JP6839478B2 - Radioactive incineration ash solidifying material and its solidifying method - Google Patents

Radioactive incineration ash solidifying material and its solidifying method Download PDF

Info

Publication number
JP6839478B2
JP6839478B2 JP2017028193A JP2017028193A JP6839478B2 JP 6839478 B2 JP6839478 B2 JP 6839478B2 JP 2017028193 A JP2017028193 A JP 2017028193A JP 2017028193 A JP2017028193 A JP 2017028193A JP 6839478 B2 JP6839478 B2 JP 6839478B2
Authority
JP
Japan
Prior art keywords
parts
incineration ash
cement
radioactive
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017028193A
Other languages
Japanese (ja)
Other versions
JP2018132499A (en
Inventor
藤田 英樹
英樹 藤田
Original Assignee
株式会社太平洋コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社太平洋コンサルタント filed Critical 株式会社太平洋コンサルタント
Priority to JP2017028193A priority Critical patent/JP6839478B2/en
Publication of JP2018132499A publication Critical patent/JP2018132499A/en
Application granted granted Critical
Publication of JP6839478B2 publication Critical patent/JP6839478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、放射性焼却灰の固化材及びその固化方法に関する。 The present invention relates to a material for solidifying radioactive incineration ash and a method for solidifying the material.

福島第一原子力発電所の事故により、放射性物質が福島県を中心に広い範囲に拡散した。この放射性物質の中でも放射性セシウム(セシウム137)や放射性ストロンチウムは、半減期が30年と長いため、長期にわたる環境汚染被害が懸念されている。そして、放射性物質を含む汚染廃棄物の焼却により放射性物質が濃縮された焼却灰が、発生している。ここで、放射性セシウムや、放射性ヨウ素等の放射性物質を含む焼却灰を放射性焼却灰と呼ぶ。 Due to the accident at the Fukushima Daiichi Nuclear Power Station, radioactive materials have spread over a wide area, mainly in Fukushima Prefecture. Among these radioactive substances, radioactive cesium (cesium-137) and radioactive strontium have a long half-life of 30 years, so there is concern about long-term environmental pollution damage. Then, incineration ash in which radioactive substances are concentrated is generated by incineration of contaminated waste containing radioactive substances. Here, incineration ash containing radioactive substances such as radioactive cesium and radioactive iodine is referred to as radioactive incineration ash.

また、放射線量が1kg当たり8千ベクレルを超える放射性物質を含む汚染廃棄物は受け入れ先の確保が難しく、放射線量が1kg当たり8千ベクレル以下であっても、放射性焼却灰からの可溶性セシウムは環境中で濃縮する可能性があり、管理型処分場においても一定の配慮が必要となる。その結果、焼却場に保管されたままの焼却灰の固化材が望まれる。 In addition, it is difficult to secure a recipient for contaminated waste containing radioactive substances with a radiation amount of more than 8,000 becquerels per kg, and even if the radiation amount is 8,000 becquerels or less per kg, soluble cesium from radioactive incineration ash is environmentally friendly. There is a possibility of concentration inside, and certain consideration is required even in managed disposal sites. As a result, a solidifying material for incinerated ash as it is stored in the incinerator is desired.

さらに、焼却灰には、共に焼却された廃棄プラスチック等からの塩素分が比較的多量に残留し、処理物が高塩分濃度となることもあり、塩素イオンがセシウムイオン等の固定化に不利となるとの報告もある(特許文献1)。また、セメント固化する場合、焼却灰が嵩だかいため減水剤等の併用によって作業性を向上させることが望ましいが、通常のポリカルボン酸系高性能AE減水剤等では効果が小さく、流動性が不足してセメントとの混練りに比較的多量の水分を要し、固化体の強度が小さくなる。また、焼却灰のセメントに対する比率も減少し、処分容器への焼却灰の充填率が低下してしまう。 Furthermore, in the incinerated ash, a relatively large amount of chlorine content from waste plastics, etc. that were incinerated together remains, and the treated product may have a high salt concentration, which makes chlorine ions disadvantageous for immobilization of cesium ions, etc. There is also a report that it will be (Patent Document 1). In addition, when cement is solidified, it is desirable to improve workability by using a water reducing agent in combination because the incineration ash is bulky, but the effect is small and the fluidity is low with ordinary polycarboxylic acid-based high-performance AE water reducing agents. Insufficiently requires a relatively large amount of water to knead with cement, and the strength of the solidified body decreases. In addition, the ratio of incineration ash to cement also decreases, and the filling rate of incineration ash in the disposal container decreases.

