JP6850566B2 - Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method - Google Patents

Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method Download PDF

Info

Publication number
JP6850566B2
JP6850566B2 JP2016169410A JP2016169410A JP6850566B2 JP 6850566 B2 JP6850566 B2 JP 6850566B2 JP 2016169410 A JP2016169410 A JP 2016169410A JP 2016169410 A JP2016169410 A JP 2016169410A JP 6850566 B2 JP6850566 B2 JP 6850566B2
Authority
JP
Japan
Prior art keywords
strain
temperature
gauge ratio
less
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016169410A
Other languages
Japanese (ja)
Other versions
JP2018036143A (en
Inventor
英二 丹羽
英二 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP2016169410A priority Critical patent/JP6850566B2/en
Publication of JP2018036143A publication Critical patent/JP2018036143A/en
Application granted granted Critical
Publication of JP6850566B2 publication Critical patent/JP6850566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、高温で優れた特性を有する歪抵抗膜およびその製造方法、ならびに、そのような歪抵抗膜を用いた高温用歪センサおよびその製造方法に関する。 The present invention relates to a strain resistance film having excellent properties at high temperatures and a method for manufacturing the same, and a strain sensor for high temperature using such a strain resistance film and a method for manufacturing the same.

歪センサは、薄膜、細線または箔形状のセンサ材の電気抵抗が弾性歪によって変化する現象を利用するものであり、その抵抗変化を測定することにより、歪や応力の計測ならびに変換に用いられる。 The strain sensor utilizes a phenomenon in which the electrical resistance of a thin film, fine wire, or foil-shaped sensor material changes due to elastic strain, and is used for measuring and converting strain and stress by measuring the resistance change.

歪センサの感度は、ゲージ率Kによって決まり、Kの値は一般に以下の(1)式で与えられる。
K=(ΔR/R)/(Δl/l)=1+2σ+(Δρ/ρ)/(Δl/l) (1)
ここで、R、σおよびρは、それぞれセンサ材である薄膜、細線または箔の全抵抗、ポアソン比および比電気抵抗である。またlは被測定体の全長であり、よってΔl/lは被測定体に生じる歪を表す。一般に、金属・合金におけるσはほぼ0.3であるから、前記の式における右辺第1項と第2項の合計は約1.6でほぼ一定の値となる。したがってゲージ率を大きくするためには、前記の式における第3項が大きいことが必須条件である。すなわち、材料に引っ張り変形を与えたとき材料の長さ方向の電子構造が大幅に変化し、比電気抵抗の変化量Δρ/ρが増加することによる。
The sensitivity of the strain sensor is determined by the gauge factor K, and the value of K is generally given by the following equation (1).
K = (ΔR / R) / (Δl / l) = 1 + 2σ + (Δρ / ρ) / (Δl / l) (1)
Here, R, σ, and ρ are the total resistance, Poisson's ratio, and specific electrical resistance of the thin film, thin wire, or foil that is the sensor material, respectively. Further, l is the total length of the object to be measured, and Δl / l represents the strain generated in the object to be measured. In general, since σ in metals and alloys is approximately 0.3, the sum of the first and second terms on the right side in the above equation is approximately 1.6, which is a substantially constant value. Therefore, in order to increase the gauge ratio, it is an essential condition that the third term in the above equation is large. That is, when the material is subjected to tensile deformation, the electronic structure in the length direction of the material changes significantly, and the amount of change in specific electrical resistance Δρ / ρ increases.

そこで近年になって注目されたのが、バルクのゲージ率として26〜28という非常に大きい値が報告されていたクロミウム(Cr)である。Crは加工が非常に困難であるが、加工を必要としない薄膜化によって歪センサに応用することができ、Crは薄膜化してもゲージ率が約15と依然として大きいため、Cr薄膜が歪センサとして注目されている(例えば特許文献1)。 Therefore, in recent years, attention has been paid to chromium (Cr), which has been reported to have a very large bulk gauge ratio of 26 to 28. Although Cr is very difficult to process, it can be applied to a strain sensor by thinning it without processing, and even if Cr is thinned, the gauge ratio is still large at about 15, so the Cr thin film can be used as a strain sensor. It is attracting attention (for example, Patent Document 1).

