JP6858799B2 - Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires - Google Patents

Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires Download PDF

Info

Publication number
JP6858799B2
JP6858799B2 JP2019014600A JP2019014600A JP6858799B2 JP 6858799 B2 JP6858799 B2 JP 6858799B2 JP 2019014600 A JP2019014600 A JP 2019014600A JP 2019014600 A JP2019014600 A JP 2019014600A JP 6858799 B2 JP6858799 B2 JP 6858799B2
Authority
JP
Japan
Prior art keywords
layer
thermoplastic resin
insulated wire
resin layer
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014600A
Other languages
Japanese (ja)
Other versions
JP2020123487A (en
Inventor
智子 八本
智子 八本
秀雄 福田
秀雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Essex Furukawa Magnet Wire Japan Co Ltd
Original Assignee
Essex Furukawa Magnet Wire Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essex Furukawa Magnet Wire Japan Co Ltd filed Critical Essex Furukawa Magnet Wire Japan Co Ltd
Priority to JP2019014600A priority Critical patent/JP6858799B2/en
Publication of JP2020123487A publication Critical patent/JP2020123487A/en
Application granted granted Critical
Publication of JP6858799B2 publication Critical patent/JP6858799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Description

本発明は、絶縁電線、コイル及び電気・電子機器並びに絶縁電線の製造方法に関する。 The present invention relates to an insulated wire, a coil, an electric / electronic device, and a method for manufacturing an insulated wire.

導体が絶縁層で被覆された絶縁電線は、モータや変圧器に代表される電気・電子機器に組み込まれて使用されている。近年、モータ効率等の向上が要求され、高電圧のモータ駆動による出力の向上が求められるが、このモータの出力向上は発熱量の増大を招く。 Insulated electric wires whose conductors are covered with an insulating layer are used by being incorporated in electrical and electronic devices such as motors and transformers. In recent years, improvement of motor efficiency and the like is required, and improvement of output by driving a high voltage motor is required. However, improvement of output of this motor causes an increase in heat generation amount.

コイルにおいて、絶縁電線は曲率の大きい曲げに付された状態で固定される。そのため、導体と絶縁層との間には高い密着性が要求される。また、この密着性の向上は、絶縁電線同士の固着力の向上にも寄与する。また、絶縁電線には、上述した高圧下の使用によるコイル温度の上昇によっても絶縁破壊を生じにくい特性も求められる。この温度上昇による絶縁破壊は、絶縁層の放熱性を高めることにより抑制できる。放熱性を向上させた絶縁電線として、例えば、特許文献1には、導体と、この導体上に特定の構造を有する液晶ポリエステルからなる絶縁層とを有する絶縁電線が記載されている。 In the coil, the insulated wire is fixed in a state of being attached to a bend having a large curvature. Therefore, high adhesion is required between the conductor and the insulating layer. In addition, this improvement in adhesion also contributes to the improvement in the adhesive force between the insulated wires. Further, the insulated wire is also required to have a characteristic that dielectric breakdown is unlikely to occur even if the coil temperature rises due to the above-mentioned use under high voltage. Dielectric breakdown due to this temperature rise can be suppressed by increasing the heat dissipation of the insulating layer. As an insulated wire having improved heat dissipation, for example, Patent Document 1 describes an insulated wire having a conductor and an insulating layer made of liquid crystal polyester having a specific structure on the conductor.

特開2014−225433号公報Japanese Unexamined Patent Publication No. 2014-225433

本発明は、絶縁層が導体から剥がれにくく、絶縁電線間の固着力にも優れ、さらに放熱性に優れ、高圧下、高温下の使用においても絶縁破壊を生じにくい絶縁電線を提供することを課題とする。また、本発明は、この絶縁電線を使用したコイル及び電気・電子機器を提供することを課題とする。また、本発明は、上記絶縁電線の製造方法を提供することを課題とする。 An object of the present invention is to provide an insulated wire in which the insulating layer is hard to peel off from the conductor, the adhesive force between the insulated wires is excellent, the heat dissipation is excellent, and the dielectric breakdown is hard to occur even when used under high pressure and high temperature. And. Another object of the present invention is to provide a coil and an electric / electronic device using this insulated electric wire. Another object of the present invention is to provide a method for manufacturing the above-mentioned insulated electric wire.

すなわち、本発明の上記課題は、以下の手段によって達成された。
<1>
導体上に熱可塑性樹脂層を有する絶縁電線であって、
前記熱可塑性樹脂層を構成する下記の層a、層b及び層cの熱伝導率が、下記(条件1)〜(条件3)を満たす絶縁電線。
(条件1)
層aの熱伝導率<層bの熱伝導率<層cの熱伝導率
(条件2)
4%≦{(層cの熱伝導率−層aの熱伝導率)/層aの熱伝導率}×100≦50%
(条件3)
層aの熱伝導率が0.1W/mK以上であり、層cの熱伝導率が0.5W/mK以下
ここで、層a、層b及び層cは、前記熱可塑性樹脂層の厚さを100%とし、前記熱可塑性樹脂層を厚み方向に3つに分割した3層のサブ層を想定した場合における各サブ層に対応し、前記熱可塑性樹脂層の前記導体と接する面から最外層表面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層aとし、前記熱可塑性樹脂層の最外層表面から前記導体と接する面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層cとし、層aとcの間の層を層bとする。
That is, the above object of the present invention has been achieved by the following means.
<1>
An insulated wire having a thermoplastic resin layer on a conductor.
An insulated wire in which the thermal conductivity of the following layers a, b, and c constituting the thermoplastic resin layer satisfies the following (condition 1) to (condition 3).
(Condition 1)
Thermal conductivity of layer a <thermal conductivity of layer b <thermal conductivity of layer c (condition 2)
4% ≤ {(thermal conductivity of layer c-thermal conductivity of layer a) / thermal conductivity of layer a} x 100 ≤ 50%
(Condition 3)
The thermal conductivity of the layer a is 0.1 W / mK or more, and the thermal conductivity of the layer c is 0.5 W / mK or less. Here, the layers a, b, and c are the thicknesses of the thermoplastic resin layer. Is 100%, and corresponds to each sub-layer in the case where three sub-layers in which the thermoplastic resin layer is divided into three in the thickness direction are assumed, and the outermost layer from the surface of the thermoplastic resin layer in contact with the conductor. The layer a is formed up to a thickness of up to 10% in the thickness direction of the thermoplastic resin layer toward the surface, and the thickness of the thermoplastic resin layer is directed from the outermost layer surface of the thermoplastic resin layer toward the surface in contact with the conductor. The layer c is defined as having a thickness of up to 10% in the direction, and the layer between layers a and c is defined as layer b.

