JP6871078B2 - Compression molding method and compression molding equipment for radioactive waste - Google Patents

Compression molding method and compression molding equipment for radioactive waste Download PDF

Info

Publication number
JP6871078B2
JP6871078B2 JP2017118483A JP2017118483A JP6871078B2 JP 6871078 B2 JP6871078 B2 JP 6871078B2 JP 2017118483 A JP2017118483 A JP 2017118483A JP 2017118483 A JP2017118483 A JP 2017118483A JP 6871078 B2 JP6871078 B2 JP 6871078B2
Authority
JP
Japan
Prior art keywords
water
storage container
radioactive waste
mixed powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017118483A
Other languages
Japanese (ja)
Other versions
JP2019002824A (en
Inventor
佐藤 龍明
龍明 佐藤
新一 牧野
新一 牧野
宏和 宇都宮
宏和 宇都宮
寛史 岡部
寛史 岡部
敏幸 若松
敏幸 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Energy Systems and Solutions Corp
Priority to JP2017118483A priority Critical patent/JP6871078B2/en
Publication of JP2019002824A publication Critical patent/JP2019002824A/en
Application granted granted Critical
Publication of JP6871078B2 publication Critical patent/JP6871078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、放射性廃棄物の圧縮成型方法及び圧縮成型装置に関する。 The present invention relates to a compression molding method and a compression molding apparatus for radioactive waste.

原子力発電所等の施設で発生する放射性廃棄物を、各種処理によって減容及び安定化することが行われている。放射性廃棄物のうち、可燃性廃棄物は専用の焼却炉で焼却して減容し、発生した焼却灰を、セメントを用いて固化するセメント固化方法が実用化されている。 The volume of radioactive waste generated in facilities such as nuclear power plants is reduced and stabilized by various treatments. Of the radioactive waste, combustible waste is incinerated in a dedicated incinerator to reduce its volume, and the generated incineration ash is solidified using cement. A cement solidification method has been put into practical use.

セメント固化方法によれば、焼却灰等の放射性廃棄物を安定に固定化できる利点がある一方で、セメントペーストと放射性廃棄物の混合物を混練するに適した流動性に調節する必要があるため、セメント固化体中の放射性廃棄物の含有量は低く、15質量%程度にとどまる。 The cement solidification method has the advantage that radioactive waste such as incineration ash can be stably fixed, but it is necessary to adjust the fluidity to be suitable for kneading the mixture of cement paste and radioactive waste. The content of radioactive waste in the cement solidified body is low, and remains at about 15% by mass.

また、セメント固化方法としては、ゼオライト、フェロシアン化塩、マンガン化合物、ケイチタン酸塩等のセシウム吸着材と焼却灰を混合してセメント固化する方法が提案されており、水酸化カルシウムや水酸化ナトリウム等のアルカリを併用して反応を早めることや、必要に応じて水/セメント比を低減した配合条件を用いて圧縮成型することも提案されている(例えば、特許文献1参照。)。この方法によれば、セメント固化体中の廃棄物含有量は、増量され得るが、20質量%程度である。 Further, as a cement solidification method, a method of mixing cesium adsorbents such as zeolite, ferrocyanide salt, manganese compound, and silicate silicate and incineration ash to cement solidify has been proposed, and calcium hydroxide and sodium hydroxide have been proposed. It has also been proposed to use an alkali such as the above in combination to accelerate the reaction, and if necessary, compression molding using a compounding condition in which the water / cement ratio is reduced (see, for example, Patent Document 1). According to this method, the waste content in the cement solidified body can be increased, but it is about 20% by mass.

また、放射性の焼却灰に放射性物質を吸着する吸着材、セメント系固化材及び水膨張性粘土を加えて放射性の焼却灰を圧縮成型してセメント固化体とする方法が提案されている(例えば、特許文献2参照。)。この方法では、セメント固化体中の廃棄物含有量を70質量%以上まで高めているが、圧縮成形に際しての加圧力は15MPa以上、又は4t/cm(連続ロール式)であり、比較的高圧である。 In addition, a method has been proposed in which an adsorbent that adsorbs radioactive substances, a cement-based solidifying material, and water-expandable clay are added to the radioactive incineration ash to compress-mold the radioactive incineration ash into a cement solidified body (for example). See Patent Document 2). In this method, the waste content in the cement solidified body is increased to 70% by mass or more, but the pressing force at the time of compression molding is 15 MPa or more or 4 t / cm (continuous roll type), and the pressure is relatively high. is there.

特開2013−234881号公報Japanese Unexamined Patent Publication No. 2013-234881 特開2013−79810号公報Japanese Unexamined Patent Publication No. 2013-79810

本発明は、上述した問題を解決するためになされたものであって、放射性廃棄物の含有量が75質量%以上の成型体を、低加圧力、常温で形成することができる放射性廃棄物の圧縮成型方法及び圧縮成型装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a radioactive waste capable of forming a molded body having a radioactive waste content of 75% by mass or more at a low pressure and at room temperature. It is an object of the present invention to provide a compression molding method and a compression molding apparatus.

本発明の放射性廃棄物の圧縮成型方法の一態様は、粉末状の放射性廃棄物の圧縮成型方法であって、前記放射性廃棄物と水硬性無機固化材と水とを混合して混合粉体を得る工程であり、前記混合粉体の100質量%に対して、前記放射性廃棄物を75質量%以上、前記水硬性無機固化材と水を、合計で25質量%以下、かつ水硬性無機固化材:水で表わされる質量比で0.9:1.1〜1.1:0.9となる量で混合する混合工程と、前記混合粉体を収容容器内に収容する収容工程と、前記収容容器を収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を仮圧縮する仮圧縮工程と、前記収容容器を前記収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を、前記仮圧縮工程より長時間で本圧縮して成型体を得る圧縮成型工程とを有する。 One aspect of the compression molding method for radioactive waste of the present invention is a compression molding method for powdery radioactive waste, in which the radioactive waste, a water-hard inorganic solidifying material, and water are mixed to form a mixed powder. In this step, the radioactive waste is 75% by mass or more, the water-hard inorganic solidifying material and water are 25% by mass or less in total, and the water-harding inorganic solidifying material is 100% by mass with respect to 100% by mass of the mixed powder. : A mixing step of mixing in an amount of 0.9: 1.1 to 1.1: 0.9 in terms of mass ratio represented by water, a storage step of storing the mixed powder in a storage container, and the storage. A temporary compression step of temporarily compressing the mixed powder in the storage container while the container is held by the storage container holding device, and a state in which the storage container is held by the storage container holding device in the storage container. It has a compression molding step of obtaining a molded product by main-compressing the mixed powder for a longer time than the temporary compression step.

