JP6857815B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6857815B2
JP6857815B2 JP2018102060A JP2018102060A JP6857815B2 JP 6857815 B2 JP6857815 B2 JP 6857815B2 JP 2018102060 A JP2018102060 A JP 2018102060A JP 2018102060 A JP2018102060 A JP 2018102060A JP 6857815 B2 JP6857815 B2 JP 6857815B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigeration cycle
way valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018102060A
Other languages
Japanese (ja)
Other versions
JP2019207054A (en
Inventor
桂司 佐藤
桂司 佐藤
鶸田 晃
鶸田  晃
健 苅野
健 苅野
宏治 室園
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018102060A priority Critical patent/JP6857815B2/en
Publication of JP2019207054A publication Critical patent/JP2019207054A/en
Application granted granted Critical
Publication of JP6857815B2 publication Critical patent/JP6857815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を用いた冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus using an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond.

一般に、冷凍サイクル装置は、圧縮機、必要に応じて四方弁、放熱器(または凝縮器)、キャピラリーチューブや膨張弁等の減圧器、蒸発器、等を配管接続して冷凍サイクルを構成し、その内部に冷凍サイクル用作動媒体(冷媒または熱媒体)を循環させることにより、冷却または加熱作用を行っている。 In general, a refrigerating cycle device is formed by connecting a compressor, a four-way valve, a radiator (or condenser), a decompressor such as a capillary tube or an expansion valve, an evaporator, etc., if necessary, to form a refrigerating cycle. A cooling or heating action is performed by circulating a refrigerating cycle working medium (refrigerant or heat medium) inside.

これらの冷凍サイクル装置における冷凍サイクル用作動媒体としては、フロン類(フロン類はR○○またはR○○○と記すことが、米国ASHRAE34規格により規定されている。以下、R○○またはR○○○と示す)と呼ばれるメタンまたはエタンから誘導されたハロゲン化炭化水素が知られている。 As the working medium for the refrigeration cycle in these refrigeration cycle devices, fluorocarbons (fluorocarbons are described as R ○○ or R ○○○ are specified by the US ASHRAE34 standard. Hereinafter, R ○○ or R ○ Halogenated hydrocarbons derived from methane or ethane called (shown as XX) are known.

上記のような冷媒としては、R410Aが多く用いられているが、R410A冷媒の地球温暖化係数(GWP)は2090と大きく、地球温暖化防止の観点から問題がある。 R410A is often used as the above-mentioned refrigerant, but the global warming potential (GWP) of the R410A refrigerant is as large as 2090, which is problematic from the viewpoint of preventing global warming.

そこで、地球温暖化防止の観点からは、GWPの小さな冷媒として、例えば、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)が注目されている(例えば、特許文献1または特許文献2参照)。 Therefore, from the viewpoint of preventing global warming, for example, HFO1123 (1,1,2-trifluoroethylene) and HFO1132 (1,2-difluoroethylene) are attracting attention as small refrigerants for GWP (for example, 1,2-difluoroethylene). See Patent Document 1 or Patent Document 2).

国際公開第2012/157764号International Publication No. 2012/157964 国際公開第2012/157765号International Publication No. 2012/157765

しかしながら、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)は、R410Aなどの従来の冷媒に比べて安定性が低く、これに起因して、不均化反応と呼ばれる自己分解反応およびこの自己分解反応に続く重合反応が生じやすい。不均化反応とは、狭義では自己分解反応のみであり、広義では自己分解反応およびこの自己分解反応に続く重合反応ある。 However, HFO1123 (1,1,2-trifluoroethylene) and HFO1132 (1,2-difluoroethylene) are less stable than conventional refrigerants such as R410A, which causes disproportionation. A self-decomposition reaction called a reaction and a polymerization reaction following the self-decomposition reaction are likely to occur. The disproportionation reaction is only an autolysis reaction in a narrow sense, and is a self-decomposition reaction and a polymerization reaction following the autolysis reaction in a broad sense.

不均化反応は大きな熱放出を伴って圧力上昇するため、圧縮機や冷凍サイクル装置を破損させる恐れがある。このような不均化反応は、過度に高温高圧となった冷媒雰囲気下、特に圧縮機内にて高エネルギが付加されると、これが起点となって発生する。 Since the disproportionation reaction increases the pressure with a large heat release, it may damage the compressor and the refrigeration cycle equipment. Such a disproportionation reaction occurs as a starting point when high energy is applied in a refrigerant atmosphere where the temperature and pressure are excessively high, particularly in a compressor.

例えば、一例を挙げると、正常な運転条件下ではない状態、すなわち凝縮器側の送風ファン停止、冷凍サイクル装置の閉塞等が生じると、吐出圧力(冷凍サイクルの高圧側)が過度に上昇する。 For example, if the operating conditions are not normal, that is, if the blower fan on the condenser side is stopped, the refrigeration cycle device is blocked, or the like, the discharge pressure (high pressure side of the refrigeration cycle) rises excessively.

このような状態下で圧縮機のロック異常が生じ、このロック異常下においても圧縮機への電力供給を続けると、圧縮機の電動機へ電力が過剰に供給され、電動機が異常に発熱する。その結果、電動機の固定子を構成する固定子巻線の導線同士でレイヤーショートと呼ばれる現象を引き起こし、これが高エネルギ源となって不均化反応を誘起することになる
Under such a state, a lock abnormality of the compressor occurs, and if the power supply to the compressor is continued even under this lock abnormality, the electric power is excessively supplied to the electric motor of the compressor, and the electric motor generates abnormal heat. As a result, the conductors of the stator windings that make up the stator of the motor cause a phenomenon called layer short, which becomes a high energy source and induces a disproportionation reaction.

そして、不均化反応が発生すると圧縮機内の圧力が異常に上昇し、圧縮機や冷凍サイクル装置が破損する恐れがある。 When the disproportionation reaction occurs, the pressure inside the compressor rises abnormally, which may damage the compressor and the refrigeration cycle device.

本発明は上記課題を解決するため、密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記膨張手段と前記室外熱交換器との間、とを結ぶ第1の連通配管を有し、前記第1の連通配管は第1の連通機構を有することを特徴とするものである。 In order to solve the above problems, the present invention connects an sealed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger to HFO1123 (1,1,2-trifluoro). A refrigeration cycle apparatus in which an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond such as ethylene) is sealed, and the space between the discharge side of the closed compressor and the four-way valve, and the expansion means. It is characterized by having a first communication pipe connecting to and from the outdoor heat exchanger, and the first communication pipe has a first communication mechanism.

上記構成によれば、密閉型圧縮機内で不均化反応が発生し、密閉型圧縮機内の温度または圧力が過度に上昇すると、密閉型圧縮機と室外機を連通する機構が所定の温度・圧力に達することで作動し、不均化反応後の生成ガスは内容量の大きい室外熱交換器へ放出される。このことにより、密閉型圧縮機内で過度に上昇した温度または圧力は低下し、冷凍サイクル装置の破損を回避することが可能となる。 According to the above configuration, when a disproportionation reaction occurs in the closed compressor and the temperature or pressure in the closed compressor rises excessively, the mechanism for communicating the closed compressor and the outdoor unit has a predetermined temperature and pressure. The generated gas after the disproportionation reaction is released to the outdoor heat exchanger having a large internal capacity. As a result, the excessively elevated temperature or pressure in the closed compressor is reduced, and it is possible to avoid damage to the refrigeration cycle apparatus.

本発明は、このような点に鑑みてなしたもので、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体とし、それらが不均化反応し、その後発生した生成ガスが冷凍サイクル装置を破損させることを回避し、信頼性を高めた冷凍サイクル装置の提供を目的としたものである。 The present invention has been made in view of these points, and a working medium containing an ethylene-based fluorinated hydrocarbon having a double bond such as HFO1123 (1,1,2-trifluoroethylene) is used, and they are not used. The purpose of the present invention is to provide a refrigeration cycle apparatus with improved reliability by preventing the generated gas generated after the leveling reaction from damaging the refrigeration cycle apparatus.

本発明は、上記構成により、不均化反応後の生成ガスを密閉型圧縮機から室外熱交換器へ放出することで、不均化反応後の生成ガスが冷凍サイクル装置を破損させることを回避することができ、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を用いた信頼性の高い冷凍サイクル装置を提供することができる。 According to the above configuration, the present invention releases the generated gas after the disproportionation reaction from the closed compressor to the outdoor heat exchanger, thereby avoiding the generated gas after the disproportionation reaction from damaging the refrigeration cycle apparatus. It is possible to provide a highly reliable refrigeration cycle apparatus using an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond such as HFO1123 (1,1,2-trifluoroethylene). ..

本発明の実施の形態1に係る冷凍サイクル装置としての空気調和機を示す概略構成図Schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to the first embodiment of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置としての空気調和機を示す概略構成図Schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to a second embodiment of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置としての空気調和機を示す概略構成図Schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to a third embodiment of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置としての空気調和機を示す概略構成図Schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to a fourth embodiment of the present invention. 本発明の各実施の形態に係る連通機構の概略構成図Schematic configuration diagram of the communication mechanism according to each embodiment of the present invention. 本発明の各実施の形態に係る連通機構の概略構成図Schematic configuration diagram of the communication mechanism according to each embodiment of the present invention.

