JP2005273842A - Temperature actuated valve - Google Patents

Temperature actuated valve Download PDF

Info

Publication number
JP2005273842A
JP2005273842A JP2004090930A JP2004090930A JP2005273842A JP 2005273842 A JP2005273842 A JP 2005273842A JP 2004090930 A JP2004090930 A JP 2004090930A JP 2004090930 A JP2004090930 A JP 2004090930A JP 2005273842 A JP2005273842 A JP 2005273842A
Authority
JP
Japan
Prior art keywords
temperature
point alloy
melting point
heat
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090930A
Other languages
Japanese (ja)
Inventor
Makoto Aritsuka
眞 在塚
Takeshi Yasutake
剛 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004090930A priority Critical patent/JP2005273842A/en
Publication of JP2005273842A publication Critical patent/JP2005273842A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deformation of a low melting point alloy part when a long time service is made in the condition that the operational set temperature of a temperature actuated valve lies near the service temperature. <P>SOLUTION: The temperature actuated valve has a through hole between the high pressure side and the low pressure side which is filled with low melting point alloy and is actuated with a rise of the temperature to allow fluid contained in a vessel etc. to flow out from the high pressure side to the low pressure side, wherein a laminate consisting of a metal layer and a heat-resistant polymer layer is adhered to the surface of the low melting point alloy contacting with the fluid inside the vessel etc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温度の上昇により弁が開放となる構造を有する温度作動弁に関する。   The present invention relates to a temperature-actuated valve having a structure in which the valve is opened when the temperature rises.

温度作動弁は、冷凍装置の圧力容器に用いられる安全弁や、火災などの温度上昇により自動的に作動し、水を噴射するスプリンクラー弁、また、高圧ガスや液化ガスなどの容器に取り付けて温度の異常上昇による容器破裂を防止するための安全弁などに用いられている。とりわけ貫通孔に低融点合金が充填された、通常温度では完全に流体を遮断しながら、温度が上昇すると低融点合金が融解することで作動する温度作動弁(可溶栓とも言う)は、機械的あるいは電気的な作動による弁と比較して、単純な構造であり信頼性も高い。このため、弁の閉止機能が不要で信頼性が重視される用途において広く用いられている。   The temperature-actuated valve is a safety valve used for the pressure vessel of the refrigeration system, a sprinkler valve that automatically activates due to a temperature rise such as a fire, and is attached to a vessel such as high-pressure gas or liquefied gas. Used as a safety valve to prevent container rupture due to abnormal rise. In particular, a low-melting-point alloy is filled in the through-hole, and a temperature-operated valve (also called a fusible plug) that operates by melting the low-melting-point alloy when the temperature rises while completely shutting off the fluid at normal temperature is a machine. Compared to valves that are mechanically or electrically operated, they have a simple structure and high reliability. For this reason, it is widely used in applications where the valve closing function is unnecessary and reliability is important.

冷凍装置の圧力容器に用いられる温度作動弁を例にして更に説明する。冷凍装置は、圧縮機、温度作動弁を備えた圧力容器、膨張弁、及び熱交換器を順次接続して冷凍サイクルが構成されている。この冷凍装置では、圧縮機で圧縮された高温高圧の冷媒ガスが、圧力容器内で空気或いは水などと熱交換して凝縮され、高温高圧の液体冷媒となり、更に膨張弁に送られて減圧され、低温低圧の液ガス混合冷媒となって熱交換器に送り込まれる。熱交換器では冷却対象となる水等と熱交換して、冷媒は気化し、圧縮機で圧縮され、再び高温高圧のガス冷媒となる循環装置である。   The temperature operation valve used for the pressure vessel of the refrigeration apparatus will be further described as an example. In the refrigeration apparatus, a refrigeration cycle is configured by sequentially connecting a compressor, a pressure vessel provided with a temperature operation valve, an expansion valve, and a heat exchanger. In this refrigeration system, the high-temperature and high-pressure refrigerant gas compressed by the compressor is condensed by exchanging heat with air or water in the pressure vessel to become a high-temperature and high-pressure liquid refrigerant, and further sent to the expansion valve to be depressurized. Then, it becomes a low-temperature and low-pressure liquid-gas mixed refrigerant and is sent to the heat exchanger. The heat exchanger is a circulation device that exchanges heat with water or the like to be cooled, evaporates the refrigerant, is compressed by the compressor, and becomes a high-temperature and high-pressure gas refrigerant again.