本発明の放射性廃棄物の圧縮成型装置の一態様は粉末状の放射性廃棄物と、水硬性無機固化材と、水とを混合して混合粉体を生成する混合機と、前記混合機に、前記混合粉体の100質量%に対して75質量%以上となる量の前記放射性廃棄物を計量して供給する放射性廃棄物供給装置と、前記混合機に、前記混合粉体の100質量%に対して前記水硬性無機固化材と水が合計で25質量%以下、かつ前記水硬性無機固化材:水で表わされる質量比が0.9:1.1〜1.1:0.9となる量の、前記水硬性無機固化材を計量して供給する水硬性無機固化材供給装置及び前記水を計量して供給する水供給装置と、前記混合機内の混合粉体を移送して収容容器に収容する混合粉体移送装置と、前記収容容器を保持する収容容器保持装置と、前記収容容器内の混合粉体を、前記混合粉体移送装置から複数回に分けて移送して仮圧縮させ、その後に加圧力10MPa以上13MPa以下で加圧して成型させ成形体を形成する圧縮装置とを有する。 One aspect of the compression molding apparatus for radioactive waste of the present invention is a mixer that mixes powdery radioactive waste, a water-hard inorganic solidifying material, and water to produce a mixed powder, and the mixer. To 100% by mass of the mixed powder, to the radioactive waste supply device that weighs and supplies the amount of the radioactive waste that is 75% by mass or more with respect to 100% by mass of the mixed powder, and to the mixer. On the other hand, the total amount of the water-hard inorganic solidifying material and water is 25% by mass or less, and the mass ratio represented by the water-hard inorganic solidifying material: water is 0.9: 1.1 to 1.1: 0.9. A water-hard inorganic solidifying material supply device that measures and supplies the amount of the water-hard inorganic solidifying material, a water supply device that measures and supplies the water, and a mixed powder in the mixer are transferred to a container. The mixed powder transfer device for accommodating, the accommodating container holding device for holding the accommodating container, and the mixed powder in the accommodating container are transferred from the mixed powder transfer device in a plurality of times and temporarily compressed. and a compression device which was then molded under pressure at a pressure 10MPa or 13MPa or less to form a molded body.

本発明によれば、放射性廃棄物の含有量が75質量%以上の成型体を、低加圧力、常温で形成することができる放射性廃棄物の圧縮成型方法及び圧縮成型装置を提供することができる。 According to the present invention, it is possible to provide a compression molding method and a compression molding apparatus for radioactive waste, which can form a molded body having a radioactive waste content of 75% by mass or more at low pressure and at room temperature. ..

実施形態の圧縮成型方法に用いられる放射性廃棄物の圧縮成型装置を模式的に示す図である。It is a figure which shows typically the compression molding apparatus of radioactive waste used in the compression molding method of embodiment. 実施形態の圧縮成型方法を示すフロー図である。It is a flow figure which shows the compression molding method of an embodiment. 実施形態の収容容器保持装置を模式的に示す断面図である。It is sectional drawing which shows typically the storage container holding device of embodiment. 収容容器のクリアランスを説明するための図である。It is a figure for demonstrating the clearance of a containment container. 仮押しを行わない場合の、ポルトランドセメント:水質量比と成型体の圧縮強度の関係を表すグラフである。It is a graph which shows the relationship between the Portland cement: water mass ratio and the compressive strength of a molded body when temporary pressing is not performed.

以下、図面を参照して、実施形態を詳細に説明する。
図1は、本実施形態に用いられる放射性廃棄物の圧縮成型装置10を模式的に示す図である。圧縮成型装置10は、粉末状の放射性廃棄物1、水硬性無機固化材2、水3を混合して混合粉体を生成する混合機15と、混合機15に接続され、粉末状の放射性廃棄物1の所定量を計量して混合機15に供給する放射性廃棄物供給装置11と、混合機15に接続され、水硬性無機固化材2の所定量を計量して混合機15に供給する水硬性無機固化材供給装置12と、混合機15に接続され、水3の所定量を計量して混合機15に供給する水供給装置13とを備えている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically showing a compression molding apparatus 10 for radioactive waste used in the present embodiment. The compression molding apparatus 10 is connected to a mixer 15 that mixes powdery radioactive waste 1, a water-hard inorganic solidifying material 2, and water 3 to generate a mixed powder, and the mixer 15, and is connected to the powdery radioactive waste. The radioactive waste supply device 11 that weighs a predetermined amount of the substance 1 and supplies it to the mixer 15, and the water that is connected to the mixer 15 and that measures the predetermined amount of the water-hard inorganic solidifying material 2 and supplies it to the mixer 15. It includes a rigid inorganic solidified material supply device 12, and a water supply device 13 that is connected to the mixer 15 and measures a predetermined amount of water 3 and supplies the water 3 to the mixer 15.

また、圧縮成型装置10は、混合機15内の混合粉体を外部に移送して収容容器17に収容する混合粉体移送装置18と、収容容器17の内容物を加圧する圧縮装置16と、収容容器17を保持する収容容器保持装置19とを備えている。また、圧縮装置16は、収容容器17の内容物を加圧する加圧ピストン21を備えている。収容容器17は圧縮装置16内に配置されている。 Further, the compression molding device 10 includes a mixed powder transfer device 18 that transfers the mixed powder in the mixer 15 to the outside and stores it in the storage container 17, and a compression device 16 that pressurizes the contents of the storage container 17. It is provided with a storage container holding device 19 for holding the storage container 17. Further, the compression device 16 includes a pressure piston 21 that pressurizes the contents of the storage container 17. The storage container 17 is arranged in the compression device 16.

図2は、本実施形態の圧縮成型方法を示すフロー図である。図2に示す圧縮成型方法は、粉末状の放射性廃棄物1と、固化材としての水硬性無機固化材2と、水3とをそれぞれ所定の量で計量する計量工程S1と、計量された放射性廃棄物1、水硬性無機固化材2及び水3を混合して混合粉体4を得る混合工程S2と、混合粉体4を収容容器17に収容する収容工程S3とを有している。本実施形態の圧縮成型方法はさらに、収容容器17内の混合粉体4を仮圧縮する仮圧縮工程S4と、仮圧縮された混合粉体4を本圧縮して成型体5を得る圧縮成型工程S5とを有している。 FIG. 2 is a flow chart showing a compression molding method of the present embodiment. The compression molding method shown in FIG. 2 includes a weighing step S1 in which powdered radioactive waste 1, a water-hardening inorganic solidifying material 2 as a solidifying material, and water 3 are weighed in predetermined amounts, and the measured radioactiveness. It has a mixing step S2 of mixing waste 1, a water-hardening inorganic solidifying material 2 and water 3 to obtain a mixed powder 4, and a storage step S3 of storing the mixed powder 4 in a storage container 17. Further, the compression molding method of the present embodiment includes a temporary compression step S4 in which the mixed powder 4 in the storage container 17 is temporarily compressed, and a compression molding step in which the temporarily compressed mixed powder 4 is main-compressed to obtain a molded body 5. It has S5.