従って、放射性物質を含む、高塩分濃度の放射性焼却灰であっても、処分容器への充填率が高く、固化体形成時の膨張によるひび割れ抑止して、セシウム等放射性物質の金属を固化体に、留置できる固化体及びその固化方法が、望まれている。 Therefore, even if the radioactive incineration ash contains a radioactive substance and has a high salt concentration, the filling rate in the disposal container is high, cracks due to expansion during the formation of the solidified body are suppressed, and the metal of the radioactive substance such as cesium is converted into the solidified body. , A solidified body that can be indwelled and a method for solidifying the solidified body are desired.

特開2013−231742号公報Japanese Unexamined Patent Publication No. 2013-231742

そこで、放射性物質と、高塩分濃度の塩類を含む放射性焼却灰であっても、処分容器への充填率が高く、固化体形成時の膨張によるひび割れ抑止して、放射性物質を安定に保持できる高強度の固化体及び、前記固化体を、迅速な処理で少ない工程数で、作業性良く、行なえる固化方法を提供することを課題とした。 Therefore, even if the radioactive incineration ash contains radioactive substances and salts with high salt concentration, the filling rate in the disposal container is high, cracks due to expansion during solidification can be suppressed, and the radioactive substances can be stably retained. It has been an object of the present invention to provide a strong solidified body and a solidified body capable of performing the solidified body with good workability in a small number of steps by rapid processing.

放射性焼却灰の固定に用いる、ヘキサメタリン酸塩およびセメントを含むことを特徴とする固化材、を提供する。 Provided is a solidifying material, which comprises hexamethaphosphate and cement, which is used for fixing radioactive incineration ash.

前記ヘキサメタリン酸塩がヘキサメタリン酸ナトリウムであり、前記放射性焼却灰が高塩分濃度の可溶性塩類を含有することを特徴とする固化材、を提供する。 Provided is a solidifying material, wherein the hexametaphosphate is sodium hexametaphosphate, and the radioactive incineration ash contains soluble salts having a high salt concentration.

前記放射性焼却灰は、乾燥重量換算で、100質量部に対して、3〜40質量部の塩素分を含む可溶性塩類を含み、前記セメント固化部分(前記セメントと水分の合量で、セメント水和物と未水和物の合量)が、80〜300重量部、前記ヘキサメタリン酸塩が0.1〜3.5重量部であることを特徴とする固化材、を提供する。 The radioactive incineration ash contains soluble salts containing 3 to 40 parts by mass of chlorine with respect to 100 parts by mass in terms of dry weight, and the cement solidified portion (the total amount of the cement and water, cement hydration). Provided is a solidifying material, characterized in that the total amount of the substance and the unhydrate is 80 to 300 parts by mass, and the hexametaphosphate is 0.1 to 3.5 parts by mass.

塩素分が、5〜30質量部の可溶性塩類を含む、乾燥状態換算で100重量部の放射性焼却灰に対して、水分を50〜150重量部、ヘキサメタリン酸ナトリウム0.2〜2.5部、及びセメント70〜200部を添加して混合した後、この混合物を処分容器に移して固化することを特徴とする放射性焼却灰の固化方法、を提供する。 50 to 150 parts by weight of water, 0.2 to 2.5 parts of sodium hexametaphosphate, with respect to 100 parts by weight of radioactive incineration ash containing 5 to 30 parts by mass of soluble salts in terms of chlorine content. And 70 to 200 parts of cement are added and mixed, and then the mixture is transferred to a disposal container and solidified. The method for solidifying radioactive incineration ash is provided.

放射性焼却灰の固化、即ち焼却灰中の放射性物質の溶出を抑止した状態で固化体とするために、ヘキサメタリン酸塩を使用したセメント固化が有効である。 Cement solidification using hexametaphosphate is effective for solidifying radioactive incineration ash, that is, for forming a solidified body in a state where elution of radioactive substances in the incineration ash is suppressed.