このような圧力容器の側壁には、何らかの原因で当該圧力容器内の冷媒温度が上昇したとき、当該圧力容器内の冷媒を外気中に放出することによって、圧力容器の破裂を未然に防止する安全装置として可溶栓が取り付けられている。   On the side wall of such a pressure vessel, when the refrigerant temperature in the pressure vessel rises for some reason, the refrigerant in the pressure vessel is discharged into the outside air to prevent the pressure vessel from bursting. A fusible stopper is attached as a device.

冷凍装置の動作中は、圧力容器の内部空間に晒されている温度作動弁の低融点合金の面には、高温高圧の冷媒が乱流状態で接触しながら流れている。この冷媒の圧力は、通常30kg/cm2前後である。しかも、この冷媒の圧力及び温度は、冷凍機運転中不規則な変化を繰返しているため、何らかの原因で圧力容器内の冷媒温度が上昇すると、低融点合金が軟化融解し、温度作動弁が貫通することで、圧力容器内の冷媒(高温高圧ガス)が外部に放出されて、圧力容器の破裂が未然に防止される。 During the operation of the refrigeration system, high-temperature and high-pressure refrigerant flows in contact with the low-melting-point alloy surface of the temperature-actuated valve exposed to the internal space of the pressure vessel in a turbulent state. The pressure of this refrigerant is usually around 30 kg / cm 2 . Moreover, since the pressure and temperature of the refrigerant repeatedly change irregularly during the operation of the refrigerator, if the refrigerant temperature in the pressure vessel rises for some reason, the low melting point alloy softens and melts, and the temperature operation valve penetrates. By doing so, the refrigerant (high-temperature high-pressure gas) in the pressure vessel is released to the outside, and the pressure vessel is prevented from bursting.

しかし、この低融点合金面は、冷媒の不規則な圧力や温度の変化による力や熱が常に作用するため、時として、動作設定温度以下の環境においても、比較的短期間で低融点合金が変形し、更には、動作設定温度以下で低融点合金が破断するなどして、冷媒が漏れ出してしまうこと等が懸念されていた。   However, this low melting point alloy surface is constantly subjected to forces and heat due to irregular pressure and temperature changes of the refrigerant, and sometimes the low melting point alloy is relatively short in an environment below the operating set temperature. There has been a concern that the refrigerant may be deformed and the low melting point alloy may break at a temperature lower than the operation set temperature, and the refrigerant may leak out.

この様な低融点合金の変形、破断の現象は、低融点合金の融点と温度作動弁の使用温度が近い場合には共通して懸念される問題である。また、気温、直射日光、機械等からの排熱などの影響を受けやすい一般的環境で使用される温度作動弁で、より融点の低い低融点合金を用いた動作温度設定の低い温度作動弁では、この現象はさらに問題である。
特開2002−286138号公報 特開平10−184960号公報
Such a phenomenon of deformation and fracture of a low-melting-point alloy is a common concern when the melting point of the low-melting-point alloy is close to the operating temperature of the temperature operation valve. Also, it is a temperature-operated valve that is used in a general environment that is easily affected by temperature, direct sunlight, exhaust heat from machines, etc. This phenomenon is even more problematic.
JP 2002-286138 A Japanese Patent Laid-Open No. 10-184960

本発明の目的は、低融点合金の変形、破断の現象を防止した温度作動弁を提供することである。   An object of the present invention is to provide a temperature-actuated valve that prevents the phenomenon of deformation and fracture of a low melting point alloy.

本発明者らは、この低融点合金の変形、破断を防止するために鋭意検討した結果、低融点合金が圧力を受ける流体側の面に、金属層と耐熱性ポリマー層からなる積層体を接着させることにより、上記課題を解決できることを見出し、本発明を完成した。   As a result of diligent investigations to prevent deformation and fracture of the low melting point alloy, the present inventors bonded a laminate composed of a metal layer and a heat resistant polymer layer to the surface on the fluid side where the low melting point alloy is subjected to pressure. As a result, the present inventors have found that the above problems can be solved and completed the present invention.