<2>
前記熱可塑性樹脂層が、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリケトン、ポリフェニレンスルフィド又は熱可塑性ポリイミドを含んでなる結晶性樹脂層である、<1>に記載の絶縁電線。
<3>
前記導体が平角導体である、<1>又は<2>に記載の絶縁電線。
<4>
<1>〜<3>のいずれか1項に記載の絶縁電線を巻回してなるコイル。
<5>
<4>に記載のコイルを用いてなる電気・電子機器。
<6>
前記層cをアニールする工程を含む、<1>〜<3>のいずれか1項に記載の絶縁電線の製造方法。
<2>
The insulated wire according to <1>, wherein the thermoplastic resin layer is a crystalline resin layer containing polyetheretherketone, polyetherketoneketone, polyketone, polyphenylene sulfide, or thermoplastic polyimide.
<3>
The insulated wire according to <1> or <2>, wherein the conductor is a flat conductor.
<4>
A coil formed by winding the insulated wire according to any one of <1> to <3>.
<5>
An electrical / electronic device using the coil according to <4>.
<6>
The method for manufacturing an insulated wire according to any one of <1> to <3>, which comprises a step of annealing the layer c.

本発明の絶縁電線は、絶縁層が導体から剥がれにくく、絶縁電線間の固着力にも優れ、さらに放熱性に優れ、高圧下、高温下の使用においても絶縁破壊を生じにくい。また、本発明のコイルは、上記絶縁電線を巻回してなり、絶縁層が導体から剥がれにくく、絶縁電線間の固着力にも優れ、さらに放熱性に優れ、高圧下、高温下の使用においても絶縁破壊を生じにくい。また、本発明の電気・電子機器は、上記コイルを具備し、このコイルを構成する絶縁電線は、絶縁層が導体から剥がれにくく、絶縁電線間の固着力にも優れ、さらに放熱性に優れ、高圧下、高温下の使用においても絶縁破壊を生じにくい。また、本発明の絶縁電線の製造方法によれば、本発明の絶縁電線を提供できる。 In the insulated wire of the present invention, the insulating layer is hard to peel off from the conductor, the adhesive force between the insulated wires is excellent, the heat dissipation is excellent, and the dielectric breakdown is hard to occur even when used under high pressure and high temperature. Further, the coil of the present invention is formed by winding the above-mentioned insulated wire, the insulating layer is hard to be peeled off from the conductor, the adhesive force between the insulated wires is excellent, the heat dissipation is excellent, and even when used under high pressure and high temperature. Less likely to cause dielectric breakdown. Further, the electric / electronic device of the present invention includes the above-mentioned coil, and in the insulated wire constituting this coil, the insulating layer is hard to be peeled off from the conductor, the adhesive force between the insulated wires is excellent, and the heat dissipation is excellent. Dielectric breakdown is unlikely to occur even when used under high pressure or high temperature. Further, according to the method for manufacturing an insulated wire of the present invention, the insulated wire of the present invention can be provided.

図1は、本発明の絶縁電線の一実施態様を示した概略断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an insulated electric wire of the present invention. 図2は、本発明の絶縁電線の別の実施態様を示した概略断面図である。FIG. 2 is a schematic cross-sectional view showing another embodiment of the insulated wire of the present invention.

<絶縁電線>
本発明の絶縁電線は、導体上に絶縁層として熱可塑性樹脂層を有する。
前記熱可塑性樹脂層(厚さを100%とする)を厚み方向に3つに分割した3層のサブ層を想定し、前記熱可塑性樹脂層の前記導体と接する面から最外層表面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層aとし、前記熱可塑性樹脂層の最外層表面から前記導体と接する面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層cとし、層aとcの間の層を層bとする。
層a、層b及び層cの熱伝導率が、下記(条件1)〜(条件3)を満たす。
<Insulated wire>
The insulated wire of the present invention has a thermoplastic resin layer as an insulating layer on the conductor.
Assuming three sub-layers in which the thermoplastic resin layer (thickness is 100%) is divided into three in the thickness direction, the surface of the thermoplastic resin layer in contact with the conductor is directed toward the outermost surface. A layer a is formed up to a thickness of 10% in the thickness direction of the thermoplastic resin layer, and the thickness is formed in the thickness direction of the thermoplastic resin layer from the outermost surface of the thermoplastic resin layer toward the surface in contact with the conductor. The layer up to 10% is designated as layer c, and the layer between layers a and c is designated as layer b.
The thermal conductivity of the layers a, b and c satisfies the following (condition 1) to (condition 3).

本発明において、層a〜cの熱伝導率は、実施例に記載の方法により、測定・算出される値である。 In the present invention, the thermal conductivity of the layers a to c is a value measured and calculated by the method described in the examples.

(条件1)
層aの熱伝導率<層bの熱伝導率<層cの熱伝導率
(Condition 1)
Thermal conductivity of layer a <thermal conductivity of layer b <thermal conductivity of layer c

(条件2)
4%≦{(層cの熱伝導率−層aの熱伝導率)/層aの熱伝導率}×100≦50%
(Condition 2)
4% ≤ {(thermal conductivity of layer c-thermal conductivity of layer a) / thermal conductivity of layer a} x 100 ≤ 50%

(条件3)
層aの熱伝導率が0.1W/mK以上であり、層cの熱伝導率が0.5W/mK以下
(Condition 3)
The thermal conductivity of layer a is 0.1 W / mK or more, and the thermal conductivity of layer c is 0.5 W / mK or less.

本発明の絶縁電線が(条件1)〜(条件3)を満たすことにより、すなわち、熱伝導率が(条件3)の範囲内で略グラジエント形態であることにより、本発明の絶縁電線は、絶縁層が導体から剥がれにくく、絶縁電線間の固着力にも優れ、さらに放熱性に優れ、絶縁劣化が抑制される。 The insulated wire of the present invention is insulated by satisfying (Condition 1) to (Condition 3), that is, by having a substantially gradient form in the thermal conductivity within the range of (Condition 3). The layer is hard to peel off from the conductor, the adhesive force between the insulated wires is excellent, the heat dissipation is excellent, and the deterioration of insulation is suppressed.

(条件2)の下限は5%以上であることが好ましく、7%以上であることがより好ましい。一方、(条件2)の上限は30%以下であることが好ましく、20%以下であることがより好ましい。 The lower limit of (Condition 2) is preferably 5% or more, and more preferably 7% or more. On the other hand, the upper limit of (Condition 2) is preferably 30% or less, more preferably 20% or less.