一方、近年、自動車および航空機等の内燃機関関連、射出成型、地熱発電、油田開発、火力発電のタービン関連など、200〜700℃の高温領域においてゲージ率が高く高感度な各種力学量のセンシングが強く要望されている。 On the other hand, in recent years, sensing of various dynamic quantities with high gauge ratio and high sensitivity in the high temperature range of 200 to 700 ° C, such as internal combustion engine related to automobiles and aircraft, injection molding, geothermal power generation, oil field development, turbine related to thermal power generation, etc. It is strongly requested.

特許文献2、3には、Cr系薄膜を用いて、このような高温での力学量のセンシングを行う技術が開示されている。 Patent Documents 2 and 3 disclose a technique for sensing a mechanical quantity at such a high temperature by using a Cr-based thin film.

特開昭61−256233号公報Japanese Unexamined Patent Publication No. 61-256233 特開2005−69685号公報Japanese Unexamined Patent Publication No. 2005-69685 特開2012−207985号公報Japanese Unexamined Patent Publication No. 2012-207985

ところで、高温領域で使用される歪ゲージにおいても、3以上という実用的な大きさのゲージ率が求められているが、上記特許文献2,3では、高温でのゲージ率は測定しておらず不明である。 By the way, even in strain gauges used in a high temperature region, a gauge ratio having a practical size of 3 or more is required, but in the above Patent Documents 2 and 3, the gauge ratio at a high temperature is not measured. It is unknown.

また、特許文献3には、ゲージ率の温度安定性の指標として抵抗温度係数(TCR)が重要であることが記載されているが、TCRは、ブリッジ回路を用いて均一温度を受けるようにすれば温度変化の影響をほぼなくすことができる。 Further, Patent Document 3 describes that the temperature coefficient of resistance (TCR) is important as an index of the temperature stability of the gauge ratio, but the TCR should be subjected to a uniform temperature by using a bridge circuit. For example, the influence of temperature changes can be almost eliminated.

しかし、本発明者の検討結果によれば、ゲージ率の安定性の指標としてはゲージ率の温度係数(TCS)が重要であり、TCSを小さくするには回路を用いる等の回避手段はなく、その値そのものを小さくする必要があるが、上記特許文献2,3では、TCSの値は不明である。 However, according to the results of the study by the present inventor, the temperature coefficient (TCS) of the gauge rate is important as an index of the stability of the gauge rate, and there is no workaround such as using a circuit to reduce the TCS. It is necessary to reduce the value itself, but in Patent Documents 2 and 3, the value of TCS is unknown.

本発明は、このような事情に鑑みてなされたものであり、所定の高温領域において、実用的なゲージ率を示し、かつゲージ率の温度安定性が高い歪抵抗膜およびその製造方法、ならびに、そのような歪抵抗膜を用いた高温用歪センサおよびその製造方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and a strain resistance film having a practical gauge ratio and high temperature stability of the gauge ratio in a predetermined high temperature region, a method for producing the same, and a strain resistance film thereof. An object of the present invention is to provide a strain sensor for high temperature using such a strain resistance film and a method for manufacturing the same.

本発明者は、高温用歪センサに適用可能な歪抵抗膜について検討を重ねた。その結果、クロミウム薄膜を歪抵抗膜として用い、所定の高温での使用温度領域の上限よりも50℃以上高い温度で大気中において所定時間の熱処理を施すことにより、その使用温度範囲において、ゲージ率が3以上で、ゲージ率の温度係数(感度温度係数)(TCS)が2000ppm/℃以下という良好な値が得られ、実用的なゲージ率を有し、ゲージ率の温度安定性が高い高温用歪センサが得られることを見出した。 The present inventor has repeatedly studied a strain resistance film applicable to a strain sensor for high temperature. As a result, by using a chromium thin film as a strain resistance film and performing heat treatment in the air at a temperature 50 ° C. or higher higher than the upper limit of the operating temperature range at a predetermined high temperature for a predetermined time, the gauge coefficient is increased in the operating temperature range. Is 3 or more, the temperature coefficient of gauge rate (sensitivity temperature coefficient) (TCS) is 2000 ppm / ° C or less, which is a good value, has a practical gauge rate, and has high temperature stability of gauge rate for high temperature. We have found that a strain sensor can be obtained.