即ち、本発明は、高圧側と低圧側の間に貫通孔を有し、該貫通孔に低融点合金が充填されてなる、温度の上昇により作動し容器等の内部の流体を高圧側から低圧側へ流出させる温度作動弁において、容器等の内部で流体と接触する低融点合金の面に、金属層と耐熱性ポリマー層からなる積層体を接着させた構造を有することを特徴とする温度作動弁である。尚、金属層と耐熱性ポリマー層からなる積層体は、はんだ耐熱性が200℃以上であることが好ましく、また耐熱ポリマー層はポリイミド層または液晶ポリマー層であることが好ましい。   That is, the present invention has a through-hole between the high-pressure side and the low-pressure side, and the through-hole is filled with a low-melting-point alloy. A temperature-actuated valve having a structure in which a laminate composed of a metal layer and a heat-resistant polymer layer is adhered to a surface of a low-melting-point alloy that comes into contact with a fluid inside a container or the like It is a valve. In addition, it is preferable that the laminated body which consists of a metal layer and a heat resistant polymer layer is 200 degreeC or more in solder heat resistance, and it is preferable that a heat resistant polymer layer is a polyimide layer or a liquid crystal polymer layer.

本発明の温度作動弁は、弁の動作設定温度と使用温度が接近した状態で長時間使用しても低融点合金部に変形は起こらず、高圧側の流体が漏れ出る懸念が少ない。さらに、低融点合金に含まれる鉛等の有害な重金属溶出による流体の汚染が少ない利点もある。   The temperature-actuated valve of the present invention does not cause deformation of the low melting point alloy portion even when used for a long time in a state where the operation set temperature of the valve is close to the operating temperature, and there is little fear that the high-pressure side fluid leaks. Furthermore, there is an advantage that the fluid is less contaminated by elution of harmful heavy metals such as lead contained in the low melting point alloy.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、高圧側と低圧側の間に貫通孔を有し、該貫通孔に低融点合金が充填されてなる、温度の上昇により作動し容器等の内部の流体を高圧側から低圧側へ流出させる温度作動弁であって、容器等の内部で流体と接触する低融点合金の面に、金属層と耐熱性ポリマー層からなる積層体を接着させた構造を有することを特徴とする温度作動弁である。   The present invention has a through hole between the high pressure side and the low pressure side, and the through hole is filled with a low melting point alloy. A temperature-actuated valve for flowing out, characterized by having a structure in which a laminate composed of a metal layer and a heat-resistant polymer layer is bonded to the surface of a low-melting-point alloy that comes into contact with a fluid inside a container or the like It is a valve.

金属層と耐熱性ポリマー層からなる積層体を接着させた構造を有する温度作動弁を製造する際には、金属箔と耐熱性ポリマーからなる積層体を低融点合金に接着することが好ましい。金属箔と耐熱性ポリマーからなる積層体は、例えば金属箔に耐熱性ポリマーフィルムをラミネートすることや、金属箔に耐熱ポリマーのワニスをキャストし、乾燥することにより製造することができる。   When manufacturing a temperature-actuated valve having a structure in which a laminate made of a metal layer and a heat-resistant polymer layer is bonded, it is preferable to bond the laminate made of a metal foil and a heat-resistant polymer to a low melting point alloy. A laminate comprising a metal foil and a heat-resistant polymer can be produced, for example, by laminating a heat-resistant polymer film on the metal foil or casting a heat-resistant polymer varnish on the metal foil and drying.

金属箔と耐熱性ポリマーからなる積層体としては、はんだ耐熱温度が、200℃以上、好ましくは240℃以上を持つものである。上限は、特に制限されないが、取り扱い易さ等を考慮した場合、好ましくは450℃以下である。   As a laminated body which consists of metal foil and a heat resistant polymer, solder heat-resistant temperature has 200 degreeC or more, Preferably it has 240 degreeC or more. The upper limit is not particularly limited, but is preferably 450 ° C. or lower when handling ease is considered.