本発明において、導体上に熱可塑性樹脂層を有するとは、導体の外周に直接、熱可塑性樹脂層を有することを意味する。すなわち、導体と熱可塑性樹脂層との間に他の層(例えば、接着剤層、エナメル層)を設けることなく、導体の外周面に接した状態で熱可塑性樹脂層を有することを意味する。 In the present invention, having a thermoplastic resin layer on a conductor means having a thermoplastic resin layer directly on the outer periphery of the conductor. That is, it means that the thermoplastic resin layer is provided in contact with the outer peripheral surface of the conductor without providing another layer (for example, an adhesive layer or an enamel layer) between the conductor and the thermoplastic resin layer.

本発明の絶電電線が有する熱可塑性樹脂層は、1層構造でも2層以上の構造でもよいが、1層構造が好ましい。なお、本発明において、含有される樹脂及び必要に応じて含有される添加剤の種類と含有量が同じ層を互いに接して積層した場合、積層された層全体を合わせて1層とみなす。一方、同じ樹脂で構成されていても添加剤の種類又は含有量が異なる層を互いに接して積層した場合、積層された層各々を1層とみなす。 The thermoplastic resin layer of the electrostatic wire of the present invention may have a one-layer structure or a two-layer or more structure, but a one-layer structure is preferable. In the present invention, when layers having the same type and content of the resin contained and the additive contained as necessary are laminated in contact with each other, the entire laminated layers are regarded as one layer in total. On the other hand, when layers made of the same resin but having different types or contents of additives are laminated in contact with each other, each of the laminated layers is regarded as one layer.

本発明の絶縁電線の寸法は、用途、使用場面等によって設定することができ、断面が円形である場合、外径として、0.33〜3.45mmが好ましく、0.43〜3.15mmがより好ましい。断面が矩形である場合、幅(長辺)として1.03〜5.45mmが好ましく、1.43〜4.45mmがより好ましい。厚さ(短辺)として、0.43〜3.45mmが好ましく、0.53〜2.95mmがより好ましい。 The dimensions of the insulated wire of the present invention can be set depending on the application, usage situation, etc., and when the cross section is circular, the outer diameter is preferably 0.33 to 3.45 mm, preferably 0.43 to 3.15 mm. More preferred. When the cross section is rectangular, the width (long side) is preferably 1.03 to 5.45 mm, more preferably 1.43 to 4.45 mm. The thickness (short side) is preferably 0.43 to 3.45 mm, more preferably 0.53 to 2.95 mm.

図1に概略断面図を示した本発明の絶縁電線の一実施態様は、断面が矩形の導体1と、導体1の外周面を直接被覆する熱可塑性樹脂層(A)5とを有する絶縁電線10である。
熱可塑性樹脂層(A)5は、符号2で示される層aと、符号3で示される層bと、符号4で示される層cからなる。この層a、層b及び層cの熱伝導率が、上記(条件1)〜(条件3)を満たす。
One embodiment of the insulated wire of the present invention, whose schematic cross-sectional view is shown in FIG. 1, is an insulated wire having a conductor 1 having a rectangular cross section and a thermoplastic resin layer (A) 5 that directly covers the outer peripheral surface of the conductor 1. It is 10.
The thermoplastic resin layer (A) 5 includes a layer a represented by reference numeral 2, a layer b represented by reference numeral 3, and a layer c represented by reference numeral 4. The thermal conductivity of the layers a, b and c satisfies the above (condition 1) to (condition 3).

図2に概略断面図を示した本発明の絶縁電線の別の実施態様(絶縁電線20)は、熱可塑性樹脂層(A)5上に、熱可塑性樹脂層(B)6を有すること以外は、絶縁電線10と同じである。なお、熱可塑性樹脂層(A)を構成する樹脂と熱可塑性樹脂層(B)を構成する樹脂は互いに別種の樹脂であり、熱可塑性樹脂層(A)5を構成する層a〜cの熱伝導率よりも、熱可塑性樹脂層(B)6の熱伝導率は大きいことが好ましい。ただし、熱可塑性樹脂層(B)6の熱伝導率は0.5W/mK以下であることが好ましい。 Another embodiment of the insulated wire of the present invention (insulated wire 20) whose schematic cross-sectional view is shown in FIG. 2 is that the thermoplastic resin layer (B) 6 is provided on the thermoplastic resin layer (A) 5. , The same as the insulated wire 10. The resin constituting the thermoplastic resin layer (A) and the resin constituting the thermoplastic resin layer (B) are different types of resins from each other, and the heat of the layers a to c constituting the thermoplastic resin layer (A) 5 is generated. It is preferable that the thermoplastic resin layer (B) 6 has a higher thermal conductivity than the conductivity. However, the thermal conductivity of the thermoplastic resin layer (B) 6 is preferably 0.5 W / mK or less.

なお、図1及び図2において、導体の断面積、及び熱可塑性樹脂層の厚さは、適宜設定できる。 In addition, in FIGS. 1 and 2, the cross-sectional area of the conductor and the thickness of the thermoplastic resin layer can be appropriately set.

(導体)
本発明で使用する導体の断面形状は、矩形(正方形を含む平角形状)であっても円形であっても構わないが、矩形の平角導体が好ましい。
平角導体は、円形のものと比較し、絶縁電線の放熱性をより向上させることができる。
平角導体は、角部からの部分放電を抑制する点において、図1に示すように、導体の長手方向に垂直な断面の4隅に面取り(曲率半径r)を設けた形状であることが好ましい。曲率半径rは、0.6mm以下が好ましく、0.2〜0.4mmがより好ましい。
導体の大きさは、特に限定されないが、平角導体の場合、矩形の断面形状において、幅(長辺)は1.0〜5.0mmが好ましく、1.4〜4.0mmがより好ましく、厚さ(短辺)は0.4〜3.0mmが好ましく、0.5〜2.5mmがより好ましい。幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)は、1:1〜1:4が好ましい。一方、断面形状が円形の導体の場合、直径は0.3〜3.0mmが好ましく、0.4〜2.7mmがより好ましい。なお、幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)が1:1のとき、長辺とは1対の対向する辺を意味し、短辺とは他の1対の対向する辺を意味する。
(conductor)
The cross-sectional shape of the conductor used in the present invention may be rectangular (flat shape including a square) or circular, but a rectangular flat conductor is preferable.
The flat conductor can further improve the heat dissipation of the insulated wire as compared with the circular conductor.
As shown in FIG. 1, the flat conductor preferably has a shape in which chamfers (radius of curvature r) are provided at four corners of a cross section perpendicular to the longitudinal direction of the conductor in terms of suppressing partial discharge from the corners. .. The radius of curvature r is preferably 0.6 mm or less, more preferably 0.2 to 0.4 mm.
The size of the conductor is not particularly limited, but in the case of a flat conductor, the width (long side) is preferably 1.0 to 5.0 mm, more preferably 1.4 to 4.0 mm, and the thickness in the rectangular cross-sectional shape. The width (short side) is preferably 0.4 to 3.0 mm, more preferably 0.5 to 2.5 mm. The ratio (thickness: width) of the length (thickness: width) of the width (long side) and the thickness (short side) is preferably 1: 1 to 1: 4. On the other hand, in the case of a conductor having a circular cross-sectional shape, the diameter is preferably 0.3 to 3.0 mm, more preferably 0.4 to 2.7 mm. When the ratio (thickness: width) of the length of the width (long side) and the thickness (short side) is 1: 1, the long side means a pair of opposite sides, and the short side means a pair of opposite sides. It means another pair of opposite sides.