処理対象物である放射性廃棄物1は、粉末状の放射性廃棄物であり、例えば原子力施設などから発生する放射性廃棄物や、可燃性の放射性廃棄物を焼却処理ないし加熱処理して得られる焼却灰や焼却飛灰等である。ここでいう「粉末」は、例えば、ふるい分け法による粒子径が2.5mm以下程度の大きさである。放射性廃棄物1は、焼却灰や焼却飛灰以外にも、例えば、砂や土壌、また、酸性又はアルカリ性の放射性薬剤を中和反応により処理することで生成する無機塩等であってもよい。また、放射性廃棄物1は、本発明の効果を損なわない限り、粉末状以外の放射性廃棄物1、例えば粉末状の焼却灰が凝集した凝集物や焼却時の燃え残り等の粒子径が2.5mm以上の粗大物、が含まれていてもよい。また、放射性廃棄物1は、少なくとも一部が放射性を有していれば良く、非放射性の廃棄物を含んでいてもよい。 The radioactive waste 1 to be treated is powdery radioactive waste, for example, incineration ash obtained by incineration or heat treatment of radioactive waste generated from a nuclear facility or the like or flammable radioactive waste. And incineration fly ash. The "powder" referred to here has, for example, a particle size of about 2.5 mm or less according to the sieving method. In addition to incineration ash and fly ash, the radioactive waste 1 may be, for example, sand or soil, or an inorganic salt produced by treating an acidic or alkaline radioactive agent by a neutralization reaction. Further, the radioactive waste 1 has a particle size of non-powdered radioactive waste 1, such as agglomerates of powdered incineration ash and unburned residue during incineration, as long as the effects of the present invention are not impaired. A coarse substance of 5 mm or more may be included. Further, the radioactive waste 1 may contain at least a part of radioactive waste and may contain non-radioactive waste.

本実施形態の圧縮成型方法は、放射性廃棄物1を75質量%以上含有する成型体5を形成する。放射性廃棄物1の量が75質量%より少なく、例えば70質量%でも、良好な強度の成型体5を得ることができるが、水3の量が多くなって、混合粉体4の流動性が低下し、設備の安定運転に支障を起こすことがあり、また、放射性廃棄物1の量が75質量%より少ないと、放射性廃棄物の減容性に劣るためである。 The compression molding method of the present embodiment forms a molded body 5 containing 75% by mass or more of radioactive waste 1. Even if the amount of radioactive waste 1 is less than 75% by mass, for example 70% by mass, a molded product 5 having good strength can be obtained, but the amount of water 3 increases and the fluidity of the mixed powder 4 becomes low. This is because it may decrease and hinder the stable operation of the equipment, and if the amount of radioactive waste 1 is less than 75% by mass, the volume reduction of radioactive waste is inferior.

計量工程S1では、混合粉体4の全量(100質量%)に対して75質量%以上の放射性廃棄物1を計量する。放射性廃棄物1の量は、好ましくは77〜85質量%である。放射性廃棄物1の量は多くするほど高減容化が可能であるが、多すぎると十分な強度が得られないことがある。 In the weighing step S1, 75% by mass or more of the radioactive waste 1 is weighed with respect to the total amount (100% by mass) of the mixed powder 4. The amount of radioactive waste 1 is preferably 77 to 85% by mass. The larger the amount of radioactive waste 1, the higher the volume can be reduced, but if it is too large, sufficient strength may not be obtained.

また、計量工程S1において、成型体5の成分のうち、放射性廃棄物1以外の成分である水硬性無機固化材2と水3をそれぞれ計量する。水硬性無機固化材2と水3の合計量は、混合粉体4中の放射性廃棄物1以外の残分、すなわち、混合粉体4の全量に対して25質量%以下である。また、水硬性無機固化材2と水3の量の比は、水硬性無機固化材2:水3で示される質量比で0.9:1.1〜1.1:0.9である。水硬性無機固化材2と水3の質量比が上記範囲であることで、成型体5が十分な強度を有するものとなる。 Further, in the weighing step S1, among the components of the molded body 5, the hydraulic inorganic solidifying material 2 and the water 3 which are components other than the radioactive waste 1 are measured, respectively. The total amount of the water-hardening inorganic solidifying material 2 and the water 3 is 25% by mass or less with respect to the residue other than the radioactive waste 1 in the mixed powder 4, that is, the total amount of the mixed powder 4. The ratio of the amounts of the water-hardening inorganic solidifying material 2 and the water 3 is 0.9: 1.1 to 1.1: 0.9 in terms of the mass ratio represented by the water-hardening inorganic solidifying material 2: water 3. When the mass ratio of the hydraulic inorganic solidifying material 2 and the water 3 is in the above range, the molded body 5 has sufficient strength.

次いで、計量された放射性廃棄物1、水硬性無機固化材2、水3を、図1に示す混合機15に供給して、混合機15によって混合し、混合粉体4を得る(混合工程S2)。放射性廃棄物1、水硬性無機固化材2、水3が上記配合量であることで、混合粉体4は、例えば、流動性が高い粉体となる。そのため、作業性に優れるとともに、成型体5に十分な強度を付与することができる。 Next, the weighed radioactive waste 1, the water-hard inorganic solidifying material 2, and water 3 are supplied to the mixer 15 shown in FIG. 1 and mixed by the mixer 15 to obtain a mixed powder 4 (mixing step S2). ). When the amount of the radioactive waste 1, the water-hardening inorganic solidifying material 2 and the water 3 is the above-mentioned amounts, the mixed powder 4 becomes, for example, a powder having high fluidity. Therefore, the workability is excellent, and sufficient strength can be imparted to the molded body 5.

水硬性無機固化材2としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメント、高炉セメント、フライアッシュセメント等の各種混合セメント、アルミナセメント等の各種セメントを用いることができる。水硬性無機固化材2は1種を単独で用いてもよく、2種以上を混合してもよい。 As the water-hardening inorganic solidifying material 2, various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low heat Portland cement, various mixed cements such as blast furnace cement and fly ash cement, and various cements such as alumina cement are used. Can be used. As the hydraulic inorganic solidifying material 2, one type may be used alone, or two or more types may be mixed.

水3は、特に限定されず、本発明の効果を損なわない限り、アルカリ性や酸性の薬剤や添加剤を含んでいてもよい。 The water 3 is not particularly limited and may contain an alkaline or acidic agent or additive as long as the effects of the present invention are not impaired.

次いで、混合粉体4は、振動フィーダー、スクリューフィーダー等の混合粉体移送装置18によって、混合機15から圧縮装置16に移送され、圧縮装置16内に配置された収容容器17内に収容される(収容工程S3)。 Next, the mixed powder 4 is transferred from the mixer 15 to the compression device 16 by the mixing powder transfer device 18 such as a vibration feeder and a screw feeder, and is housed in the storage container 17 arranged in the compression device 16. (Accommodation step S3).

収容容器17は、例えば、金属板等で構成された内径が250mm〜300mm程度の円筒形の容器である。混合粉体4は収容容器17内で圧縮成型されて、成型体5が形成される。 The storage container 17 is, for example, a cylindrical container made of a metal plate or the like and having an inner diameter of about 250 mm to 300 mm. The mixed powder 4 is compression-molded in the storage container 17 to form the molded body 5.

