JP6851059B2 - 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池 - Google Patents

新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池 Download PDF

Info

Publication number
JP6851059B2
JP6851059B2 JP2016179255A JP2016179255A JP6851059B2 JP 6851059 B2 JP6851059 B2 JP 6851059B2 JP 2016179255 A JP2016179255 A JP 2016179255A JP 2016179255 A JP2016179255 A JP 2016179255A JP 6851059 B2 JP6851059 B2 JP 6851059B2
Authority
JP
Japan
Prior art keywords
asq
group
bdt
solar cell
arh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016179255A
Other languages
English (en)
Other versions
JP2018043943A (ja
Inventor
久宏 笹部
久宏 笹部
城戸 淳二
淳二 城戸
健志 佐野
健志 佐野
ヤン ダオビン
ヤン ダオビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2016179255A priority Critical patent/JP6851059B2/ja
Publication of JP2018043943A publication Critical patent/JP2018043943A/ja
Application granted granted Critical
Publication of JP6851059B2 publication Critical patent/JP6851059B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、新規なスクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池素子に関する。
近年、有機薄膜太陽電池は、軽量で自由に曲げられるという特徴をもち、製造コスト面でも有利であることから、シリコン系無機太陽電池に代わって、実用化・市場投入段階に入りつつある。有機薄膜太陽電池には蒸着型及び塗布型があるが、特に塗布型の有機薄膜太陽電池は、蒸着型の有機薄膜太陽電池に比べて製造コストが安く、大量生産に向いている。しかしながら、有機薄膜太陽電池は、その光電エネルギー変換効率が10%程度であり、シリコン系無機太陽電池と比較して、効率や信頼性の点で未だ改善の余地があり、盛んに研究開発が行われている。
太陽光は、そのエネルギーの50%以上を、650nmより長波長の近赤外・赤外領域に持つ。そのため、光電変換効率の飛躍的な向上には、この波長領域を効率良く吸収し、電気エネルギーとして取り出すことが必須である。有機薄膜太陽電池素子はドナー材料とアクセプター材料を用いて作製される。一般にアクセプター材料で用いられているフラーレン誘導体は逆電子移動が遅く、対称性が高いという利点があるが、これらは近赤外領域付近に強い吸収を持たないため、有機薄膜太陽電池の高効率化には、長波長領域の吸収を持つドナー材料の開発が非常に重要となる。また、有機薄膜太陽電池の高効率化には、ドナー材料と、アクセプター材料とのエネルギー準位の関係が重要である。ドナー材料で太陽光を吸収して発生した励起子(エキシトン)からアクセプター材料に電荷移動させるには、一般にドナー材料の最低非占有分子軌道(lowest unoccupied molecular orbital:LUMO)準位がアクセプター材料のLUMO準位よりも0.3eV以上浅いことが好ましいとされている。塗布型有機薄膜太陽電池では、アクセプター材料として、通常溶解性が高い[6,6]−フェニルC71酪酸メチル(PC71BM)が使用される。PC71BMのLUMO準位は4.0eVであるから、ドナー材料には3.7eV程度のLUMO準位が求められる。
塗布型有機薄膜太陽電池に使用されるドナー材料は、当然ながら、溶媒によく溶ける必要がある。ドナー材料は大きく分けて高分子型と低分子型の2つが知られている。高分子型材料は、そのエネルギー変換効率が12%程度まで向上しているが、高分子型材料は、精製が難しく、高純度化が困難で、製造ロット間の特性変化が大きく品質を保つことが難しい。一方、低分子型材料は、分子量分布を持たず、精製が容易で信頼性が高い、又は、製造ロット間の品質が変わらず、ロットによりエネルギー変換効率に影響を与えない等の特徴を持つ。しかしながら、低分子型材料は、現時点で移動度も10-5cm2/Vs程度と低く、エネルギー変換効率も、アクセプターにフラーレンを用いてようやく10%を上回る程度である。また、低分子型材料のうち、高効率を達成している材料は、一般に溶解性が低く、塗布型有機薄膜太陽電池を作製する際に、オルトジクロロベンゼン(ODCB)、クロロホルム等、ハロゲン系の溶媒を使用しなければならず、環境面で問題がある。そのため、塗布型有機薄膜太陽電池の高性能化と実用性向上には、近赤外光の吸収能と高い移動度を持ち、非ハロゲン系の溶媒等にも高い溶解性を示す新しい低分子材料の開発が求められている。
スクアリリウム誘導体は、非ハロゲン系溶媒に対しても高い溶解性を示し、近赤外領域に強い吸収を持ち、かつ、逆電子移動が遅く、高い対称性を持つ構造であることから、ドナー材料として研究開発が行われており、すでに多数報告されている(非特許文献1〜3)。
G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X.F. Wang, T. Sano, Z. Hong, Y. Yang, and J. Kido, "Chem.Mater." 2014, 26, 1356-1364. 佐々木、笹部、洪、楊、及び城戸「高分子学会第62回年次大会」、1J28 (2013) H. Sasabe, T. Igarashi, Y. Sasaki, G. Chen, Z. Hong, and J. Kido, "RSC Advances" 2014, 4, 42804-42807.
