or more and 70% or less of the length of the horizontal cross section in the anteroposterior direction. The second rear standard shape line in the horizontal cross-sectional shape of the ship's steering wheel is set as a symmetrical shape line, and is in contact with the standard arc of the standard radius of curvature that emanates from the maximum width position to the rear and this standard arc. Two left and right side surface forming lines between the intersection on the left and right center lines of the ship's steering wheel and the contact point with the standard arc in a straight line that intersects with each other at the second standard intersection angle behind the standard arc. As a symmetrical shape line consisting of a rear line segment connecting the intersection and points moved backward from the intersection by a distance of 5% or more and 70% or less of the length in the front-rear direction of the horizontal cross section. Set, and in the vertical direction of the marine steering wheel, divide the space between the lowermost and uppermost ends of the movable part of the marine steering wheel into four equal parts, and from the bottom, the first region, the second region, the third region, and the third region. In addition to the four regions, in the horizontal cross section of all or part of the both end side regions in which the first region and the fourth region are combined, the rear cross section outline behind the maximum width position in this horizontal cross section and the horizontal cross section thereof. The longest distance in the width direction from the first rear standard shape line in the cross section is 3% or less of the maximum steering width, and the central region in which the second region and the third region are combined. In one horizontal cross section, the longest distance in the width direction between the rear cross section outline behind the maximum width position in this horizontal cross section and the second rear standard shape line in this horizontal cross section is 3% of the maximum steering width. A rear cross section toward the horizontal cross section from two horizontal cross sections that are less than or equal to the length of the circle and sandwich the horizontal cross section at the top and bottom. The outer shape is configured to be continuously expanded.

この構成によれば、上記の構成による効果に加えて、中央側領域において、水平断面における最大幅よりも後方の後方断面外形線が、両端側領域の第1後方標準形状線よりは徐々に細くなる第2後方標準形状線に基づいた形状となるので、中央側領域における舵面の前後方向に対する傾斜が緩やかになる。そのため、舵角が0(ゼロ)でない場合も船舶用舵の前方から流入する水流を後方に向かって円滑に流すことができる。その結果、従来技術の舵では舵角が0でない場合に剥離が発生し易い中央側領域における剥離の発生を抑制することができるので、舵の抗力を低減し、揚力を増大させることができる。 According to this configuration, in addition to the effect of the above configuration, in the central region, the rear cross-section outline behind the maximum width in the horizontal cross section is gradually thinner than the first rear standard shape line in both ends. Since the shape is based on the second rear standard shape line, the inclination of the control surface in the central region with respect to the front-rear direction becomes gentle. Therefore, even when the rudder angle is not 0 (zero), the water flow flowing in from the front of the ship rudder can be smoothly flowed to the rear. As a result, in the conventional rudder, it is possible to suppress the occurrence of peeling in the central region where peeling is likely to occur when the rudder angle is not 0, so that the drag of the rudder can be reduced and the lift can be increased.

上記の船舶用舵において、当該船舶用舵を可動部と非可動部で構成し、前記非可動部に設けた単数又は複数の軸受部で前記可動部を回動可能に支持すると共に、前記軸受部の最下端から前記可動部の上端側までの可動部保持領域の全部または一部の水平断面において、この水平断面における最大幅の前後方向の位置と、前記可動部の旋回中心の前後方向の位置との距離が、この水平断面における前後方向長さの5%の長さ以下であるように構成している。 In the above-mentioned marine rudder, the marine rudder is composed of a movable portion and a non-movable portion, and the movable portion is rotatably supported by a single or a plurality of bearing portions provided in the non-movable portion, and the bearing is supported. In the horizontal cross section of all or part of the movable portion holding region from the lowermost end of the portion to the upper end side of the movable portion, the position of the maximum width in the horizontal cross section in the front-rear direction and the front-rear direction of the turning center of the movable portion. The distance from the position is configured to be 5% or less of the length in the front-rear direction in this horizontal cross section.

この構成によれば、舵の厚さが最も必要な軸受部の近傍に、その水平断面における最大幅の部位が配置されることになるので、この船舶用舵が、無駄に肥大化せず、この肥大化による抵抗増加を回避でき、低抵抗となる。 According to this configuration, the part having the maximum width in the horizontal cross section is arranged in the vicinity of the bearing portion where the thickness of the rudder is most required, so that the rudder for ships does not become unnecessarily bloated. It is possible to avoid an increase in resistance due to this enlargement, resulting in low resistance.

一方で、非可動部を有さない吊り舵タイプの場合には、上記の船舶用舵において、当該船舶用舵の可動部に固定された舵頭材を、当該船舶用舵を取り付けている船尾側に設けた軸受部で回動可能に支持すると共に、前記舵頭材の最下端から当該船舶用舵の可動部の上端側までの舵頭材保持領域の全部または一部の水平断面において、この水平断面における最大幅の前後方向の位置と、当該船舶用舵の可動部の旋回中心の前後方向の位置との距離が、この水平断面における前後方向長さの5%の長さ以下であるように構成されている。 On the other hand, in the case of the suspended rudder type having no non-movable part, in the above-mentioned ship rudder, the rudder head material fixed to the movable part of the ship rudder is attached to the stern to which the ship rudder is attached. In addition to being rotatably supported by a bearing portion provided on the side, in the horizontal cross section of all or part of the rudder head member holding region from the lowermost end of the rudder head member to the upper end side of the movable portion of the rudder for a ship. The distance between the position of the maximum width in the front-rear direction in this horizontal cross section and the position in the front-rear direction of the turning center of the movable part of the rudder for the ship is 5% or less of the length in the front-rear direction in this horizontal cross section. It is configured as follows.

この構成によれば、舵の厚さが最も必要な、船舶用舵の可動部に固定された舵頭材の近傍に、その水平断面における最大幅の部位が配置されることになるので、この船舶用舵が、無駄に肥大化せず、この肥大化による抵抗増加を回避でき、低抵抗となる。 According to this configuration, the part having the maximum width in the horizontal cross section is arranged in the vicinity of the rudder head member fixed to the movable part of the marine rudder, which requires the thickness of the rudder most. The rudder for ships does not become unnecessarily bloated, and the increase in resistance due to this bloating can be avoided, resulting in low resistance.

上記の船舶用舵において、当該船舶用舵の幅方向に関して、当該船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置の水平断面における最大幅が、当該船舶用舵の可動部の最下端と最上端の中間点の水平断面における最大幅の80%以下であるように構成されている。 In the above-mentioned ship rudder, the maximum width in the horizontal cross section at a position 10% above the height of the movable part of the ship rudder with respect to the width direction of the ship rudder is the ship. It is configured to be 80% or less of the maximum width in the horizontal cross section of the middle point between the lowermost end and the uppermost end of the movable part of the rudder.

この構成によれば、船舶用舵の下側において舵厚を減少して薄く形成することにより、無駄な舵厚を減らし、船舶用舵の抵抗を低減することができる。 According to this configuration, the unnecessary rudder thickness can be reduced and the resistance of the rudder for ships can be reduced by reducing the rudder thickness and forming the rudder thinner under the rudder for ships.