本発明におけるはんだ耐熱温度とは、電気加熱式で規定された温度に調節保持できるはんだ槽に、はんだを溶融保持し、これに所定時間、サンプルを浮かせた後、膨れ、剥がれを目視で確認する方法において、膨れ剥がれの無い最低温度をはんだ耐熱温度と定義した。一般的に、この値を求めるためのフロート時間は10秒程度であり、これらの試験方法はJIS C5012に定めがあって、この方法に準じて求めることが好ましい。   In the present invention, the solder heat resistance temperature means that the solder is melted and held in a solder bath that can be adjusted and held at the temperature specified by the electric heating method, and the sample is allowed to float for a predetermined time, and then the swelling and peeling are visually confirmed. In the method, the lowest temperature without blistering was defined as the solder heat resistance temperature. Generally, the float time for obtaining this value is about 10 seconds, and these test methods are defined in JIS C5012, and it is preferable to obtain according to this method.

金属箔と耐熱性ポリマーからなる積層体の好ましい具体例としては、耐熱性ポリマー部分がポリイミド、または液晶ポリマー等である金属箔との積層体が挙げられる。   A preferred specific example of a laminate comprising a metal foil and a heat-resistant polymer includes a laminate of a metal foil whose heat-resistant polymer portion is polyimide, liquid crystal polymer, or the like.

ポリイミドとは、ポリマー鎖中にイミド結合を有するポリマー全般を指し、特に限定されない。具体的には、ポリイミド樹脂、ポリアミノビスマレイミド樹脂、ビスマレイミド・トリアジン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂などが挙げられるが、このうち、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの脱水縮合により得られる芳香族ポリイミドが好適であり、公知のものが使用可能である。   Polyimide refers to all polymers having an imide bond in the polymer chain, and is not particularly limited. Specific examples include polyimide resins, polyamino bismaleimide resins, bismaleimide / triazine resins, polyamideimide resins, polyetherimide resins, etc. Among these, aromatic tetracarboxylic dianhydrides and aromatic diamines. Aromatic polyimides obtained by dehydration condensation are suitable, and known ones can be used.

液晶ポリマーとは、剛直なポリマー骨格を持ち、溶融状態でも分子の絡み合いがなく、僅かな剪断力で一方向に配向し、これを冷却すると分子が配向したまま固化するものであり、具体例としては下記に示すような構造を有する芳香族ポリエステル系ポリマーが挙げられるが、上記のような性質を有するものであれば特に限定されない。   A liquid crystal polymer has a rigid polymer skeleton, has no molecular entanglement even in a molten state, is oriented in one direction with a slight shearing force, and when cooled, the molecules solidify while being oriented. An aromatic polyester polymer having a structure as shown below can be mentioned, but it is not particularly limited as long as it has the above properties.

Figure 2005273842
Figure 2005273842

Figure 2005273842
Figure 2005273842

Figure 2005273842
Figure 2005273842

市販品されている使用可能なポリマーとしては、ロッドラン(ユニチカ株式会社、登録商標)、ノバキュレート(三菱化学株式会社、登録商標)、出光LCP(出光石油化学株式会社)、スミカスーパーLCP(住友化学工業株式会社、登録商標)、ザイダー(新日本石油化学株式会社、登録商標)、エコノール(東ソー株式会社、登録商標)、ベクトラ(ポリプラスチックス株式会社、登録商標)、UENO LCP(上野製薬株式会社、登録商標)、ゼナイト(デュポン、登録商標)、シベラス(東レ株式会社、登録商標)等が挙げられる。   Commercially available polymers that can be used include Rod Run (Unitika Ltd., registered trademark), Novacurate (Mitsubishi Chemical Corporation, registered trademark), Idemitsu LCP (Idemitsu Petrochemical Co., Ltd.), Sumika Super LCP (Sumitomo Chemical) Kogyo Co., Ltd. (registered trademark), Seider (Shin Nippon Petrochemical Co., Ltd., registered trademark), Econol (Tosoh Corporation, registered trademark), Vectra (Polyplastics Co., Ltd., registered trademark), UENO LCP (Ueno Pharmaceutical Co., Ltd.) , Registered trademark), Zenite (DuPont, registered trademark), Siberus (Toray Industries, Inc., registered trademark), and the like.