(熱可塑性樹脂層)
本発明に用いられる熱可塑性樹脂に含まれるポリマーは特に制限されないが、具体例として、ポリアミド(PA)(ナイロン)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリフェニレンスルフィド(PPS)、ポリアリレート(Uポリマー)、ポリアミドイミド、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)(変性ポリエーテルエーテルケトン(変性PEEK)を含む)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、ポリアミドイミド(PAI)、液晶ポリエステル、ポリエチレンテレフタレート(PET)、及び芳香族ポリアミド樹脂(芳香族PA)が挙げられる。
(Thermoplastic resin layer)
The polymer contained in the thermoplastic resin used in the present invention is not particularly limited, and specific examples thereof include polyamide (PA) (nylon), polyacetal (POM), polycarbonate (PC), polyphenylene ether (including modified polyphenylene ether), and the like. Polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polysulfone (PSF), polyethersulfone (PES), polyketone (PK), polyphenylene sulfide (PPS), polyallylate (U polymer), Polyamideimide, polyetherketone (PEK), polyaryletherketone (PAEK) (including modified polyetheretherketone (modified PEEK)), tetrafluoroethylene / ethylene copolymer (ETFE), polyetheretherketone (PEEK) , Polyetherketone Ketone (PEKK), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), thermoplastic polyimide resin (TPI), polyamideimide (PAI), liquid crystal polyester, polyethylene Examples thereof include terephthalate (PET) and aromatic polyamide resin (aromatic PA).

これらのポリマーのなかでも、絶縁電線の耐熱性を高めるため、PEEK、PEKK、PK、PPS及びTPIが好ましい。 Among these polymers, PEEK, PEKK, PK, PPS and TPI are preferable in order to increase the heat resistance of the insulated wire.

本発明において、各熱可塑性樹脂層は、これらポリマーに加えて、通常の添加剤を含有していてもよい。各熱可塑性樹脂層中の上記ポリマーの含有量は、特に制限されないが、例えば、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、100質量%であってもよい。
各熱可塑性樹脂層の膜厚は、10μm以上250μm以下が好ましく、10μm以上200μm以下がより好ましく、10μm以上150μm以下がより好ましい。
In the present invention, each thermoplastic resin layer may contain ordinary additives in addition to these polymers. The content of the polymer in each thermoplastic resin layer is not particularly limited, but is, for example, 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, and 100% by mass. May be good.
The film thickness of each thermoplastic resin layer is preferably 10 μm or more and 250 μm or less, more preferably 10 μm or more and 200 μm or less, and more preferably 10 μm or more and 150 μm or less.

<絶縁電線の製造方法>
本発明の絶縁電線の製造方法は特に制限されないが、具体例として、以下の3つの製造方法を挙げることができる。
<Manufacturing method of insulated wire>
The method for manufacturing the insulated wire of the present invention is not particularly limited, and specific examples thereof include the following three manufacturing methods.

(アニール工程を含む製造方法)
この製造方法は、(1)押出被覆工程、(2)冷却工程及び(3)アニール工程をこの順に含む。(1)及び(2)は、例えば、特開2016−058230号公報を参照して行うことができる。
(1)押出被覆工程は、導体を心線とし、導体と相似形の押出ダイ及び押出機のスクリューを用いて熱可塑性樹脂を導体上に押出被覆することにより熱可塑性樹脂層を形成することができる。熱可塑性樹脂の加熱温度は、熱可塑性樹脂の融点又はガラス転移温度を考慮して、例えば、200〜450℃とすることができる。
(2)冷却工程は、例えば、10〜40℃で行うことができる。冷却時間は、絶縁電線製造装置の冷却区間の長さ及び搬送速度等により、適宜調節することができる。
(3)アニール工程は、熱可塑性樹脂層の表面を、例えば、150〜300℃で加熱することにより行うことができる。
導体は、(1)押出被覆工程を行う温度未満(例えば、常温)にして使用し、導体と押し出された熱可塑性樹脂が接する際に、熱可塑性樹脂層の導体側が冷却されること、及び(2)の冷却工程により、層aの熱伝導率<層bの熱伝導率とすることができ、(3)アニール工程により層bの熱伝導率<層cの熱伝導率にすることができる。
(Manufacturing method including annealing process)
This manufacturing method includes (1) extrusion coating step, (2) cooling step, and (3) annealing step in this order. (1) and (2) can be carried out, for example, with reference to Japanese Patent Application Laid-Open No. 2016-058230.
(1) In the extrusion coating step, a thermoplastic resin layer can be formed by extruding and coating a thermoplastic resin on a conductor using an extrusion die having a shape similar to that of the conductor and a screw of an extruder with the conductor as a core wire. it can. The heating temperature of the thermoplastic resin can be, for example, 200 to 450 ° C. in consideration of the melting point of the thermoplastic resin or the glass transition temperature.
(2) The cooling step can be performed at, for example, 10 to 40 ° C. The cooling time can be appropriately adjusted depending on the length of the cooling section of the insulated wire manufacturing apparatus, the transport speed, and the like.
(3) The annealing step can be performed by heating the surface of the thermoplastic resin layer at, for example, 150 to 300 ° C.
The conductor is used at a temperature lower than (1) the temperature at which the extrusion coating step is performed (for example, normal temperature), and when the conductor and the extruded thermoplastic resin come into contact with each other, the conductor side of the thermoplastic resin layer is cooled, and (1) By the cooling step of 2), the thermal conductivity of the layer a can be set to <the thermal conductivity of the layer b, and by the (3) annealing step, the thermal conductivity of the layer b can be set to <the thermal conductivity of the layer c. ..

(UV照射工程を含む製造方法)
この製造方法は、アニール工程を含む製造方法の(3)アニール工程に代えて、(3)UV照射工程により層bの熱伝導率<層cの熱伝導率にすること以外は、アニール工程を含む製造方法と同じである。(3)UV照射工程は、例えば、50〜2000mJ/cmで照射することにより行うことができる。
(Manufacturing method including UV irradiation process)
In this manufacturing method, instead of the (3) annealing step of the manufacturing method including the annealing step, the annealing step is performed except that the thermal conductivity of the layer b is less than the thermal conductivity of the layer c by the UV irradiation step. It is the same as the manufacturing method including. (3) The UV irradiation step can be performed, for example, by irradiating at 50 to 2000 mJ / cm 2.