上記の船舶用舵において、当該船舶用舵の前後方向に関して、当該船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置である下端側位置の水平断面における最大幅の位置が、当該船舶用舵の可動部の最下端と最上端の中間点の水平断面における最大幅の位置より前方にあり、かつ、前記下端側位置の水平断面における前端位置と最大幅の位置との間の距離が、当該船舶用舵の可動部の最下端と最上端の中間点である中央高さ位置の水平断面における前端位置と最大幅の位置との距離の80%以下であるように構成されている。 In the above-mentioned marine rudder, the most horizontal cross section of the lower end side position, which is a position 10% above the height of the movable portion of the marine rudder in the front-rear direction of the marine rudder. The significant position is ahead of the maximum width position in the horizontal cross section of the middle point between the lowermost end and the uppermost end of the movable part of the rudder for the ship, and the front end position and the maximum width in the horizontal cross section of the lower end side position. The distance between the positions is 80% or less of the distance between the front end position and the maximum width position in the horizontal cross section of the central height position, which is the midpoint between the lowermost end and the uppermost end of the movable part of the rudder for the ship. It is configured as follows.

この構成によれば、船舶用舵の下側において、下端側位置の最大幅の位置が中央高さ位置よりも前方になるので、後部線分の前端の位置が下端側位置の方が中央高さ位置よりも前方となり、後部線分の部分が長くなるので、舵を切って舵角を取ったときに、前後方向に対する角度が最も大きくなる後部線分に相当する部位が広くなる。そのため、舵を切って舵角を取ったときに、圧力が高くなる側において、水流が当たる角度が大きくなる部分が増加し、大きな舵力を発生することができる。 According to this configuration, on the lower side of the rudder for ships, the position of the maximum width of the lower end side position is ahead of the center height position, so that the position of the front end of the rear line segment is the center height of the lower end side position. Since the portion of the rear line segment is longer than the front position, the portion corresponding to the rear line segment where the angle with respect to the front-rear direction is the largest becomes wider when the rudder is turned and the steering angle is taken. Therefore, when the rudder is turned and the rudder angle is taken, the portion where the angle at which the water flow hits increases increases on the side where the pressure increases, and a large rudder force can be generated.

上記のような目的を達成するための本発明の船舶は、上記の船舶用舵を備えていることを特徴とし、上記の船舶用舵の作用効果と同じ作用効果を発揮できる。 The ship of the present invention for achieving the above object is characterized by having the above-mentioned ship rudder, and can exhibit the same action and effect as the above-mentioned action and effect of the ship rudder.

本発明の船舶用舵及び船舶によれば、船舶用舵の直進時の抗力を減少しつつ、舵を切って舵角を取ったときに発生する舵力をより増大させることができる。これにより、既存の従来技術の舵と同等の大きさでより高い横力を得て舵の効きを良くすることができるので、小さい主機馬力でも荒天時の操縦性を満足させることが可能になる。 According to the ship rudder and the ship of the present invention, it is possible to further increase the steering force generated when the rudder is turned and the rudder angle is taken, while reducing the drag force when the ship rudder travels straight. As a result, it is possible to obtain a higher lateral force with the same size as the existing conventional rudder and improve the effectiveness of the rudder, so that even a small main engine horsepower can satisfy the maneuverability in stormy weather. ..

本発明の第1の実施の形態の船舶用舵の構成を模式的に示す、水平断面図を含む側面図である。It is a side view including the horizontal sectional view which shows typically the structure of the rudder for a ship of 1st Embodiment of this invention. 第1の実施の形態の船舶用舵における後方標準形状線を示す水平断面図である。It is a horizontal sectional view which shows the rear standard shape line in the rudder for a ship of 1st Embodiment. 第1の実施の形態の船舶用舵における前方断面外形線と後方断面外形線と後方標準形状線を示す水平断面図である。It is a horizontal sectional view which shows the front sectional outline, the rear sectional outline, and the rear standard shape line in the rudder for a ship of 1st Embodiment. 本発明の第2の実施の形態の船舶用舵の構成を模式的に示す、水平断面図を含む側面図である。It is a side view including the horizontal sectional view which shows typically the structure of the rudder for a ship of 2nd Embodiment of this invention. 本発明の第3の実施の形態の船舶用舵の構成を模式的に示す、水平断面図を含む側面図である。It is a side view including the horizontal sectional view which shows typically the structure of the rudder for a ship of 3rd Embodiment of this invention. 船舶用舵の上下方向における最大幅の変化の例を示す正面図である。It is a front view which shows the example of the change of the maximum width in the vertical direction of a rudder for a ship. 船舶用舵の上下方向における最大幅の変化の別の例を示す正面図である。It is a front view which shows another example of the change of the maximum width in the vertical direction of a rudder for a ship. 船舶用舵の上下方向における最大幅の前後方向位置の変化の例を示す側面図である。It is a side view which shows the example of the change of the position in the front-rear direction of the maximum width in the vertical direction of a rudder for a ship. 従来技術の船舶用舵の構成を模式的に示す、水平断面図を含む側面図である。It is a side view including the horizontal sectional view which shows typically the structure of the rudder for a ship of the prior art. 図9の船舶用舵の正面図である。It is a front view of the rudder for a ship of FIG.

以下、本発明に係る船舶用舵及び船舶について、図面を参照しながら説明する。なお、船舶の前方向をX方向とし、左舷方向をY方向とし、上方向をZ方向とする。また、図面は模式的に示すもので、図面における寸法の比率は必ずしも実機とは同じでは無い。 Hereinafter, a ship rudder and a ship according to the present invention will be described with reference to the drawings. The front direction of the ship is the X direction, the port side direction is the Y direction, and the upward direction is the Z direction. Further, the drawings are schematically shown, and the ratio of dimensions in the drawings is not necessarily the same as that of the actual machine.

図1に示すように、本発明に係る第1の実施の形態の船舶1と船舶用舵10は、可動部10aと非可動部10bとからなるマリナー型であり、プロペラ2の後側に配置され、その上端側は船舶1の船尾内に配置される操舵機(図示しない)に接続され、かつ、下端側は非可動部10bの内部の軸受部17で支持された舵頭材(舵柱)15により、可動部10aはこの舵頭材15周りに回動される。図9及び図10に示すように、従来技術の舵10Xは、上下方向に翼断面形状をして下方に行くにつれてその幅が徐々に狭くなるように構成されている。 As shown in FIG. 1, the ship 1 and the ship rudder 10 of the first embodiment according to the present invention are a marina type including a movable portion 10a and a non-movable portion 10b, and are arranged on the rear side of the propeller 2. The upper end side is connected to a steering gear (not shown) arranged in the stern of the ship 1, and the lower end side is a rudder head member (rudder column) supported by a bearing portion 17 inside the non-movable portion 10b. ) 15, the movable portion 10a is rotated around the steering head member 15. As shown in FIGS. 9 and 10, the conventional rudder 10X has a blade cross-sectional shape in the vertical direction, and its width gradually narrows as it goes downward.

図2に示すように、この船舶用舵10のある水平断面において最大幅Bs位置より後方の標準形状に関しては、標準曲率半径Rsを船舶用舵10の舵全体における舵最大幅Bmaxの2倍以上で5倍以下の範囲内の長さで設定する。また、標準交差角αsをαa以上でαb以下の範囲内の角度で設定する。ここで、αaを22度とし、αbを32度とする。 As shown in FIG. 2, with respect to the standard shape behind the maximum width Bs position in a certain horizontal cross section of the ship rudder 10, the standard radius of curvature Rs is at least twice the maximum rudder width Bmax of the entire rudder of the ship rudder 10. Set the length within the range of 5 times or less. Further, the standard crossing angle αs is set at an angle within the range of αa or more and αb or less. Here, αa is 22 degrees and αb is 32 degrees.