ヘキサメタリン酸塩のうち、水への溶解度の点からも、ヘキサメタリン酸ナトリウムが好ましい。ヘキサメタリン酸塩は、常温で粉末状態であり、セメントへの添加の順番は、任意であるが、セメントと比較して少量であって全体に均斉に混ざりがたく、粉末状態で予めセメントと混合すると、添加物内での均一性が向上する。 Of the hexametaphosphates, sodium hexametaphosphate is preferable from the viewpoint of solubility in water. Hexamethaphosphate is in a powder state at room temperature, and the order of addition to cement is arbitrary, but it is a small amount compared to cement and it is difficult to mix evenly throughout, and when it is mixed with cement in advance in a powder state , Improves uniformity within the additive.

セメントは、例えば、ポルトランドセメントが使用できる。 As the cement, for example, Portland cement can be used.

また、ポルトランドセメントには、放射性物質の不溶化剤・吸着剤を含めることができる。例えば、クリノプチロライト、モルデナイト等の天然ゼオライト、合成ゼオライト、シリカゲル、アルミノシリケート系化合物、活性アルミナ、活性炭、ケイチタン酸塩も好ましい。更に、フェロシアン化コバルト、フェロシアン化鉄、フェロシンア化ニッケル等のフェロシアン化塩、酸化マンガン、マンガン砂等のマンガン系吸着剤が好適に用いられる。これらの不溶化剤・吸着剤を含めたものも、セメントとする。 In addition, Portland cement can contain a radioactive substance insolubilizer / adsorbent. For example, natural zeolites such as clinoptilolite and mordenite, synthetic zeolites, silica gel, aluminosilicate compounds, activated alumina, activated carbon, and silicate silicate are also preferable. Further, ferrocyanide salts such as cobalt ferrocyanide, iron ferrocyanide and nickel ferrosinide, and manganese-based adsorbents such as manganese oxide and manganese sand are preferably used. Cement also contains these insolubilizers and adsorbents.

前記放射性焼却灰中の塩素分を含む可溶性塩類は、焼却で生じる塩酸除去や重金属固定のために消石灰を吹き込むことから生じる塩化カルシウム等であり、乾燥重量換算で、焼却灰100質量部に対して、3〜40質量部の塩素分を含む可溶性塩類である。塩素分が3質量部未満、又は40質量部を超えると、ヘキサメタリン酸塩の添加効果は、明瞭でない。 The soluble salts containing chlorine in the radioactive incineration ash are calcium chloride and the like generated by blowing slaked lime for removing hydrochloric acid and fixing heavy metals generated by incineration, and are based on 100 parts by mass of incinerated ash in terms of dry weight. It is a soluble salt containing 3 to 40 parts by mass of chlorine. If the chlorine content is less than 3 parts by mass or more than 40 parts by mass, the effect of adding hexametaphosphate is not clear.

前記焼却灰の、可溶性塩類を含めた100質量部に対して、前記セメント固化部分(前記セメントと水分の合量で、セメント水和物と未水和物の合量)が、80〜300重量部、前記ヘキサメタリン酸塩が0.1〜5.0重量部を混合する。 The cement solidified portion (the total amount of the cement and water, the total amount of cement hydrate and unhydrate) is 80 to 300 weight by weight with respect to 100 parts by mass of the incineration ash including soluble salts. Parts, 0.1 to 5.0 parts by weight of the hexametaphosphate is mixed.

前記セメント固化部分が、80質量部未満では、固化体の強度面で不足であり、300重量部を超えても物性面では過剰スペックであり焼却灰充填率低下も招く。また、前記ヘキサメタリン酸塩が0.1未満では、効果が明瞭でなく、5.0重量部を超えても効果の増大は顕著でなくなる。 If the cement solidified portion is less than 80 parts by mass, the strength of the solidified body is insufficient, and if it exceeds 300 parts by weight, the specifications are excessive in terms of physical properties and the incineration ash filling rate is lowered. Further, when the hexametaphosphate is less than 0.1, the effect is not clear, and even if it exceeds 5.0 parts by weight, the increase in the effect becomes not remarkable.