スクアリリウム誘導体は、脱水縮合反応により高収率で比較的容易に合成できて環境に優しく、また、種々の置換基の導入も可能である。塗布成膜によるBHJ(bulk heterojunction)型の素子で、例えば、S−ASQとPC71BMとを用いた混合BHJ素子(S−ASQ/PC71BM(1:7(質量比))では、PCE(power conversion efficiency)が5.52%を達成している。ただし、これらの誘導体のエネルギー変換効率は、以前のものに比べれば向上しているものの、未だ低い値に留まっている。また、これらのスクアリリウム誘導体を用いた有機薄膜太陽電池は、そのVOC(開放電圧)、JSC(短絡電流密度)の値が他の材料に比べて高いものの、FF(曲線因子)が低いという問題があった。
Figure 0006851059
前記S−ASQにおいて、例えば、π共役系を拡張することで、可視〜近赤外領域の光を吸収できるようになると考えられる。また、π共役系を拡張することで、正孔移動度が向上すれば、自在に動き回るπ電子に由来する種々の光学的・電気化学的機能を向上できると考えられる。
本発明では、高効率な素子を提供するために有用な新規スクアリリウム誘導体を提供すべく、ASQ構造に着目し、その末端置換基を改良して、エネルギー準位を変化させずに、薄膜状態での移動度を向上させ、さらにFF(曲線因子)を改善してエネルギー変換効率を向上させることを課題としている。また、得られたスクアリリウム誘導体を用いた有機薄膜太陽電池を提供することを課題としている。
本発明は以下の事項からなる。
本発明のスクアリリウム誘導体は、下記一般式(1)で表されることを特徴とする。
Figure 0006851059
一般式(1)中、R1〜R6はそれぞれ独立に脂肪族基又は芳香族基を示し、R2及びR3が脂肪族基の場合、R2及びR3は連結して環を形成してもよく、R5及びR6が脂肪族基の場合、R5及びR6は連結して環を形成してもよく、Xは、フェニル基、又は、下記構造式で表される置換基を示し、Arは芳香族基を示す。
Figure 0006851059
前記一般式(1)中、Arはチオフェニレン基を示すことが好ましい。
前記一般式(1)中、Arはチオフェニレン基を示し、かつ、R1〜R6はそれぞれ独立に炭素原子数1〜20の脂肪族基を示すことが好ましい。脂肪族基は直鎖であっても、分岐を有していてもよい。
本発明の有機薄膜太陽電池は、上記スクアリリウム誘導体を用いたものであることを特徴とする。
本発明のスクアリリウム誘導体は、従来より既知のS−ASQの末端の置換基の一方に、芳香族縮合環であるベンゾ[1,2−b:4,5−b’]ジチオフェン(BDT)の橋掛け構造を介して、フェニル基、又はスクアリリウム誘導体構造を付加することにより、分子内のπ共役が拡張され、正孔移動度が向上し、また、最高占有分子軌道(highest occupied molecular orbital;HOMO)が深くなり、安定性が向上する。
また、本発明のスクアリリウム誘導体は、π共役が拡張されることにより、固体薄膜における吸収波長を750nmの近赤外領域まで拡張できるとともに、適切な電子物性を持つことができる。特に、D−BDT−ASQでは、平面かつ非対称な二量体構造を有するため、成膜時のフェイスオン(face−on)配向性が高くなり、正孔移動度を向上させるとともに、550〜700nmの領域で強い吸収を示す。
よって、本発明によれば、上記一般式(1)で表されるスクアリリウム誘導体を用いることにより、得られる素子は、薄膜状態でのキャリア移動度が向上してFFの値が改善され、結果としてエネルギー変換効率が向上した、高効率な有機薄膜太陽電池を提供することができる。
図1は本発明の有機薄膜太陽電池の素子構造を模式的に示した概略断面図である。 図2(a)はBDT−ASQの1H NMRスペクトルを表す図であり、図2(b)はBDT−ASQの13CNMRスペクトルを表す図である。 図3(a)はD−BDT−ASQの1H NMRスペクトルを表す図であり、図3(b)はD−BDT−ASQの13C NMRスペクトルを表す図である。 図4は、S−ASQ、BDT−ASQ及びD−BDT−ASQの熱重量測定(TGA)の結果を示す図である。 図5(a)は、S−ASQ、BDT−ASQ及びD−BDT−ASQのクロロホルム溶液中でのUV−Vis−NIR吸収スペクトルを表す図であり、図5(b)は、S−ASQ、BDT−ASQ及びD−BDT−ASQの薄膜での正規化したUV−Vis−NIR吸収スペクトルを表す図である。 図6(a)はS−ASQの電圧−電流密度の関係(J−V特性)を表す図であり、図6(b)はBDT−ASQの電圧−電流密度の関係(J−V特性)を表す図であり、図6(c)はD−BDT−ASQの電圧−電流密度の関係(J−V特性)を表す図であり、図6(d)はS−ASQ、BDT−ASQ及びD−BDT−ASQの波長−外部量子効率(EQE)の関係を表す図である。図6(a)〜6(c)において、1は、活性層を80℃で15分間熱アニールした後、室温で測定した結果を表し、2は、80℃の条件下に測定した結果を表す。 図7(a)は、D−BDT−ASQとPC71BMとを種々の質量比で用いた混合BHJ素子の電圧−電流密度の関係(J−V特性)を表す図であり、図7(b)は、D−BDT−ASQとPC71BMとを種々の質量比で用いた混合BHJ素子の波長−外部量子効率(EQE)の関係を表す図である。
以下、本発明について、詳細に説明する。
[スクアリリウム誘導体]
本発明のスクアリリウム誘導体は、下記一般式(1)で表される。
Figure 0006851059
一般式(1)中、R1〜R6はそれぞれ独立に1価の脂肪族基又は1価の芳香族基である。
脂肪族基は、芳香族基以外の基を広く含みうるが、具体的には、炭素原子数が1〜20の直鎖又は分岐状の脂肪族基を指す。また、本発明の効果を損なわない範囲内で、脂肪族基を構成する水素原子の一部が、例えば、窒素原子、硫黄原子、酸素原子、リン原子若しくはケイ素原子又はこれらを含む置換基で置換されていてもよい。
炭素原子数1〜20の脂肪族基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、エチルヘキシル基、及びドデシル基等が挙げられる。これらのうち、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、ヘキシル基、オクチル基、及びエチルヘキシル基等がより好ましく、ブチル基及びエチルヘキシル基等が特に好ましい。
芳香族基は、単環のアリール基又はヘテロアリール基でもよいし、多環(縮合環)のアリール基又はヘテロアリール基でもよい。また、前記芳香族基における芳香環上の水素原子の一部が、例えば、メチル基、イソプロピル基及びイソブチル基等で置換されていてもよい。
上記芳香族基は、炭素原子数が6〜50の芳香族基であることが好ましい。