それと共に、船舶用舵10の水平断面形状において、その水平断面における最大幅Bsより後方の形状である後方標準形状線Ssを、標準円弧Csと側面形成用線分Lsa、Lsbと後部線分Lscとで形成し、これらの左右対称の形状線として設定する。 At the same time, in the horizontal cross-sectional shape of the marine steering wheel 10, the rear standard shape line Ss, which is the shape behind the maximum width Bs in the horizontal cross section, is divided into the standard arc Cs and the side surface forming line segment Lsa, Lsb and the rear line segment Lsc. It is formed by and and is set as these symmetrical shape lines.

この標準円弧Csは、標準曲率半径Rsの円弧である。側面形成用線分Lsa、Lsb(点線表示)は、標準円弧Csに接して、この標準円弧Csの後方にて標準交差角αsで互いに交差する直線La、Lb(点線表示)の一部であり、この直線La、Lbにおける船舶用舵10の左右中心線C上の交差点Psと、標準円弧Csとの接点Psa、Psbとの間の左右2つの線分である。また、後部線分Lscは、交差点Psから後方に延びる線分である。この後部線分Lscの長さL1は、好ましくはその水平断面における水平断面の前後方向の長さの5%以上でかつ70%以下の長さ、より好ましくは20%以上でかつ50%以下の長さとする。 The standard arc Cs is an arc having a standard radius of curvature Rs. The side surface forming line segments Lsa and Lsb (dotted line display) are part of straight lines La and Lb (dotted line display) that are in contact with the standard arc Cs and intersect each other at a standard intersection angle αs behind the standard arc Cs. , The two left and right line segments between the intersection Ps on the left and right center lines C of the ship steering wheel 10 on the straight lines La and Lb and the contact points Psa and Psb with the standard arc Cs. The rear line segment Lsc is a line segment extending rearward from the intersection Ps. The length L1 of the rear line segment Lsc is preferably 5% or more and 70% or less, more preferably 20% or more and 50% or less of the length in the front-back direction of the horizontal cross section in the horizontal cross section. Let it be the length.

そして、第1の実施の形態の船舶用舵10においては、図1に示すように、船舶用舵10の可動部10aの最下端H1から最上端H5までの領域Raの全部または一部、好ましくは50%を超え100%以下、より好ましくは90%を超え100%以下の範囲における水平断面において、図3に示すように、この水平断面における最大幅Bs位置よりも後方の後方断面外形線Sbと、この水平断面における後方標準形状線Ssとの幅方向の最長距離が、舵最大幅Bmaxの3%の長さ以下となるように構成する。なお、この水平断面における最大幅Bs位置よりも前方の前方断面外形線Sfについては、本発明では特に限定せず、周知の方法で形状を決定することでよい。 Then, in the ship rudder 10 of the first embodiment, as shown in FIG. 1, all or part of the region Ra from the lowermost end H1 to the uppermost end H5 of the movable portion 10a of the ship rudder 10 is preferable. In a horizontal cross section in the range of more than 50% and 100% or less, more preferably more than 90% and 100% or less, as shown in FIG. 3, the rear cross section outline Sb behind the maximum width Bs position in this horizontal cross section. The longest distance in the width direction from the rear standard shape line Ss in this horizontal cross section is set to be 3% or less of the maximum rudder width Bmax. The front cross-sectional outline Sf in front of the maximum width Bs position in this horizontal cross section is not particularly limited in the present invention, and the shape may be determined by a well-known method.

なお、図1に示す構成では、領域Raにおける後部線分Lscの前端16が、略直線状となっている方が、工作性は向上するが、これに限定されず、後部線分Lscの前端16の位置は、上下方向の高さによって前後に変化する構成であってもよい。 In the configuration shown in FIG. 1, the workability is improved when the front end 16 of the rear line segment Lsc in the region Ra is substantially linear, but the workability is improved, but the workability is not limited to this, and the front end of the rear line segment Lsc is not limited to this. The position 16 may be configured to change back and forth depending on the height in the vertical direction.

この構成によれば、水平断面における最大幅Bs位置よりも後方の後方断面外形線Sbに関して、標準曲率半径Rsを舵最大幅の2倍以上で5倍以下の範囲内の長さで設定することにより、必要最低減の大きさになる。 According to this configuration, the standard radius of curvature Rs is set within a range of 2 times or more and 5 times or less of the maximum rudder width with respect to the rear cross-section outline Sb behind the maximum width Bs position in the horizontal cross section. Therefore, the maximum required reduction is achieved.

また、側面形成用線分Lsa、Lsbの、船舶用舵10の前後方向(X方向)に対する傾斜角(すぼみ角度)βは、標準交差角αsの半分となり(β=αs/2)、11度から16度程度となるので、つまり、標準円弧Csとの接点Psa、Psbから後方の幅がこのすぼみ角度βの傾斜で徐々に減少する形状となる。 Further, the inclination angle (recess angle) β of the side surface forming line segments Lsa and Lsb with respect to the front-rear direction (X direction) of the ship rudder 10 is half of the standard crossing angle αs (β = αs / 2), which is 11 degrees. That is, the width behind the contact points Psa and Psb with the standard arc Cs gradually decreases with the inclination of the dent angle β.

これらの構成により、前方からこの船舶用舵10に流入する水流を舵面に沿って後方側に円滑に流すことができるようになるので、舵面における剥離の発生を回避でき船舶用舵10の抗力を低減することができる。 With these configurations, the water flow flowing into the rudder 10 for a ship from the front can be smoothly flowed to the rear side along the rudder surface, so that the occurrence of peeling on the rudder surface can be avoided and the rudder 10 for a ship can be prevented from peeling. Drag can be reduced.

また、側面形成用線分Lsa、Lsbと後部線分Lscとがなす角度(=「180度」−「すぼみ角度」)γ(=180−β)が164度から169度程度となっているので、この側面形成用線分Lsa、Lsbと後部線分Lscとが交差する部位に大きな凹部を確保できて、舵を切って舵角を取ったときに、圧力が高い側の水流がこの部分に当たることになり、より大きな舵力を発揮できる。 Further, since the angle (= "180 degrees"-"recess angle") γ (= 180-β) formed by the side surface forming line segments Lsa and Lsb and the rear line segment Lsc is about 164 degrees to 169 degrees. A large recess can be secured at the intersection of the side surface forming line segments Lsa and Lsb and the rear line segment Lsc, and when the rudder is turned and the rudder angle is taken, the water flow on the side with high pressure hits this part. Therefore, it is possible to exert a greater steering force.

さらに、この船舶用舵10の可動部の最下端H1から最上端H5までの領域Raの全部または一部、好ましくは50%を超え100%以下、より好ましくは90%を超え100%以下の範囲における水平断面において、略同じ後方標準形状線Ssに近い形状となるので、製造時の工作が容易となり、工作性が向上する。 Further, all or part of the region Ra from the lowermost end H1 to the uppermost end H5 of the movable portion of the ship rudder 10, preferably a range of more than 50% and 100% or less, more preferably more than 90% and 100% or less. In the horizontal cross section of the above, since the shape is close to the substantially same rear standard shape line Ss, the work at the time of manufacturing becomes easy and the workability is improved.