金属層と耐熱ポリマー層の厚みは任意に選択可能である。但し、厚すぎると低融点合金が融解後も積層フィルム単独で流体の圧力を支えることもあるため、その場合は温度作動弁本来の機能が損なわれてしまう。積層体全体の厚みは概ね60μm以下が好ましく、金属層および耐熱性ポリマーフィルム層の厚みは、それぞれ30μm以下が好ましい。好ましくは、金属層の厚みは5μm〜30μmであり、より好ましくは5μm〜20μmである。また、耐熱ポリマー層の厚みは好ましくは5μm〜30μmであり、より好ましくは10μm〜30μmである。なお、この厚みはあくまで目安であり、流体圧力によって好ましい厚み範囲は異なる。金属層に用いる金属種としては、特に制限はなく、好ましい例として銅、またはステンレス等が挙げられる。   The thicknesses of the metal layer and the heat-resistant polymer layer can be arbitrarily selected. However, if it is too thick, the low melting point alloy may support the fluid pressure by the laminated film alone even after melting. In this case, the original function of the temperature operation valve is impaired. The thickness of the entire laminate is preferably 60 μm or less, and the thickness of the metal layer and the heat-resistant polymer film layer is preferably 30 μm or less. Preferably, the thickness of the metal layer is 5 μm to 30 μm, more preferably 5 μm to 20 μm. The thickness of the heat resistant polymer layer is preferably 5 μm to 30 μm, more preferably 10 μm to 30 μm. This thickness is only a guide, and the preferred thickness range varies depending on the fluid pressure. There is no restriction | limiting in particular as a metal seed | species used for a metal layer, Copper, stainless steel, etc. are mentioned as a preferable example.

金属層と耐熱性ポリマー層からなる積層体と低融点合金との接着は、エポキシ系接着剤、ポリイミド系接着剤など一般的な接着剤での接着が可能である。また、温度作動弁を作動温度以上、即ち低融点合金の融点以上に加熱し、融解状態の低融点合金とラミネートフィルムの金属面を、フラックスを用いて接触させ、そのまま温度を下げることでも接着可能である。   Adhesion between the laminate composed of the metal layer and the heat-resistant polymer layer and the low melting point alloy can be performed using a general adhesive such as an epoxy adhesive or a polyimide adhesive. Bonding can also be achieved by heating the temperature operating valve above the operating temperature, that is, above the melting point of the low melting point alloy, bringing the molten low melting point alloy and the metal surface of the laminate film into contact with the flux, and lowering the temperature as it is. It is.

貫通孔に充填されている低融点合金は、好ましくは融点が40℃〜200℃程度の多元系合金である。代表的には錫−鉛合金、ビスマス−鉛−錫合金、ビスマス−鉛−錫−カドミウム合金、ビスマス−鉛−錫−インジウム合金、ビスマス−鉛−錫−カドミウム−インジウム合金などが挙げられ、これら公知のものが使用可能である。   The low melting point alloy filled in the through holes is preferably a multi-component alloy having a melting point of about 40 ° C to 200 ° C. Typical examples include tin-lead alloys, bismuth-lead-tin alloys, bismuth-lead-tin-cadmium alloys, bismuth-lead-tin-indium alloys, bismuth-lead-tin-cadmium-indium alloys, and the like. A well-known thing can be used.

以上が本発明の実施形態であるが、従来の温度作動弁に積層体を接着するだけの簡単な方法で本発明の温度作動弁を実施することが可能である。以下、本発明を実施例にて更に詳しく説明する。   Although the above is an embodiment of the present invention, it is possible to implement the temperature actuated valve of the present invention by a simple method of simply bonding the laminate to the conventional temperature actuated valve. Hereinafter, the present invention will be described in more detail with reference to examples.