(多層押出工程を含む製造方法)
この製造方法は、同じ樹脂を用いて、(1)押出被覆工程及び(2)冷却工程を繰り返し行う。ただし、回数が増えるごとに、(2)の冷却時間を長くする。
(Manufacturing method including multi-layer extrusion process)
In this manufacturing method, (1) extrusion coating step and (2) cooling step are repeated using the same resin. However, as the number of times increases, the cooling time of (2) is lengthened.

<コイル及び電気・電子機器>
本発明のコイルは、本発明の絶縁電線を用いたものである。
本発明のコイルは、各種電気・電子機器に適した形態を有していればよく、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。例えば、特開2018−014191号公報に開示のコイルと同様のものとすることができる。
本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻き方、巻数(2巻以上)及びピッチ等は特に限定されず、用途等に応じて、適宜に選択される。電線が巻回される芯(コアともいう。)については、材質(鉄芯、磁性体芯又は空気芯等)やサイズは、用途等に応じて、適宜に選択される。
本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続したコイルとして、回転電機等のステータに用いられるコイルが挙げられる。
<Coil and electrical / electronic equipment>
The coil of the present invention uses the insulated wire of the present invention.
The coil of the present invention may have a form suitable for various electric and electronic devices, and is formed by coiling the insulated wire of the present invention, or a predetermined portion after bending the insulated wire of the present invention. Examples include those formed by electrically connecting the above. For example, it can be the same as the coil disclosed in Japanese Patent Application Laid-Open No. 2018-014191.
The coil formed by coiling the insulated wire of the present invention is not particularly limited, and examples thereof include a coil obtained by spirally winding a long insulated wire. In such a coil, the winding method, the number of turns (two or more turns), the pitch, and the like of the insulated wire are not particularly limited, and are appropriately selected according to the application and the like. The material (iron core, magnetic core, air core, etc.) and size of the core (also referred to as the core) around which the electric wire is wound are appropriately selected according to the application and the like.
Examples of the coil in which a predetermined portion is electrically connected after bending the insulated wire of the present invention include a coil used for a stator of a rotary electric machine or the like.

本発明の電気・電子機器は、本発明のコイルを用いたものである。
本発明の電気・電子機器としては、特に限定されない。例えば、特開2018−014191号公報に開示の電気・電子機器と同様のものとすることができる。電気・電子機器の好ましい一態様として、上記ステータを備えた回転電機(特にHV及びEVの駆動モータ)が挙げられる。この回転電機は、上記ステータを備えていること以外は、従来の回転電機と同様の構成とすることができる。
The electric / electronic device of the present invention uses the coil of the present invention.
The electric / electronic device of the present invention is not particularly limited. For example, it can be the same as the electrical / electronic device disclosed in Japanese Patent Application Laid-Open No. 2018-014191. A preferred embodiment of the electric / electronic device is a rotary electric machine (particularly an HV and EV drive motor) provided with the above-mentioned stator. The rotary electric machine can have the same configuration as the conventional rotary electric machine except that the rotary electric machine is provided with the stator.

以下に、本発明を実施例に基づいて、さらに詳細に説明するが、これは本発明を制限するものではない。 Hereinafter, the present invention will be described in more detail based on examples, but this does not limit the present invention.

(実施例1)
以下の様にして、図1に示す構成を有する絶縁電線を製造した。
断面が矩形の導体(長辺:3.3mm、短辺1.9mm)の外周面に、押出機を用いてPEEK(ポリエーテルエーテルケトン、ビクトレックスジャパン社製、商品名450G)を押出して、押出被覆樹脂層(熱可塑性樹脂層)を形成した。押出ダイは、押出被覆樹脂層の層厚が160μmになるものを用いて、厚さ160μmの押出被覆樹脂層を形成した。押出機のスクリューとして、30mmフルフライト、L/D=20、圧縮比3のスクリューを用いた。
押出温度条件は、樹脂投入側から順に以下の通りである。
C1:260℃
C2:300℃
C3:380℃
ヘッド部(H):380℃
ダイス部(D):380℃
C1、C2、C3は押出機内のシリンダー温度を示し、樹脂投入側から順にC1、C2、C3の3ゾーンの温度をそれぞれ示す。
押出被覆樹脂層を形成後、以下の条件で冷却し、次いでアニール処理を行い、巻き取り装置により絶縁電線を巻き取った。
(冷却条件)
冷却装置:水層
冷却温度:20℃
冷却区間:2m
(アニール条件)
輻射加熱装置:全自動開閉式管状炉 EPKRO−12K、商品名、いすゞ製作所社製
加熱温度:200℃
(Example 1)
An insulated wire having the configuration shown in FIG. 1 was manufactured as follows.
PEEK (polyetheretherketone, manufactured by Victorex Japan, trade name 450G) is extruded onto the outer peripheral surface of a conductor having a rectangular cross section (long side: 3.3 mm, short side 1.9 mm) using an extruder. An extruded coating resin layer (thermoplastic resin layer) was formed. As the extrusion die, an extrusion coating resin layer having a thickness of 160 μm was used to form an extrusion coating resin layer having a thickness of 160 μm. As the screw of the extruder, a screw having a full flight of 30 mm, L / D = 20, and a compression ratio of 3 was used.
The extrusion temperature conditions are as follows in order from the resin charging side.
C1: 260 ° C
C2: 300 ° C
C3: 380 ° C
Head portion (H): 380 ° C.
Dice section (D): 380 ° C
C1, C2, and C3 indicate the cylinder temperature in the extruder, and indicate the temperatures of the three zones C1, C2, and C3 in order from the resin charging side.
After forming the extruded coating resin layer, it was cooled under the following conditions, then annealed, and the insulated wire was wound by a winding device.
(Cooling conditions)
Cooling device: Water layer Cooling temperature: 20 ° C
Cooling section: 2m
(Annealing condition)
Radiant heating device: Fully automatic opening and closing tube furnace EPKRO-12K, product name, manufactured by Isuzu Seisakusho Co., Ltd. Heating temperature: 200 ° C

(実施例4)
以下の様にして、図1に示す構成を有する絶縁電線を製造した。
実施例1の絶縁電線の製造において、押出被覆樹脂層の層厚を200μmにしたこと以外は、実施例1と同様にして冷却工程まで行った。冷却後、押出被覆樹脂層に対して1200mJ/cmでUV照射した後、巻き取り装置により絶縁電線を巻き取った。
(Example 4)
An insulated wire having the configuration shown in FIG. 1 was manufactured as follows.
In the production of the insulated wire of Example 1, the cooling step was carried out in the same manner as in Example 1 except that the layer thickness of the extruded coating resin layer was set to 200 μm. After cooling, the extruded coating resin layer was irradiated with UV at 1200 mJ / cm 2 , and then the insulated wire was wound by a winding device.