次に、図4に示す第2の実施の形態の船舶1Aと船舶用舵(以下、舵という)10Aについて説明する。 Next, the ship 1A and the ship rudder (hereinafter referred to as a rudder) 10A of the second embodiment shown in FIG. 4 will be described.

この船舶用舵10Aは、船舶用舵10Aのある水平断面において最大幅Bs位置より後方の標準形状に関して、船舶用舵10Aの水平断面形状における第1後方標準形状線Ss1を、第1の実施の形態の船舶用舵10の水平断面形状における後方標準形状線Ssと同様に形成する。この場合に第1標準交差角αs1は、標準交差角αsと同じである。 The ship rudder 10A first performs the first rear standard shape line Ss1 in the horizontal cross-sectional shape of the ship rudder 10A with respect to the standard shape behind the maximum width Bs position in the horizontal cross section of the ship rudder 10A. It is formed in the same manner as the rear standard shape line Ss in the horizontal cross-sectional shape of the ship rudder 10 of the form. In this case, the first standard crossing angle αs1 is the same as the standard crossing angle αs.

一方、この船舶用舵10Aでは、第1後方標準形状線Ss1だけでなく、さらに、水平断面形状における第2後方標準形状線Ss2を設定する。これは、第1の実施の形態の船舶用舵10の水平断面形状における後方標準形状線Ssにおいて、標準交差角αsを、以下の第2標準交差角αs2としたものである。この第2標準交差角αs2は第1標準交差角αs1より4度以上で10度以下の範囲内で小さく設定される。すなわち「αs1−10≦αs2≦αs1−4」とされる。その他は同じである。これにより、第2後方標準形状線Ss2は、第1後方標準形状線Ss1よりは徐々に細くなる形状となる。 On the other hand, in this ship rudder 10A, not only the first rear standard shape line Ss1 but also the second rear standard shape line Ss2 in the horizontal cross-sectional shape is set. In this, the standard crossing angle αs is set to the following second standard crossing angle αs2 in the rear standard shape line Ss in the horizontal cross-sectional shape of the ship rudder 10 of the first embodiment. The second standard crossing angle αs2 is set smaller than the first standard crossing angle αs1 within a range of 4 degrees or more and 10 degrees or less. That is, it is set as "αs1-10 ≦ αs2 ≦ αs1-4". Others are the same. As a result, the second rear standard shape line Ss2 has a shape that is gradually thinner than the first rear standard shape line Ss1.

そして、図4に示すように、船舶用舵10Aの上下方向に関して、船舶用舵の可動部10aの最下端14と最上端12の間を4等分し、下から第1領域R1、第2領域R2、第3領域R3、第4領域R4とすると共に、第1領域R1と第4領域R4を合わせた両端側領域Rbの全部または一部、好ましくは50%を超え100%以下、より好ましくは90%を超え100%以下の範囲における水平断面において、この水平断面における最大幅Bs位置よりも後方の後方断面外形線Sbと、この水平断面における第1後方標準形状線Ss1との幅方向の最長距離が、舵最大幅Bmaxの3%の長さ以下であるように構成する。 Then, as shown in FIG. 4, with respect to the vertical direction of the ship rudder 10A, the space between the lowermost end 14 and the uppermost end 12 of the movable portion 10a of the ship rudder is divided into four equal parts, and the first region R1 and the second from the bottom are divided into four equal parts. Region R2, third region R3, fourth region R4, and all or part of both end regions Rb, which is a combination of the first region R1 and the fourth region R4, preferably more than 50% and 100% or less, more preferably. In the horizontal cross section in the range of more than 90% and 100% or less, in the width direction of the rear cross section outline Sb behind the maximum width Bs position in this horizontal cross section and the first rear standard shape line Ss1 in this horizontal cross section. The longest distance is configured to be 3% or less of the maximum rudder width Bmax.

それと共に、第2領域R2と第3領域R3を合わせた中央側領域Rcにある1つの水平断面において、この水平断面における最大幅Bs位置よりも後方の後方断面外形線Sbと、この水平断面における第2後方標準形状線Ss2との幅方向の最長距離が、舵最大幅Bmaxの3%の長さ以下であり、かつ、上下で当該水平断面をはさむ2つの水平断面(好ましくは、当該水平断面から舵可動部高さの10%以上30%以下だけ上下に離れた水平断面)から当該水平断面に向かって後方断面外形が連続的に拡張されているように構成する。 At the same time, in one horizontal cross section in the central region Rc where the second region R2 and the third region R3 are combined, the rear cross section outline Sb behind the maximum width Bs position in this horizontal cross section and the rear cross section outline Sb in this horizontal cross section. The longest distance in the width direction from the second rear standard shape line Ss2 is 3% or less of the maximum steering width Bmax, and two horizontal cross sections (preferably, the horizontal cross section) sandwiching the horizontal cross section at the top and bottom. The outer shape of the rear cross section is continuously expanded from (horizontal cross section separated up and down by 10% or more and 30% or less of the height of the movable part of the steering wheel) toward the horizontal cross section.

この構成によれば、上記の第1の実施の形態の船舶用舵10による効果に加えて、中央側領域Rcにおいて、水平断面における最大幅Bs位置よりも後方の後方断面外形線Sbが、両端側領域Rbの第1後方標準形状線Ss1よりは徐々に細くなる第2後方標準形状線Ss2に基づいた形状となるので、中央側領域Rcにおける舵面の前後方向に対する傾斜が緩やかになる。つまり、中央側領域Rcにおける後部線分Lscの前端16が、両端側領域Rbにおける後部線分Lscの前端16よりも後方となる。 According to this configuration, in addition to the effect of the marine rudder 10 of the first embodiment described above, in the central region Rc, the rear cross-section outline Sb behind the maximum width Bs position in the horizontal cross-section is formed at both ends. Since the shape is based on the second rear standard shape line Ss2, which is gradually thinner than the first rear standard shape line Ss1 of the side region Rb, the inclination of the control surface in the central side region Rc with respect to the front-rear direction becomes gentle. That is, the front end 16 of the rear line segment Lsc in the central region Rc is behind the front end 16 of the rear line segment Lsc in the both end region Rb.

そのため、舵角が0(ゼロ)でない場合も船舶用舵10Aの前方から流入する水流を後方に向かって円滑に流すことができる。その結果、従来技術の船舶用舵では舵角が0でない場合に剥離が発生し易い中央側領域Rcにおける剥離の発生を抑制することができるので、船舶用舵10Aの抗力を低減し、揚力を増大させることができる。 Therefore, even when the rudder angle is not 0 (zero), the water flow flowing in from the front of the ship rudder 10A can be smoothly flowed to the rear. As a result, in the conventional ship rudder, it is possible to suppress the occurrence of peeling in the central region Rc where peeling is likely to occur when the rudder angle is not 0, so that the drag force of the ship rudder 10A is reduced and the lift is increased. Can be increased.

次に、最大幅Bs位置と船舶用舵10、10Aの旋回中心位置との関係について、好ましい構成を説明する。図1及び図4に示すような船舶用舵10、10Aにおいては、非可動部10bは、単数又は複数の軸受部17で可動部10aを回動可能に支持する。図1及び図4の構成では、軸受部17は、船舶用舵10、10Aの上下方向の中央に配置されているが、これによらず上下にずれていても良い。 Next, a preferable configuration will be described with respect to the relationship between the maximum width Bs position and the turning center position of the ship rudders 10 and 10A. In the marine rudders 10 and 10A as shown in FIGS. 1 and 4, the non-movable portion 10b rotatably supports the movable portion 10a by a single or a plurality of bearing portions 17. In the configurations of FIGS. 1 and 4, the bearing portion 17 is arranged at the center of the ship rudders 10 and 10A in the vertical direction, but the bearing portion 17 may be vertically displaced regardless of this.