図1に示す構造の温度作動弁の流体接触面3にポリイミドフィルムと銅薄層からなる積層体を接着し、これに温度と圧力をかけた状態で長時間保持し、低融点合金部の変形を観察した。積層体には、三井化学株式会社製のポリイミド層13μm、銅薄層18μmからなる全厚31μmのラミネートフィルム(商品名:ネオフレックス(登録商標))(はんだ耐熱温度400℃)を用いた。ラミネートフィルムは温度作動弁の低融点合金側面の形状に合わせて加工しておいた。   A laminated body composed of a polyimide film and a thin copper layer is bonded to the fluid contact surface 3 of the temperature-actuated valve having the structure shown in FIG. 1, and is held for a long time in a state where temperature and pressure are applied to the laminated body. Was observed. For the laminate, a laminate film (trade name: Neoprex (registered trademark)) (a solder heat-resistant temperature of 400 ° C.) made of Mitsui Chemicals Co., Ltd. having a polyimide layer of 13 μm and a copper thin layer of 18 μm and a total thickness of 31 μm was used. The laminate film was processed according to the shape of the side surface of the low melting point alloy of the temperature operated valve.

図1に示す温度作動弁には低融点合金として、融点が約60℃のビスマス−鉛−錫−インジウム系合金が充填されている。融解した低融点合金が流れ出ない様にしながら、温度作動弁を90℃まで加熱し、ラミネートフィルムの銅薄層側と融解した低融点合金を接触させ、そのまま冷却した。片端にストップ弁と圧力ゲージ、片端に前記で用意した温度作動弁を取り付けた内容積50ccのステンレス製耐圧容器を5本用意し、各々に10ccの純水を入れた後、窒素ガスを充填し、内圧を5MPaにした。これを50℃の温水に温度作動弁側を下にして浸し、28日間放置し、その後、開放して温度作動弁と内容水の分析を行った。温度作動弁の変形は、試験開始前の流体接触面3が試験後にどの程度温度作動弁内に沈み込んでいるか偏差を計測し、0.5mm以上であった場合を変化有り(×と標記)、それ未満であった場合を変化なし(○と標記)と評価した。   The temperature actuated valve shown in FIG. 1 is filled with a bismuth-lead-tin-indium alloy having a melting point of about 60 ° C. as a low melting point alloy. While preventing the molten low melting point alloy from flowing out, the temperature operating valve was heated to 90 ° C., the thin copper layer side of the laminate film was brought into contact with the molten low melting point alloy, and cooled as it was. Prepare 5 stainless steel pressure-resistant containers with a 50 cc internal volume equipped with a stop valve and pressure gauge at one end and the temperature actuated valve prepared above at one end. After filling each with 10 cc pure water, fill with nitrogen gas. The internal pressure was 5 MPa. This was immersed in warm water of 50 ° C. with the temperature operation valve side down, left for 28 days, and then opened to analyze the temperature operation valve and content water. Deformation of the temperature actuated valve is measured by measuring the deviation of how much the fluid contact surface 3 before the start of the test is submerged in the temperature actuated valve after the test. , It was evaluated that there was no change (marked with ◯).

また、内容水の分析はICPマススペクロルメトリーで行い、鉛成分が1ppm以上検出された場合を溶出有り(×と標記)、それ未満であった場合は溶出僅少(○と標記)と評価した。この結果を実施例2〜4、比較例1〜2の結果と共に表1に記載した。   The content water was analyzed by ICP mass spectrometry. When the lead component was detected at 1 ppm or more, elution was indicated (marked with ×), and when it was less than that, it was evaluated that the elution was scarce (marked with ○). . This result was described in Table 1 with the result of Examples 2-4 and Comparative Examples 1-2.

ラミネートフィルムに、三井化学株式会社製のポリイミド層13μm、銅薄層12μmからなる全厚25μmのラミネートフィルム(商品名:ネオフレックス(登録商標))(はんだ耐熱温度260℃)を用い、低融点合金には融点が約70℃のビスマス−鉛−錫−カドミウム系合金を用いた他は実施例1と同様の方法で温度作動弁を作成し、温水温度を60℃とした他は実施例1と同様の方法で試験を行った。   A low melting point alloy using a laminate film (trade name: Neoprex (registered trademark)) (heat resistant temperature 260 ° C.) having a total thickness of 25 μm consisting of a polyimide layer 13 μm and a copper thin layer 12 μm manufactured by Mitsui Chemicals, Inc. In Example 1, except that a bismuth-lead-tin-cadmium alloy having a melting point of about 70 ° C. was used, a temperature operating valve was prepared in the same manner as in Example 1, and the hot water temperature was set to 60 ° C. The test was conducted in the same manner.