(実施例5)
以下の様にして、図1に示す構成を有する絶縁電線を製造した。
実施例1の絶縁電線の製造において、押出被覆樹脂層の層厚を100μmにしたこと以外は、実施例1と同様にして冷却工程まで行った。このようにして形成した押出被覆樹脂層上に、同様にして層厚が100μmの押出被覆樹脂層を形成した。形成後、実施例1に記載した(冷却条件)において、冷却区間を4.6mにして冷却し、巻き取り装置により絶縁電線を巻き取った。
(Example 5)
An insulated wire having the configuration shown in FIG. 1 was manufactured as follows.
In the production of the insulated wire of Example 1, the cooling step was carried out in the same manner as in Example 1 except that the layer thickness of the extruded coating resin layer was 100 μm. On the extruded coating resin layer thus formed, an extruded coating resin layer having a layer thickness of 100 μm was similarly formed. After the formation, under the (cooling conditions) described in Example 1, the cooling section was set to 4.6 m for cooling, and the insulated wire was wound by a winding device.

(実施例2、3、6〜9及び比較例1〜5)
実施例1の絶縁電線の製造において、下記表1に記載の熱可塑性樹脂を用いたこと、熱可塑性樹脂層の層厚を下記表1に記載の層厚にしたこと、下記表1に記載のように熱伝導率を調整したこと以外は、実施例1と同様にして、図1に示す構成を有する、実施例2、3、6〜9及び比較例1〜5の絶縁電線を製造した。
(Examples 2, 3, 6 to 9 and Comparative Examples 1 to 5)
In the production of the insulated wire of Example 1, the thermoplastic resin shown in Table 1 below was used, the layer thickness of the thermoplastic resin layer was changed to the layer thickness shown in Table 1 below, and Table 1 below shows. Insulated electric wires of Examples 2, 3, 6 to 9 and Comparative Examples 1 to 5 having the configuration shown in FIG. 1 were manufactured in the same manner as in Example 1 except that the thermal conductivity was adjusted as described above.

<熱伝導率の測定>
上記製造した絶縁電線の熱伝導率を以下のようにして測定した。
<Measurement of thermal conductivity>
The thermal conductivity of the insulated wire manufactured above was measured as follows.

(層a〜cの熱伝導率の決定)
上記製造した絶縁電線から、長さ10cmの試験片を切り出し、この試験片の導体から、熱可塑性樹脂層を剥した。この熱可塑性樹脂層を構成する層aをミクロトーム(商品名ウルトラミクロトーム、ライカ社製)を用いて切り出し、この層aから、ミクロトーム(商品名ウルトラミクロトーム、ライカ社製)を用いて、縦1cm、横1cmの切片を無作為に5つ切り出した。これらの切片の熱伝導率を、熱分析装置(商品名:迅速熱伝導率計QTM−710/700、京都電子工業社製)により測定した。5つの切片の熱伝導率の平均値(算術平均値)を求め、小数点以下第3位を四捨五入して層aの熱伝導率とした。
層aと同様にして層cを切り出し、この層cに対して上記と同様にして層cの熱伝導率を算出した。さらに、熱可塑性樹脂層から層a及びcを切り出して得た層bに対して上記と同様にして層bの熱伝導率を算出した。
(Determination of thermal conductivity of layers a to c)
A test piece having a length of 10 cm was cut out from the manufactured insulated wire, and the thermoplastic resin layer was peeled off from the conductor of the test piece. A layer a constituting this thermoplastic resin layer was cut out using a microtome (trade name: Ultra Microtome, manufactured by Leica), and from this layer a, a microtome (trade name: Ultra Microtome, manufactured by Leica) was used to make a length of 1 cm. Five 1 cm wide sections were randomly cut out. The thermal conductivity of these sections was measured by a thermal analyzer (trade name: rapid thermal conductivity meter QTM-710 / 700, manufactured by Kyoto Denshi Kogyo Co., Ltd.). The average value (arithmetic mean value) of the thermal conductivity of the five sections was obtained, and the third decimal place was rounded off to obtain the thermal conductivity of layer a.
The layer c was cut out in the same manner as in the layer a, and the thermal conductivity of the layer c was calculated for this layer c in the same manner as described above. Further, the thermal conductivity of the layer b was calculated in the same manner as above for the layer b obtained by cutting out the layers a and c from the thermoplastic resin layer.

<試験>
上記製造した絶縁電線に対して、密着力試験、固着力試験、放熱性試験及び耐熱性試験を行った。結果を後記表1に示す。
<Test>
Adhesion test, adhesion test, heat dissipation test and heat resistance test were performed on the manufactured insulated wire. The results are shown in Table 1 below.

(密着力試験)
JIS Z 0237:2009に従って、導体から熱可塑性樹脂層を引き剥がす180℃ピール試験を行い、密着力を決定した。
具体的には、引張試験機〔島津製作所社製のAGS−J(商品名)〕を使用し、熱可塑性樹脂層をピール速度5mm/minで引っ張り、50mmの長さの密着力の測定値を平均し、各絶縁電線の密着力とした。
測定結果を下記評価基準に従って評価した。本試験において、「●」以上が合格である。
−評価基準−
◎:2000gf/mm以上
○:1000gf/mm以上2000gf/mm未満
●:500gf/mm以上1000gf/mm未満
△:100gf/mm以上500gf/mm未満
×:100gf/mm未満
(Adhesion test)
According to JIS Z 0237: 2009, a 180 ° C. peel test was conducted in which the thermoplastic resin layer was peeled off from the conductor, and the adhesion was determined.
Specifically, using a tensile tester [AGS-J (trade name) manufactured by Shimadzu Corporation], the thermoplastic resin layer is pulled at a peel speed of 5 mm / min, and the measured value of the adhesion force with a length of 50 mm is measured. On average, the adhesion of each insulated wire was used.
The measurement results were evaluated according to the following evaluation criteria. In this test, "●" or higher is a pass.
-Evaluation criteria-
⊚: 2000 gf / mm or more ○: 1000 gf / mm or more and less than 2000 gf / mm ●: 500 gf / mm or more and less than 1000 gf / mm Δ: 100 gf / mm or more and less than 500 gf / mm ×: 100 gf / mm or less