この軸受部17の最下端H6から可動部10aの上端12側までの可動部保持領域R6の全部または一部、好ましくは50%を超え100%以下、より好ましくは90%を超え100%以下の範囲における水平断面において、この水平断面における最大幅Bsの前後方向の位置と、可動部10aの旋回中心の前後方向の位置との距離が、この水平断面における前後方向長さの5%の長さ以下であるように構成することが好ましい。 All or part of the movable portion holding region R6 from the lowermost end H6 of the bearing portion 17 to the upper end 12 side of the movable portion 10a, preferably more than 50% and 100% or less, more preferably more than 90% and 100% or less. In the horizontal cross section in the range, the distance between the position in the front-rear direction of the maximum width Bs in this horizontal cross section and the position in the front-rear direction of the turning center of the movable portion 10a is 5% of the length in the front-rear direction in this horizontal cross section. It is preferable to configure as follows.

なお、図1に示す構成では、この水平断面における最大幅Bsの前後方向の位置と、可動部10bの旋回中心の前後方向の位置との距離はゼロ値なっている。つまり、最大幅Bsの前後方向の位置が、可動部10aの旋回中心Prの前後方向の位置と一致している。一方、図4に示す構成では、この水平断面における最大幅Bsの前後方向の位置と、可動部10aの旋回中心の前後方向の位置Prとの距離D6はゼロ値にはなっていない。例えば、軸受部17の最下端H6における水平断面では、最大幅Bsの前後方向の位置が、可動部10aの旋回中心Prの前後方向の位置より距離D6だけ後方となっている。 In the configuration shown in FIG. 1, the distance between the position in the front-rear direction of the maximum width Bs in this horizontal cross section and the position in the front-rear direction of the turning center of the movable portion 10b is a zero value. That is, the position in the front-rear direction of the maximum width Bs coincides with the position in the front-rear direction of the turning center Pr of the movable portion 10a. On the other hand, in the configuration shown in FIG. 4, the distance D6 between the position in the front-rear direction of the maximum width Bs in this horizontal cross section and the position Pr in the front-rear direction of the turning center of the movable portion 10a is not a zero value. For example, in the horizontal cross section at the lowermost end H6 of the bearing portion 17, the position in the front-rear direction of the maximum width Bs is behind the position in the front-rear direction of the turning center Pr of the movable portion 10a by a distance D6.

これにより、舵の厚さが最も必要な軸受部17の近傍に、その水平断面における最大幅Bsの部位が配置されることになるので、この船舶用舵10、10Aが、無駄に肥大化せず、この肥大化による抵抗増加を回避でき、低抵抗となる。 As a result, the portion having the maximum width Bs in the horizontal cross section is arranged in the vicinity of the bearing portion 17 where the thickness of the rudder is most required, so that the rudder 10 and 10A for ships are unnecessarily enlarged. However, it is possible to avoid an increase in resistance due to this enlargement, resulting in low resistance.

一方、図5に示すような、吊り舵タイプの船舶用舵10Bにおいては、船舶用舵10Bの可動部10aに固定された舵頭材15Bを、船舶用舵10Bを取り付けている船尾側に設けた軸受部18で回動可能に支持している。この場合には、舵頭材15Bの最下端H7から船舶用舵10Bの可動部10aの上端12側の位置H5までの舵頭材保持領域R7の全部または一部、好ましくは50%を超え100%以下、より好ましくは90%を超え100%以下の範囲における水平断面において、この水平断面における最大幅Bsの前後方向の位置と、この船舶用舵10Bの可動部10aの旋回中心Prの前後方向の位置との距離D7が、この水平断面における前後方向長さの5%の長さ以下であるように構成することが好ましい。 On the other hand, in the suspended rudder type marine rudder 10B as shown in FIG. 5, a rudder head member 15B fixed to the movable portion 10a of the marine rudder 10B is provided on the stern side to which the marine rudder 10B is attached. It is rotatably supported by the bearing portion 18. In this case, all or part of the rudder head material holding region R7 from the lowermost end H7 of the rudder head material 15B to the position H5 on the upper end 12 side of the movable portion 10a of the marine rudder 10B, preferably exceeding 50% 100. % Or less, more preferably more than 90% and 100% or less in the horizontal cross section, the position in the front-rear direction of the maximum width Bs in this horizontal cross-section and the front-back direction of the turning center Pr of the movable portion 10a of the ship rudder 10B. It is preferable that the distance D7 from the position of is not more than 5% of the length in the front-rear direction in this horizontal cross section.

これにより、舵の厚さが最も必要な、船舶用舵10Bの可動部10aに固定された舵頭材15Bの近傍に、その水平断面における最大幅Bsの部位が配置されることになるので、この船舶用舵10Bが、無駄に肥大化せず、この肥大化による抵抗増加を回避でき、低抵抗となる。 As a result, the portion having the maximum width Bs in the horizontal cross section is arranged in the vicinity of the rudder head member 15B fixed to the movable portion 10a of the marine rudder 10B, which requires the most thickness of the rudder. The ship rudder 10B does not become unnecessarily bloated, and the increase in resistance due to this bloating can be avoided, resulting in low resistance.

次に、船舶用舵10、10A、10Bの上下方向(Z方向)における最大幅Bsの変化に関して、好ましい構成を説明する。図6及び図7に示すように、この船舶用舵10、10A、10Bの可動部10aの最下端14からこの可動部10aの高さ(H5−H1)の10%上にある位置H8の水平断面における最大幅Bs8が、船舶用舵10、10A、10Bの可動部10aの最下端14と最上端12の中間点(H3)の水平断面における最大幅Bs3の80%以下で0%以上であるように構成することが好ましい。 Next, a preferable configuration will be described with respect to the change in the maximum width Bs in the vertical direction (Z direction) of the ship rudders 10, 10A and 10B. As shown in FIGS. 6 and 7, the horizontal position H8 located 10% above the height (H5-H1) of the movable portion 10a from the lowermost end 14 of the movable portion 10a of the ship rudders 10, 10A and 10B. The maximum width Bs8 in the cross section is 80% or less and 0% or more of the maximum width Bs3 in the horizontal cross section of the intermediate point (H3) between the lowermost end 14 and the uppermost end 12 of the movable parts 10a of the ship rudders 10, 10A and 10B. It is preferable to configure it as follows.

これにより、船舶用舵10、10A、10Bの下側において舵厚を減少して薄く形成することにより、無駄な舵厚を減らし、船舶用舵の抵抗を低減することができる。 As a result, the unnecessary rudder thickness can be reduced and the resistance of the rudder for ships can be reduced by reducing the rudder thickness and forming the rudder thinner on the lower side of the rudder 10, 10A and 10B for ships.