第1の発明は、密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記膨張手段と前記室外熱交換器との間、とを結ぶ第1の連通配管を有し、前記第1の連通配管は第1の連通機構を有するものである。
この構成をなすことにより、暖房運転では密閉型圧縮機はガス冷媒を圧縮して吐出し、これによりガス冷媒は四方弁を介して室内熱交換器に送出される。室内熱交換器では、室内空気との熱交換によりガス冷媒が凝縮して液化する。液化した液冷媒は、膨張手段により減圧されて気液二相冷媒となり、室外熱交換器に送出される。室外熱交換器は外気と気液二相冷媒とを熱交換するので、気液二相冷媒は蒸発してガス冷媒となり、密閉型圧縮機に戻る。このような暖房運転において、上記構成によれば密閉型圧縮機内で不均化反応が発生すると、不均化反応によって生成されたガスの温度・圧力が異常に上昇し、連通機構は密閉型圧縮機と室外熱交換器を連通し、生成ガスは室外熱交換器へ放出され、異常な温度・圧力上昇による冷凍サイクル装置の破損を回避することが可能となる。
冷房運転または除湿運転では、密閉型圧縮機はガス冷媒を圧縮して吐出し、これによりガス冷媒は四方弁を介して室外熱交換器に送出される。室外熱交換器は外気とガス冷媒とを熱交換するので、ガス冷媒は凝縮して液化する。液化した液冷媒は膨張手段により減圧され、室内熱交換器に送出される。室内熱交換器では、室内空気との熱交換により液冷媒が蒸発してガス冷媒となる。このガス冷媒は、四方弁、吸入配管を介して密閉型圧縮機に戻る。このような冷房運転にて密閉型圧縮機内で不均化反応が発生すると、作動媒体の温度・圧力が異常に上昇し、連通機構は密閉型圧縮機と室外熱交換器を連通し、不均化反応後の生成ガスは室外熱交換器へ放出され、室外熱交換器は外気と生成ガスとを熱交換するので、不均化反応後の生成ガスは凝縮して液化する。液化した液冷媒は膨張手段により減圧され、冷凍サイクル装置全体の温度・圧力は低下する。つまり、異常な温度・圧力上昇による冷凍サイクル装置の破損を回避することが可能となる。
The first invention is to connect a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger to form HFO1123 (1,1,2-trifluoroethylene) or the like. A refrigeration cycle apparatus in which an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond is sealed, and is used between the discharge side of the closed compressor and the four-way valve, the expansion means, and the outdoor heat exchange. It has a first communication pipe connecting to and from the vessel, and the first communication pipe has a first communication mechanism.
With this configuration, in the heating operation, the closed compressor compresses and discharges the gas refrigerant, whereby the gas refrigerant is sent to the indoor heat exchanger via the four-way valve. In the indoor heat exchanger, the gas refrigerant is condensed and liquefied by heat exchange with the indoor air. The liquefied liquid refrigerant is decompressed by the expansion means to become a gas-liquid two-phase refrigerant, which is sent to the outdoor heat exchanger. Since the outdoor heat exchanger exchanges heat between the outside air and the gas-liquid two-phase refrigerant, the gas-liquid two-phase refrigerant evaporates to become a gas refrigerant and returns to the closed compressor. In such a heating operation, according to the above configuration, when an unbalanced reaction occurs in the closed compressor, the temperature and pressure of the gas generated by the unbalanced reaction rises abnormally, and the communication mechanism is closed compressed. By communicating the machine and the outdoor heat exchanger, the generated gas is released to the outdoor heat exchanger, and it is possible to avoid damage to the refrigeration cycle device due to an abnormal temperature and pressure rise.
In the cooling operation or the dehumidifying operation, the closed compressor compresses and discharges the gas refrigerant, whereby the gas refrigerant is sent to the outdoor heat exchanger via the four-way valve. Since the outdoor heat exchanger exchanges heat between the outside air and the gas refrigerant, the gas refrigerant condenses and liquefies. The liquefied liquid refrigerant is decompressed by the expansion means and sent to the indoor heat exchanger. In the indoor heat exchanger, the liquid refrigerant evaporates to become a gas refrigerant by heat exchange with the indoor air. This gas refrigerant returns to the closed compressor via the four-way valve and the suction pipe. When an unbalanced reaction occurs in the closed compressor during such cooling operation, the temperature and pressure of the operating medium rise abnormally, and the communication mechanism communicates the closed compressor with the outdoor heat exchanger to make it unbalanced. The produced gas after the conversion reaction is released to the outdoor heat exchanger, and the outdoor heat exchanger exchanges heat between the outside air and the produced gas, so that the produced gas after the disproportionation reaction condenses and liquefies. The liquefied liquid refrigerant is depressurized by the expansion means, and the temperature and pressure of the entire refrigeration cycle device are lowered. That is, it is possible to avoid damage to the refrigeration cycle device due to an abnormal temperature / pressure rise.

第2の発明は、密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記室外熱交換器と前記四方弁との間、とを結ぶ第2の連通配管を有し、前記第2の連通配管は第2の連通機構を有するものである。
この構成をなすことにより、暖房運転時、不均化反応後の高温・高圧の生成ガスは、室外熱交換器の低温・低圧側へ流れることで、放熱・減圧される。冷房運転時、不均化反応後の高温・高圧の生成ガスは、四方弁を通過せずに、室外熱交換器の入口側へ流れ、室外熱交換器にて減圧および放熱される。そのため、過度に上昇した不均化反応後の生成ガスの温度・圧力は低下し、四方弁の破損を回避することができる。
The second invention is to connect a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger to form HFO1123 (1,1,2-trifluoroethylene) or the like. A refrigeration cycle device in which an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond is sealed, and is between the discharge side of the closed compressor and the four-way valve, the outdoor heat exchanger and the four-way valve. It has a second communication pipe connecting the valve and the valve, and the second communication pipe has a second communication mechanism.
With this configuration, during the heating operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows to the low-temperature and low-pressure sides of the outdoor heat exchanger to dissipate heat and reduce the pressure. During the cooling operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows to the inlet side of the outdoor heat exchanger without passing through the four-way valve, and is depressurized and dissipated by the outdoor heat exchanger. Therefore, the temperature and pressure of the generated gas after the disproportionation reaction that has risen excessively decrease, and damage to the four-way valve can be avoided.

第3の発明は、密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記室外熱交換器の冷媒の流れの上流側と下流側とを結ぶ第3の連通配管を有し、前記第3の連通配管は三方弁を有し、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記三方弁とを結ぶ第4の連通管を有し、前記第4の連通管は、第3の連通機構を有するものである。
この構成をなすことにより、暖房運転時、三方弁は、前記密閉型圧縮機と前記室外熱交換器を連通する機構が、前記膨張手段と前記室外熱交換器を連通する配管に接続されるように切換えられ、不均化反応後の高温・高圧の生成ガスは、室外熱交換器入口から室外熱交換器内へ流れ、放熱・減圧される。また冷房運転時、三方弁は、前記密閉型圧縮機と前記室外熱交換器を連通する機構が、前記室外熱交換器と前記四方弁とを接続する配管に接続されるように切換えられる。不均化反応後の高温・高圧の生成ガスは、四方弁を通過せずに室外熱交換器の入口側へ流れ、室外熱交換器にて減圧および放熱される。したがって、不均化反応後の急激に上昇した温度・圧力は低下し、四方弁の破損を回避することができる。そのため、暖房、冷房運転における不均化反応後の生成ガスは室外熱交換器で減圧・放熱されるとともに、生成ガスによる四方弁の破損を回避することができる。
A third invention is to connect a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger to form an HFO1123 (1,1,2-trifluoroethylene) or the like. A refrigeration cycle device in which an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond is enclosed, and has a third communication pipe connecting the upstream side and the downstream side of the refrigerant flow of the outdoor heat exchanger. The third communication pipe has a three-way valve, and has a fourth communication pipe connecting the discharge side of the closed compressor, the four-way valve, and the three-way valve, and the fourth communication pipe. The communication pipe of the above has a third communication mechanism.
With this configuration, during the heating operation, the three-way valve has a mechanism for communicating the sealed compressor and the outdoor heat exchanger so as to be connected to a pipe for communicating the expansion means and the outdoor heat exchanger. The high-temperature and high-pressure generated gas after the disproportionation reaction flows from the outdoor heat exchanger inlet into the outdoor heat exchanger, and is dissipated and depressurized. Further, during the cooling operation, the three-way valve is switched so that the mechanism for communicating the closed compressor and the outdoor heat exchanger is connected to the pipe connecting the outdoor heat exchanger and the four-way valve. The high-temperature and high-pressure generated gas after the disproportionation reaction flows to the inlet side of the outdoor heat exchanger without passing through the four-way valve, and is depressurized and dissipated by the outdoor heat exchanger. Therefore, the temperature and pressure that have risen sharply after the disproportionation reaction decrease, and damage to the four-way valve can be avoided. Therefore, the generated gas after the disproportionation reaction in the heating and cooling operations can be depressurized and dissipated by the outdoor heat exchanger, and the four-way valve can be avoided from being damaged by the generated gas.