本発明は、このような知見に基づいてなされたものであり、以下の(1)〜(12)を提供する。 The present invention has been made based on such findings, and provides the following (1) to (12).

(1)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上800℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下であることを特徴とする歪抵抗膜。 (1) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 800 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain resistance film characterized by having a temperature of / ° C or lower.

(2)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上450℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内であることを特徴とする歪抵抗膜。 (2) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 450 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain resistance film characterized in that the stability of the resistance value is within ± 0.2% at / ° C or lower.

(3)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上400℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内であることを特徴とする歪抵抗膜。 (3) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 400 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain resistance film characterized in that the stability of the resistance value is within ± 0.02% at / ° C or lower.

(4)クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上800℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 (4) A thin film made of chromium (Cr) is formed as a single film , and heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter. A method for producing a strain resistance film, which comprises obtaining a strain resistance film having a gauge ratio of 3 or more and a temperature coefficient of gauge ratio of 2000 ppm / ° C or less in a temperature range of 350 ° C. or higher and 800 ° C. or lower.

(5)クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上450℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 (5) A thin film made of chromium (Cr) is formed as a single film , and heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter. It is characterized by obtaining a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.2% or less in a temperature range of 350 ° C. or higher and 450 ° C. or lower. A method for manufacturing a strain resistance film.

(6)クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上400℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 (6) A thin film made of chromium (Cr) is formed as a single film , and heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter. It is characterized by obtaining a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.02% or less in a temperature range of 350 ° C. or higher and 400 ° C. or lower. A method for manufacturing a strain resistance film.

(7)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上800℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 (7) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 800 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain sensor for high temperature characterized by using a strain resistance film having a temperature of / ° C or lower as a strain material.

(8)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上450℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 (8) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 450 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain sensor for high temperature characterized by using a strain resistance film having a resistance value stability of ± 0.2% or less at / ° C or less as a strain material.

(9)クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上400℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 (9) It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 400 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm. A strain sensor for high temperature characterized by using a strain resistance film having a resistance value stability of ± 0.02% or less at / ° C or less as a strain material.

(10)クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上800℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。 (10) A thin film made of chromium (Cr) is formed as a single film , and heat treatment is performed in the air for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower. Therefore, in the temperature range of 350 ° C. or higher and 800 ° C. or lower, a strain resistance film having a gauge ratio of 3 or more and a temperature coefficient of gauge ratio of 2000 ppm / ° C. or lower is obtained, and the strain resistance film is used as a strain material to manufacture a strain sensor. A method for manufacturing a high temperature strain sensor.

(11)クロミウム(Cr)で構成された薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上450℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。 (11) A thin film composed of chromium (Cr) is formed as a single film , and heat treatment is performed in the air for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower. By applying, a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.2% or less in a temperature range of 350 ° C. or more and 450 ° C. or less can be obtained. , A method for manufacturing a strain sensor for high temperature, which comprises manufacturing a strain sensor using the strain resistance film as a strain material.

(12)クロミウム(Cr)で構成された薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上400℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。
(12) A thin film composed of chromium (Cr) is formed as a single film , and heat treatment is performed in the air for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower. By applying, a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.02% or less in a temperature range of 350 ° C. or more and 400 ° C. or less can be obtained. , A method for manufacturing a strain sensor for high temperature, which comprises manufacturing a strain sensor using the strain resistance film as a strain material.