次に、船舶用舵10、10A、10Bの上下方向(Z方向)における最大幅Bsの前後方向位置の変化に関して、好ましい構成を説明する。図8に示すように、この船舶用舵10Cの前後方向に関して、船舶用舵10Cの可動部10aの最下端14から、この可動部10aの高さ(H5−H1)の10%上にある位置である下端側位置H8の水平断面における最大幅Bs8の位置Xbs8が、船舶用舵10Cの可動部10aの最下端14と最上端12の中間点H3の水平断面における最大幅Bs3の位置Xbs3より前方にあるように構成する。 Next, a preferable configuration will be described with respect to the change in the position of the maximum width Bs in the vertical direction (Z direction) of the ship rudders 10, 10A and 10B in the front-rear direction. As shown in FIG. 8, the position of the marine rudder 10C in the front-rear direction is 10% above the height (H5-H1) of the movable portion 10a from the lowermost end 14 of the movable portion 10a of the marine rudder 10C. The position Xbs8 of the maximum width Bs8 in the horizontal cross section of the lower end side position H8 is ahead of the position Xbs3 of the maximum width Bs3 in the horizontal cross section of the intermediate point H3 between the lowermost end 14 and the uppermost end 12 of the movable portion 10a of the ship rudder 10C. Configure as in.

さらに、下端側位置H8の水平断面における前端位置13と最大幅Bs8の位置Xbs8との間の距離D8が、船舶用舵10Cの可動部10aの最下端14と最上端12の中間点である中央高さ位置H3の水平断面における前端位置13と最大幅Bs3の位置Xbs3との距離D3の80%以下で0%以上であるように構成することが好ましい。 Further, the distance D8 between the front end position 13 and the position Xbs8 of the maximum width Bs8 in the horizontal cross section of the lower end side position H8 is the center point between the lowermost end 14 and the uppermost end 12 of the movable portion 10a of the ship rudder 10C. It is preferable that the distance D3 between the front end position 13 and the position Xbs3 having the maximum width Bs3 in the horizontal cross section of the height position H3 is 80% or less and 0% or more.

これにより、船舶用舵10Cの下側において、下端側位置H8の最大幅Bs8の位置Xbs8が中央高さ位置H3の最大幅Bs3の位置Xbs3よりも前方になるので、後部線分Lscの前端16の位置が下端側位置H8では中央高さ位置H3よりも前方となり、後部線分Lscの部分が長くなるので、船舶用舵10Cを切って舵角を取ったときに、正圧面側のうち最大幅位置より後部の領域にあって前後方向に対する角度が最も大きくなる後部線分Lscに相当する部位が広くなる。そのため、船舶用舵10Cを切って舵角を取ったときに、圧力が高くなる側において、水流が当たる角度が大きくなる部分が増加し、大きな舵力を発生することができる。 As a result, on the lower side of the ship rudder 10C, the position Xbs8 of the maximum width Bs8 of the lower end side position H8 is ahead of the position Xbs3 of the maximum width Bs3 of the central height position H3, so that the front end 16 of the rear line segment Lsc At the lower end position H8, the position is ahead of the central height position H3, and the portion of the rear line segment Lsc becomes longer. Therefore, when the rudder 10C for a ship is turned and the rudder angle is taken, it is the most on the positive pressure surface side. The portion corresponding to the posterior line segment Lsc, which is in the posterior region from the significant position and has the largest angle with respect to the anteroposterior direction, becomes wider. Therefore, when the rudder 10C for a ship is turned to take a rudder angle, the portion where the angle of contact with the water flow becomes large increases on the side where the pressure increases, and a large rudder force can be generated.

そして、本発明の実施の形態の船舶1、1A、1B、1Cは、上記の船舶用舵10、10A、10B、10Cを備えて構成される。 The ships 1, 1A, 1B, and 1C according to the embodiment of the present invention include the above-mentioned ship rudders 10, 10A, 10B, and 10C.

上記の構成の船舶用舵10、10A、10B、10C及び船舶1、1A、1B、1Cによれば、船舶用舵10、10A、10B、10Cの直進時の抗力を抑制しつつ、この船舶用舵10、10A、10B、10Cを切って舵角を取ったときに発生する舵力をより増大させることができる。これにより、既存の従来技術の舵と同等の大きさでより高い横力を得て舵の効きを良くすることができるので、小さい主機馬力でも荒天時の操縦性を満足させることが可能になる。 According to the ship rudders 10, 10A, 10B and 10C and the ships 1, 1A, 1B and 1C having the above configuration, the ship rudders 10, 10A, 10B and 10C are used for this ship while suppressing the drag force when traveling straight. The rudder force generated when the rudder 10, 10A, 10B, 10C is turned and the rudder angle is taken can be further increased. As a result, it is possible to obtain a higher lateral force with the same size as the existing conventional rudder and improve the effectiveness of the rudder, so that even a small main engine horsepower can satisfy the maneuverability in stormy weather. ..

1、1A、1B、1C、1X 船舶
2 プロペラ
10、10A、10B、10C、10X 舵(船舶用舵)
10a 舵の可動部
10b 舵の非可動部
11 後縁
12 舵の上端
13 前縁(前端位置)
14 舵の下端
15、15B 舵頭材(舵柱)
16 後部線分の前端
17、18 軸受部
Bmax 舵全体における舵最大幅
Bs 水平断面における最大幅
Bs3 第3高さの水平断面における最大幅
Bs8 第8高さの水平断面における最大幅
C 舵の左右中心線
Cs 舵の後部標準形状線Ssの標準円弧
D6 舵水平断面(高さH6)の最大幅位置と舵旋回中心Prの間の距離
Dp プロペラの直径
H1 第1高さ(船舶用舵の可動部の最下端の高さ位置)
H2 第2高さ
H3 第3高さ(船舶用舵の可動部の最下端と最上端の中間点の高さ位置)
H4 第4高さ
H5 第5高さ(船舶用舵の可動部の最上端の高さ位置)
H6 第6高さ(軸受部の最下端の高さ位置)
H7 第7高さ(舵頭材の最下端の高さ位置)
H8 第8高さ(船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置)
La、Lb 標準円弧Csに接し、標準交差角αsで交差する直線
Lsa、Lsb 後方標準形状線Ssの側面形成用線分
Lsc 後方標準形状線Ssの後部線分
Pc プロペラの中心高さ
Pr 舵可動部の旋回中心
Ps 舵の後部標準形状線Ssの交差点
Psa 標準円弧Csと側面形成用線分Lsaの接点
Psb 標準円弧Csと側面形成用線分Lsbの接点
R1 第1領域
R2 第2領域
R3 第3領域
R4 第4領域
R6 舵可動部の保持領域
R7 舵可動部の舵頭材の保持領域
Ra 舵の可動部の最下端から第上端まで領域
Rb 両端側領域
Rc 中央側領域
Rs 舵の後部標準形状線Ssの標準円弧Csの曲率半径
Sb 舵の後方断面外形線
Ss 舵の後部標準形状線
Xbs3 第3高さの水平断面における最大幅の前後方向位置
Xbs8 第8高さの水平断面における最大幅の前後方向位置
αa 舵の後部標準形状線Ssの標準交差角αsの下限
αb 舵の後部標準形状線Ssの標準交差角αsの上限
αs 舵の後部標準形状線Ssの標準交差角
β 舵の後部標準形状線Ssの側面形成用線分Lsa、Lsbの前後方向Xに対する傾斜角
γ 舵の後部標準形状線Ssの側面形成用線分Lsa、Lsbと後部線分Lscがなす角度
1,1A, 1B, 1C, 1X Ship 2 Propeller 10, 10A, 10B, 10C, 10X Rudder (Rudder for Ship)
10a Movable part of the rudder 10b Non-movable part of the rudder 11 Rear edge 12 Upper end of the rudder 13 Front edge (front end position)
14 Lower end of rudder 15, 15B Rudder head material (rudder column)
16 Front ends 17 and 18 of the rear line segment Bmax Maximum width of the rudder in the entire rudder Bs Maximum width in the horizontal section Bs3 Maximum width in the horizontal section of the third height Bs8 Maximum width in the horizontal section of the eighth height C Left and right of the rudder Center line Cs Distance between the maximum width position of the rudder horizontal cross section (height H6) and the rudder turning center Pr of the standard arc D6 of the rear standard shape line Ss of the rudder Dp Propeller diameter H1 First height (movable rudder for ships) Height position at the bottom of the part)
H2 2nd height H3 3rd height (height position of the midpoint between the lowermost and uppermost movable parts of the rudder for ships)
H4 4th height H5 5th height (height position of the uppermost end of the movable part of the rudder for ships)
H6 6th height (height position of the lowermost end of the bearing)
H7 7th height (height position of the lowermost end of the rudder head material)
H8 8th height (10% above the height of the movable part of the rudder for ships)
La, Lb Straight line Lsa, Lsb that touches the standard arc Cs and intersects at the standard intersection angle αs Side formation line Lsc of the rear standard shape line Ss Rear line of the rear standard shape line Ss Pc Propeller center height Pr Steering movable Center of turning Ps Intersection of rear standard shape line Ss of steering Psa Contact point between standard arc Cs and side surface forming line Lsa Psb Contact point between standard arc Cs and side surface forming line Lsb R1 1st region R2 2nd region R3 3 area R4 4th area R6 Holding area of the steering movable part R7 Holding area of the steering head material of the steering movable part Ra Area from the lowermost end to the uppermost end of the movable part of the steering wheel Rb Both ends side area Rc Central side area Rs Rear standard of the steering wheel Radius of curvature of the standard arc Cs of the shape line Ss Sb Rear section of the steering line Outline line Ss Rear standard shape line of the steering wheel Xbs3 Maximum width in the horizontal section of the third height Front-back direction position Xbs8 Maximum width in the horizontal section of the eighth height Front-rear position αa Lower limit of standard crossing angle αs of rear standard shape line Ss of steering αb Upper limit of standard crossing angle αs of rear standard shape line Ss of steering αs Standard crossing angle of rear standard shape line Ss of steering β Rear part of steering Angle of inclination of the side surface forming lines Lsa and Lsb of the standard shape line Ss with respect to the front-rear direction X