第4の発明は、密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記室外機の冷房時の入口にはヘッダーが設けられ、前記第2の連通管は前記ヘッダーに接続されているものである。
この構成をなすことにより、暖房運転時、不均化反応後の高温・高圧の生成ガスは、室外熱交換器の出口側すなわち低圧側のヘッダー配管へ流れる。ヘッダー管は、吐出配管や吸入配管よりも配管径が太いため、配管容積が大きく、圧力降下しやすくなる。そのため、不均化反応後の高温・高圧の生成ガスは、減圧しやすくなる。また、冷房運転時、不均化反応後の高温・高圧の生成ガスは、四方弁を通過せずに、室外熱交換器のヘッダー配管へ直接流れる。上述のとおり、ヘッダー管は配管容積が大きいため、不均化反応後の高温・高圧の生成ガスは減圧しやすくなる。
A fourth invention is to connect a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger to form HFO1123 (1,1,2-trifluoroethylene) or the like. A refrigeration cycle apparatus in which an operating medium containing an ethylene-based fluorinated hydrocarbon having a double bond is enclosed, a header is provided at the inlet of the outdoor unit during cooling, and the second communication pipe is attached to the header. It is connected.
With this configuration, during the heating operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows to the header pipe on the outlet side, that is, the low-pressure side of the outdoor heat exchanger. Since the header pipe has a larger pipe diameter than the discharge pipe and the suction pipe, the pipe volume is large and the pressure tends to drop easily. Therefore, the high-temperature and high-pressure generated gas after the disproportionation reaction is easily depressurized. Further, during the cooling operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows directly to the header piping of the outdoor heat exchanger without passing through the four-way valve. As described above, since the header pipe has a large pipe volume, the high-temperature and high-pressure generated gas after the disproportionation reaction is easily depressurized.

第5の発明は、特に第1〜4の発明の連通機構を、前記作動媒体が所定の温度に達すると溶解する機構としたものである。
この構成をなすことにより、密閉型圧縮機内で不均化反応が発生し、不均化反応により生成されたガスの温度が過度に上昇すると、連通機構が溶解で密閉型圧縮機と室外熱交換器を連通し、不均化反応による生成ガスは室外熱交換器へ流入する。それにより、過度に上昇した温度・圧力は低下し、高温・高圧による密閉型圧縮機や吐出配管等の破損を回避することができる。
In the fifth invention, in particular, the communication mechanism of the first to fourth inventions is a mechanism that melts when the working medium reaches a predetermined temperature.
With this configuration, a disproportionation reaction occurs in the closed compressor, and when the temperature of the gas generated by the disproportionation rises excessively, the communication mechanism melts and exchanges heat with the closed compressor outdoors. The gas produced by the disproportionation reaction flows into the outdoor heat exchanger. As a result, the excessively increased temperature and pressure are reduced, and damage to the sealed compressor, discharge pipe, etc. due to high temperature and high pressure can be avoided.

第6の発明は、特に第1〜4の発明の連通機構を、前記作動媒体が所定の圧力に達すると開閉する機構としたものである。
この構成をなすことにより、密閉型圧縮機内で不均化反応が発生し、不均化反応により生成されたガスの圧力が過度に上昇すると、連通機構が弁の開閉等で密閉型圧縮機と室外熱交換器を連通し、不均化反応による生成ガスは室外熱交換器へ流入する。それにより、過度に上昇した温度・圧力は低下し、高温・高圧による密閉型圧縮機や吐出配管等の破損を回避することができる。
In the sixth invention, in particular, the communication mechanism of the first to fourth inventions is a mechanism that opens and closes when the working medium reaches a predetermined pressure.
With this configuration, a disproportionation reaction occurs in the closed compressor, and when the pressure of the gas generated by the disproportionation rises excessively, the communication mechanism opens and closes the valve to open and close the closed compressor. The gas produced by the disproportionation reaction flows into the outdoor heat exchanger through the outdoor heat exchanger. As a result, the excessively increased temperature and pressure are reduced, and damage to the sealed compressor, discharge pipe, etc. due to high temperature and high pressure can be avoided.

第7の発明は、特に第1〜6の発明の連通機構の配管径を、前記密閉型圧縮機の吐出配管と同等またはそれ以上としたものである。
この構成をなすことにより、前記連通機構の配管の流動損失が減少し、急激な圧力上昇を抑え、第1〜6の発明と併用することで、さらなる冷凍サイクル装置の信頼性を向上することができる。
In the seventh invention, in particular, the pipe diameter of the communication mechanism of the first to sixth inventions is equal to or larger than that of the discharge pipe of the closed compressor.
With this configuration, the flow loss of the piping of the communication mechanism is reduced, a rapid pressure rise is suppressed, and when used in combination with the first to sixth inventions, the reliability of the refrigeration cycle apparatus can be further improved. it can.

第8の発明は、特に第1〜7の発明の密閉型圧縮機の圧縮容器の内容積よりも前記室外熱交換器の内容積を大きくしたものである。
この構成をなすことにより、圧縮機で発生した不均化反応による生成ガスの圧力は、内容積の大きい室外熱交換器で低下しやすくなり、より冷凍サイクル装置の破損を回避することができ、第1〜7の発明と併用することで、さらなる冷凍サイクル装置の信頼性を向上することができる。
In the eighth invention, the internal volume of the outdoor heat exchanger is made larger than the internal volume of the compression vessel of the sealed compressor of the first to seventh inventions.
With this configuration, the pressure of the generated gas due to the disproportionation reaction generated in the compressor is likely to decrease in the outdoor heat exchanger with a large internal volume, and damage to the refrigeration cycle device can be further avoided. When used in combination with the first to seventh inventions, the reliability of the refrigeration cycle apparatus can be further improved.

第9の発明は、特に第1〜8の発明の作動媒体にHFO1123等の二重結合を有するエチレン系フッ化炭化水素の不均化反応を抑制する不均化抑制剤を添加したものである。この構成をなすことにより、抑制剤によって、冷凍サイクル装置内の温度および圧力上昇を抑制することができ、発明1〜8と併用することで、さらなる冷凍サイクル装置の信頼性を高めることができる。 In the ninth invention, in particular, an disproportionation inhibitor that suppresses the disproportionation reaction of an ethylene-based fluorinated hydrocarbon having a double bond such as HFO1123 is added to the working medium of the first to eighth inventions. .. With this configuration, the temperature and pressure rise in the refrigeration cycle apparatus can be suppressed by the inhibitor, and the reliability of the refrigeration cycle apparatus can be further enhanced by using in combination with the inventions 1 to 8.

以下、本発明の実施の形態について空気調和機を例にして図面を参照しながら説明する
。なお、この実施の形態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking an air conditioner as an example. The present invention is not limited to this embodiment.

(実施の形態1)
図1は本発明の実施の形態1に係る空気調和機の概略構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment of the present invention.

本実施の形態の空気調和機100は、室外機101および室内機102、並びにこれらを接続する接続配管103を備えており、室外機101は圧縮機104、室外熱交換器105および膨張手段106を備え、室内機102は室内熱交換器107を備えている。 The air conditioner 100 of the present embodiment includes an outdoor unit 101 and an indoor unit 102, and a connection pipe 103 connecting them. The outdoor unit 101 includes a compressor 104, an outdoor heat exchanger 105, and an expansion means 106. The indoor unit 102 includes an indoor heat exchanger 107.

室外機101の室外熱交換器105と室内機102の室内熱交換器107とは、接続配管103で環状に接続され、これにより冷凍サイクルが形成されている。具体的には、圧縮機104、室内機102の室内熱交換器107、膨張手段106、室外機101の室外熱交換器105の順で接続配管103により環状に接続されている。また、圧縮機104、室外熱交換器105および室内熱交換器107を接続する配管103には、冷暖房切換用の四方弁110が設けられている。さらに、圧縮機104と四方弁110を接続する吐出配管111には膨張手段106と室外熱交換器105を接続する配管103へ連通する配管108が接続され、配管108には第1の連通配管108aが設置され、第1の連通配管108aの途中には、第1の連通機構109aが設けられている。なお、室外機101は、送風機114、図示しないアキュームレータ、温度センサ等を備えている。また、室内機102は、送風ファン113、図示しない温度センサ、操作部等を備えている。さらに、接続配管103には、図示しない各種弁装置、ストレーナ等が設けられている。 The outdoor heat exchanger 105 of the outdoor unit 101 and the indoor heat exchanger 107 of the indoor unit 102 are connected in an annular shape by a connecting pipe 103, whereby a refrigeration cycle is formed. Specifically, the compressor 104, the indoor heat exchanger 107 of the indoor unit 102, the expansion means 106, and the outdoor heat exchanger 105 of the outdoor unit 101 are connected in an annular shape by the connecting pipe 103 in this order. Further, a four-way valve 110 for switching heating / cooling is provided in the pipe 103 connecting the compressor 104, the outdoor heat exchanger 105, and the indoor heat exchanger 107. Further, a pipe 108 that communicates with the pipe 103 that connects the expansion means 106 and the outdoor heat exchanger 105 is connected to the discharge pipe 111 that connects the compressor 104 and the four-way valve 110, and the first communication pipe 108a is connected to the pipe 108. Is installed, and a first communication mechanism 109a is provided in the middle of the first communication pipe 108a. The outdoor unit 101 includes a blower 114, an accumulator (not shown), a temperature sensor, and the like. Further, the indoor unit 102 includes a blower fan 113, a temperature sensor (not shown), an operation unit, and the like. Further, the connecting pipe 103 is provided with various valve devices, strainers and the like (not shown).