炭素数6〜50の芳香族基としては、例えば、フェニル基、ピリジル基、チオフェニル基、ビフェニル基、ナフチル基、トリフェニレニル基、ターフェニル基、クオーターフェニル基、アントラセニル基、ベンゾチオフェニル基、ベンゾフラニル基、ジベンゾチオフェニル基、及びジベンゾフラニル基等が挙げられる。これらのうち、フェニル基、ピリジル基、チオフェニル基、ビフェニル基、ベンゾチオフェニル基、及びベンゾフラニル基等がより好ましい。
2及びR3が脂肪族基の場合、R2及びR3は連結して4員環、5員環又は6員環を形成してもよく、R5及びR6が脂肪族基の場合、R5及びR6は連結して4員環、5員環又は6員環を形成してもよい。
Xは、フェニル基、又は、下記構造式で表される1価の置換基を示す。
Figure 0006851059
Arは2価の芳香族基を示す。芳香族基としては、例えば、フェニレン基、ピリジニレン基、チオフェニレン基(チエニレン基)、ビフェニリレン基、ナフチレン基、トリフェニレニレン基、ターフェニリレン基、クオーターフェニリレン基、アセアントリレニレン基、ベンゾチオフェニル基、ベンゾフラニル基、ジベンゾチオフェニル基、及びジベンゾフラニル基等が挙げられる。これらのうち、チオフェニレン基、ベンゾチオフェニル基、及びベンゾフラニル基等が好ましく、特に2,5−チオフェニレン基が好ましい。
具体的には、上記一般式(1)で表される化合物は、以下の構造式で表される化合物BDT−ASQ又はD−BDT−ASQであることが好ましい。
Figure 0006851059
上記一般式(1)で表されるスクアリリウム誘導体は、従来のS−ASQの末端の置換基の一方に、芳香族縮合環であるベンゾ[1,2−b:4,5−b’]ジチオフェン(BDT)の橋掛け構造を介して、フェニル基、又はスクアリリウム誘導体を付加した構造を有することにより、深いHOMO及び近赤外領域における広い吸収を持つことができ、また、長鎖分岐構造の脂肪族炭化水素基を有することにより、有機溶媒への溶解性が向上し、例えば、スクアリリウム誘導体の末端の置換基がいずれも芳香族基である場合や、末端置換基の一方が芳香族基であり、他方が直鎖状の脂肪族基である場合と比較して、近赤外領域におけるモル吸光係数と有機溶媒への溶解性が向上する。
Figure 0006851059
したがって、上記スクアリリウム誘導体は、PC71BM等のフラーレン又はその誘導体からなるアクセプター材料に対するドナー材料として好適に用いることができる。
[スクアリリウム誘導体の製造方法]
本発明のスクアリリウム誘導体は、例えば、以下に示す方法により製造することができる。BDT−ASQの製造方法を一例に示す。
3−((5−ブロモ−1−ブチル−3,3−ジメチルインドリン−2−イリデン)メチル)4−エトキシシクロブタ−3−エン−1,2−ジオン及び4,8−ビス[5−(2−エチルヘキシル)チオフェン−2−イル]−2,6−ビス(トリメチルスタニル)ベンゾ[1,2−b:4,5−b’]ジチオフェンを、Pd(PPh34の存在下、トルエン溶液中で36時間加熱還流した後、得られる反応混合物をシリカゲルカラムクロマトグラフィーにより精製して、化合物1a及び1bをそれぞれ収率29%及び36%で得る。得られた化合物1a及び1bのうち、化合物1aをアセトンに溶解させ、6M塩酸を8mL滴下し、5時間加熱還流することにより、収率82%で化合物2aを得る。次いで、化合物2a及び5−(1,3,3a,8b−テトラヒドロシクロペンタ[b]インドール−4(2H)−イル)ベンゼン−1,3−ジオールを、トルエン及びn−ブタノールの1:1混合溶液中で、36時間、140℃で反応させることにより、暗赤色固体であるBDT−ASQを得る(収率70%)。
ただし、上記一般式(1)で表されるスクアリリウム誘導体は、上記した方法に限られず、種々の公知の方法で製造することができる。
Figure 0006851059
[有機薄膜太陽電池及びその製造方法]
本発明の有機薄膜太陽電池素子(以下「太陽電池素子」ともいう。)は、一対の電極(陽極2、陰極6)間に、ドナー及びアクセプターの界面構造を含む活性層が積層された素子構造を有する。ドナー材料とアクセプター材料とが相互に入り組んだ界面において、電荷(電子、正孔)が生成される。典型的には、図1に示すように、基板1、陽極2、正孔輸送層3、活性層4、電子輸送層5及び陰極6が順次積層された素子構造を有する。
以下、本発明の太陽電池素子の構成を説明する。
<太陽電池素子の構成>
本発明の太陽電池素子の構成は、図1の例に限定されず、陽極と陰極との間に順次、1)陽極バッファ層(図示せず)/正孔輸送層/活性層、2)陽極バッファ層(図示せず)/活性層/電子輸送層、3)陽極バッファ層(図示せず)/正孔輸送層/活性層/電子輸送層、4)陽極バッファ層(図示せず)/正孔輸送性化合物、活性化合物および電子輸送性化合物を含む層、5)陽極バッファ層(図示せず)/正孔輸送性化合物及び活性化合物を含む層、6)陽極バッファ層(図示せず)/活性化合物及び電子輸送性化合物を含む層、7)陽極バッファ層(図示せず)/正孔電子輸送性化合物および活性化合物を含む層、8)陽極バッファ層(図示せず)/活性層/正孔ブロック層(図示せず)/電子輸送層を設けた構成等が挙げられる。また、図1に示した活性層は一層であるが、二層以上であってもよい。
<陽極>
前記陽極には、−5〜80℃の温度範囲で、面抵抗が、通常1000Ω(オーム)以下、好ましくは100Ω以下の材料が用いられる。
太陽電池素子の陽極側から光を取り出す場合(ボトムエミッション)には、陽極は可視光線に対して透明(380〜680nmの光に対する平均透過率が50%以上)であることが必要であるため、陽極の材料には、酸化インジウム錫(ITO)及びインジウム−亜鉛酸化物(IZO)等が用いられる。これらのうち、入手容易性の観点から、ITOが好ましい。
また、素子の陰極側から光を取り出す場合(トップエミッション)には、陽極の光透過度は制限されないため、陽極の材料には、ITO及びIZOの他に、ステンレスや、銅、銀、金、白金、タングステン、チタン、タンタル若しくはニオブの単体、又はこれらの合金が用いられる。
陽極の厚さは、ボトムエミッションの場合には、高い光透過率を実現するために、通常2〜300nmであり、トップエミッションの場合には、通常2nm〜2mmである。
<陽極バッファ層>
陽極バッファ層は、陽極上に、陽極バッファ層用材料を塗布し、さらに加熱することによって形成される。
この塗布操作においては、スピンコート法、キャスト法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及びインクジェットプリント法等の公知の塗布法を適用することができる。
また、陽極バッファ層用材料には、活性層形成の際に陽極バッファ層が溶解するのを防ぐ観点から、通常は、有機溶剤に対する耐性の高い材料が用いられる。
陽極バッファ層の厚さは、バッファ層としての効果を充分に発揮させ、また、太陽電池素子の駆動電圧の上昇を防ぐ観点から、通常5〜50nm、好ましくは10〜30nmである。
<活性層、正孔輸送層、電子輸送層>
太陽電池素子における活性層は、活性層、正孔輸送層、及び電子輸送層で構成される。