Claims (7)

当該船舶用舵の水平断面における最大幅から後方の形状に関して、
標準曲率半径を当該船舶用舵の舵全体における舵最大幅の2倍以上で5倍以下の範囲内の長さで設定し、標準交差角を22度以上32度以下の範囲内の角度で設定すると共に、
当該船舶用舵の水平断面形状における後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定したときに、
当該船舶用舵の可動部の最下端から最上端までの領域の全部または一部の水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であることを特徴とする船舶用舵。
Regarding the shape behind the maximum width in the horizontal cross section of the ship rudder
The standard radius of curvature is set within the range of 2 times or more and 5 times or less of the maximum rudder width of the entire rudder for the ship, and the standard intersection angle is set at an angle within the range of 22 degrees or more and 32 degrees or less. At the same time
The rear standard shape line in the horizontal cross-sectional shape of the ship's steering wheel is in contact with the standard arc of the standard radius of curvature that emanates from the maximum width position to the rear and the standard arc behind the standard arc at the standard intersection angle. Two left and right side surface forming line segments between the intersection on the left and right center lines of the ship's steering line and the contact point with the standard arc in a straight line intersecting each other, and the front and rear of the horizontal cross section behind the intersection and the intersection. When set as a symmetrical shape line consisting of a rear line segment that connects points that have moved a distance of 5% or more and 70% or less of the length in the direction.
In the horizontal cross section of all or part of the region from the lowermost end to the uppermost end of the movable part of the ship rudder, the rear cross section outline behind the maximum width position in this horizontal cross section and the rear standard in this horizontal cross section. A marine rudder characterized in that the longest distance in the width direction from the shape line is 3% or less of the maximum rudder width.
当該船舶用舵の水平断面における最大幅から後方の形状に関して、
標準曲率半径を当該船舶用舵の舵全体における舵最大幅の2倍以上で5倍以下の範囲内の長さで設定し、第1標準交差角を22度以上32度以下の範囲内の角度で設定し、第2標準交差角を前記第1標準交差角より4度以上で10度以下の範囲内で小さく設定すると共に、
当該船舶用舵の水平断面形状における第1後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記第1標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定し、
当該船舶用舵の水平断面形状における第2後方標準形状線を、最大幅位置から後方へ発する前記標準曲率半径の標準円弧と、この標準円弧に接して、この標準円弧の後方にて前記第2標準交差角で互いに交差する直線における当該船舶用舵の左右中心線上の交差点と、前記標準円弧との接点との間の左右2つの側面形成用線分と、前記交差点及び前記交差点から後方に当該水平断面の前後方向の長さの5%以上でかつ70%以下の距離移動した点を結ぶ線分である後部線分とからなる左右対称の形状線として設定し、
かつ、
当該船舶用舵の上下方向に関して、当該船舶用舵の可動部の最下端と最上端の間を4等分し、下から第1領域、第2領域、第3領域、第4領域とすると共に、
前記第1領域と前記第4領域を合わせた両端側領域の全部または一部の水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記第1後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であり、
かつ、
前記第2領域と前記第3領域を合わせた中央側領域の1つの水平断面において、この水平断面における最大幅位置よりも後方の後方断面外形線と、この水平断面における前記第2後方標準形状線との幅方向の最長距離が、前記舵最大幅の3%の長さ以下であり、かつ、上下で当該水平断面をはさむ2つの水平断面から当該水平断面に向かって後方断面外形が連続的に拡張されていることを特徴とする船舶用舵。
Regarding the shape behind the maximum width in the horizontal cross section of the ship rudder
The standard radius of curvature is set within the range of 2 times or more and 5 times or less of the maximum rudder width of the entire rudder for the ship, and the first standard intersection angle is within the range of 22 degrees or more and 32 degrees or less. Set with, and set the second standard intersection angle smaller than the first standard intersection angle within the range of 4 degrees or more and 10 degrees or less.
The first rear standard shape line in the horizontal cross-sectional shape of the ship's steering wheel is in contact with the standard arc of the standard radius of curvature that emanates rearward from the maximum width position and the standard arc, and the first rear standard arc is behind the standard arc. and the intersection of the left and right center line of the vessel for steering in a straight line intersecting with each other in a standard crossing angle, and two left and right sides forming the line segment between the contact points with the standard arc, the rearwardly from the intersection and the intersection Set as a symmetrical shape line consisting of a rear line segment that connects points that have moved a distance of 5% or more and 70% or less of the length in the front-back direction of the horizontal cross section.
The second rear standard shape line in the horizontal cross-sectional shape of the ship's steering wheel is in contact with the standard arc of the standard radius of curvature that emanates rearward from the maximum width position and the second rear of the standard arc. and the intersection of the left and right center line of the vessel for steering in a straight line intersecting with each other in a standard crossing angle, and two left and right sides forming the line segment between the contact points with the standard arc, the rearwardly from the intersection and the intersection Set as a symmetrical shape line consisting of a rear line segment that connects points that have moved a distance of 5% or more and 70% or less of the length in the front-back direction of the horizontal cross section.
And,
Regarding the vertical direction of the ship rudder, the space between the lowermost end and the uppermost end of the movable part of the ship rudder is divided into four equal parts, and the first area, the second area, the third area, and the fourth area are formed from the bottom. ,
In the horizontal cross section of all or part of both ends of the first region and the fourth region combined, the rear cross-sectional outline behind the maximum width position in the horizontal cross section and the first rear cross section in the horizontal cross section. The longest distance in the width direction from the standard shape line is 3% or less of the maximum width of the steering wheel.
And,
In one horizontal cross section of the central region where the second region and the third region are combined, a rear cross section outline behind the maximum width position in this horizontal cross section and the second rear standard shape line in this horizontal cross section. The longest distance in the width direction is 3% or less of the maximum width of the steering wheel, and the outer shape of the rear cross section is continuous from the two horizontal cross sections sandwiching the horizontal cross section at the top and bottom toward the horizontal cross section. A marine steering wheel that is characterized by being expanded.