室内機102が備える室内熱交換器107は、送風ファン113により室内機102の内部に吸い込まれた室内空気と、室内熱交換器107の内部を流れる冷媒(冷凍サイクル用作動媒体)との間で熱交換を行う。室内機102は、暖房時には熱交換により暖められた空気を室内に送風し、冷房時には熱交換により冷却された空気を室内に送風する。室外機101が備える室外熱交換器105は、送風機114により室外機101の内部に吸い込まれた外気と室外熱交換器105の内部を流れる冷媒との間で熱交換を行う。 The indoor heat exchanger 107 included in the indoor unit 102 is between the indoor air sucked into the indoor unit 102 by the blower fan 113 and the refrigerant (working medium for refrigeration cycle) flowing inside the indoor heat exchanger 107. Perform heat exchange. The indoor unit 102 blows air warmed by heat exchange into the room during heating, and blows air cooled by heat exchange into the room during cooling. The outdoor heat exchanger 105 included in the outdoor unit 101 exchanges heat between the outside air sucked into the outdoor unit 101 by the blower 114 and the refrigerant flowing inside the outdoor heat exchanger 105.

冷凍サイクル中には冷媒が封入されており、圧縮機104がこの冷媒を圧縮して冷凍サイクル中を循環させている。この圧縮機104はいわゆる密閉型のロータリ式圧縮機で、内部に潤滑油が封入してある。 A refrigerant is sealed in the refrigeration cycle, and the compressor 104 compresses the refrigerant and circulates it in the refrigeration cycle. The compressor 104 is a so-called closed rotary compressor in which lubricating oil is sealed.

なお、室内機102および室外機101の具体的な構成、あるいは、室内熱交換器107または室外熱交換器105、圧縮機104、膨張手段106、四方弁110、送風ファン113、送風機114、図示しない温度センサ、操作部、アキュームレータ、その他の弁装置、ストレーナ等の具体的な構成は特に限定されず、公知の構成を好適に用いることができる。 The specific configuration of the indoor unit 102 and the outdoor unit 101, or the indoor heat exchanger 107 or the outdoor heat exchanger 105, the compressor 104, the expansion means 106, the four-way valve 110, the blower fan 113, the blower 114, not shown. The specific configuration of the temperature sensor, operating unit, accumulator, other valve device, strainer, etc. is not particularly limited, and known configurations can be preferably used.

次に上記のように構成した空気調和機100の作用効果について以下説明する。 Next, the effects of the air conditioner 100 configured as described above will be described below.

まず、空気調和機の基本的な動作を簡単に説明しておく。 First, the basic operation of the air conditioner will be briefly explained.

暖房運転では、圧縮機104はガス冷媒を圧縮して吐出し、これによりガス冷媒は四方弁110を介して室内機102の室内熱交換器107に送出される。室内熱交換器107では、室内空気との熱交換によりガス冷媒が凝縮して液化する。液化した液冷媒は、膨張手段106により減圧されて気液二相冷媒となり、室外機101の室外熱交換器105に送出される。室外熱交換器105は外気と気液二相冷媒とを熱交換するので、気液二相冷媒は蒸発してガス冷媒となり、圧縮機104に戻る。圧縮機104はガス冷媒を圧縮して四方弁110を介して再び室内機102の室内熱交換器107に吐出する。 In the heating operation, the compressor 104 compresses and discharges the gas refrigerant, whereby the gas refrigerant is sent to the indoor heat exchanger 107 of the indoor unit 102 via the four-way valve 110. In the indoor heat exchanger 107, the gas refrigerant is condensed and liquefied by heat exchange with the indoor air. The liquefied liquid refrigerant is decompressed by the expansion means 106 to become a gas-liquid two-phase refrigerant, and is sent to the outdoor heat exchanger 105 of the outdoor unit 101. Since the outdoor heat exchanger 105 exchanges heat between the outside air and the gas-liquid two-phase refrigerant, the gas-liquid two-phase refrigerant evaporates to become a gas refrigerant and returns to the compressor 104. The compressor 104 compresses the gas refrigerant and discharges it to the indoor heat exchanger 107 of the indoor unit 102 again via the four-way valve 110.

冷房運転または除湿運転では、室外機101の圧縮機104はガス冷媒を圧縮して吐出し、これによりガス冷媒は四方弁110を介して室外機101の室外熱交換器105に送出される。室外熱交換器105は外気とガス冷媒とを熱交換するので、ガス冷媒は凝縮して液化する。液化した液冷媒は膨張手段106により減圧され、室内機102の室内熱交換器107に送出される。室内熱交換器107では、室内空気との熱交換により液冷媒が蒸発してガス冷媒となる。このガス冷媒は、四方弁110、吸入配管112を介して室外機101の圧縮機104に戻る。圧縮機104はガス冷媒を圧縮して四方弁110を介して再び室外熱交換器105に吐出する。 In the cooling operation or the dehumidifying operation, the compressor 104 of the outdoor unit 101 compresses and discharges the gas refrigerant, whereby the gas refrigerant is sent to the outdoor heat exchanger 105 of the outdoor unit 101 via the four-way valve 110. Since the outdoor heat exchanger 105 exchanges heat between the outside air and the gas refrigerant, the gas refrigerant condenses and liquefies. The liquefied liquid refrigerant is decompressed by the expansion means 106 and sent to the indoor heat exchanger 107 of the indoor unit 102. In the indoor heat exchanger 107, the liquid refrigerant evaporates to become a gas refrigerant by heat exchange with the indoor air. This gas refrigerant returns to the compressor 104 of the outdoor unit 101 via the four-way valve 110 and the suction pipe 112. The compressor 104 compresses the gas refrigerant and discharges it to the outdoor heat exchanger 105 again via the four-way valve 110.

次に連通機構109の作用効果について説明する。 Next, the action and effect of the communication mechanism 109 will be described.

上記運転中、正常な運転条件下ではない状態、すなわち、既述したように凝縮器側の送風ファン113停止、冷凍サイクル装置の閉塞等が生じると、冷凍サイクルの高圧側が過度に上昇する。これに伴い温度も大きく上昇する。その結果、不均化反応が生じやすい状態となる。圧縮機104内で不均化反応が発生し、この反応による生成ガスの温度または圧力が過度に上昇すると、圧縮機104と室外熱交換器105を連通する配管108aにある連通機構109aが溶解または弁の開閉等で、圧縮機104と室外熱交換器105を連通させ、生成ガスは室外熱交換器105へ流入する。 During the above operation, if the operating conditions are not normal, that is, if the blower fan 113 on the condenser side is stopped, the refrigeration cycle device is blocked, or the like, the high pressure side of the refrigeration cycle rises excessively. Along with this, the temperature also rises significantly. As a result, a disproportionation reaction is likely to occur. When a disproportionation reaction occurs in the compressor 104 and the temperature or pressure of the gas produced by this reaction rises excessively, the communication mechanism 109a in the pipe 108a that connects the compressor 104 and the outdoor heat exchanger 105 melts or melts. The compressor 104 and the outdoor heat exchanger 105 are communicated with each other by opening and closing the valve, and the generated gas flows into the outdoor heat exchanger 105.

具体的に連通機構109aは、図2に示す溶栓200、図5に示す圧力逃がし弁300等が挙げられる。 Specific examples of the communication mechanism 109a include a fusible plug 200 shown in FIG. 2, a pressure release valve 300 shown in FIG. 5, and the like.

図5に示すように、溶栓200は熱伝導に優れた金属、例えば真鍮で形成され、中央にレンチ係合部201、内部に貫通孔202を有し、冷凍サイクル装置の高圧側に設けられた雌ネジ部と螺合接続するための雄ネジ部203と低圧側の雌ネジ部と螺合接続するための雄ネジ部204と、本体の内壁面に形成される貫通孔に充填され、冷凍サイクル装置内が所定の温度に達すると、すなわち不均化反応後に作動媒体が高温に達すると溶融する低融点合金205を設けて構成される。 As shown in FIG. 5, the fusible plug 200 is made of a metal having excellent thermal conductivity, for example, brass, has a wrench engaging portion 201 in the center, and a through hole 202 inside, and is provided on the high pressure side of the refrigeration cycle apparatus. The male screw part 203 for screw connection with the female screw part, the male screw part 204 for screw connection with the female screw part on the low pressure side, and the through hole formed in the inner wall surface of the main body are filled and frozen. It is configured by providing a low melting point alloy 205 that melts when the inside of the cycle apparatus reaches a predetermined temperature, that is, when the working medium reaches a high temperature after the disproportionation reaction.