セメントには、固化する焼却灰に応じて、前記放射性物質の不溶化剤・吸着剤を所定量含めることができる。セシウムについて例示すると、その吸着剤量は、式(1)から算出した分配係数Kdから式(2)により求める。 The cement may contain a predetermined amount of the insolubilizer / adsorbent for the radioactive substance depending on the incineration ash that solidifies. To exemplify cesium, the amount of the adsorbent is obtained by the formula (2) from the partition coefficient Kd calculated from the formula (1).

式(1)に、吸着剤の分配係数の計算式を示した。分配係数Kdは、水相から固相にセシウムイオンを吸着して移行させる実験により算出できる。その実験方法は、所定濃度Coのセシウムイオン水溶液の所定量(V)と吸着剤所定量(m)を混合、振盪して、吸着後のセシウムイオン濃度Cを測定して、Kdを算出する。即ち、Coは、模擬水のセシウムイオン濃度であり、蒸留水を用いて希釈する。Cは、吸着剤で吸着後に測定した前記模擬水中のセシウム濃度である。mは実験に用いた吸着剤量である。ここで算出されたKdから、添加する吸着剤の使用量を求めることができる。このとき、セシウムは、放射性セシウムを含む全量である。 Equation (1) shows a formula for calculating the partition coefficient of the adsorbent. The partition coefficient Kd can be calculated by an experiment in which cesium ions are adsorbed and transferred from the aqueous phase to the solid phase. In the experimental method, a predetermined amount (V) of a cesium ion aqueous solution having a predetermined concentration Co and a predetermined amount (m) of an adsorbent are mixed and shaken, and the cesium ion concentration C after adsorption is measured to calculate Kd. That is, Co is the cesium ion concentration of the simulated water, and is diluted with distilled water. C is the cesium concentration in the simulated water measured after adsorption with an adsorbent. m is the amount of adsorbent used in the experiment. From the Kd calculated here, the amount of the adsorbent to be added can be determined. At this time, cesium is the total amount including radioactive cesium.

式(2)は、測定した分配係数から、添加する吸着剤量を算出する式である。Vは、使用した水分の体積であり、Coは、焼却灰中のセシウムが前記水分にすべて抽出したと仮定したときのイオン濃度であり、Cは、セシウムが吸着剤に吸着されて、前記水分量が変化しないと仮定して、残存すべく設定したセシウム濃度となる。分配係数Kdが大きいと使用する吸着剤量は少なくて済む。これに1以上の安全係数、例えば、1.5を乗じた吸着剤量を最低量として、設定することが好ましい。吸着剤の同一サイトに吸着する陽イオンが存在すること、吸着平衡に至る時間と、水和時間とを勘案するためである。添加においては、焼却灰と水を先に混練りし、ヘキサメタリン酸塩を添加し、次いでセメントの一部としての吸着剤を添加し、さらにポルトランドセメント等を添加することが好ましい。焼却灰中の放射性物質の吸着を円滑にし、さらにヘキサメタリン酸塩の効果を高めるためである。 Equation (2) is an equation for calculating the amount of adsorbent to be added from the measured partition coefficient. V is the volume of water used, Co is the ion concentration when it is assumed that all the cesium in the incineration ash is extracted into the water, and C is the water content when cesium is adsorbed by the adsorbent. Assuming that the amount does not change, the cesium concentration is set to remain. When the partition coefficient Kd is large, the amount of the adsorbent used can be small. It is preferable to set a safety factor of 1 or more, for example, the amount of adsorbent multiplied by 1.5 as the minimum amount. This is because the presence of cations adsorbed on the same site of the adsorbent, the time to reach adsorption equilibrium, and the hydration time are taken into consideration. In addition, it is preferable to knead the incineration ash and water first, add hexametaphosphate, then add an adsorbent as a part of cement, and further add Portland cement or the like. This is to facilitate the adsorption of radioactive substances in the incineration ash and further enhance the effect of hexametaphosphate.