前記活性層には、上記一般式(1)で表されるスクアリリウム誘導体が用いられる。前記スクアリリウム誘導体は、通常アクセプター材料を混合して用いられる。前記スクアリリウム誘導体をドナー材料とし、アクセプター材料とともに、活性層4を形成することにより、高効率の有機薄膜太陽電池を提供することができる。
前記アクセプター材料には、公知の材料が適宜選択して用いられるが、電子輸送性があり、HOMOのエネルギー準位が深い化合物が好ましく、具体的には、フラーレン(C60、C70等)又はその誘導体(PC71BM等)体が好適に用いられる。
前記活性層は、活性層のキャリア輸送性を補う目的で、図1に示すように、正孔輸送層と電子輸送層との間に挿入してもよいし、活性層中に、前記アクセプター材料とともに、正孔輸送性化合物や電子輸送性化合物を分散させて用いてもよい。
正孔輸送性化合物としては、例えば、酸化モリブデン(VI)(MoO3)、酸化バナジウム(V25)、酸化タングステン(WO3)、及び酸化ルテニウム(RuO2)等の金属酸化物;ヘキサアザトリフェニレンヘキサカルボニル(HATCN)、及び2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノ−キノジメタン(F4TCNQ)等の低分子材料;並びに該低分子材料に重合性官能基を導入して高分子化したもの等が挙げられる。
電子輸送性化合物としては、例えば、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)等のフェナントロリン誘導体;B4PyMPM(ビス−3,6−(3,5−ジ−4−ピリジルフェニル)−2−メチルピリミジン)等のオリゴピリジン誘導体;[60]フラーレン、及び[70]フラーレン等のナノカーボン誘導体等の低分子材料;並びに該低分子材料に重合性官能基を導入して高分子化したもの等が挙げられる。
<正孔ブロック層>
正孔が活性層を通過するのを抑え、活性層内で電子と効率よく再結合させる目的で、活性層の陰極側に隣接して正孔ブロック層を設けてもよい。この正孔ブロック層には、活性化合物よりHOMO準位の深い化合物が用いられ、例えば、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体、アルミニウム錯体等が用いられる。
さらに、励起子(エキシトン)が陰極金属で失活することを防ぐ目的で、活性層の陰極側に隣接してエキシトンブロック層を設けてもよい。このエキシトンブロック層には、活性化合物よりも、三重項励起エネルギーの大きな化合物が用いられ、該化合物としては、トリアゾール誘導体、フェナントロリン誘導体、アルミニウム錯体等が用いられる。
<陰極>
陰極材料としては、仕事関数が低く(4eV以下)、かつ、化学的に安定なものが使用される。具体的には、Alや、MgAg、AlLi、又はAlCa等の合金の既知の陰極材料が挙げられる。これらの陰極材料の成膜方法としては、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、及びイオンプレーティング法等が用いられる。陰極の厚さは、通常10nm〜1μmであり、好ましくは50〜500nmである。
また、陰極から活性層への電子注入障壁を下げて電子の注入効率を上げる目的で、陰極より仕事関数の低い金属層を、陰極バッファ層として、陰極と該陰極に隣接する層の間に挿入してもよい。このような目的に使用できる低仕事関数の金属としては、アルカリ金属、アルカリ土類金属、希土類金属等が挙げられる。また、陰極より仕事関数の低いものであれば、合金又は金属化合物も使用することができる。これらの陰極バッファ層の成膜方法としては、蒸着法やスパッタ法等を用いることができる。陰極バッファ層の厚さは、通常0.05〜50nmであり、好ましくは0.1〜20nmである。
さらに、陰極バッファ層は、上記の低仕事関数の金属等と電子輸送性化合物との混合物として形成させることもできる。この場合の成膜方法としては共蒸着法を用いることができる。また、溶液による塗布成膜が可能な場合は、スピンコート法、スプレーコート法、ディップコート法、及び印刷法(インクジェットプリント法、ディスペンサー塗布法)等の成膜方法を用いることができる。この場合の陰極バッファ層の厚さは、通常は0.1〜100nmであり、好ましくは0.5〜50nmである。陰極と有機物層との間に、導電性高分子からなる層、或いは、金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。
<基板>
前記素子を構成する基板には、太陽電池素子に要求される機械的強度を満たす材料が用いられる。
ボトムエミッション型の太陽電池素子には、可視光線に対して透明な基板が用いられ、例えば、ソーダガラス、及び無アルカリガラス等のガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、及びナイロン樹脂等の透明プラスチック;並びにシリコンからなる基板等が使用できる。
トップエミッション型の太陽電池素子には、ボトムエミッション型の太陽電池素子に用いられる基板に加えて、ステンレスや、銅、銀、金、白金、タングステン、チタン、タンタル若しくはニオブの単体又はこれらの合金からなる基板等が使用できる。
基板の厚さは、要求される機械的強度にもよるが、通常0.1〜10mm、好ましくは0.25〜2mmである。
なお、各層の膜厚は、概ね5nm〜5μmの範囲内である。
(太陽電池素子の形成方法)
上記の活性層は、例えば、蒸着法(抵抗加熱蒸着法、電子ビーム蒸着法等)、スパッタリング法等のドライプロセス、又は塗布法(スピンコート法、キャスティング法、ダイコート法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等)等のウェットプロセスにより形成することができる。これらの方法のうち、スピンコート法、ダイコート法、及びスプレーコート法が好ましく用いられる。
なお、太陽電池素子を長期間、安定的に用いるために、その周囲に保護層及び/又は保護カバーを装着することが好ましい。前記保護層には、高分子化合物、金属酸化物、金属フッ化物、及び金属ホウ化物等が用いられる。前記保護カバーには、ガラス板、表面に低透水化処理を施したプラスチック板、及び金属等が用いられ、該カバーを熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。さらに、前記空間に窒素やアルゴンのような不活性ガスを封入すれば、陰極の酸化を防止することができ、酸化バリウム等の乾燥剤を空間内に入れれば、製造工程で吸着した水分が太陽電池素子にタメージを与えるのを抑制できる。
[用途]
本発明の有機薄膜太陽電池は、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機薄膜太陽電池は、画素を形成せずに、面発光光源としても好適に用いられる。
本発明の有機薄膜太陽電池は、具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、標識、看板、ビデオカメラのビューファインダー等における表示装置、バックライト、電子写真、照明、レジスト露光、読み取り装置、インテリア照明、光通信システム等における光照射装置に好適に用いられる。