ラミネートフィルムに、三井化学株式会社製のポリイミド層25μm、ステンレス薄層30μmからなる全厚55μmのラミネートフィルム(商品名:ネオフレックス(登録商標))(はんだ耐熱温度260℃)を用いた他は実施例1と同様の試験を行った。   Other than using a laminate film (trade name: NEOFREX (registered trademark)) (resisting temperature of soldering 260 ° C) consisting of 25 µm polyimide layer and 30 µm thin stainless steel layer made by Mitsui Chemicals, Inc. The same test as in Example 1 was performed.

ラミネートフィルムに、ジャパンゴアテックス株式会社製の液晶ポリマー層25μm、銅薄層12μmからなる全厚37μmのラミネートフィルム(商品名BIAC(R) CC)(はんだ耐熱温度280℃)を用いた他は実施例1と同様の試験を行った。   Other than using a laminate film (trade name BIAC (R) CC) (heat resistant temperature of 280 ° C.) with a total thickness of 37 μm consisting of a liquid crystal polymer layer of 25 μm and a copper thin layer of 12 μm manufactured by Japan Gore-Tex Co., Ltd. The same test as in Example 1 was performed.

比較例1
図1に示す構造の温度作動弁にラミネートフィルムを接着せずそのまま使用した他は実施例1と同様の試験を行った。
Comparative Example 1
The same test as in Example 1 was conducted except that the laminate film was used without being bonded to the temperature operated valve having the structure shown in FIG.

比較例2
図1に示す構造の温度作動弁にラミネートフィルムを接着せずそのまま使用した他は実施例2と同様の試験を行った。
Comparative Example 2
The same test as in Example 2 was performed except that the laminate film was used without being bonded to the temperature operated valve having the structure shown in FIG.

Figure 2005273842
Figure 2005273842

実施例および比較例から明らかな様に、温度作動弁の流体に接する低融点合金面に金属薄層と耐熱ポリマー層からなる積層体を接着するだけで、弁の動作設定温度と使用温度が接近した状態で長時間使用した場合に起こる低融点合金部に変形が抑制され、更には低融点合金の重金属成分の溶出も抑制されることが分かる。   As is clear from the examples and comparative examples, the valve operating set temperature and the operating temperature are close by simply adhering a laminate consisting of a thin metal layer and a heat-resistant polymer layer to the low melting point alloy surface in contact with the fluid of the temperature operated valve. It can be seen that deformation is suppressed in the low melting point alloy portion that occurs when used for a long time in this state, and further, elution of heavy metal components of the low melting point alloy is also suppressed.

冷凍装置のほか、屋外などの温度条件の厳しい場所で使用または保管される高圧ガスや液化ガスの容器の安全弁として、また、スプリンクラー栓では配管内の水が重金属汚染される可能性も低減されるなど、応用範囲は広い。   In addition to refrigeration equipment, as a safety valve for containers of high-pressure gas or liquefied gas used or stored in places with severe temperature conditions such as outdoors, and with sprinkler plugs, the possibility of water contamination in piping is reduced. The application range is wide.

本発明の温度作動弁の一例を示す。An example of the temperature operating valve of this invention is shown.

符号の説明Explanation of symbols

1 低融点合金
2 温度作動弁本体
3 流体接触面(ラミネートフィルム接着面)
1 Low melting point alloy 2 Temperature actuated valve body 3 Fluid contact surface (laminate film adhesive surface)

Claims (3)