次いで、収容容器17内の混合粉体4を、続く本圧縮の時間よりも短い時間で仮圧縮(仮押し)する仮圧縮工程S4を行う。仮圧縮工程S4を経ることで、常温かつ低加圧力でも、強度に優れた成型体5を得ることができる。 Next, a temporary compression step S4 is performed in which the mixed powder 4 in the storage container 17 is temporarily compressed (temporarily pressed) in a time shorter than the subsequent main compression time. By passing through the temporary compression step S4, the molded body 5 having excellent strength can be obtained even at room temperature and low pressing force.

仮圧縮工程S4は、複数回行ってもよい。この場合、収容工程S3は、仮圧縮工程S4に合わせて複数回行う。すなわち、所定量の混合粉体4を複数回に分けて収容容器17内に収容するように、収容工程S3を複数回行う。各々の収容工程S3の後に仮圧縮工程S4を行い、次の収容工程3を行う。このようにして仮押しをした回数を「仮押し回数」とも称する。 The temporary compression step S4 may be performed a plurality of times. In this case, the accommodating step S3 is performed a plurality of times in accordance with the temporary compression step S4. That is, the storage step S3 is performed a plurality of times so that the predetermined amount of the mixed powder 4 is stored in the storage container 17 in a plurality of times. After each accommodating step S3, a temporary compression step S4 is performed, and then the next accommodating step 3 is performed. The number of times of temporary pressing in this way is also referred to as "temporary pressing number".

例えば、仮押し回数を3回とする場合、最初の収容工程S3において、所定量の3分の1の放射性廃棄物1を収容容器17内に収容し、その後、仮押しする。この操作を2回行った後、残部(所定量の3分の1)を収容容器17内に収容して、仮押しする。本実施形態の放射性廃棄物の圧縮成型方法によれば、複数回の仮圧縮工程S4を経ることで、常温かつ低加圧力でも、より強度に優れた成型体5を得ることができる。 For example, when the number of temporary pushes is three, in the first storage step S3, one-third of the predetermined amount of radioactive waste 1 is stored in the storage container 17, and then the temporary push is performed. After performing this operation twice, the remaining portion (one-third of the predetermined amount) is stored in the storage container 17 and temporarily pushed. According to the method for compressing and molding radioactive waste of the present embodiment, it is possible to obtain a molded body 5 having higher strength even at room temperature and low pressure by going through a plurality of temporary compression steps S4.

仮圧縮工程S4では、仮押しを、低圧、例えば、加圧力10MPa〜13MPa、好ましくは11MPa〜12MPaで行うことができる。仮押し時間は、続く本圧縮の時間よりも短く、瞬時(0.1〜5秒程度)である。仮押し時の温度は特に調整せず、常温(5〜40℃)でよい。仮押し回数は、1回以上で、常温かつ低加圧力でも、強度に優れた成型体5を得ることができる。また、成型効率の点では、仮押し回数は、15回以下程度が好ましく、成型体5の優れた強度を得つつ成型効率を高める点で、3回であることがさらに好ましい。 In the temporary compression step S4, the temporary pressing can be performed at a low pressure, for example, a pressing force of 10 MPa to 13 MPa, preferably 11 MPa to 12 MPa. The temporary pressing time is shorter than the time of the subsequent main compression, and is instantaneous (about 0.1 to 5 seconds). The temperature at the time of temporary pressing is not particularly adjusted and may be room temperature (5 to 40 ° C.). The number of temporary pressings is one or more, and the molded body 5 having excellent strength can be obtained even at room temperature and low pressing force. Further, in terms of molding efficiency, the number of temporary pressings is preferably about 15 times or less, and more preferably 3 times in terms of increasing the molding efficiency while obtaining the excellent strength of the molded body 5.

仮圧縮工程S4後、収容容器17内の混合粉体4を本圧縮(本押し)する圧縮成型工程S5を行う。圧縮成型工程S5では仮圧縮工程S4で得られた成型体5の前駆体を十分に押し固めるために、仮押し時間よりも長時間加圧する。圧縮成型工程S5における本押し時間は、例えば1時間以上である。本押し時間は、放射性廃棄物1の種類や混合粉体4の配合等によって、成型体5を形成するのに十分な時間行えばよい。本押しは、仮押しと同様に、低圧かつ常温で行うことができる。 After the temporary compression step S4, a compression molding step S5 is performed in which the mixed powder 4 in the storage container 17 is fully compressed (pressed). In the compression molding step S5, the precursor of the molded body 5 obtained in the temporary compression step S4 is pressurized for a longer time than the temporary pressing time in order to sufficiently compact the precursor. The final pressing time in the compression molding step S5 is, for example, 1 hour or more. The main pressing time may be a sufficient time to form the molded body 5 depending on the type of radioactive waste 1, the blending of the mixed powder 4, and the like. The main push can be performed at low pressure and at room temperature, similar to the temporary push.

また、本実施形態の圧縮成型方法において、仮圧縮工程S4、圧縮成型工程S5を通じて、収容容器17を収容容器保持装置19によって保持する。図3(a)〜(c)は、収容容器保持装置19と収容容器17を模式的に示す断面図である。図3(a)は、収容容器保持装置19によって収容容器17を保持した状態を表す図である。図3(b)は、図3(a)の状態で、圧縮装置16に備えられる加圧ピストン21により、収容容器17の内容物を加圧する状態を表す図である。図3(c)は、収容容器保持装置19から収容容器17を取り外す状態を表す図である。 Further, in the compression molding method of the present embodiment, the storage container 17 is held by the storage container holding device 19 through the temporary compression step S4 and the compression molding step S5. 3A to 3C are cross-sectional views schematically showing the storage container holding device 19 and the storage container 17. FIG. 3A is a diagram showing a state in which the storage container 17 is held by the storage container holding device 19. FIG. 3B is a diagram showing a state in which the contents of the storage container 17 are pressurized by the pressurizing piston 21 provided in the compression device 16 in the state of FIG. 3A. FIG. 3C is a diagram showing a state in which the storage container 17 is removed from the storage container holding device 19.

例えば、図3(a)、(b)に示すように、仮圧縮工程S4及び圧縮成型工程S5において、収容容器17の内容物を、加圧ピストン21によって加圧する場合、収容容器17を構成する金属板が薄いと、収容容器17の強度や加圧ピストンの加圧力によっては、収容容器17が変形したり、変形によって破損して内容物が飛散したりするおそれがある。 For example, as shown in FIGS. 3A and 3B, when the contents of the storage container 17 are pressurized by the pressure piston 21 in the temporary compression step S4 and the compression molding step S5, the storage container 17 is configured. If the metal plate is thin, the storage container 17 may be deformed or damaged due to the deformation depending on the strength of the storage container 17 or the pressing force of the pressure piston, and the contents may be scattered.