低融点合金205の充填状態は低融点合金205と溶栓200の本体とが金属的接合で完全な気密状態となっている。低融点合金205の材料は、具体的な種類は特に限定されず、材料が融ける温度条件に応じて公知の化合物等を好適に用いることができる。また、低融点合金205の材料としては、1種類の化合物のみが用いられてもよいし、2種類以上の化合物等が適宜組み合わせられて用いられてもよい。さらに、これら材料の混合比率も特に限定されず、公知の範囲内で添加することができるが、環境に配慮した鉛フリーの材質を使用することが好ましい。 The filling state of the low melting point alloy 205 is a completely airtight state in which the low melting point alloy 205 and the main body of the fusible plug 200 are metal-bonded. The specific type of the material of the low melting point alloy 205 is not particularly limited, and a known compound or the like can be preferably used depending on the temperature condition at which the material melts. Further, as the material of the low melting point alloy 205, only one kind of compound may be used, or two or more kinds of compounds and the like may be appropriately combined and used. Further, the mixing ratio of these materials is not particularly limited and can be added within a known range, but it is preferable to use an environmentally friendly lead-free material.

また、図6に示すように連通機構109aとしては、開閉する弁体を内部に有するものでもよい。同図に示すように、圧力逃がし弁300は、配管に接続される本体301と開閉可能に配置される弁体302と、弁体302と連結した軸部303と、弁体302とは対極に配備され、ばね力を作用させるばね部304によって構成される。所定の圧力が弁体302に伝わることにより、弁体302が開弁され、圧力が所定の値に降下すれば、ばね部304によって再び弁体302が閉弁する機能をもつ。すなわち、作動媒体が不均化反応後に高圧に達すると、圧力逃がし弁300の高圧側から弁体302に圧力が作用し、弁体302が開くことにより、不均化反応後の生成ガスは低圧側に流入し、圧力は低下するので、圧縮機104の破損を回避することができる。また、生成ガスの圧力が所定の値に降下すれば、ばね部304によって弁体302は閉じる構成となっている。上記は一例であり、具体的な構成は特に限定されず、作動圧力に応じて弁体が開閉する構成であれば、公知の圧力逃がし弁を好適に用いることができる。これら以外にも、所定の温度または
圧力となったときに、開放可能とする公知の弁等であれば適用できる。
Further, as shown in FIG. 6, the communication mechanism 109a may have a valve body that opens and closes inside. As shown in the figure, the pressure release valve 300 has a valve body 302 that is openably and closably arranged with a main body 301 connected to a pipe, a shaft portion 303 that is connected to the valve body 302, and a valve body 302 that is opposite to the valve body 302. It is composed of a spring portion 304 that is deployed and exerts a spring force. When a predetermined pressure is transmitted to the valve body 302, the valve body 302 is opened, and when the pressure drops to a predetermined value, the spring portion 304 has a function of closing the valve body 302 again. That is, when the working medium reaches a high pressure after the disproportionation reaction, pressure acts on the valve body 302 from the high pressure side of the pressure release valve 300, and the valve body 302 opens, so that the generated gas after the disproportionation reaction is at a low pressure. Since the pressure flows into the side and the pressure drops, damage to the compressor 104 can be avoided. Further, when the pressure of the generated gas drops to a predetermined value, the valve body 302 is closed by the spring portion 304. The above is an example, and the specific configuration is not particularly limited, and a known pressure release valve can be preferably used as long as the valve body opens and closes according to the operating pressure. In addition to these, any known valve or the like that can be opened when a predetermined temperature or pressure is reached can be applied.

連通機構109aが連通する閾値として、例えば一例を挙げると、作動媒体が不均化する温度・圧力を圧縮機104のモーター絶縁紙が溶解する130〜150℃(圧力:3.5〜4.0MPa)とすると、これらの値と同等、またはそれよりもやや高い値において連通機構109aが溶解または弁の開閉等の実行する閾値とすることで、不均化反応が発生した場合に圧縮機104と室外熱交換器105は連通し、不均化反応後の生成ガスの温度・圧力は低下し、圧縮機104の破損を回避することができる。 As a threshold for communication with the communication mechanism 109a, for example, 130 to 150 ° C. (pressure: 3.5 to 4.0 MPa) in which the motor insulating paper of the compressor 104 melts the temperature and pressure at which the working medium disproportionates. ), Then, at a value equal to or slightly higher than these values, the communication mechanism 109a is set as a threshold for executing melting or valve opening / closing, etc., so that when a disproportionation reaction occurs, the compressor 104 The outdoor heat exchanger 105 communicates with each other, and the temperature and pressure of the generated gas after the disproportionation reaction decrease, so that damage to the compressor 104 can be avoided.

次に配管108aの接続箇所について説明する。 Next, the connection points of the pipe 108a will be described.

前述したとおり、正常な運転条件下ではない状態、すなわち、凝縮器側の送風ファン113停止、冷凍サイクル装置の閉塞等が生じると、冷凍サイクルの高圧側が過度に上昇する。これに伴い温度も大きく上昇する。その結果、不均化反応が生じやすい状態となる。圧縮機104内で不均化反応が発生し、この反応による生成ガスの温度・圧力が過度に上昇すると、圧縮機104と室外熱交換器105を連通する配管108に接続された連通機構109が溶解または弁の開閉等で、圧縮機104と室外熱交換器105は連通し、不均化反応後の生成ガスは室外熱交換器105へ流入する。 As described above, if the operating conditions are not normal, that is, if the blower fan 113 on the condenser side is stopped, the refrigeration cycle device is blocked, or the like, the high pressure side of the refrigeration cycle rises excessively. Along with this, the temperature also rises significantly. As a result, a disproportionation reaction is likely to occur. When a disproportionation reaction occurs in the compressor 104 and the temperature and pressure of the generated gas due to this reaction rises excessively, the communication mechanism 109 connected to the pipe 108 that connects the compressor 104 and the outdoor heat exchanger 105 The compressor 104 and the outdoor heat exchanger 105 communicate with each other by melting or opening / closing the valve, and the generated gas after the disproportionation reaction flows into the outdoor heat exchanger 105.

図1は、圧縮機104と室外熱交換器105を連通する配管108aが、室外熱交換器105と膨張手段106とを連通する配管に接続された構成とする。 FIG. 1 has a configuration in which a pipe 108a that communicates the compressor 104 and the outdoor heat exchanger 105 is connected to a pipe that communicates the outdoor heat exchanger 105 and the expansion means 106.

暖房時、不均化反応が発生すると、圧縮機104と室外熱交換器105を連通する配管108aの連通機構109aが溶解または弁の開閉等により、連通配管108aは、室外熱交換器105と膨張手段106とを接続する配管103へ連通する。すなわち、不均化反応後の生成ガスは、膨張手段106により室内熱交換器107へ流れずに、室外熱交換器105へ流れ、凝縮されることにより温度または圧力は低下する。 When a disproportionate reaction occurs during heating, the communication mechanism 109a of the pipe 108a that communicates the compressor 104 and the outdoor heat exchanger 105 melts or opens and closes the valve, so that the communication pipe 108a expands with the outdoor heat exchanger 105. It communicates with the pipe 103 connecting the means 106. That is, the generated gas after the disproportionation reaction does not flow to the indoor heat exchanger 107 by the expansion means 106, but flows to the outdoor heat exchanger 105, and is condensed to lower the temperature or pressure.

また冷房時、不均化反応が発生すると、圧縮機104と室外熱交換器105を連通する配管108aの連通機構109aが溶解または弁の開閉等により、連通配管108は室外熱交換器105と膨張手段106とを接続する配管103と連通する。不均化反応後の生成ガスが、膨張手段106により減圧されることにより、生成ガスの温度・圧力は低下した状態で室内熱交換器107へ流入する。そのため、冷凍サイクル装置の破損を回避することができ、信頼性を確保することができる。 When a disproportionation reaction occurs during cooling, the communication mechanism 109a of the pipe 108a that communicates the compressor 104 and the outdoor heat exchanger 105 melts or opens and closes the valve, so that the communication pipe 108 expands with the outdoor heat exchanger 105. It communicates with the pipe 103 connecting the means 106. The generated gas after the disproportionation reaction is depressurized by the expansion means 106, so that the generated gas flows into the indoor heat exchanger 107 in a state where the temperature and pressure of the produced gas are lowered. Therefore, damage to the refrigeration cycle device can be avoided, and reliability can be ensured.

次に、連通配管ならびに連通機構の配置のバリエーションについて説明する。 Next, variations in the arrangement of the communication pipe and the communication mechanism will be described.