そして、更に、塩素分が、5〜30質量部の可溶性塩類を含む、乾燥状態換算で100重量部の放射性焼却灰に対して、水分を50〜150重量部、ヘキサメタリン酸ナトリウム0.2〜4.0部、及びセメント70〜200部を添加して混合した後、この混合物を処分容器に移して固化して放射性焼却灰の固化することが好ましい。セメントには、不溶化剤・吸着剤が含まれることがより好ましい。 Further, with respect to 100 parts by weight of radioactive incineration ash containing 5 to 30 parts by mass of soluble salts in terms of chlorine content, 50 to 150 parts by weight of water and 0.2 to 4 sodium hexametaphosphate are added. After adding 0.0 part and 70 to 200 parts of cement and mixing, it is preferable to transfer this mixture to a disposal container and solidify it to solidify the radioactive incineration ash. It is more preferable that the cement contains an insolubilizer / adsorbent.

ヘキサメタリン酸ナトリウムを使用すると、放射性焼却灰に塩分濃度の高い可溶性塩類が含まれていても、流動性、作業性を向上させ、低水セメント比で、混練りを可能とし、硬化体強度が向上し、硬化体からの重金属等の溶出を防止することが判明した。その使用量は、0.1〜5.0部である。この範囲をはずれると、前述の効果が小さなものとなる。有機系の減水剤を用いると、特に、錯形成によって長期保存の硬化体からの重金属の溶出防止が不十分であり、放射性物質を含む廃棄物には、不適当であることが判明した。従って、通常のセメント、コンクリートの硬化体製造に持いる各種の有機系減水剤を併用しないことが好ましい。 The use of sodium hexametaphosphate improves fluidity and workability even if the radioactive incineration ash contains soluble salts with a high salt concentration, enables kneading with a low water cement ratio, and improves the strength of the cured product. However, it was found to prevent the elution of heavy metals and the like from the cured product. The amount used is 0.1 to 5.0 parts. If it is out of this range, the above-mentioned effect becomes small. It has been found that the use of organic water reducing agents is not suitable for wastes containing radioactive substances, especially because the prevention of elution of heavy metals from the cured product after long-term storage is insufficient due to complex formation. Therefore, it is preferable not to use various organic water reducing agents that are used in the production of ordinary cement and hardened concrete.

添加後の混合は、パドルミキサー、ヘンシェルミキサー、スクリュー攪拌型ミキサー等の通常の混練機を用いることができる。混練時間は、最低2分以上が好ましい。 For mixing after addition, a normal kneader such as a paddle mixer, a Henschel mixer, or a screw stirring type mixer can be used. The kneading time is preferably at least 2 minutes or more.

混練後の混合物は、処分容器に移して、20℃の常温で保管養生することが好ましい。このとき、より高温、例えば、45℃で養生することが、より好ましい。常温より高い温度での養生で、強度も短期に向上する。 The mixture after kneading is preferably transferred to a disposal container and stored and cured at room temperature of 20 ° C. At this time, it is more preferable to cure at a higher temperature, for example, 45 ° C. Curing at a temperature higher than normal temperature improves strength in a short period of time.

処分容器は、ドラム缶等を用いる。ドラム缶等の遮蔽された密閉容器では、水和熱の発生、蓄積が放熱量を上回り、45℃以上の養生にするのが容易となる。密閉容器でなくとも、水分の蒸散が適度に抑えられる容器であれば、45℃以上の養生条件が満たさなくとも、20℃程度の常温で、水和反応が進行する。 A drum can or the like is used as the disposal container. In a shielded closed container such as a drum can, the generation and accumulation of heat of hydration exceeds the amount of heat radiation, and it becomes easy to cure at 45 ° C. or higher. Even if it is not a closed container, if it is a container in which evaporation of water can be appropriately suppressed, the hydration reaction proceeds at a room temperature of about 20 ° C. even if the curing conditions of 45 ° C. or higher are not satisfied.

放射性物質と、高塩分濃度の塩類を含む放射性焼却灰であっても、処分容器への充填率が高く、固化体形成時の膨張によるひび割れ抑止して、放射性物質を安定に保持できる高強度の固化体及び、前記固化体を、迅速な処理で少ない工程数で、作業性良く、行なえる固化方法が実現できた。 Even with radioactive incineration ash containing radioactive substances and salts with high salinity, the filling rate in the disposal container is high, cracks due to expansion during solidification are suppressed, and the radioactive substances can be stably retained. It was possible to realize a solidified body and a solidified method capable of performing the solidified body with good workability with a small number of steps by rapid processing.