高圧側と低圧側の間に貫通孔を有し、該貫通孔に低融点合金が充填されてなる、温度の上昇により作動し容器等の内部の流体を高圧側から低圧側へ流出させる温度作動弁において、容器等の内部で流体と接触する低融点合金の面に、金属層と耐熱性ポリマー層からなる積層体を接着させた構造を有することを特徴とする温度作動弁。 Temperature operation that has a through hole between the high-pressure side and the low-pressure side and is filled with a low-melting-point alloy, and operates when the temperature rises to allow the fluid inside the container to flow from the high-pressure side to the low-pressure side A temperature-operated valve characterized in that the valve has a structure in which a laminated body composed of a metal layer and a heat-resistant polymer layer is bonded to a surface of a low-melting-point alloy that comes into contact with a fluid inside a container or the like. 金属層と耐熱性ポリマー層からなる積層体のはんだ耐熱温度が200℃以上である請求項1記載の温度作動弁。 The temperature-actuated valve according to claim 1, wherein the solder heat-resistant temperature of the laminate comprising the metal layer and the heat-resistant polymer layer is 200 ° C or higher. 耐熱性ポリマー層が、ポリイミド層または液晶ポリマー層である請求項1又は2記載の温度作動弁。 The temperature-actuated valve according to claim 1 or 2, wherein the heat-resistant polymer layer is a polyimide layer or a liquid crystal polymer layer.
JP2004090930A 2004-03-26 2004-03-26 Temperature actuated valve Pending JP2005273842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090930A JP2005273842A (en) 2004-03-26 2004-03-26 Temperature actuated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090930A JP2005273842A (en) 2004-03-26 2004-03-26 Temperature actuated valve

Publications (1)

Publication Number Publication Date
JP2005273842A true JP2005273842A (en) 2005-10-06

Family

ID=35173732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090930A Pending JP2005273842A (en) 2004-03-26 2004-03-26 Temperature actuated valve

Country Status (1)

Country Link
JP (1) JP2005273842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117065A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp Method of manufacturing soluble plug
JP2015205223A (en) * 2015-08-21 2015-11-19 能美防災株式会社 External displacement amount detector for sprinkler head
JP2019207054A (en) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117065A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp Method of manufacturing soluble plug
JP2015205223A (en) * 2015-08-21 2015-11-19 能美防災株式会社 External displacement amount detector for sprinkler head
JP2019207054A (en) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
McCluskey et al. Reliability of high temperature solder alternatives
US20180369951A1 (en) Repair method and repair material
JP2005273842A (en) Temperature actuated valve
CN1165400C (en) Method for plugging hole and cooling element manufactured by said method
Deisenroth et al. Direct bonding of a titanium header to an embedded two-phase FEEDS cooling device for high-flux electronics
JP5878290B2 (en) Lead-free solder alloy
Rizvi et al. Effect of adding 0.3 wt% Ni into the Sn–0.7 wt% Cu solder: Part I: Wetting behavior on Cu and Ni substrates
US20080250810A1 (en) Cooling module applied for liquid containers
Aminazad et al. Investigation on corrosion behaviour of copper brazed joints
Lee et al. Fluxless non-eutectic joints fabricated using gold-tin multilayer composite
Kramer et al. The effect of low gold concentrations on the creep of eutectic tin-lead joints
JPS63176894A (en) Inner-surface coated steel pipe having excellent high-temperature corrosion resistance and noncohesiveness
WO1989009958A1 (en) Semiconductor module, its cooling system and computer using the cooling system
WO2009029023A1 (en) Fire safety valve
CN104874909B (en) Liquid-phase diffusion bonding method for quartz composite ceramic and iron-nickel alloy
CN117596822A (en) Fluid immersion cooling system with low flash point hydrocarbon dielectric fluid
JP2008073409A (en) Thermo-sensitive head
CA3036295A1 (en) Copper plumbing pinhole prevention; pinhole repair and protection for long life of copper plumbing
Setty et al. Powercycling reliability, failure analysis and acceleration factors of Pb-free solder joints
JP2005331016A (en) Fusible plug
JP4226746B2 (en) Fusible stopper and refrigeration apparatus equipped with the same
Levin et al. Room temperature lead-free soldering of microelectronic components using a local heat source
Lu et al. Studies on microstructure of epoxy molding compound (EMC)-Leadframe interface after environmental aging
WO2000072388A1 (en) Method for forming protective coating for cell safety valve device, cell safety valve device covered with protective coating, cell sealing plate comprising the same, and closed cell comprising the same
TWI650538B (en) Sensor with protective layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080327

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A02