(実施の形態2)
図2は、本発明の実施の形態2における冷凍サイクル装置としての空気調和機を示す概略構成図である。
同図に示すように、圧縮機104の吐出側と四方弁との間と、室外熱交換器105と四方弁との間、とを結ぶ第2の連通配管108bを有し、第2の連通配管108bは第2の連通機構109bを有する構成とする。
暖房運転時、不均化反応後の高温・高圧の生成ガスは、室外熱交換器105の低温・低圧側へ流れることで、放熱・減圧される。冷房運転時、不均化反応後の高温・高圧の生成ガスは、四方弁110を通過せずに、第2の連通配管108bは第2の連通機構109bを通って室外熱交換器105の入口側へ流れ、室外熱交換器105にて減圧および放熱される。そのため、過度に上昇した不均化反応後の生成ガスの温度・圧力は低下し、四方弁110の破損を軽減することができる。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to the second embodiment of the present invention.
As shown in the figure, it has a second communication pipe 108b connecting between the discharge side of the compressor 104 and the four-way valve and between the outdoor heat exchanger 105 and the four-way valve, and has a second communication. The pipe 108b is configured to have a second communication mechanism 109b.
During the heating operation, the high-temperature / high-pressure generated gas after the disproportionation reaction flows to the low-temperature / low-pressure side of the outdoor heat exchanger 105 to dissipate heat and reduce the pressure. During the cooling operation, the high-temperature and high-pressure generated gas after the disproportionation reaction does not pass through the four-way valve 110, and the second communication pipe 108b passes through the second communication mechanism 109b and enters the outdoor heat exchanger 105. It flows to the side and is depressurized and dissipated by the outdoor heat exchanger 105. Therefore, the temperature and pressure of the generated gas after the disproportionation reaction that has risen excessively decrease, and the damage to the four-way valve 110 can be reduced.

(実施の形態3)
図3は、本発明の実施の形態3における冷凍サイクル装置としての空気調和機を示す概略構成図である。
(Embodiment 3)
FIG. 3 is a schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to the third embodiment of the present invention.

同図に示すように、室外熱交換器105と四方弁110とを接続する配管と、室外熱交換器105と膨張手段106とへ接続する配管に連通する三方弁501を配備させ、連通管108cならびに連通機構109cは、圧縮機104と四方弁110との間と三方弁501をつなぐ構成とする。
暖房運転時、三方弁501は、圧縮機104と室外熱交換器105を連通する機構109cが、膨張手段106と室外熱交換器105を連通する配管に接続されるように切換えられ、不均化反応後の高温・高圧の生成ガスは、室外熱交換器105入口から室外熱交換器105内へ流れ、放熱・減圧される。また冷房運転時、三方弁501は、圧縮機104と室外熱交換器105を連通する機構109cが、室外熱交換器105と四方弁110とを接続する配管に接続されるように切換えられる。不均化反応後の高温・高圧の生成ガスは、四方弁110を通過せずに室外熱交換器105の入口側へ流れ、室外熱交換器105にて減圧および放熱される。したがって、不均化反応後の急激に上昇した温度・圧力は低下し、四方弁110の破損を回避することができる。そのため、暖房、冷房運転における不均化反応後の生成ガスは室外熱交換器105で減圧・放熱されるとともに、生成ガスによる四方弁110の破損を回避することができる。
As shown in the figure, a pipe connecting the outdoor heat exchanger 105 and the four-way valve 110 and a three-way valve 501 communicating with the pipe connecting the outdoor heat exchanger 105 and the expansion means 106 are provided, and the communication pipe 108c is provided. Further, the communication mechanism 109c is configured to connect the three-way valve 501 between the compressor 104 and the four-way valve 110.
During the heating operation, the three-way valve 501 is switched so that the mechanism 109c that communicates the compressor 104 and the outdoor heat exchanger 105 is connected to the pipe that communicates the expansion means 106 and the outdoor heat exchanger 105, and is disproportionate. The high-temperature, high-pressure generated gas after the reaction flows from the inlet of the outdoor heat exchanger 105 into the outdoor heat exchanger 105, and is dissipated and depressurized. Further, during the cooling operation, the three-way valve 501 is switched so that the mechanism 109c that communicates the compressor 104 and the outdoor heat exchanger 105 is connected to the pipe that connects the outdoor heat exchanger 105 and the four-way valve 110. The high-temperature and high-pressure generated gas after the disproportionation reaction flows to the inlet side of the outdoor heat exchanger 105 without passing through the four-way valve 110, and is depressurized and dissipated by the outdoor heat exchanger 105. Therefore, the temperature and pressure that have risen sharply after the disproportionation reaction decrease, and damage to the four-way valve 110 can be avoided. Therefore, the generated gas after the disproportionation reaction in the heating and cooling operations is depressurized and dissipated by the outdoor heat exchanger 105, and damage to the four-way valve 110 due to the generated gas can be avoided.

(実施の形態4)
図4は、本発明の実施の形態4に係る冷凍サイクル装置としての空気調和機を示す概略構成図である。
当該実施の形態は、連通機構109dが室外熱交換器105内のヘッダー配管601と接続する構成を有する。
暖房運転時、不均化反応後の高温・高圧の生成ガスは、連通管108dならびに連通機構109dを通って室外熱交換器105の出口側すなわち低圧側のヘッダー配管601へ流れる。ヘッダー配管601は、吐出配管111や吸入配管112よりも配管径が太いため、配管容積が大きく、圧力降下しやすい。そのため、不均化反応後の高温・高圧の生成ガスは、減圧しやすくなる。また、冷房運転時、不均化反応後の高温・高圧の生成ガスは、四方弁110を通過せずに、室外熱交換器105のヘッダー配管601へ直接流れる。上述のとおり、ヘッダー配管601は配管容積が大きいため、不均化反応後の高温・高圧の生成ガスは減圧しやすくなる。
(Embodiment 4)
FIG. 4 is a schematic configuration diagram showing an air conditioner as a refrigeration cycle device according to a fourth embodiment of the present invention.
The embodiment has a configuration in which the communication mechanism 109d is connected to the header pipe 601 in the outdoor heat exchanger 105.
During the heating operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows to the header pipe 601 on the outlet side, that is, the low-pressure side of the outdoor heat exchanger 105 through the communication pipe 108d and the communication mechanism 109d. Since the header pipe 601 has a larger pipe diameter than the discharge pipe 111 and the suction pipe 112, the pipe volume is large and the pressure tends to drop. Therefore, the high-temperature and high-pressure generated gas after the disproportionation reaction is easily depressurized. Further, during the cooling operation, the high-temperature and high-pressure generated gas after the disproportionation reaction flows directly to the header pipe 601 of the outdoor heat exchanger 105 without passing through the four-way valve 110. As described above, since the header pipe 601 has a large pipe volume, the high-temperature and high-pressure generated gas after the disproportionation reaction is easily depressurized.

ここで、圧縮機104と室外熱交換器105を連通する配管108a、108b、108c、108dの配管径について説明する。配管108a、108b、108c、108dの配管径が、吐出配管111と同等またはそれ以上とすると、配管容積が拡大し、流動損失が減少することで、圧力の急激な上昇を抑えることができる。 Here, the pipe diameters of the pipes 108a, 108b, 108c, and 108d that communicate the compressor 104 and the outdoor heat exchanger 105 will be described. When the pipe diameters of the pipes 108a, 108b, 108c, and 108d are equal to or larger than the discharge pipe 111, the pipe volume is expanded and the flow loss is reduced, so that a rapid increase in pressure can be suppressed.

次に圧縮機104と室外熱交換器105の容積の関係について説明する。圧縮機104の圧縮容器の内容積よりも室外熱交換器105の内容積の方が大きいと、圧縮機104で発生した不均化反応による生成ガスの圧力が室外熱交換器105で低下しやすくなり、より冷凍サイクル装置の破損を回避することができる。圧縮機104の圧縮容器の内容積に対し室外熱交換器105のそれは1.5倍以上が好ましいが、限定されるものではない。 Next, the relationship between the volumes of the compressor 104 and the outdoor heat exchanger 105 will be described. If the internal volume of the outdoor heat exchanger 105 is larger than the internal volume of the compressor container of the compressor 104, the pressure of the generated gas due to the disproportionation reaction generated in the compressor 104 tends to decrease in the outdoor heat exchanger 105. Therefore, damage to the refrigeration cycle device can be avoided. It is preferable, but not limited to, 1.5 times or more that of the outdoor heat exchanger 105 with respect to the internal volume of the compression vessel of the compressor 104.

次に上記冷凍サイクル装置内に封入した冷媒(冷凍サイクル用作動媒体)について説明する。本実施の形態の空気調和機100に封入される作動媒体は、冷媒成分が少なくとも1,1,2−トリフルオロエチレンで構成される。また、不均化抑制剤が添加してもよい。 Next, the refrigerant (working medium for refrigeration cycle) sealed in the refrigeration cycle apparatus will be described. The working medium enclosed in the air conditioner 100 of the present embodiment is composed of at least 1,1,2-trifluoroethylene as a refrigerant component. Moreover, the disproportionation inhibitor may be added.