[実施の形態]
1.使用材料
焼却灰:一般ごみの焼却灰であり、化学組成(Cl以外は酸化物表示)を表1に示した。
セメント:太平洋セメント社製普通ポルトランドセメント(以下、OPC)
分散剤:ラサ工業社製ヘキサメタリン酸ナトリウム(以下、SHMP)
有機系分散剤:ポリカルボン酸系エーテル系高性能AE減水剤(SP)
水:イオン交換水
[Embodiment]
1. Materials used Incineration ash: Incineration ash of general waste, the chemical composition (oxide display except Cl) is shown in Table 1.
Cement: Ordinary Portland cement manufactured by Taiheiyo Cement (hereinafter referred to as OPC)
Dispersant: Sodium hexametaphosphate manufactured by Rasa Industries, Ltd. (hereinafter, SHMP)
Organic dispersant: Polycarboxylic acid-based ether-based high-performance AE water reducing agent (SP)
Water: Ion-exchanged water

2.硬化体作製
テーブルミキサーで焼却灰と水を2分間混練りし、SHMP又はSPを添加した。配合等は表2のとおりである。
2. Cured product preparation The incineration ash and water were kneaded with a table mixer for 2 minutes, and SHMP or SP was added. The composition and the like are shown in Table 2.

次いで、セメントであるOPCを添加し、その後、2分間混練を継続した。比較例1では、分散剤を用いず、比較例2では、実施例1におけるSHMPをSPで置換した。 Next, OPC, which is a cement, was added, and then kneading was continued for 2 minutes. In Comparative Example 1, no dispersant was used, and in Comparative Example 2, SHMP in Example 1 was replaced with SP.

フロー試験は、JASS 15M−103 セルフレベリング材の品質基準 に、準拠して行った。 The flow test was performed in accordance with the quality standards for JASS 15M-103 self-leveling material.

比較例1については、分散剤無添加で、ようやく混練りできる配合であり、焼却灰の充填率が、30質量%で、ドラム缶等処分容器への充填には、強い振動付与やプレスが必要な流動性であった。 Comparative Example 1 is a formulation that can be kneaded at last without adding a dispersant, has a filling rate of incineration ash of 30% by mass, and requires strong vibration or pressing to fill a disposal container such as a drum can. It was liquidity.

比較例2については、有機系であるSPを使用したが、比較例1と同等のフロー値を示し、流動性の改善は見られなかった。焼却灰無添加の固練りセメントペーストでは、SP1.0%は十分な流動性向上が認められる添加量であることから、焼却灰及びその含有する塩類の影響が現れている。 For Comparative Example 2, an organic SP was used, but the flow value was equivalent to that of Comparative Example 1, and no improvement in fluidity was observed. In the hard-kneaded cement paste to which no incineration ash is added, SP1.0% is an addition amount at which a sufficient improvement in fluidity is observed, so that the influence of the incineration ash and the salts contained therein appears.

一方、実施例1では、流動性にすぐれて、処分容器への移動も容易で、充填率も確保され、
固化体形成時の膨張によるひび割れ抑止して、放射性物質を安定に保持できる高強度の固化体が得られた。
On the other hand, in Example 1, the fluidity is excellent, the movement to the disposal container is easy, and the filling rate is secured.
A high-strength solidified body capable of stably holding radioactive substances was obtained by suppressing cracks due to expansion during solidified body formation.

Claims (3)