以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
[BDT−ASQ及びD−BDT−ASQの合成]
BDT−ASQ及びD−BDT−ASQを下記のスキームに従って合成した。
Figure 0006851059
[合成例1]化合物1a及び1bの合成
3−((5−ブロモ−1−ブチル−3,3−ジメチルインドリン−2−イリデン)メチル)4−エトキシシクロブタ−3−エン−1,2−ジオン(2.40g、5.75mmol)及び4,8−ビス[5−(2−エチルヘキシル)チオフェン−2−イル]−2,6−ビス(トリメチルスタニル)ベンゾ[1,2−b:4,5−b’]ジチオフェン(2.00g、2.21mmol)を200mLのトルエンに溶解させ、30分間窒素で脱気した。次いで、Pd(PPh34 660mgを窒素下に添加し、混合物を36時間加熱還流した。溶媒を除去した後、粗生成物をシリカゲルカラムクロマトグラフィーで精製し(溶離液;ジクロロメタン/酢酸エチル=30:1)、黄色固体の化合物1aを0.80g(収率29%)、化合物1bを1.02g(収率36%)得た。
化合物1a及び1bの1H NMRの測定結果を以下に示す。
化合物1a;3−((5−(4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2−イル)−1−ブチル−3,3−ジメチルインドリン−2−イリデン)メチル)−4−エトキシシクトブタ−3−エン−1,2−ジオン
1H NMR(400 MHz, THF-d8, ppm) δ: 7.86 (s, 1H, ArH), 7.81 (s, 1H, ArH), 7.73 (d, 3H, J=8.0 HZ, ArH), 7.65 (d, 1H, J=8.4 HZ, ArH), 7.40-7.29 (m, 5H, ArH), 7.04 (d, 1H, J=8.4 HZ, ArH), 7.00 (d, 2H, J=3.2 HZ, ArH), 5.46 (s, 1H, =CH-), 4.86 (q, 2H, J=7.2 HZ, -OCH2-), 3.93 (t, 2H, J=7.2 HZ, -NCH2-), 2.94 (d, 4H, J=6.8 HZ, -CH2-),1.78-1.72 (m, 2H, -CH2-), 1.66 (s, 6H, -CH3), 1.52-1.35 (m, 23H, -CH2-, -CH3), 1.00-0.92 (m, 15H, -CH3)
化合物1b;4,4’−(5,5’−(4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2,6−ジイル)ビス(1−ブチル−3,3−ジメチルインドリン−5−イル−2−イリデン))ビス(メタニルイリデン))ビス(3−エトキシシクロブタ−3−エン−1,2−ジオン)
1H NMR(400 MHz, THF-d8, ppm) δ: 7.79 (s, 2H, ArH), 7.70 (s, 2H, ArH), 7.64 (d, 2H, J=8.4 HZ, ArH), 7.38 (d, 2H, J=3.2 HZ, ArH), 7.04 (d, 2H, J=8.4 HZ, ArH), 7.00 (d,2H, J=3.2 HZ, ArH), 5.46 (s, 2H, =CH-), 4.87 (q, 4H, J=7.2 HZ, -OCH2-), 3.93 (t, 4H, J=7.6 HZ, -NCH2-), 2.94 (d, 4H, J=6.4 HZ, -CH2-), 1.76-1.67(m, 4H, -CH2-), 1.66 (s, 12H, -CH3), 1.50-1.39 (m, 28H, -CH2-, -CH3), 1.01-0.93 (m, 18H, -CH3).
[合成例2]化合物2aの合成
化合物1a(0.80g、0.81mmol)を80mLのアセトンに溶解させ、30分間加熱還流した。この溶液中に、6M塩酸を8mL滴下し、さらに5時間加熱還流した。次いで、200mLの脱イオン水を滴下すると、反応混合物中に黄色固体が沈殿した。この混合物をろ過し、生成物を脱イオン水で精製し、化合物2aを0.64g(収率82%)を得た。
化合物2aの1H NMRの測定結果を以下に示す。
化合物2a;3−((5−(4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2−イル)−1−ブチル−3,3−ジメチルインドリン−2−イリデン)メチル)−4−ヒドロキシシクロブタ−3−エン−1,2−ジオン
1H NMR(400 MHz, THF-d8, ppm) δ: 7.86 (s, 1H, ArH), 7.80 (s, 1H, ArH), 7.73 (d, 3H, J=8.0 HZ, ArH), 7.64 (d, 1H, J=8.4 HZ, ArH), 7.40-7.28 (m, 5H, ArH), 7.01-6.99 (m, 3H, ArH), 5.55 (s, 1H, =CH-), 3.91 (t, 2H, J=7.2 HZ, -NCH2-), 2.94(d, 4H, J=6.8 HZ, -CH2-),1.77-1.72 (m, 2H, -CH2-), 1.67(s, 6H, -CH3), 1.53-1.35 (m, 20H, -CH2-), 1.00-0.92 (m, 15H, -CH3).
[合成例3]化合物2bの合成
化合物1b(0.90g、0.72mmol)を、アセトン60mL及びTHF110mLの混合溶媒に溶解させ、30分間加熱還流した。この溶液中に、6M 塩酸アセトン溶液を20mL滴下し、3時間加熱還流した。次いで、600mLの脱イオン水を滴下すると、反応混合物中に橙色固体が沈殿した。この混合物をろ過し、生成物を脱イオン水で精製し、化合物2bを0.78g(収率91%)を得た。
化合物2bの1H NMRの測定結果を以下に示す。
化合物2b;4,4’−((5,5’−(4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2,6−ジイル)ビス(1−ブチル−3,3−ジメチルインドリン−5−イル−2−イリデン))ビス(メタニルイリデン))ビス(3−ヒドロキシシクロブタ−3−エン−1,2−ジオン)
1H NMR(400 MHz, THF-d8, ppm) δ: 7.78 (s, 2H, ArH), 7.69 (s, 2H, ArH), 7.63 (d, 2H, J=8.4 HZ, ArH), 7.38 (d, 2H, J=3.6 HZ, ArH), 7.02-7.00 (m, 4H, ArH), 5.55 (s, 2H, =CH-), 3.92 (t, 4H, J=6.8 HZ, -NCH2-), 2.94 (d, 4H, J=6.4 HZ, -CH2-), 1.77-1.70(m, 4H, -CH2-), 1.67 (s, 12H, -CH3), 1.55-1.35 (m, 22H,-CH2-), 1.01-0.93 (m, 18H, -CH3).