一例を挙げると、不均化抑制剤は、潤滑油に対して溶解性を有し、かつ、不均化抑制剤の潤滑油に対する溶解度が、温度上昇するに従って少なくとも低下するものとしてある。 As an example, the disproportionation inhibitor has solubility in a lubricating oil, and the solubility of the disproportionation inhibitor in the lubricating oil is assumed to decrease at least as the temperature rises.

例えば、次式(1)
CHmXn ・・・ (1)
(ただし、式(1)におけるXはF、Cl、Br、Iからなる群より選択されるハロゲン原子であり、mは0以上の整数であるとともにnは1以上の整数であり、さらに、nおよびmの和は4であり、nが2以上のときXは同一または異なる種類のハロゲン原子である。)
に示す構造を有するハロメタン(XがFのみの場合を除く)である。
For example, the following equation (1)
CHmXn ・ ・ ・ (1)
(However, X in the formula (1) is a halogen atom selected from the group consisting of F, Cl, Br, and I, m is an integer of 0 or more, n is an integer of 1 or more, and further, n. The sum of and m is 4, and when n is 2 or more, X is the same or different kind of halogen atom.)
Halomethane having the structure shown in (except when X is F only).

前記ハロメタンは、不均化反応の連鎖分岐反応を引き起こすフッ素ラジカル、フルオロメチルラジカル、およびフルオロメチレンラジカル等のラジカルを良好に捕捉することが可能である。そのため、1,1,2−トリフルオロエチレンの不均化反応を有効に抑制したり、不均化反応の急激な進行を緩和したりすることができる。その結果、冷凍サイクル用作動媒体およびこれを用いた冷凍サイクル装置の信頼性を向上させることができる。 The halomethane can satisfactorily capture radicals such as fluorine radicals, fluoromethyl radicals, and fluoromethylene radicals that cause a chain branching reaction of a disproportionation reaction. Therefore, the disproportionation reaction of 1,1,2-trifluoroethylene can be effectively suppressed, and the rapid progress of the disproportionation reaction can be alleviated. As a result, the reliability of the working medium for the refrigeration cycle and the refrigeration cycle apparatus using the same can be improved.

なお、式(1)に示すハロメタンとしては、具体的には、例えば、(モノ)ヨードメタン(CH3I )、ジヨードメタン(CH2I2)、ジブロモメタン(CH2Br2)、ブロモメタン(CH3Br )、ジクロロメタン(CH2Cl2)、クロロヨードメタン(CH2ClI )、ジブロモクロロメタン(CHBr2Cl )、四ヨウ化メタン(CI4 )、四臭化炭素(CBr4 )、ブロモトリクロロメタン(CBrCl3 )、ジブロモジクロロメタン(CBr2Cl2)、トリブロモフルオロメタン(CBr3F )、フルオロヨードメタン(CHFI2 )、ジフルオロジヨードメタン(CF2I2)、ジブロモジフルオロメタン(CBr2F2)、トリフルオロヨードメタン(CF3I )等が挙げられるが、特に限定されない。 Specific examples of the halomethane represented by the formula (1) include (mono) iodomethane (CH3I), diiodomethane (CH2I2), dibromomethane (CH2Br2), bromomethane (CH3Br), dichloromethane (CH2Cl2), and chloroiodo. Methane (CH2ClI), Dibromochloromethane (CHBr2Cl), Iodomethane (CI4), Carbon tetrabromide (CBr4), Bromotrichloromethane (CBrCl3), Dibromodichloromethane (CBr2Cl2), Tribromofluoromethane (CBr3F), Fluoro Examples thereof include iodomethane (CHFI2), difluorodiiodomethane (CF2I2), dibromodifluoromethane (CBr2F2), trifluoroiodomethane (CF3I), and the like, but the present invention is not particularly limited.

これら不均化抑制剤は、1種類のみが用いられてもよいし2種類以上が適宜組み合わせられて用いられてもよい。 Only one type of these disproportionation inhibitors may be used, or two or more types may be appropriately combined and used.

これらの中でも、不均化抑制剤として好ましいハロメタンとしては、例えば、ハロゲン原子Xに臭素が含まれているものを挙げることができ、より好ましいハロメタンとしては、ジブロモメタン(CH2Br2)、ブロモメタン(CH3Br )、またはジブロモジクロロメタン(CBr2Cl2)を挙げることができる。 Among these, preferred halomethanes as disproportionate inhibitors include, for example, those in which bromine is contained in the halogen atom X, and more preferable halomethanes are dibromomethane (CH2Br2) and bromomethane (CH3Br). , Or dibromodichloromethane (CBr2Cl2).

ここでハロメタンの添加量は、冷媒成分および不均化抑制剤の全量を100モル%としたときに10モル%以下としてある。これにより不均化抑制剤であるハロメタンの過剰な添加による冷媒成分(冷凍サイクル用作動媒体)の性質に影響が及ぼされることを有効に回避することができる。 Here, the amount of halomethane added is 10 mol% or less when the total amount of the refrigerant component and the disproportionation inhibitor is 100 mol%. As a result, it is possible to effectively prevent the property of the refrigerant component (working medium for refrigeration cycle) from being affected by the excessive addition of halomethane, which is a disproportionation inhibitor.

なお、前記構成の冷凍サイクル用作動媒体においては、ハロメタンは、ハロゲン原子Xに臭素が含まれている構成であってもよい。不均化抑制剤であるハロメタンが臭素を含むため、1,1,2−トリフルオロエチレンの不均化反応をより一層良好に抑制または緩和することができる。 In the refrigeration cycle working medium having the above configuration, halomethane may have a configuration in which bromine is contained in the halogen atom X. Since halomethane, which is a disproportionation inhibitor, contains bromine, the disproportionation reaction of 1,1,2-trifluoroethylene can be suppressed or alleviated even more satisfactorily.

また、前記構成の冷凍サイクル用作動媒体においては、ハロメタンが、ジブロモメタン、ブロモメタン、またはジブロモジクロロメタンである構成であってもよい。不均化抑制剤であるハロメタンがジブロモメタンまたはブロモメタンであるため、1,1,2−トリフルオロエチレンの不均化反応をさらに一層良好に抑制または緩和することができる。 Further, in the working medium for the refrigeration cycle having the above-mentioned structure, the halomethane may be dibromomethane, bromomethane, or dibromodichloromethane. Since the halomethane as the disproportionation inhibitor is dibromomethane or bromomethane, the disproportionation reaction of 1,1,2-trifluoroethylene can be suppressed or alleviated even more satisfactorily.

さらにまた、前記構成の冷凍サイクル用作動媒体においては、冷媒成分としてジフルオロメタンを含有する構成であってもよい。ジフルオロメタンは、1,1,2−トリフルオロエチレンと同様に環境への影響が少ないため、冷凍サイクル用作動媒体として良好な性質を実現することができる。 Furthermore, the refrigerating cycle operating medium having the above configuration may contain difluoromethane as a refrigerant component. Since difluoromethane has little impact on the environment like 1,1,2-trifluoroethylene, it can realize good properties as a working medium for a refrigeration cycle.

また、圧縮機には、スクロール式、ロータリ式、レシプロ式、スライディングベーン式等の様々な形式があるが、密閉型で且つ内部に潤滑油が封入されていれば、圧縮機の形式によらず同様の効果を発揮できる。また、アキュームレータやストレーナ等の部品についても、圧縮機の形式によっては備える必要がない場合があるが、有無によらず同様の効果を発揮できる。 In addition, there are various types of compressors such as scroll type, rotary type, reciprocating type, sliding vane type, etc., but if it is a closed type and lubricating oil is sealed inside, it does not matter which type of compressor. The same effect can be achieved. Further, it may not be necessary to provide parts such as an accumulator and a strainer depending on the type of compressor, but the same effect can be exhibited regardless of the presence or absence.

さらに、上記の説明では、例として不均化反応後の作用および効果について説明したが、不均化反応直前であったとしても、連通機構109が溶解または弁の開閉等の実行する閾値を設定することで、同様の効果を発揮することができる。 Further, in the above description, the action and effect after the disproportionation reaction have been described as an example, but even immediately before the disproportionation reaction, the communication mechanism 109 sets a threshold value to be executed such as dissolution or opening / closing of a valve. By doing so, the same effect can be exhibited.

以上、本実施の形態では、冷凍サイクル装置として空気調和機を例に挙げて説明したが、これは圧縮機、凝縮器、膨張手段、および蒸発器等の構成要素が配管にて接続された冷凍サイクル装置であれば具体的な適用例は特に限定されず、例えば、冷蔵庫(家庭用、業務用)、除湿器、ショーケース、製氷機、ヒートポンプ式給湯機、ヒートポンプ式洗濯乾燥機、自動販売機等を挙げることができる。 In the present embodiment, the air conditioner has been described as an example of the refrigeration cycle device, but this is a refrigeration in which components such as a compressor, a condenser, an expansion means, and an evaporator are connected by piping. Specific application examples of the cycle device are not particularly limited, and for example, a refrigerator (household or commercial use), a dehumidifier, a showcase, an ice maker, a heat pump type water heater, a heat pump type washer / dryer, and a vending machine. And so on.