本発明によれば、所定の高温領域において、実用的なゲージ率を示し、かつゲージ率の温度安定性が高い歪抵抗膜およびその製造方法、ならびに、そのような歪抵抗膜を用いた高温用歪センサおよびその製造方法が提供される。 According to the present invention, a strain resistance film having a practical gauge ratio and high temperature stability of the gauge ratio in a predetermined high temperature region, a method for producing the same, and a strain resistance film for high temperature using such a strain resistance film. A strain sensor and a method for manufacturing the same are provided.

高温歪印加電気抵抗測定装置を示す概略構成図である。It is a schematic block diagram which shows the electric resistance measuring apparatus which applied high temperature strain. 曲げ試験シーケンスを示す図である。It is a figure which shows the bending test sequence. Cr薄膜の測定温度とゲージ率との関係を示す図である。It is a figure which shows the relationship between the measurement temperature of a Cr thin film, and the gauge ratio. Cr薄膜の測定温度とTCSとの関係を示す図である。It is a figure which shows the relationship between the measurement temperature of a Cr thin film, and TCS. Cr薄膜の測定温度と抵抗値との関係を示す図である。It is a figure which shows the relationship between the measurement temperature of a Cr thin film, and the resistance value. Cr薄膜の測定温度と抵抗変化率との関係を示す図である。It is a figure which shows the relationship between the measurement temperature of a Cr thin film, and the resistance change rate.

以下、本発明の実施の形態について詳細に説明する。
本発明においては、歪抵抗膜としてCrからなる薄膜(Cr薄膜)を用いる。Cr薄膜は、Crと不可避不純物とからなる。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, a thin film made of Cr (Cr thin film) is used as the strain resistance film. The Cr thin film is composed of Cr and unavoidable impurities.

Cr薄膜は、常温では15以上の高いゲージ率が得られることが知られているが、高温でのゲージ率は明らかになっておらず、高温におけるゲージ率の測定方法も従来報告がない。 It is known that a Cr thin film can obtain a high gauge ratio of 15 or more at room temperature, but the gauge ratio at high temperature has not been clarified, and there is no conventional report on a method for measuring the gauge ratio at high temperature.

そこで、まず、高温におけるゲージ率を測定することができる装置と方法について様々な検討を行った。その結果、800℃までのゲージ率の測定を可能とする装置と測定方法を確立した。 Therefore, first, various studies were conducted on devices and methods capable of measuring the gauge ratio at high temperatures. As a result, we have established a device and a measuring method that enable measurement of gauge rates up to 800 ° C.

図1は、このような高温のゲージ率を測定することができる高温歪印加電気抵抗測定装置を示す概略構成図である。
この装置は、大気中で1000℃付近まで加熱することができる温度制御機能付きの電気オーブン1を有し、電気オーブン1の上部には窓2が形成されている。窓2は蓋部材3により塞がれており、蓋部材3には、電気オーブン1内に向けて下方に延びる支持棒4が固定されている。支持棒4は、電気オーブン1内の測定台5を支持している。
FIG. 1 is a schematic configuration diagram showing a high temperature strain application electric resistance measuring device capable of measuring such a high temperature gauge rate.
This device has an electric oven 1 having a temperature control function capable of heating to around 1000 ° C. in the atmosphere, and a window 2 is formed above the electric oven 1. The window 2 is closed by a lid member 3, and a support rod 4 extending downward toward the inside of the electric oven 1 is fixed to the lid member 3. The support rod 4 supports the measuring table 5 in the electric oven 1.

測定台5の上には固定部材6が設けられており、固定部材6には、基板7上に高周波スパッタリング等により所定パターンのCr薄膜8が形成された試料20が片持ち梁固定されている。測定台5は箱状をなしており、内部に端子11を有する端子台10が設けられている。Cr薄膜8と端子11はボンディングワイヤー9で接続されている。 A fixing member 6 is provided on the measuring table 5, and a sample 20 in which a Cr thin film 8 having a predetermined pattern is formed on the substrate 7 by high-frequency sputtering or the like is fixed to the fixing member 6 with a cantilever. .. The measuring table 5 has a box shape, and a terminal block 10 having a terminal 11 inside is provided. The Cr thin film 8 and the terminal 11 are connected by a bonding wire 9.