[実施例1]BDT−ASQの合成
化合物2a(0.50g、0.52mmol)及び5−(1,3,3a,8b−テトラヒドロシクロペンタ[b]インドール−4(2H)−イル)ベンゼン−1,3−ジオール(0.20g、0.73 mmol)を、トルエン50mL及びn−ブタノール50mLの混合溶媒に溶解させ、窒素で30分間脱気した。次いで、溶液を140℃で36時間加熱した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し(溶離液;ジクロロメタン/酢酸エチル=10:1)、暗赤色固体を得た。ジクロロメタン及びメタノール4:1(体積比)の溶媒で再結晶して、暗赤色固体0.44gを得た(収率70%)。
BDT−ASQの融点(mp)、1H NMR(図2(a))、13C NMR(図2(b))、純度(purity)及びHR−MS(高分解能質量スペクトル)の測定結果を示す。
BDT−ASQ;4−((5−(4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2−イル)−1−ブチル−3,3−ジメチル−3H−インドール−1−イウム−2−イル)メチレン)−2−(2,6−ジヒドロキシ−4−(1,3,3a,8b−テトラヒドロシクロペンタ[b]インドール−4(2H)−イル)フェニル)−3−オキソシクロブタ−1−エノレート
mp:206-207℃;
1H NMR (400 MHz, CDCl3, ppm):δ:12.40 (s, 2H, -OH), 7.84(d, 2H, J=1.6 HZ, ArH), 7.72-7.66 (m, 4H, ArH), 7.43-7.33 (m, 6H, ArH), 7.19-7.15 (m, 2H, ArH), 7.06 (d, 1H, J=8.0 HZ, ArH), 6.97-6.93 (m, 3H, ArH), 6.35 (s, 2H, ArH), 5.90 (s, 1H, =CH-), 4.70 (t, 1H, J=8.0, 2.8 HZ, -NCH-), 4.04(t, 2H, J=7.2 HZ, -NCH2-), 3.92 (t, 1H, J=8.0 HZ, -CH-), 2.93 (d, 4H, J=6.4 HZ, -CH2-), 2.09-1.91 (m, 4H, -CH2-), 1.84-1.64(m, 11H, -CH2-, -CH3), 1.51-1.36 (m, 19H, -CH2-), 1.02-0.93 (m, 15H, -CH3);
13C NMR (100 MHz, CDCl3, ppm):δ: 172.6, 170.9, 169.5, 163.1, 152.9, 146.1, 145.0, 143.9, 143.5, 143.3, 141.7, 139.0, 138.7, 137.7, 137.4, 137.0, 136.9, 134.1, 131.7, 128.9, 128.5, 127.9, 127.8, 127.4, 126.6, 126.4, 125.6, 125.5, 124.9, 123.7, 123.6, 122.5, 120.3, 119.1, 118.9, 113.8, 110.7, 105.0, 96.7, 88.0, 68.7, 50.1, 45.5, 44.2, 41.5, 34.6, 34.3, 33.7, 32.5, 29.4, 28.9, 26.8, 25.8, 24.3, 23.1, 20.3, 14.2, 13.8, 11.0;
purity:100% (HPLC, 溶離液: THF/H2O=83:17);
HR-MS(ESI): m/z [M+H]+ calcd. for C76H81N2O4S4,1213.5079; found,1213.5074;
元素分析:calcd. for C76H80N2O4S4: C75.21, H 6.64, N 2.31, S 10.57; found, C 75.28, H 6.93, N 2.26, S 10.75.
図4にBDT−ASQの熱重量測定(TGA)の結果を示す。BDT−ASQは、高い熱安定性を有することがわかる。
[実施例2]D−BDT−ASQの合成
化合物2b(0.51g、0.43mmol)及び5−(1,3,3a,8b−テトラヒドロシクロペンタ[b]インドール−4(2H)−イル)ベンゼン−1,3−ジオール(0.30g、1.12mmol)をトルエン60mL及びn−ブタノール60mLに溶解させ、窒素で30分間脱気した後、140℃で36時間加熱した。反応を終了して冷却した後、メタノール120mLを滴下して、暗赤色固体を得た。この暗赤色固体をろ別し、シリカゲルカラムクロマトグラフィーで精製した(溶離液、ジクロロメタン/酢酸エチル=100:1)。得られた暗赤色固体をジクロロメタン及びヘキサンの混合溶媒(ジクロロメタン:ヘキサン=10:1)で再結晶を行い、黒色固体を得た(0.54g、収率75%)。
D−BDT−ASQの融点(mp)、1H NMR(図3(a))、13C NMR(図3(b))、純度(purity)及びHR−MS(高分解能質量スペクトル)の測定結果を示す。
D−BDT−ASQ;4,4’−((5,5’−(4,8’−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b:4,5−b’]ジチオフェン−2,6−ジイル)ビス(1−ブチル−3,3−ジメチル−3H−インドール−1−イウム−5,2−ジイル))ビス(メタニルイリデン))ビス(2−(2,6−ジヒドロキシ−4−(1,3,3a,8b−テトラヒドロシクロペンタ[b]インドール−4(2H)−イル)フェニル)−3−オキソシクロブタ−1−エノレート)
mp303-304 ℃;
1H NMR (400 MHz, CDCl3, ppm) δ:12.41 (s, 4H, -OH), 7.84(s, 2H, ArH), 7.71 (d, 2H, J=8.4 HZ, ArH), 7.66 (d, 2H, J=1.6 HZ, ArH), 7.39(t, 4H, J=4.0 HZ, ArH), 7.18 (t, 4H, J=6.0 HZ, ArH), 7.09 (d, 2H, J=8.4 HZ, ArH), 6.99 (d, 2H, J=3.2 HZ, ArH), 6.97 (t, 2H, J=7.6 HZ, ArH), 6.34 (s, 4H, ArH), 5.91 (s, 2H, =CH-), 4.70 (t, 2H, J=8.0, 2.8 HZ, -NCH-), 4.08 (t, 4H, J=7.2 HZ, -NCH2-), 3.92 (t, 2H, J=7.6 HZ, -CH-), 2.94 (d, 4H, J=6.8 HZ,-CH2-), 2.11-1.90 (m, 10H, -CH2-), 1.85-1.64 (m, 20H, -CH2-,-CH3), 1.53-1.36 (m, 20H, -CH2-), 1.03-0.93 (m, 18H, -CH3);
13C NMR (100 MHz, CDCl3, ppm) δ: 172.5, 171.1, 169.4, 163.1, 153.0, 146.2, 143.9, 143.8, 143.3, 141.8, 138.9, 137.6, 137.0, 136.8, 131.6, 127.9, 127.4, 126.7, 125.6, 124.9, 123.7, 122.6, 120.3, 119.1, 113.8, 110.7, 105.0, 96.7, 88.0, 68.7, 50.1, 45.5, 44.2, 41.5, 34.6, 34.3, 33.7, 32.5, 29.4, 28.9, 26.8, 25.8, 24.3, 23.1, 20.3, 14.2, 13.8, 11.0;
purity:100% (HPLC, eluent: THF/H2O=83:17);
HR-MS(ESI): m/z [M+2H]+ calcd. for C106H112N4O8S4, 1697.7397; found,1697.7400;
elemental anal. Calcd. for C106H110N4O8S4: C 75.05, H 6.54, N 3.30, S 7.56; found, C 75.08, H 6.84, N 3.25, S 7.50.