そのため、本実施形態では、収容容器17の変形を抑制するようにその外周を取り囲んで保持する収容容器保持装置19を用いる。また、収容容器保持装置19は、収容容器17内部に加圧ピストン21が挿入されるように、収容容器17と加圧ピストン21との位置を合わせ、収容容器17の上部を固定する。これにより、収容容器17が変形したり、変形によって破損したりするのを防止することができる。さらに、図3(c)に示すように、収容容器保持装置19は、収容容器17を取り外し可能に構成することで、圧縮成型装置10によって複数の成型体5を繰り返し作製する際に成型効率を高めることができる。なお、収容容器保持装置19は、例えば、金属板等で構成することができる。 Therefore, in the present embodiment, the storage container holding device 19 that surrounds and holds the outer periphery of the storage container 17 is used so as to suppress the deformation of the storage container 17. Further, the storage container holding device 19 aligns the position of the storage container 17 and the pressure piston 21 so that the pressure piston 21 is inserted into the storage container 17, and fixes the upper part of the storage container 17. As a result, it is possible to prevent the storage container 17 from being deformed or damaged by the deformation. Further, as shown in FIG. 3C, the storage container holding device 19 is configured so that the storage container 17 is removable, so that the molding efficiency can be improved when a plurality of molded bodies 5 are repeatedly manufactured by the compression molding device 10. Can be enhanced. The storage container holding device 19 can be made of, for example, a metal plate or the like.

図4は、仮圧縮工程S4及び圧縮成型工程S5における収容容器17のクリアランスを説明するための図であり、収容容器保持装置19に保持された収容容器17の水平断面を表す図である。図4に示すように、仮圧縮工程S4及び圧縮成型工程S5において、収容容器17の内容物を圧縮装置16の加圧ピストン21によって加圧する場合、収容容器17の内壁と、加圧ピストン21の外周の間に、クリアランス(隙間)Cを設けることが好ましい。クリアランスCを設けることで、圧縮時に混合粉体4中に含まれる空気が外部に抜けやすい。そのため、成型体5中に空気が残留しにくいため、成型体5の強度を向上させることができる。 FIG. 4 is a diagram for explaining the clearance of the storage container 17 in the temporary compression step S4 and the compression molding step S5, and is a diagram showing a horizontal cross section of the storage container 17 held by the storage container holding device 19. As shown in FIG. 4, when the contents of the storage container 17 are pressurized by the pressure piston 21 of the compression device 16 in the temporary compression step S4 and the compression molding step S5, the inner wall of the storage container 17 and the pressure piston 21 It is preferable to provide a clearance C between the outer circumferences. By providing the clearance C, the air contained in the mixed powder 4 can easily escape to the outside during compression. Therefore, since air is unlikely to remain in the molded body 5, the strength of the molded body 5 can be improved.

クリアランスCの幅は、0.5mm〜3mm程度が好ましく1mm〜2mm程度がより好ましい。クリアランスの幅が0.5mm以上であると、圧縮時に混合粉体4中に含まれる空気が十分に外部に抜け易く、3mm以下であると、内容物が外部にはみ出しにくく、付着物の形成を抑え易い。なお、収容容器17の内壁及び加圧ピストン21の外周が円筒である場合、クリアランスCの幅は、収容容器17の内径と加圧ピストン21の外周径の差の2分の1の値として算出することができる。 The width of the clearance C is preferably about 0.5 mm to 3 mm, more preferably about 1 mm to 2 mm. When the clearance width is 0.5 mm or more, the air contained in the mixed powder 4 is sufficiently easy to escape to the outside during compression, and when it is 3 mm or less, the contents are hard to protrude to the outside and the formation of deposits is formed. Easy to hold down. When the inner wall of the storage container 17 and the outer circumference of the pressure piston 21 are cylindrical, the width of the clearance C is calculated as a value of half the difference between the inner diameter of the storage container 17 and the outer circumference of the pressure piston 21. can do.

このようにして、収容容器17で混合粉体4が圧縮成型されて成型体5を得る。成型体5の直径Dに対する高さLの比L/Dは1.5以下であることが好ましい。L/Dは、1.5以下で成型体5の強度の低下を抑制しやすい。L/Dは、収容容器17の内径と、放射性廃棄物1、水硬性無機固化剤2、水3の量で調整することができる。得られた成型体5は、容容器17ごと圧縮装置16外部に搬出されて養生されるか、保管される。 In this way, the mixed powder 4 is compression-molded in the storage container 17 to obtain a molded body 5. The ratio L / D of the height L to the diameter D of the molded body 5 is preferably 1.5 or less. When the L / D is 1.5 or less, it is easy to suppress a decrease in the strength of the molded body 5. The L / D can be adjusted by adjusting the inner diameter of the storage container 17 and the amount of radioactive waste 1, hydraulic inorganic solidifying agent 2, and water 3. The obtained molded body 5 is carried out of the compression device 16 together with the container 17 and cured or stored.

以上説明した本実施形態の放射性廃棄物の圧縮成型方法によれば、熱を加えることなく常温で、かつ比較的低い加圧力で優れた強度の成型体を形成することができる。 According to the method of compression molding of radioactive waste of the present embodiment described above, it is possible to form a molded body having excellent strength at room temperature and at a relatively low pressure without applying heat.

次に、実施例を用いて本発明をより詳細に説明する。 Next, the present invention will be described in more detail with reference to Examples.

(実施例1、2)
実施例では、模擬放射性廃棄物として都市ごみ焼却炉の焼却灰(以下、単に「焼却灰」ともいう。)を用いた。焼却灰75質量%、ポルトランドセメント(OPC)12.5質量%及び水12.5質量%を計量し、その後、これらを混合して混合粉体を得た。焼却灰は、レーザー回折散乱法による体積基準の平均粒子径が100μm程度である。
(Examples 1 and 2)
In the examples, incineration ash from an urban waste incinerator (hereinafter, also simply referred to as “incineration ash”) was used as simulated radioactive waste. Weighed 75% by mass of incineration ash, 12.5% by mass of Portland cement (OPC) and 12.5% by mass of water, and then mixed them to obtain a mixed powder. The incinerated ash has a volume-based average particle size of about 100 μm by the laser diffraction / scattering method.

次いで、得られた混合粉体の一部を採取して内径250mmφの金属の円筒形の容器に収容した。このとき、使用する混合粉体の量は、最終的に得られる成型体の高さが375mm、すなわちL/Dが概ね1.5になる量に調整した。 Next, a part of the obtained mixed powder was collected and stored in a metal cylindrical container having an inner diameter of 250 mmφ. At this time, the amount of the mixed powder used was adjusted so that the height of the finally obtained molded product was 375 mm, that is, the L / D was approximately 1.5.

実施例1では、混合粉体の全量を容器内に収容した後、仮押しをして、その後、本押しをした(仮押し回数1回)。実施例2では、混合粉体を3分割して、それぞれ順に容器に収容し、各収容後に仮押しをして、合計3回の仮押しを経た後、本押しをした(仮押し回数3回)。 In the first embodiment, the entire amount of the mixed powder was contained in the container, and then the temporary pressing was performed, and then the final pressing was performed (the number of temporary pressings was one). In Example 2, the mixed powder was divided into three parts, each of which was stored in a container in order, and after each storage, temporary pressing was performed. ).