端子11には耐熱配線ケーブル(図示せず)が接続されている。耐熱配線ケーブルは窓2を介して引き出され、測定系(DMM)14に接続されている。また、電源15も耐熱配線ケーブルにより接続されている。 A heat-resistant wiring cable (not shown) is connected to the terminal 11. The heat-resistant wiring cable is pulled out through the window 2 and connected to the measurement system (DMM) 14. The power supply 15 is also connected by a heat-resistant wiring cable.

蓋部材3にはマイクロメータ12が固定されており、マイクロメータ12からは歪印加用押し込み棒13が下方に延び、試料20の自由端近傍に接触するようになっている。これにより、マイクロメータ12により歪印加用押し込み棒13を所定長さ降下させて、試料20に所定の歪を印加することができるようになっている。 A micrometer 12 is fixed to the lid member 3, and a strain applying push rod 13 extends downward from the micrometer 12 so as to come into contact with the vicinity of the free end of the sample 20. As a result, the strain applying push rod 13 can be lowered by a predetermined length by the micrometer 12 to apply a predetermined strain to the sample 20.

このような高温歪印加電気抵抗測定装置により高温でのゲージ率を測定するに際しては、電気オーブン1内の温度を約800℃までの所定の温度に設定し、電気オーブン1の外部からマイクロメータ12により歪印加用押し込み棒13を操作して、試料20に所定の歪を印加し、歪抵抗膜としてのCr薄膜の抵抗を測定する。このような操作を各温度で行い、各温度で得られた抵抗変化率を別途100℃で測定したゲージ率で校正し、高温でのゲージ率を求める。このような装置および方法を用いることにより、高温でのゲージ率を正確に求めることができる。 When measuring the gauge ratio at a high temperature by such a high temperature strain application electric resistance measuring device, the temperature inside the electric oven 1 is set to a predetermined temperature up to about 800 ° C., and the micrometer 12 is measured from the outside of the electric oven 1. By operating the strain applying push rod 13, a predetermined strain is applied to the sample 20, and the resistance of the Cr thin film as the strain resistance film is measured. Such an operation is performed at each temperature, and the resistance change rate obtained at each temperature is calibrated with a gauge rate separately measured at 100 ° C. to obtain a gauge rate at a high temperature. By using such a device and method, the gauge ratio at high temperature can be accurately obtained.

このような装置および方法により、高温でのゲージ率の測定およびゲージ率の挙動等の調査を行った。その結果、歪抵抗膜として基板上にCr薄膜を形成した後、300℃以上800℃以下における使用する温度範囲の上限よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことによって、使用範囲が350℃以上800℃以下の範囲で、ゲージ率が3以上で、ゲージ率の温度係数(感度温度係数)(TCS)が2000ppm/℃以下という良好な特性を示す歪抵抗膜が得られることが見出された。そして、このような歪抵抗膜を歪材料として用いることにより、実用的なゲージ率および高いゲージ率温度安定性を示す高温用歪センサが得られる。 Using such a device and method, the gauge rate was measured at high temperature and the behavior of the gauge rate was investigated. As a result, after forming a Cr thin film on the substrate as a strain resistance film, heat treatment is performed in the atmosphere for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit of the temperature range used at 300 ° C. or higher and 800 ° C. or lower. By applying, a strain resistor that exhibits good characteristics such that the operating range is 350 ° C or higher and 800 ° C or lower, the gauge ratio is 3 or higher, and the temperature coefficient (sensitivity temperature coefficient) (TCS) of the gauge ratio is 2000 ppm / ° C or lower. It was found that a membrane was obtained. Then, by using such a strain resistance film as a strain material, a strain sensor for high temperature showing a practical gauge ratio and a high gauge ratio temperature stability can be obtained.