図4にD−BDT−ASQの熱重量測定(TGA)の結果を示す。D−BDT−ASQは、高い熱安定性を有することがわかる。
[比較例1]
比較例として、下記構造式を有するS−ASQを用いた。
Figure 0006851059
図4にS−ASQの熱重量測定(TGA)の結果を示す。
[試験例1]光学的及び電気化学的評価
比較例1のS−ASQ、及び、実施例1〜2で得られたBDT−ASQ及びD−BDT−ASQをクロロホルムに溶解させ、3.00×10-6mol/L溶液を調製した。
S−ASQ、BDT−ASQ、及びD−BDT−ASQのそれぞれについて調製したクロロホルム溶液を、石英ガラスに入れて測定した場合(図5(a))、及びキャストフィルムにして測定した場合(図5(b))の紫外・可視・近赤外分光分析(UV−Vis−NIR)を行った。
Figure 0006851059
UV−Vis−NIR吸収スペクトルでは、キャストフィルムの場合(図5(b))、BDT−ASQ及びD−BDT−ASQはS−ASQに比べてそれぞれ34nm及び47nm長波長シフトしていた。具体的には、S−ASQ<BDT−ASQ<D−BDT−ASQの順に長波長化していた。ただし、そのエネルギー差はわずか0.03eV程度であった。
S−ASQ及びBDT−ASQは、表1に示すとおり、同等程度の高いモル吸光係数(〜2.0M-1cm-1)を示したが、D−BDT−ASQでは4.0M-1cm-1と、高い値を示した。
BDT−ASQ及びD−BDT−ASQのいずれも、溶液で測定した場合よりも、キャストフィルムで測定した場合のほうが、長波長シフトしており、かつ、ブロードな波形を示した。300〜450nmに観測される吸収帯は、BDTセグメントのπ−π*遷移によるものと考えられる。吸収スペクトルの開始位置(onset position)から、BDT−ASQ及びD−BDT−ASQの光学バンドギャップ(Eg opt)はそれぞれ、1.39eV及び1.36eVと見積もり、S−ASQよりも0.02eV及び0.05eV低いことがわかった。なお、D−BDT−ASQの光学バンドギャップ(Eg opt)1.36eVは、これまでに知られるASQ系の光起電材料のなかで最も低い値である。
また、サイクリックボルタンメトリー(CV)では、表1に示すとおり、BDT−ASQのHOMO及びLUMOのエネルギーはそれぞれ−5.16eV及び−3.54eVであり、D−BDT−ASQのHOMO及びLUMOのエネルギーはそれぞれ−5.15eV及び−3.55eVであった。これは、S−ASQのHOMO及びLUMOのエネルギー(HOMO:−5.10eV及びLUMO:−3.43eV)に比べて、BDT−ASQでは、HOMOが0.06eV低下し、LUMOでは0.11eV低下しており、D−BDT−ASQでは、HOMOが0.05eV低下し、LUMOでは0.12eV低下しており、BDT構造が導入されたことにより、低バンドギャップ化したことが示唆される。
[試験例2]有機太陽電池の光起電力評価
陽極として、ガラス基板の全面に酸化インジウムスズ(ITO)膜が塗布されたITO基板を準備し、ITO電極の上に、正孔輸送層として、6nm厚の酸化モリブデン(VI)(MoO3)層を積層させ、その上に活性層として、ドナー(Donor)材料にBDT−ASQ、D−BDT−ASQ又はS−ASQと、アクセプター(Acceptor)材料に[6,6]−フェニルC71酪酸メチル(PC71BM)とを1:7の質量比で混合したものを70〜100nm厚となるように塗布し、その上に電子輸送層として、10nm厚の2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を積層し、陰極として100nm厚のアルミニウム板を積層させて、BHJ型太陽電池の素子(ITO/MoO3/ASQ:PC71BM/BCP/Al構造)を作製し、特性評価を行った。なお、前記素子構造中に記載の「ASQ」は、BDT−ASQ、D−BDT−ASQ、又はS−ASQを表す。
Figure 0006851059
S−ASQ、BDT−ASQ、及びD−BDT−ASQのそれぞれの素子特性結果を表2及び図6(a)〜(d)に示す。
Figure 0006851059
表2より、S−ASQを用いた素子のPCEは3.82%、Vocは0.87V、Jscは10.71mAcm-2、FFは0.41であり、BDT−ASQを用いた素子では、PCEは4.11%、Vocは0.93V、Jscは10.79mAcm-2、FFは0.41であり、D−BDT−ASQを用いた素子では、PCEは5.75%、Vocは0.92V、Jscは12.50mAcm-2、FFは0.50であった。BDT−ASQ及びD−BDT−ASQは、S−ASQと比べて、Vocが0.05〜0.06V高いことがわかった。これは、BDT−ASQ及びD−BDT−ASQのHOMOのエネルギーレベルが、S−ASQよりも0.05〜0.06eV低いというCVの結果と一致する。
S−ASQのPCEは4.31%であったが、BDT−ASQ及びD−BDT−ASQのPCEはそれぞれ4.77%及び6.33%であった。
太陽電池は外で常温よりも高い温度下に使用されることが想定されるため、80℃の条件下に実験を行った。S−ASQ、BDT−ASQ及びD−BDT−ASQのすべての素子でVocはわずかに低下し、JscとFFはわずかに増大した。また、D−BDT−ASQを用いた素子で、PCEは7.41%と、最も高い値を示した。
次いで、ドナー材料であるD−BDT−ASQと、アクセプター材料である[6,6]−フェニルC71酪酸メチル(PC71BM)とを種々の質量比で用いて、BHJ型太陽電池の素子を作製した場合の特性評価結果を図7(a)及び(b)並びに表3に示す。
Figure 0006851059
ドナーとアクセプターとの質量比(D/A)が1:3〜1:9であるとき、素子のPCEは5%を超えていた。D/Aが1:7付近であるとき、PCEが最も高い値となることがわかった。
D−BDT−ASQでは、平面で非対称な二量体構造を有するため、かさ高い縮合環構造を有するBDTがドナーの役割を果たす。S−ASQに比べて、D−BDT−ASQでは0.05eV低いHOMOエネルギーレベルを有するのみならず、長波長シフトすることがわかった。さらに重要なことに、D−BDT−ASQの正孔移動度は単膜、及び、アクセプター材料との混合膜のいずれにおいても、S−ASQに比べて高い。結果的に、D−BDT−ASQを用いたBHJ型太陽電池の素子は、S−ASQを用いた場合よりも、Voc、Jsc、FFのいずれも高く、D/A比が1:7付近のとき、PCEが最高値で7.41%という優れた結果を示した。この数値は、これまで知られたスクワレン系の単接合型有機太陽電池のなかで最高値であり、このような平面で非対称な二量体構造を改良することが、今後、高性能な光起電材料を得るのに重要な方法であるといえる。
1 基板
2 陰極
3 正孔輸送層
4 活性層
5 電子輸送層
6 陰極

Claims (4)

  1. 下記一般式(1)で表されるスクアリリウム誘導体;
    Figure 0006851059
    (一般式(1)中、R1〜R6はそれぞれ独立に1価の脂肪族基又は1価の芳香族基を示し、
    2及びR3が脂肪族基の場合、R2及びR3は連結して環を形成してもよく、
    5及びR6が脂肪族基の場合、R5及びR6は連結して環を形成してもよく、
    Xは、フェニル基、又は、下記構造式で表される1価の置換基を示し、
    Arは2価の芳香族基を示す。)
    Figure 0006851059
  2. 前記一般式(1)中、Arがチオフェニレン基を示すことを特徴とする、請求項1に記載のスクアリリウム誘導体。
  3. 前記一般式(1)中、
    Arがチオフェニレン基を示し、かつ、
    1〜R6はそれぞれ独立に炭素原子数1〜20の1価の脂肪族基を示すことを特徴とする、請求項1又は2に記載のスクアリリウム誘導体。