仮押し時間は瞬時(約0.5秒)、本押し時間は、実施例1では6時間、実施例2では4時間とした。加圧力はいずれも10MPaで、いずれも温度は調節せず常温で行った。また、仮押し及び本押しを行うときには容器の外周及び上部を金属厚板で保持して、変形を防止した。クリアランスは1mmとした。得られた成型体を7日間養生した後、圧縮強度を測定した。結果を、混合粉体中の各成分の配合、圧縮条件と併せて表1に示す。 The temporary pressing time was instantaneous (about 0.5 seconds), and the final pressing time was 6 hours in Example 1 and 4 hours in Example 2. The pressing force was 10 MPa in each case, and the pressure was not adjusted and the pressure was adjusted to room temperature. Further, when the temporary push and the main push were performed, the outer circumference and the upper part of the container were held by a metal plate to prevent deformation. The clearance was 1 mm. After curing the obtained molded product for 7 days, the compressive strength was measured. The results are shown in Table 1 together with the composition of each component in the mixed powder and the compression conditions.

(実施例3、4)
実施例3、4では、混合粉体中の各成分の配合と、成型体の圧縮強度の関係について調べた。焼却灰の量を実施例3では80質量%、実施例4では85質量%とし、残部をいずれもポルトランドセメント及び水の質量比を1:1として混合し、混合粉体を得た。その他は実施例2と同様の操作及び条件で成型体を得た。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Examples 3 and 4)
In Examples 3 and 4, the relationship between the composition of each component in the mixed powder and the compressive strength of the molded product was investigated. The amount of incinerated ash was 80% by mass in Example 3 and 85% by mass in Example 4, and the balance was mixed with Portland cement and water at a mass ratio of 1: 1 to obtain a mixed powder. A molded body was obtained under the same operations and conditions as in Example 2. The results are shown in Table 1 together with the blending of the mixed powder and the compression conditions.

(実施例5〜7)
実施例5〜7では、クリアランスの幅と、成型体の圧縮強度の関係について調べた。実施例1において、異なる径の杵(加圧ピストン)を用い、クリアランスを、実施例5では0.5mm、実施例6では1mm、実施例7では2mmとして、その他は実施例1と同様の操作及び条件で成型体を得た。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Examples 5 to 7)
In Examples 5 to 7, the relationship between the clearance width and the compressive strength of the molded body was investigated. In Example 1, a punch (pressurized piston) having a different diameter was used, and the clearance was set to 0.5 mm in Example 5, 1 mm in Example 6, and 2 mm in Example 7, and the other operations were the same as in Example 1. A molded body was obtained under the conditions and conditions. The results are shown in Table 1 together with the blending of the mixed powder and the compression conditions.

(実験例1、2)
実験例1、2では、L/Dの値を変更した際の成型体の圧縮強度への影響について調べた。L/Dを、実験例1では1、実験例2では1.5として、実施例1と同様の操作及び条件で仮押しをした。仮押し1回後の成型体前駆体の圧縮強度を測定した。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Experimental Examples 1 and 2)
In Experimental Examples 1 and 2, the effect on the compressive strength of the molded product when the L / D value was changed was investigated. The L / D was set to 1 in Experimental Example 1 and 1.5 in Experimental Example 2, and was temporarily pressed under the same operations and conditions as in Example 1. The compressive strength of the molded product precursor after one temporary pressing was measured. The results are shown in Table 1 together with the blending of the mixed powder and the compression conditions.

(比較例1〜3)
模擬放射性廃棄物として、比較例1、3では焼却灰を、比較例2ではりん酸カルシウム主成分の無機質粉体を使用した。それぞれ、放射性廃棄物75質量%、残部をポルトランドセメント及び水を1:1の質量比として混合して混合粉体を得た。焼却灰及び無機質粉体は、レーザー回折散乱法による体積基準の平均粒子径が100μm程度である。その後、仮押しを行わず比較例1、2では、加圧力10MPaで1時間、比較例3では、加圧力10MPaで6時間、温度は調節せずに常温で圧縮して成型体を得た。比較例1〜3において、クリアランスは1mmm、L/Dは概ね1.5である。得られた成型体を7日間養生して、その後、圧縮強度を測定した。結果を、混合粉体の配合、圧縮条件と併せて表1に示す。
(Comparative Examples 1 to 3)
As the simulated radioactive waste, incineration ash was used in Comparative Examples 1 and 3, and an inorganic powder containing calcium phosphate as a main component was used in Comparative Example 2. A mixed powder was obtained by mixing 75% by mass of radioactive waste, the balance of Portland cement and water in a mass ratio of 1: 1 respectively. The incinerated ash and the inorganic powder have a volume-based average particle size of about 100 μm by the laser diffraction / scattering method. Then, without temporary pressing, in Comparative Examples 1 and 2, the compact was compressed at a pressing force of 10 MPa for 1 hour, and in Comparative Example 3 at a pressing force of 10 MPa for 6 hours at room temperature without adjusting the temperature, to obtain a molded product. In Comparative Examples 1 to 3, the clearance is 1 mm and the L / D is approximately 1.5. The obtained molded product was cured for 7 days, and then the compressive strength was measured. The results are shown in Table 1 together with the blending of the mixed powder and the compression conditions.

Figure 0006871078
Figure 0006871078

表1より、仮押しを1回以上行った実施例1、2では、仮押しを行わない比較例1〜3に比べて、成型体強度を4倍以上高められたことが分かる。例えば、成型体強度の目安値を、低レベル放射性廃棄物処分基準の1.47MPa以上とした場合、仮押しなしでは裕度が無かったが、仮押しの効果によって目安値の強度を十分満足する良好な成型体が得られた。これは、L/Dの小さな成型体を重ね打ちすることと同様の作用による効果と考えられる。しかし、仮押し毎の成型体接着部が剥離するようなことはなく、成型体として一体であった。 From Table 1, it can be seen that in Examples 1 and 2 in which the temporary pressing was performed once or more, the strength of the molded body was increased by 4 times or more as compared with Comparative Examples 1 to 3 in which the temporary pressing was not performed. For example, when the standard value of the strength of the molded body is 1.47 MPa or more, which is the standard for disposal of low-level radioactive waste, there was no margin without temporary pressing, but the strength of the standard value is sufficiently satisfied by the effect of temporary pressing. A good molded body was obtained. This is considered to be an effect due to the same action as overstrike of a molded body having a small L / D. However, the adhesive portion of the molded body was not peeled off for each temporary pressing, and the molded body was integrated.

また、実施例3、4より、放射性廃棄物の配合比75質量%以上において、仮押しを行うことで、優れた強度の成型体を得られることが分かる。 Further, from Examples 3 and 4, it can be seen that a molded product having excellent strength can be obtained by performing temporary pressing at a compounding ratio of radioactive waste of 75% by mass or more.