また、使用温度範囲が350℃以上450℃以下の範囲で、上記特性に加えて抵抗値の安定性が±0.2%以内というさらに良好な安定性を示す。また、使用温度範囲が350℃以上400℃以下の範囲において、抵抗値の安定性が±0.02%以内と一層良好な安定性を示す。 Further, in the operating temperature range of 350 ° C. or higher and 450 ° C. or lower, in addition to the above characteristics, the stability of the resistance value is within ± 0.2%, which is even better. Further, in the operating temperature range of 350 ° C. or higher and 400 ° C. or lower, the stability of the resistance value is within ± 0.02%, which is even better.

本発明において、歪抵抗膜として用いるCr薄膜を形成する基材(起歪構造体)としては、耐熱性が良好な絶縁性セラミックスであるアルミナを好適に用いることができる。また、アルミナに限らず、他の種々のセラミックスを用いることもできる。さらに、基材としてステンレス鋼(SUS)等、種々の金属板に絶縁コートを施したものを用いることもできる。また、Cr薄膜を成膜する手法は特に限定されないがスパッタリング、特に高周波スパッタリングが好ましい。歪抵抗膜として用いるCr薄膜のパターンとしては、歪センサとして通常用いるパターンでよく、例えば格子状パターンを用いることができる。 In the present invention, alumina, which is an insulating ceramic having good heat resistance, can be preferably used as the base material (distortion-causing structure) for forming the Cr thin film used as the strain resistance film. Further, not limited to alumina, various other ceramics can also be used. Further, as the base material, various metal plates such as stainless steel (SUS) coated with an insulating coating can also be used. The method for forming the Cr thin film is not particularly limited, but sputtering, particularly high-frequency sputtering, is preferable. As the pattern of the Cr thin film used as the strain resistance film, a pattern usually used as a strain sensor may be used, and for example, a grid pattern can be used.

以下、本発明の実施例について説明する。
ここでは、基材(起歪構造体)としての厚さ0.1mmのアルミナ基板上に、高周波スパッタリングにより格子状パターンのCr薄膜を形成したものを試料として用いた。その後、図1の装置により試料を大気中500℃で0.5時間の熱処理を施した後、図1の装置により450℃までの温度範囲におけるゲージ率を測定した。
Hereinafter, examples of the present invention will be described.
Here, a sample in which a Cr thin film having a lattice pattern was formed by high-frequency sputtering was used as a sample on an alumina substrate having a thickness of 0.1 mm as a base material (distortion-causing structure). Then, the sample was heat-treated in the air at 500 ° C. for 0.5 hours by the apparatus of FIG. 1, and then the gauge ratio in the temperature range up to 450 ° C. was measured by the apparatus of FIG.

ゲージ率の測定に際しては、試料を測定台の所定の位置にセットし、各温度に保持した状態で、図1の装置のマイクロメータにより歪印加用押し込み棒を操作して、試料に図2のシーケンスで約0.05%の歪を印加する曲げ試験を行い、450℃までの各温度において抵抗測定を行った。各温度で得られた抵抗変化率を、別途100℃で測定したゲージ率で校正し、各温度でのゲージ率を求めた。 When measuring the gauge ratio, the sample is set at a predetermined position on the measuring table, and the sample is held at each temperature by operating the strain applying push rod with the micrometer of the device of FIG. A bending test was performed in which a strain of about 0.05% was applied in the sequence, and resistance was measured at each temperature up to 450 ° C. The resistance change rate obtained at each temperature was calibrated with a gauge rate separately measured at 100 ° C., and the gauge rate at each temperature was obtained.

その結果を図3に示す。この図に示すように、350℃以上450℃以下において、ゲージ率が3以上であり、かつゲージ率の温度変化が小さいことが確認された。 The result is shown in FIG. As shown in this figure, it was confirmed that the gauge ratio was 3 or more and the temperature change of the gauge ratio was small at 350 ° C. or higher and 450 ° C. or lower.