放射性焼却灰の固定に用いる、ヘキサメタリン酸塩およびセメントを含む固化材であって、
ヘキサメタリン酸塩がヘキサメタリン酸ナトリウムであり、放射性焼却灰が、その100質量部に対して、塩素分が、3〜40質量部の高塩分濃度の可溶性塩類を含有することを特徴とする固化材。
A solidifying material containing hexametaphosphate and cement used for fixing radioactive incineration ash.
A solidifying material characterized in that the hexametaphosphate is sodium hexametaphosphate, and the radioactive incineration ash contains soluble salts having a high salt concentration of 3 to 40 parts by mass in chlorine content with respect to 100 parts by mass thereof.
放射性焼却灰は、乾燥重量換算で、100質量部に対して、3〜40質量部の塩素分を含む可溶性塩類を含み、セメント固化部分(セメントと水分の合量で、セメント水和物と未水和物の合量)が、80〜300重量部、ヘキサメタリン酸ナトリウムが0.1〜3.5重量部であることを特徴とする請求項1に記載の固化材。 The radioactive incineration ash contains soluble salts containing 3 to 40 parts by mass of chlorine with respect to 100 parts by mass in terms of dry weight, and the cement solidified portion (the total amount of cement and water, cement hydrate and not yet). The solidifying material according to claim 1, wherein the total amount of hydrate is 80 to 300 parts by mass, and sodium hexametaphosphate is 0.1 to 3.5 parts by mass. 塩素分が、5〜30質量部の可溶性塩類を含む、乾燥状態換算で100重量部の放射性焼却灰に対して、水分を50〜150重量部、ヘキサメタリン酸ナトリウム0.2〜2.5部、及びセメント70〜200部を添加して混合した後、この混合物を処分容器に移して固化することを特徴とする放射性焼却灰の固化方法。 50 to 150 parts by weight of water, 0.2 to 2.5 parts of sodium hexametaphosphate, with respect to 100 parts by weight of radioactive incineration ash containing 5 to 30 parts by mass of soluble salts in terms of chlorine content. A method for solidifying radioactive incineration ash, which comprises adding 70 to 200 parts of cement and mixing the mixture, and then transferring the mixture to a disposal container to solidify the mixture.
JP2017028193A 2017-02-17 2017-02-17 Radioactive incineration ash solidifying material and its solidifying method Active JP6839478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028193A JP6839478B2 (en) 2017-02-17 2017-02-17 Radioactive incineration ash solidifying material and its solidifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028193A JP6839478B2 (en) 2017-02-17 2017-02-17 Radioactive incineration ash solidifying material and its solidifying method

Publications (2)

Publication Number Publication Date
JP2018132499A JP2018132499A (en) 2018-08-23
JP6839478B2 true JP6839478B2 (en) 2021-03-10

Family

ID=63248906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028193A Active JP6839478B2 (en) 2017-02-17 2017-02-17 Radioactive incineration ash solidifying material and its solidifying method

Country Status (1)

Country Link
JP (1) JP6839478B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060442B1 (en) * 2018-11-07 2019-12-30 성신양회(주) Cement solidifying composition for handling of radioactive waste
CN114719268A (en) * 2022-03-15 2022-07-08 中核四川环保工程有限责任公司 Method for solidifying incineration pyrolysis ash of low-emission organic waste liquid

Also Published As

Publication number Publication date
JP2018132499A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
TW393448B (en) Process for rendering ash inert
Saeed et al. Strength of lime-cement stabilized tropical lateritic clay contaminated by heavy metals
CN101265070A (en) Sludge solidifying agent and application thereof
JP5963177B2 (en) Method for treating solid heavy metal contaminated material and method for producing cement solidified material
JP6839478B2 (en) Radioactive incineration ash solidifying material and its solidifying method
JP2006272286A (en) Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
JP6323498B2 (en) Insolubilizer and insolubilization method
JP6801938B2 (en) Radioactive waste solidification treatment method
DE2531056C3 (en) Process for solidifying an aqueous solution containing radioactive or toxic waste materials
Wang et al. Immobilization of simulated low and intermediate level waste in alkali-activated slag-fly ash-metakaolin hydroceramics
EP2835359A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP2010163619A (en) Soil amelioration grouting material and method for insolubilizing soil pollutant using the grouting material
JP6941514B2 (en) Method for immobilizing cesium in cesium-containing waste
EP0355507B1 (en) Process for solidifying liquid waste concentrates
JP5792974B2 (en) Soil-modifying composition and soil-modifying method
JP6905352B2 (en) Soil reforming composition and soil reforming method
JP4093808B2 (en) Soil solidifying agent
JPH1076298A (en) Method for deodorizing and solidifying sludge or dredging sludge
JP5934021B2 (en) Method for producing cesium adsorbent
JP6227267B2 (en) Insolubilizing and solidifying material for specific harmful substances containing gypsum and method for improving soil using the same
JP2015068703A (en) Method for processing radioactive material contaminated water
JP2007204294A (en) Solidifying material and solidified body utilizing the solidifying material
JP2009062221A (en) Production method of dust-suppresing hydraulic material being
JP2009233646A (en) Method for treating toxic component by solidifying waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6839478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250