また、実験例1、2より、L/Dが小さいほど、仮押し後の成型体前駆体の圧縮強度が高く、強度の高い成型体を得られることが分かる。 Further, from Experimental Examples 1 and 2, it can be seen that the smaller the L / D, the higher the compressive strength of the molded product precursor after temporary pressing, and the higher the strength of the molded product can be obtained.

(参考例1〜3)
参考例では、仮押しを行わない場合について、ポルトランドセメント(OPC)及び水の量の比を変更した場合の、成型体の圧縮強度への影響を調べた。模擬放射性廃棄物として、比較例1、2と同様の焼却灰及び無機質粉体を用い、混合粉体100質量%に対して模擬放射性廃棄物の量を75質量%とした。混合粉体の100質量%に対して、(OPC質量%,水質量%)を、(19.6,5.4)、(13.75,11.25)、(12.5,12.5)、(11.25,13.75)、(7.5,17.5)、(0,25)とした。それぞれの配合で混合粉体を作成し、L/Dが概ね1.5となるように上記同様の容器に収容し、クリアランス1mmで、10MPa、1時間本押しをした。得られた成型体について、実施例1と同様に養生した後、圧縮強度を測定した。結果を図5に示す。
(Reference Examples 1 to 3)
In the reference example, the effect on the compressive strength of the molded product when the ratio of the amounts of Portland cement (OPC) and water was changed was investigated in the case where the temporary pressing was not performed. As the simulated radioactive waste, the same incineration ash and inorganic powder as in Comparative Examples 1 and 2 were used, and the amount of simulated radioactive waste was 75% by mass based on 100% by mass of the mixed powder. With respect to 100% by mass of the mixed powder, (OPC mass%, water mass%) was added to (19.6, 5.4), (13.75, 11.25), (12.5, 12.5). ), (11.25, 13.75), (7.5, 17.5), (0,25). A mixed powder was prepared with each formulation, housed in the same container as described above so that the L / D was approximately 1.5, and pressed for 10 MPa for 1 hour with a clearance of 1 mm. The obtained molded body was cured in the same manner as in Example 1, and then the compressive strength was measured. The results are shown in FIG.

図5より、仮押しを行わない場合、OPCの量が、7.5〜13.75質量%で、焼却灰及び無機質粉体のいずれを用いた場合も成型体の圧縮強度の目安値を満たしたことが分かる。仮押しを行った場合にも、OPCと水の質量比と成型体の圧縮強度の関係は、仮押しを行わない場合と同様の傾向を示すと考えられる。そのため、仮押しを行う場合のOPCと水の質量比は、上記目安値を満たした中央値のOPC:水=1:1(12.5質量%:12.5質量%)から、測定誤差範囲が含まれる±10%の範囲を採用した。 From FIG. 5, when the temporary pressing is not performed, the amount of OPC is 7.5 to 13.75% by mass, and the standard value of the compressive strength of the molded product is satisfied regardless of whether the incinerated ash or the inorganic powder is used. You can see that. Even when the temporary pressing is performed, the relationship between the mass ratio of OPC and water and the compressive strength of the molded product is considered to show the same tendency as the case where the temporary pressing is not performed. Therefore, the mass ratio of OPC and water in the case of temporary pressing is within the measurement error range from the median OPC: water = 1: 1 (12.5 mass%: 12.5 mass%) that satisfies the above guideline value. The range of ± 10% including is adopted.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…放射性廃棄物、2…水硬性無機固化材、3…水、4…混合粉体、5…成型体、10…圧縮成型装置、11…放射性廃棄物供給装置、12…水硬性無機固化材供給装置、13…水供給装置、15…混合機、16…圧縮装置、17…収容容器、18…混合粉体移送装置、19…収容容器保持装置、21…加圧ピストン、S1…計量工程、S2…混合工程、S3…収容工程、S4…仮圧縮工程、S5…圧縮成型工程、C…クリアランス。 1 ... Radioactive waste, 2 ... Water-hard inorganic solidifying material, 3 ... Water, 4 ... Mixed powder, 5 ... Molded material, 10 ... Compression molding equipment, 11 ... Radioactive waste supply equipment, 12 ... Water-hard inorganic solidifying material Supply device, 13 ... water supply device, 15 ... mixer, 16 ... compression device, 17 ... storage container, 18 ... mixed powder transfer device, 19 ... storage container holding device, 21 ... pressure piston, S1 ... weighing process, S2 ... mixing step, S3 ... accommodating step, S4 ... temporary compression step, S5 ... compression molding step, C ... clearance.

Claims (7)