なお、上記の説明ではHFO1123を含む作動媒体を例として説明したが、作動媒体は、二重結合を含むエチレン系フッ化炭化水素を含めば同様の効果が得られる。二重結合を含むエチレン系フッ化炭化水素の例としては他にHFO1132などが存在する。 In the above description, the working medium containing HFO1123 has been described as an example, but the same effect can be obtained if the working medium contains an ethylene-based fluorinated hydrocarbon containing a double bond. Another example of an ethylene-based fluorinated hydrocarbon containing a double bond is HFO1132.

上述したように本発明は、HFO1123等を含む作動媒体を用いた冷凍サイクル装置の信頼性を向上させることができる。したがって、住居及び業務用の各エアコン、カーエアコン、給湯器、冷凍冷蔵庫、ショーケース、除湿機等の用途に幅広く適用することができる。 As described above, the present invention can improve the reliability of the refrigeration cycle apparatus using the working medium including HFO1123 and the like. Therefore, it can be widely applied to various applications such as residential and commercial air conditioners, car air conditioners, water heaters, refrigerators / freezers, showcases, and dehumidifiers.

100 空気調和機
101 室外機
102 室内機
103 接続配管
104 圧縮機
105 室外熱交換器
106 膨張手段
107 室内熱交換器
108a 連通配管
109a 連通機構
110 四方弁
111 吐出配管
112 吸入配管
113 送風ファン
114 送風機
100 Air conditioner 101 Outdoor unit 102 Indoor unit 103 Connection piping 104 Compressor 105 Outdoor heat exchanger 106 Expansion means 107 Indoor heat exchanger 108a Communication piping 109a Communication mechanism 110 Four-way valve 111 Discharge piping 112 Suction piping 113 Blower fan 114 Blower

Claims (5)

密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記室外熱交換器と前記四方弁との間、とを結ぶ第2の連通配管を有し、前記第2の連通配管は、作動媒体が所定の温度に達すると溶解するか、あるいは作動媒体が所定の圧力に達すると開閉する第2の連通機構を有することを特徴とする冷凍サイクル装置。 An ethylene having a double bond such as HFO1123 (1,1,2-trifluoroethylene) by connecting a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger. A refrigeration cycle device in which an operating medium containing a system-fluorinated hydrocarbon is enclosed, and between the discharge side of the closed compressor and the four-way valve, and between the outdoor heat exchanger and the four-way valve. The second communication pipe has a second communication pipe that melts when the working medium reaches a predetermined temperature or opens and closes when the working medium reaches a predetermined pressure. A refrigeration cycle apparatus characterized by having. 密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記室外熱交換器の冷媒の流れの上流側と下流側とを結ぶ第3の連通配管を有し、前記第3の連通配管は三方弁を有し、前記密閉型圧縮機の吐出側と前記四方弁との間と、前記三方弁とを結ぶ第4の連通管を有し、前記第4の連通管は、作動媒体が所定の温度に達すると溶解するか、あるいは作動媒体が所定の圧力に達すると開閉する第3の連通機構を有することを特徴とする冷凍サイクル装置。 An ethylene having a double bond such as HFO1123 (1,1,2-trifluoroethylene) by connecting a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger. A refrigeration cycle apparatus in which an operating medium containing a system-fluorinated hydrocarbon is sealed, and has a third communication pipe connecting the upstream side and the downstream side of the refrigerant flow of the outdoor heat exchanger, and the third communication pipe is provided. The communication pipe has a three-way valve, has a fourth communication pipe connecting the discharge side of the closed compressor and the four-way valve, and the three-way valve, and the fourth communication pipe operates. A refrigeration cycle apparatus comprising a third communication mechanism that melts when the medium reaches a predetermined temperature or opens and closes when the working medium reaches a predetermined pressure. 密閉型圧縮機と、四方弁と、室外熱交換器と、膨張手段と、室内熱交換器とを接続して、HFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を封入した冷凍サイクル装置であって、前記室外機の冷房時の入口にはヘッダーが設けられ、前記第2の連通管は前記ヘッダーに接続されていることを特徴とする請求項1記載の冷凍サイクル装置。 Ethylene having a double bond such as HFO1123 (1,1,2-trifluoroethylene) by connecting a closed compressor, a four-way valve, an outdoor heat exchanger, an expansion means, and an indoor heat exchanger. It is a refrigeration cycle apparatus in which an operating medium containing a system-fluorinated hydrocarbon is sealed, and a header is provided at the inlet of the outdoor unit during cooling, and the second communication pipe is connected to the header. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating cycle apparatus is characterized. 前記密閉型圧縮機の圧縮容器の内容積よりも前記室外熱交換器の内容積が大きいことを特徴とする請求項1〜3のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the internal volume of the outdoor heat exchanger is larger than the internal volume of the compression vessel of the closed compressor. 前記作動媒体にHFO1123(1,1,2−トリフルオロエチレン)等の二重結合を有するエチレン系フッ化炭化水素の不均化反応を抑制する不均化抑制剤を添加する請求項1〜 4のいずれか一項に記載の冷凍サイクル装置。 Claims 1 to 4 of adding an disproportionation inhibitor that suppresses the disproportionation reaction of an ethylene-based fluorinated hydrocarbon having a double bond such as HFO1123 (1,1,2-trifluoroethylene) to the working medium. The refrigeration cycle apparatus according to any one of the above.
JP2018102060A 2018-05-29 2018-05-29 Refrigeration cycle equipment Active JP6857815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018102060A JP6857815B2 (en) 2018-05-29 2018-05-29 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102060A JP6857815B2 (en) 2018-05-29 2018-05-29 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2019207054A JP2019207054A (en) 2019-12-05
JP6857815B2 true JP6857815B2 (en) 2021-04-14

Family

ID=68768039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102060A Active JP6857815B2 (en) 2018-05-29 2018-05-29 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6857815B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
CN114656934A (en) 2018-07-17 2022-06-24 大金工业株式会社 Refrigerant cycle device
JP7108212B2 (en) 2018-07-17 2022-07-28 ダイキン工業株式会社 Composition containing refrigerant, heat transfer medium and heat cycle system
EP3919593A4 (en) 2019-01-30 2022-12-28 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
JP6737391B1 (en) 2019-01-30 2020-08-05 ダイキン工業株式会社 Refrigerant-containing composition, refrigeration method using the composition, refrigeration apparatus operation method, and refrigeration apparatus
WO2020162401A1 (en) 2019-02-05 2020-08-13 ダイキン工業株式会社 Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
CN113412398A (en) 2019-02-06 2021-09-17 大金工业株式会社 Refrigerant-containing composition, and refrigeration method, operation method for refrigeration device, and refrigeration device using same
WO2020256134A1 (en) * 2019-06-19 2020-12-24 ダイキン工業株式会社 Working medium for refrigeration cycle, and refrigeration cycle system
WO2022050352A1 (en) * 2020-09-04 2022-03-10 ダイキン工業株式会社 Use as refrigerant, and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666660A (en) * 1979-11-02 1981-06-05 Hitachi Ltd Heat pump type air conditioner
JP2005273842A (en) * 2004-03-26 2005-10-06 Mitsui Chemicals Inc Temperature actuated valve
JP2013200061A (en) * 2012-03-23 2013-10-03 Toshiba Carrier Corp Rotary compressor and freezing cycle device
JP2014020675A (en) * 2012-07-18 2014-02-03 Denso Corp Refrigeration cycle device for cell temperature adjustment
JP5976576B2 (en) * 2013-03-21 2016-08-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6788820B2 (en) * 2016-02-18 2020-11-25 パナソニックIpマネジメント株式会社 Working medium for refrigeration cycle and refrigeration cycle system

Also Published As

Publication number Publication date
JP2019207054A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP6857815B2 (en) Refrigeration cycle equipment
JP6979563B2 (en) Refrigeration cycle device
JP6979565B2 (en) Refrigeration cycle device
JP6413100B2 (en) Refrigeration cycle equipment
JP6979564B2 (en) Refrigeration cycle device
JP7113185B2 (en) refrigeration cycle equipment
JP6857813B2 (en) Refrigeration cycle equipment
CN111201411A (en) Refrigerating device
JP2018179404A (en) Refrigeration cycle device
JP5887902B2 (en) Refrigeration cycle equipment
JP2013139990A (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP6188918B2 (en) Refrigeration equipment
JP6080939B2 (en) Air conditioner
JP4488712B2 (en) Air conditioner
JP2009300001A (en) Refrigerating cycle device
WO2018181057A1 (en) Refrigeration device
JP7001346B2 (en) Refrigeration equipment
JPWO2019198175A1 (en) Refrigeration cycle equipment
JP2013124801A (en) Refrigerating cycle device
JP6393181B2 (en) Refrigeration cycle equipment
JP6899360B2 (en) Refrigeration cycle equipment
JP3380452B2 (en) Refrigeration cycle apparatus and retrofit method for refrigeration cycle apparatus
JP7285404B2 (en) refrigeration cycle equipment
JP6725639B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6857815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151