(固着力試験)
上記で製造した2本の絶縁電線同士に対して、互いの200mmの部分を接触させ、280℃10分間の加熱処理に付して、2本の絶縁電線を固着させた。この固着させた絶縁電線を恒温槽付引張試験機(島津製作所社製、オートグラフ AGS−J(商品名)、恒温槽温度:200℃)にセットし、50mm/minの引張速度で重ね合せた絶縁電線の両端を互いに反対方向に引っ張った。2本の絶縁電線の固着状態を破断するのに要した強度(MPa)を測定した。
測定結果を下記評価基準に従って評価した。本試験において、「○」以上が合格である。
−評価基準−
◎:2MPa以上
○:0.5MPa以上2MPa未満
×:0.5MPa未満
(Adhesion test)
The two insulated wires manufactured above were brought into contact with each other at 200 mm portions and subjected to heat treatment at 280 ° C. for 10 minutes to fix the two insulated wires. This fixed insulated wire was set in a tensile tester with a constant temperature bath (manufactured by Shimadzu Corporation, Autograph AGS-J (trade name), constant temperature bath temperature: 200 ° C.) and superposed at a tensile speed of 50 mm / min. Both ends of the insulated wire were pulled in opposite directions. The strength (MPa) required to break the fixed state of the two insulated wires was measured.
The measurement results were evaluated according to the following evaluation criteria. In this test, "○" or higher is a pass.
-Evaluation criteria-
⊚: 2 MPa or more ○: 0.5 MPa or more and less than 2 MPa ×: less than 0.5 MPa

(放熱性試験)
V−t試験
2本の電線をツイスト状に撚り合わせた試験片を作製し、各々の導体間に正弦波50Hzで実施例、比較例にある交流電圧を印加して破壊するまでの時間を測定した。測定結果を下記評価基準に従って評価した。本試験において、「●」以上が合格である。本試験の結果が優れる程、高圧下で生じた熱を効率的に放熱できていることを示す。
−評価基準−
◎:5000分以上
○:1000分以上5000分未満
●:100分以上1000分未満
△:10分以上100分未満
×:10分未満
(Heat dissipation test)
V-t test A test piece made by twisting two electric wires is prepared, and the time until destruction is measured by applying the AC voltage shown in Examples and Comparative Examples at a sine wave of 50 Hz between each conductor. did. The measurement results were evaluated according to the following evaluation criteria. In this test, "●" or higher is a pass. The better the result of this test, the more efficiently the heat generated under high pressure can be dissipated.
-Evaluation criteria-
⊚: 5000 minutes or more ○: 1000 minutes or more and less than 5000 minutes ●: 100 minutes or more and less than 1000 minutes Δ: 10 minutes or more and less than 100 minutes ×: less than 10 minutes

(耐熱性試験)
上記で製造した絶縁電線を300mm長に切り出し、250℃168時間加熱処理した。加熱処理後、絶縁電線の中央部にアルミホイルを20mm幅で一周巻きつけた(すなわち、絶縁電線の一方の末端からの距離が140mm〜160mmの部位に20mm幅のアルミホイルを一周巻き付けた)。この絶縁電線の一方の端末から5mmの距離までの間の熱可塑性樹脂層を剥離し、端末剥離箇所の導体とアルミホイル部との間に課電した。500V/sec.で昇圧し、絶縁破壊が生じた際の電圧を「加熱後絶縁破壊電圧」とした。一方、上記加熱処理を施していない絶縁電線についても同様にして絶縁破壊電圧を測定し、「加熱前絶縁破壊電圧」とした。測定結果を下記評価基準に従って評価した。
本試験において、「○」以上が合格である。
−評価基準−
◎:「加熱後絶縁破壊電圧」/「加熱前絶縁破壊電圧」の比の値0.9以上
○:「加熱後絶縁破壊電圧」/「加熱前絶縁破壊電圧」の比の値0.7以上0.9未満
×:「加熱後絶縁破壊電圧」/「加熱前絶縁破壊電圧」の比の値0.7未満
(Heat resistance test)
The insulated wire produced above was cut into a length of 300 mm and heat-treated at 250 ° C. for 168 hours. After the heat treatment, an aluminum foil was wound around the center of the insulated wire with a width of 20 mm (that is, an aluminum foil with a width of 20 mm was wound around a portion having a distance of 140 mm to 160 mm from one end of the insulated wire). The thermoplastic resin layer was peeled from one end of the insulated wire up to a distance of 5 mm, and electricity was applied between the conductor at the end peeled portion and the aluminum foil portion. 500V / sec. The voltage when the voltage was increased by and the dielectric breakdown occurred was defined as the "dielectric breakdown voltage after heating". On the other hand, the dielectric breakdown voltage of the insulated wire not subjected to the above heat treatment was measured in the same manner and used as the "dielectric breakdown voltage before heating". The measurement results were evaluated according to the following evaluation criteria.
In this test, "○" or higher is a pass.
-Evaluation criteria-
⊚: “Insulation breakdown voltage after heating” / “Insulation breakdown voltage before heating” ratio value 0.9 or more ○: “Insulation breakdown voltage after heating” / “Insulation breakdown voltage before heating” ratio value 0.7 or more Less than 0.9 ×: Value of ratio of "insulation breakdown voltage after heating" / "insulation breakdown voltage before heating" less than 0.7

Figure 0006858799
Figure 0006858799

<表の注>
実:実施例
比:比較例
PEEK:ビクトレックスジャパン社製、商品名:450G(ポリエーテルエーテルケトン)
PEKK:アルケマ社製、商品名:スーパーエンプラPEKK(ポリエーテルケトンケトン)
PEK:ビクトレックスジャパン社製、商品名:HT−G22(ポリエーテルケトン)
PPS:ポリプラスチックス社製、商品名:A02209(ポリフェニレンスルフィド)
PET:帝人社製、商品名:TR−8550(ポリエチレンテレフタレート)
<Note to table>
Actual: Example ratio: Comparative example PEEK: Made by Victrex Japan, trade name: 450G (polyetheretherketone)
PEKK: Made by Arkema, Product name: Super engineering plastic PEKK (polyetherketone ketone)
PEK: Made by Victrex Japan, Product name: HT-G22 (polyetherketone)
PPS: Made by Polyplastics, trade name: A02209 (polyphenylene sulfide)
PET: Made by Teijin, Trade name: TR-8550 (polyethylene terephthalate)

表1から明らかなように、比較例1は、本発明で規定する条件1を満たさないため、放熱性が不合格であった。比較例2は、本発明で規定する条件2を満たさないため、放熱性及び密着力が不合格であった。同様に、比較例3は固着力が不合格であり、比較例4は放熱性及び耐熱性が不合格であった。比較例5は、本発明で規定する条件1及び2を満たさないため、放熱性及び密着力が不合格であった。
これに対し、本発明で規定する条件1〜3を満たす実施例1〜8は、全ての試験が合格であった。
As is clear from Table 1, Comparative Example 1 did not satisfy the condition 1 specified in the present invention, and therefore the heat dissipation was unacceptable. In Comparative Example 2, since the condition 2 specified in the present invention was not satisfied, the heat dissipation and the adhesion were unacceptable. Similarly, Comparative Example 3 failed the fixing force, and Comparative Example 4 failed the heat dissipation and heat resistance. Comparative Example 5 did not satisfy the conditions 1 and 2 specified in the present invention, and therefore failed in heat dissipation and adhesion.
On the other hand, in Examples 1 to 8 that satisfy the conditions 1 to 3 specified in the present invention, all the tests passed.