粉末状の放射性廃棄物の圧縮成型方法であって、
前記放射性廃棄物と水硬性無機固化材と水とを混合して混合粉体を得る工程であり、前記混合粉体の100質量%に対して、前記放射性廃棄物を75質量%以上、前記水硬性無機固化材と水を、合計で25質量%以下、かつ水硬性無機固化材:水で表わされる質量比で0.9:1.1〜1.1:0.9となる量で混合する混合工程と、
前記混合粉体を収容容器内に収容する収容工程と、
前記収容容器を収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を仮圧縮する仮圧縮工程と、
前記収容容器を前記収容容器保持装置によって保持した状態で、前記収容容器内の前記混合粉体を、前記仮圧縮工程より長時間で本圧縮して成型体を得る圧縮成型工程と
を有することを特徴とする放射性廃棄物の圧縮成型方法。
It is a compression molding method for powdered radioactive waste.
This is a step of mixing the radioactive waste, the water-hardening inorganic solidifying material, and water to obtain a mixed powder, in which the radioactive waste is 75% by mass or more and the water is 100% by mass with respect to 100% by mass of the mixed powder. The hard inorganic solidifying material and water are mixed in an amount of 25% by mass or less in total and a mass ratio of water-hard inorganic solidifying material: water is 0.9: 1.1 to 1.1: 0.9. Mixing process and
A storage step of storing the mixed powder in a storage container, and
A temporary compression step of temporarily compressing the mixed powder in the storage container while the storage container is held by the storage container holding device.
Having the compression molding step of obtaining a molded product by main-compressing the mixed powder in the storage container for a longer time than the temporary compression step while the storage container is held by the storage container holding device. A characteristic compression molding method for radioactive waste.
前記水硬性無機固化材は、ポルトランドセメントであることを特徴とする請求項1記載の放射性廃棄物の圧縮成型方法。 The method for compressing and molding radioactive waste according to claim 1, wherein the hydraulic inorganic solidifying material is Portland cement. 前記仮圧縮工程及び前記圧縮成型工程において、加圧ピストンによって前記収容容器の内容物を加圧し、前記収容容器の内壁と、加圧ピストンの外周の間に、幅が0.5mm以上3mm以下のクリアランスを設けることを特徴とする請求項1又は2に記載の放射性廃棄物の圧縮成型方法。 In the temporary compression step and the compression molding step, the contents of the storage container are pressurized by the pressure piston, and the width between the inner wall of the storage container and the outer circumference of the pressure piston is 0.5 mm or more and 3 mm or less. The method for compressing and molding radioactive waste according to claim 1 or 2, wherein a clearance is provided. 前記成型体の直径Dに対する高さLの比L/Dが1.5以下であることを特徴とする請求項1乃至3のいずれか1項に記載の放射性廃棄物の圧縮成型方法。 The method for compressing and molding radioactive waste according to any one of claims 1 to 3, wherein the ratio L / D of the height L to the diameter D of the molded body is 1.5 or less. 前記仮圧縮工程における加圧時間は瞬時であり、
前記圧縮成型工程における加圧時間は1時間以上であり、
前記仮圧縮工程及び前記圧縮成型工程における加圧力が、10MPa以上13MPa以下であることを特徴とする請求項1乃至4のいずれか1項に記載の放射性廃棄物の圧縮成型方法。
The pressurization time in the temporary compression step is instantaneous,
The pressurization time in the compression molding step is 1 hour or more.
The method for compressing and molding radioactive waste according to any one of claims 1 to 4, wherein the pressing force in the temporary compression step and the compression molding step is 10 MPa or more and 13 MPa or less.
粉末状の放射性廃棄物と、水硬性無機固化材と、水とを混合して混合粉体を生成する混合機と、
前記混合機に、前記混合粉体の100質量%に対して75質量%以上となる量の前記放射性廃棄物を計量して供給する放射性廃棄物供給装置と、
前記混合機に、前記混合粉体の100質量%に対して前記水硬性無機固化材と水が合計で25質量%以下、かつ前記水硬性無機固化材:水で表わされる質量比が0.9:1.1〜1.1:0.9となる量の、前記水硬性無機固化材を計量して供給する水硬性無機固化材供給装置及び前記水を計量して供給する水供給装置と、
前記混合機内の混合粉体を移送して収容容器に収容する混合粉体移送装置と、
前記収容容器を保持する収容容器保持装置と、
前記収容容器内の混合粉体を、前記混合粉体移送装置から複数回に分けて移送して仮圧縮させ、その後に加圧力10MPa以上13MPa以下で加圧して成型させ成形体を形成する圧縮装置と
を有することを特徴とする放射性廃棄物の圧縮成型装置。
A mixer that mixes powdered radioactive waste, a water-hardening inorganic solidifying material, and water to produce a mixed powder.
A radioactive waste supply device that measures and supplies the radioactive waste in an amount of 75% by mass or more with respect to 100% by mass of the mixed powder to the mixer.
In the mixer, the total mass ratio of the water-hard inorganic solidifying material and water is 25% by mass or less with respect to 100% by mass of the mixed powder, and the mass ratio represented by the water-hard inorganic solidifying material: water is 0.9. A water-hard inorganic solidifying material supply device for measuring and supplying the water-hard inorganic solidifying material and a water supply device for measuring and supplying the water in an amount of 1.1 to 1.1: 0.9.
A mixed powder transfer device that transfers the mixed powder in the mixer and stores it in a storage container.
A storage container holding device for holding the storage container and
Compressing the mixed powder of the storage container, the mixed powder transfer device several times to temporary compression and transported separately from, then molded under pressure at less then pressure 10MPa or 13MPa to form a molded body A compression molding device for radioactive waste, which comprises the device.
前記圧縮装置は、加圧ピストンを備え、
前記収容容器の内壁と前記加圧ピストンの外周の間に、幅が0.5mm以上3mm以下のクリアランスを有することを特徴とする請求項6記載の放射性廃棄物の圧縮成型装置。
The compression device includes a pressurizing piston.
The compression molding apparatus for radioactive waste according to claim 6, wherein a clearance having a width of 0.5 mm or more and 3 mm or less is provided between the inner wall of the storage container and the outer circumference of the pressure piston.
JP2017118483A 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste Active JP6871078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118483A JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118483A JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Publications (2)

Publication Number Publication Date
JP2019002824A JP2019002824A (en) 2019-01-10
JP6871078B2 true JP6871078B2 (en) 2021-05-12

Family

ID=65004902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118483A Active JP6871078B2 (en) 2017-06-16 2017-06-16 Compression molding method and compression molding equipment for radioactive waste

Country Status (1)

Country Link
JP (1) JP6871078B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343422A1 (en) * 1983-12-01 1985-06-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR CONDITIONING CONTAMINATED WASTE BY CEMENTING
JPS6178483A (en) * 1984-09-25 1986-04-22 Mitsui Eng & Shipbuild Co Ltd Solidification of incineration ash
JP5111673B1 (en) * 2012-04-18 2013-01-09 株式会社フジコーポレーション Form for creating test piece for test of elution of harmful substances contained in inorganic waste or soil, and method of using the same
JP2015108521A (en) * 2013-12-03 2015-06-11 株式会社東芝 Solidification method and solidification device of radioactive waste

Also Published As

Publication number Publication date
JP2019002824A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP4872910B2 (en) How to adjust the water content of bentonite
JP5416486B2 (en) Method for producing zeolite-containing cured body
RU2731776C1 (en) Method of producing moulded article from geopolymer and system for producing moulded article from geopolymer
JP6247465B2 (en) Radioactive waste solidification device, solidification method for solidified radioactive waste, and method for producing solidified solid waste
JP6871078B2 (en) Compression molding method and compression molding equipment for radioactive waste
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
JPS63289498A (en) Solidifying agent for radioactive waste
JP2015108521A (en) Solidification method and solidification device of radioactive waste
JP2018065731A (en) Method for manufacturing geopolymer molded body and manufacturing system of geopolymer molded body
KR20140132267A (en) The volume reduction processing method of radioactive waste using the powder metallurgy technology
JP6839478B2 (en) Radioactive incineration ash solidifying material and its solidifying method
JP2009137827A (en) Method for manufacturing concrete secondary product and concrete secondary product
JP7487025B2 (en) Manufacturing method and manufacturing device for geopolymer molded body
JP5862814B2 (en) Radiocesium-containing fly ash cement solidification production equipment
JP2021092474A (en) Geopolymer solidified body producing method and geopolymer solidified body producing system
JP2013202464A (en) Solidification treatment method and solidification treated body of combustible waste incineration ash
JP2003502623A (en) Radioactive waste disposal
JP6869843B2 (en) How to suppress dust generation of clinker ash
JP2009209036A (en) Method for producing zeolite-containing hardened body
JP2007210871A (en) Cement-based packing/solidifying material
JP2006096624A (en) Method of manufacturing artificial aggregate using heavy metal contaminated soil
JP2006273600A (en) Adhesion-suppressed slaked lime
Vandevenne et al. The effect of Cs and Sr on the mechanical properties of blast furnace slag inorganic polymer for radioactive waste immobilisation
JP2015068703A (en) Method for processing radioactive material contaminated water
JP2016222494A (en) Production method of coal ash solidified substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150