当該船舶用舵を可動部と非可動部で構成し、前記非可動部に設けた単数又は複数の軸受部で前記可動部を回動可能に支持すると共に、前記軸受部の最下端から前記可動部の上端側までの可動部保持領域の全部または一部の水平断面において、この水平断面における最大幅の前後方向の位置と、前記可動部の旋回中心の前後方向の位置との距離が、この水平断面における前後方向長さの5%の長さ以下であることを特徴とする請求項1又は2に記載の船舶用舵。 The ship rudder is composed of a movable portion and a non-movable portion, and the movable portion is rotatably supported by a single or a plurality of bearing portions provided on the non-movable portion, and the movable portion is movable from the lowermost end of the bearing portion. In the horizontal cross section of all or part of the movable portion holding area up to the upper end side of the portion, the distance between the position in the front-rear direction of the maximum width in this horizontal cross section and the position in the front-rear direction of the turning center of the movable portion is this. The ship rudder according to claim 1 or 2, wherein the length is 5% or less of the length in the front-rear direction in the horizontal cross section. 当該船舶用舵の可動部に固定された舵頭材を、当該船舶用舵を取り付けている船尾側に設けた軸受部で回動可能に支持すると共に、前記舵頭材の最下端から当該船舶用舵の可動部の上端側までの舵頭材保持領域の全部または一部の水平断面において、この水平断面における最大幅の前後方向の位置と、当該船舶用舵の可動部の旋回中心の前後方向の位置との距離が、この水平断面における前後方向長さの5%の長さ以下であることを特徴とする請求項1又は2に記載の船舶用舵。 The rudder head material fixed to the movable part of the rudder for the ship is rotatably supported by the bearing portion provided on the stern side to which the rudder for the ship is attached, and the ship is supported from the lowermost end of the rudder material. In the horizontal cross section of all or part of the rudder head material holding area up to the upper end side of the movable part of the rudder, the position of the maximum width in the front-rear direction in this horizontal cross section and the front and back of the turning center of the movable part of the rudder for the ship. The ship rudder according to claim 1 or 2, wherein the distance from the position in the direction is 5% or less of the length in the front-rear direction in this horizontal cross section. 当該船舶用舵の幅方向に関して、当該船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置の水平断面における最大幅が、当該船舶用舵の可動部の最下端と最上端の中間点の水平断面における最大幅の80%以下であることを特徴とする請求項1〜4のいずれか1項に記載の船舶用舵。 With respect to the width direction of the ship rudder, the maximum width in the horizontal cross section at a position 10% above the height of the movable part from the lowermost end of the movable part of the ship rudder is the maximum width of the movable part of the ship rudder. The ship rudder according to any one of claims 1 to 4, wherein the rudder is 80% or less of the maximum width in the horizontal cross section of the midpoint between the lower end and the uppermost end. 当該船舶用舵の前後方向に関して、当該船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置の水平断面における最大幅の位置が、当該船舶用舵の可動部の最下端と最上端の中間点の水平断面における最大幅の位置より前方にあり、
かつ、
当該船舶用舵の可動部の最下端からこの可動部の高さの10%上にある位置の水平断面における前端位置と最大幅の位置との間の距離が、当該船舶用舵の可動部の最下端と最上端の中間点の水平断面における前端位置と最大幅の位置との距離の80%以下であることを特徴とする請求項1〜5のいずれか1項に記載の船舶用舵。
With respect to the front-rear direction of the ship rudder, the position of the maximum width in the horizontal cross section at a position 10% above the height of the movable part from the lowermost end of the movable part of the ship rudder is the movable part of the ship rudder. It is in front of the position of the maximum width in the horizontal cross section of the middle point between the lowermost end and the uppermost end of
And,
The distance between the front end position and the maximum width position in the horizontal cross section of the position 10% above the height of the movable part from the lowermost end of the movable part of the ship rudder is the distance of the movable part of the ship rudder. The ship rudder according to any one of claims 1 to 5, wherein the distance between the front end position and the maximum width position in the horizontal cross section of the middle point between the lowermost end and the uppermost end is 80% or less.
請求項1〜6のいずれか1項に記載の船舶用舵を備えていることを特徴とする船舶。 A ship comprising the rudder for a ship according to any one of claims 1 to 6.
JP2017113971A 2017-06-09 2017-06-09 Rudder for ships and ships Active JP6874927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017113971A JP6874927B2 (en) 2017-06-09 2017-06-09 Rudder for ships and ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113971A JP6874927B2 (en) 2017-06-09 2017-06-09 Rudder for ships and ships

Publications (2)

Publication Number Publication Date
JP2018203194A JP2018203194A (en) 2018-12-27
JP6874927B2 true JP6874927B2 (en) 2021-05-19

Family

ID=64954935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113971A Active JP6874927B2 (en) 2017-06-09 2017-06-09 Rudder for ships and ships

Country Status (1)

Country Link
JP (1) JP6874927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110816773A (en) * 2019-11-13 2020-02-21 中国舰船研究设计中心 Method for calculating rudder effect of marine rudder with flow control plate

Also Published As

Publication number Publication date
JP2018203194A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP2058220B1 (en) Stern shape for displacement type ship
JP2008260445A (en) Vessel
JP5950971B2 (en) Ship rudder
JP6874927B2 (en) Rudder for ships and ships
JP6292551B2 (en) Ship equipped with torsion rudder and torsion rudder
CN109070986B (en) Rudder for ship and ship
JP2004130908A (en) Duct body of ship
JP7049144B2 (en) Stern fins and ships
CA2775082A1 (en) Rudder and ship-like object having such a rudder
EP3345824A1 (en) Ship and stern shape having stern duct
JP6361877B2 (en) High-speed ship hull form
JP6188256B1 (en) Ship rudder
JP2017165376A (en) Rudder structure and manufacturing method of ship
CN112512919A (en) Rudder for ship and ship
EP3335976B1 (en) Minimum wave bow
JP6345221B2 (en) Single axis and two rudder system
JP5393160B2 (en) Stern shape of a displacement type ship
JP2000280984A (en) Rudder
JP6516466B2 (en) Ship steering gear
JP2020164037A (en) Vessel
JP7107668B2 (en) rudder
CN103612706A (en) Water surface single-body unmanned boat with two water-jet propellers
JP7248231B2 (en) Rudder gear and ships
JPH11105794A (en) Deformation reaction rudder
JP2018058568A (en) Reaction rudder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180604

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6874927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350