  4. 請求項1〜3のいずれか一項に記載のスクアリリウム誘導体を用いた有機薄膜太陽電池。
JP2016179255A 2016-09-14 2016-09-14 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池 Active JP6851059B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179255A JP6851059B2 (ja) 2016-09-14 2016-09-14 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179255A JP6851059B2 (ja) 2016-09-14 2016-09-14 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池

Publications (2)

Publication Number Publication Date
JP2018043943A JP2018043943A (ja) 2018-03-22
JP6851059B2 true JP6851059B2 (ja) 2021-03-31

Family

ID=61694515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179255A Active JP6851059B2 (ja) 2016-09-14 2016-09-14 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池

Country Status (1)

Country Link
JP (1) JP6851059B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165963A (ja) * 2010-02-10 2011-08-25 Osaka Prefecture Univ 有機色素及び有機薄膜太陽電池
JP6043493B2 (ja) * 2012-03-23 2016-12-14 公立大学法人大阪府立大学 スクアリリウム化合物、それを含む薄膜および有機薄膜太陽電池
CN104163785B (zh) * 2014-06-16 2016-08-24 四川大学 一系列含吲哚啉衍生物结构的不对称方酸菁小分子及其应用

Also Published As

Publication number Publication date
JP2018043943A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
EP2995616B1 (en) Hetero ring compound and organic light emitting diode comprising same
EP3312255B1 (en) Compound for organic optoelectric device, organic optoelectric device and display device
EP2361915B1 (en) Novel heterocyclic compound and use thereof
US8946695B2 (en) Compound, and organic light-emitting device using same
US10276804B2 (en) Compound for organic optoelectronic element, organic optoelectronic element comprising same, and display device
US10131632B2 (en) Dopant for organic optoelectronic device, organic optoelectronic device and display device
EP3026722A1 (en) Compound for organic photoelectric device and organic photoelectric device, image sensor, and electronic device including the same
EP2940096A1 (en) Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
US7906724B2 (en) N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in organic photovoltaics
KR101859123B1 (ko) 유기소자의 정공차단층 및/또는 전자수송층에 사용될 수 있는 신규한 화합물 및 이를 포함하는 유기박막의 제조방법 및 유기발광소자
KR20150131564A (ko) 축합환 화합물 및 이를 포함한 유기 발광 소자
JP6887805B2 (ja) 有機電子素子での使用のための新規6員環構造を持つ化合物
JP6844934B2 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
US20120298976A1 (en) N-Type Materials And Organic Electronic Devices
Liu et al. Structure–Property Study on Two New D–A Type Materials Comprising Pyridazine Moiety and the OLED Application as Host
EP2960240B1 (en) Heterocyclic compound and organic light-emitting element using same
CN113773209B (zh) 一种三芳胺衍生物及其有机电致发光器件
JP6736077B2 (ja) 新規スクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池
EP3266780B1 (en) Heterocyclic compound and organic light emitting element comprising same
US10032999B2 (en) Compound for organic optoelectric device, composition for organic optoelectric device and organic optoelectric device and display device
Li et al. Novel red-emitting thieno-[3, 4-b]-pyrazine derivatives suitable for vacuum evaporation and solution method to fabricate non-doped OLEDs
US10096784B2 (en) Compound for organic optoelectric device, composition for organic optoelectric device and organic optoelectric device and display device
CN115461339A (zh) 新型化合物及包含其的有机发光器件
JP6945841B2 (ja) 近赤外吸収スクアリリウム誘導体、及びそれを含む有機電子デバイス
EP2998380A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6851059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250