10、20 絶縁電線
1 導体
2 層a
3 層b
4 層c
5 熱可塑性樹脂層(A)
6 熱可塑性樹脂層(B)
10, 20 Insulated wire
1 conductor
2 layers a
3 layers b
4 layers c
5 Thermoplastic resin layer (A)
6 Thermoplastic resin layer (B)

Claims (6)

導体上に熱可塑性樹脂層を有する絶縁電線であって、
前記熱可塑性樹脂層を構成する下記の層a、層b及び層cの熱伝導率が、下記(条件1)〜(条件3)を満たす絶縁電線。
(条件1)
層aの熱伝導率<層bの熱伝導率<層cの熱伝導率
(条件2)
4%≦{(層cの熱伝導率−層aの熱伝導率)/層aの熱伝導率}×100≦50%
(条件3)
層aの熱伝導率が0.1W/mK以上であり、層cの熱伝導率が0.5W/mK以下
ここで、層a、層b及び層cは、前記熱可塑性樹脂層の厚さを100%とし、前記熱可塑性樹脂層を厚み方向に3つに分割した3層のサブ層を想定した場合における各サブ層に対応し、前記熱可塑性樹脂層の前記導体と接する面から最外層表面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層aとし、前記熱可塑性樹脂層の最外層表面から前記導体と接する面に向けて前記熱可塑性樹脂層の厚み方向に厚さ10%までの間を層cとし、層aとcの間の層を層bとする。
An insulated wire having a thermoplastic resin layer on a conductor.
An insulated wire in which the thermal conductivity of the following layers a, b, and c constituting the thermoplastic resin layer satisfies the following (condition 1) to (condition 3).
(Condition 1)
Thermal conductivity of layer a <thermal conductivity of layer b <thermal conductivity of layer c (condition 2)
4% ≤ {(thermal conductivity of layer c-thermal conductivity of layer a) / thermal conductivity of layer a} x 100 ≤ 50%
(Condition 3)
The thermal conductivity of the layer a is 0.1 W / mK or more, and the thermal conductivity of the layer c is 0.5 W / mK or less. Here, the layers a, b, and c are the thicknesses of the thermoplastic resin layer. Is 100%, and corresponds to each sub-layer in the case where three sub-layers in which the thermoplastic resin layer is divided into three in the thickness direction are assumed, and the outermost layer from the surface of the thermoplastic resin layer in contact with the conductor. The layer a is formed up to a thickness of up to 10% in the thickness direction of the thermoplastic resin layer toward the surface, and the thickness of the thermoplastic resin layer is directed from the outermost layer surface of the thermoplastic resin layer toward the surface in contact with the conductor. The layer c is defined as a layer up to a thickness of 10% in the direction, and the layer between the layers a and c is defined as a layer b.
前記熱可塑性樹脂層が、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリケトン、ポリフェニレンスルフィド又は熱可塑性ポリイミドを含んでなる結晶性樹脂層である、請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein the thermoplastic resin layer is a crystalline resin layer containing polyetheretherketone, polyetherketoneketone, polyketone, polyphenylene sulfide, or thermoplastic polyimide. 前記導体が平角導体である、請求項1又は2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein the conductor is a flat conductor. 請求項1〜3のいずれか1項に記載の絶縁電線を巻回してなるコイル。 A coil formed by winding the insulated wire according to any one of claims 1 to 3. 請求項4に記載のコイルを用いてなる電気・電子機器。 An electrical / electronic device using the coil according to claim 4. 前記層cをアニールする工程を含む、請求項1〜3のいずれか1項に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to any one of claims 1 to 3, which includes a step of annealing the layer c.
JP2019014600A 2019-01-30 2019-01-30 Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires Active JP6858799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014600A JP6858799B2 (en) 2019-01-30 2019-01-30 Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014600A JP6858799B2 (en) 2019-01-30 2019-01-30 Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires

Publications (2)

Publication Number Publication Date
JP2020123487A JP2020123487A (en) 2020-08-13
JP6858799B2 true JP6858799B2 (en) 2021-04-14

Family

ID=71992921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014600A Active JP6858799B2 (en) 2019-01-30 2019-01-30 Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires

Country Status (1)

Country Link
JP (1) JP6858799B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250206A (en) * 1989-03-22 1990-10-08 Fujikura Ltd Insulated electric wire and coil wound around with it
JP6519231B2 (en) * 2015-03-02 2019-05-29 日立金属株式会社 Winding and method of manufacturing the same

Also Published As

Publication number Publication date
JP2020123487A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP5391341B1 (en) Inverter surge resistant wire
CN109074909B (en) Insulated wire, coil, and electric/electronic device
US11615914B2 (en) Magnet wire with thermoplastic insulation
JP6974330B2 (en) Insulated wires, coils and electrical / electronic equipment
KR102575842B1 (en) Insulated wires, coils and electrical/electronic devices
ES2896019T3 (en) Continuously Transposed Driver
JPWO2019159922A1 (en) Insulated wires, coils and electrical / electronic equipment
JP2016126866A (en) Insulated wire and coil
KR102166630B1 (en) Insulated wires, coils and electric and electronic devices
JP6858799B2 (en) Manufacturing methods for insulated wires, coils, electrical and electronic equipment, and insulated wires
US20230290539A1 (en) Magnet wire with thermoplastic insulation
US20230083970A1 (en) Magnet wire with thermoplastic insulation
JP2017117681A (en) Self-fusing insulation wire, coil and electric and electronic device
JP2021157956A (en) Insulated wire, coil, and electrical and electronic equipment
JP7257558B1 (en) Insulated wires, coils, rotating electrical machines, and electric/electronic equipment
WO2024038680A1 (en) Insulated electric wire, manufacturing method therefor, and coil, rotary electric machine, and electrical and electronic equipment using said insulated electric wire
JP2020098717A (en) Resin film for conductive element wire and method for manufacturing the same, and rectangular electric wire
WO2023153246A1 (en) Insulated wire, coil, rotating electric machine, and electric/electronic device
JP2019114573A (en) Coil and transformer
JP2023047971A (en) Insulated wire, coil, rotary electric machine and electric/electronic device
JP2024046330A (en) Insulated wire, coil, electrical/electronic device, and method for manufacturing electrical/electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250