次にゲージ率の温度係数(感度温度係数)(TCS)を測定した。図4に測定温度とTCSとの関係を示す。TCSは、測定温度T℃〜T+50℃のTCSの値を示している。例えば400℃のときのTCSの値は、400℃のときのゲージ率の値と450℃の時のゲージ率の値の変化から求めている。図4に示すように、350℃以上ではTCSの値(絶対値)が2000ppmであることが確認された。 Next, the temperature coefficient of gauge factor (sensitivity temperature coefficient) (TCS) was measured. FIG. 4 shows the relationship between the measured temperature and TCS. TCS indicates the value of TCS at the measurement temperature T ° C to T + 50 ° C. For example, the TCS value at 400 ° C. is obtained from the change in the gauge rate value at 400 ° C. and the gauge rate value at 450 ° C. As shown in FIG. 4, it was confirmed that the TCS value (absolute value) was 2000 ppm at 350 ° C. or higher.

次に、Cr薄膜の抵抗値の温度変化を求めた。その結果を図5に示す。図5の(a)は300℃までの値、(b)は500℃までの値である。Cr薄膜は500℃で熱処理しているので、300℃までは昇降温でほぼ一致した抵抗値を示す。500℃までの昇降温では、500℃付近で抵抗値の変化が生じてしまうので少しずれが生じる。 Next, the temperature change of the resistance value of the Cr thin film was determined. The result is shown in FIG. In FIG. 5, (a) is a value up to 300 ° C., and (b) is a value up to 500 ° C. Since the Cr thin film is heat-treated at 500 ° C., the resistance values are almost the same at the rising and falling temperatures up to 300 ° C. When the temperature rises and falls up to 500 ° C., the resistance value changes around 500 ° C., so that there is a slight deviation.

次に、Cr薄膜の抵抗の安定性について試験を行った。図6は、各測定温度における抵抗変化率(ΔR/R)を示す図である。抵抗安定率は図2の0分と30分の抵抗値から求めた。図6に示すように、抵抗変化率は、450℃以下で±0.2%以内と小さく、400℃以下では±0.02%以下と極めて小さい値であることが確認された。すなわち、抵抗の安定性を示す抵抗変化率は、抵抗値の単なる経時変化ではなく、曲げ(歪)を加えたときの抵抗値の変化率を示しており、上記結果から、曲げを加えても曲げを除去した後に抵抗値がほぼ元に戻り、その傾向が高温(450℃、好ましくは400℃)まで維持されることが確認された。 Next, the stability of the resistance of the Cr thin film was tested. FIG. 6 is a diagram showing the resistance change rate (ΔR / R 0) at each measurement temperature. The resistance stability rate was obtained from the resistance values at 0 minutes and 30 minutes in FIG. As shown in FIG. 6, it was confirmed that the resistance change rate was as small as ± 0.2% or less at 450 ° C. or lower and extremely small as ± 0.02% or less at 400 ° C. or lower. That is, the rate of change in resistance, which indicates the stability of resistance, is not a mere change in resistance value over time, but the rate of change in resistance value when bending (strain) is applied. It was confirmed that the resistance value almost returned to the original value after the bending was removed, and the tendency was maintained up to a high temperature (450 ° C., preferably 400 ° C.).

1;電気オーブン、2;窓、3;蓋部材、4;支持棒、5;測定台、6;固定部材、7;基板、8;Cr薄膜(歪抵抗膜)、10;端子台、11;端子、12;マイクロメータ、13;歪印加用押し込み棒 1; Electric oven, 2; Window, 3; Lid member, 4; Support rod, 5; Measuring stand, 6; Fixing member, 7; Substrate, 8; Cr thin film (strain resistance film), 10; Terminal block, 11; Terminal, 12; Micrometer, 13; Push rod for applying strain

Claims (12)

クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上800℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下であることを特徴とする歪抵抗膜。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 800 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. A strain resistance film characterized by being. クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上450℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内であることを特徴とする歪抵抗膜。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 450 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. , A strain resistance film characterized in that the stability of the resistance value is within ± 0.2%. クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上400℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内であることを特徴とする歪抵抗膜。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 400 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. , A strain resistance film characterized in that the stability of the resistance value is within ± 0.02%. クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上800℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 A thin film made of chromium (Cr) is formed as a single film , and heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter, and 350 ° C. or higher. A method for producing a strain resistance film, which comprises obtaining a strain resistance film having a gauge ratio of 3 or more and a temperature coefficient of a gauge ratio of 2000 ppm / ° C or less in a temperature range of 800 ° C. or less. クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上450℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 A thin film made of chromium (Cr) is formed as a single film, and is heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter, and 350 ° C. or higher. Strain characterized by obtaining a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.2% or less in a temperature range of 450 ° C. or less. Method for manufacturing a resistive film. クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施し、350℃以上400℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜を得ることを特徴とする歪抵抗膜の製造方法。 A thin film made of chromium (Cr) is formed as a single film, and is heat-treated in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter, and 350 ° C. or higher. Strain characterized by obtaining a strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.02% or less in a temperature range of 400 ° C. or less. Method for manufacturing a resistive film. クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上800℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 800 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. A strain sensor for high temperature, which is characterized by using a strain resistance film as a strain material. クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上450℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 450 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. A strain sensor for high temperature, characterized in that a strain resistance film having a resistance value stability of ± 0.2% or less is used as a strain material. クロミウム(Cr)からなる薄膜の単膜で構成され、かつ使用温度範囲が350℃以上400℃以下であり、前記使用温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜を歪材料として用いたことを特徴とする高温用歪センサ。 It is composed of a single thin film made of chromium (Cr) and has an operating temperature range of 350 ° C. or higher and 400 ° C. or lower. In the operating temperature range, the gauge ratio is 3 or more and the temperature coefficient of the gauge ratio is 2000 ppm / ° C. or lower. A strain sensor for high temperature characterized by using a strain resistance film having a resistance value stability of ± 0.02% or less as a strain material. クロミウム(Cr)からなる薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上800℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。 By forming a thin film made of chromium (Cr) as a single film and performing heat treatment in the air at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 4 hours or shorter, 350 A strain sensor is manufactured by using a strain resistance film having a gauge ratio of 3 or more and a temperature coefficient of gauge ratio of 2000 ppm / ° C or less in a temperature range of ° C. or higher and 800 ° C. or lower, and using the strain resistance film as a strain material. A characteristic method for manufacturing a strain sensor for high temperature. クロミウム(Cr)で構成された薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上450℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.2%以内である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。 By forming a thin film composed of chromium (Cr) as a single film and performing heat treatment in the atmosphere for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower. A strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.2% or less in a temperature range of 350 ° C. or higher and 450 ° C. or lower is used. A method for manufacturing a strain sensor for high temperature, which comprises manufacturing a strain sensor using a resistance film as a strain material. クロミウム(Cr)で構成された薄膜を単膜として形成し、300℃以上800℃以下における使用する上限温度よりも50℃以上高い温度で大気中において30分以上4時間以下の熱処理を施すことにより、350℃以上400℃以下の温度範囲において、ゲージ率が3以上、ゲージ率の温度係数が2000ppm/℃以下、抵抗値の安定性が±0.02%以内である歪抵抗膜とし、前記歪抵抗膜を歪材料として用いて歪センサを製造することを特徴とする高温用歪センサの製造方法。 By forming a thin film composed of chromium (Cr) as a single film and performing heat treatment in the atmosphere for 30 minutes or more and 4 hours or less at a temperature 50 ° C. or higher higher than the upper limit temperature used at 300 ° C. or higher and 800 ° C. or lower. A strain resistance film having a gauge ratio of 3 or more, a temperature coefficient of gauge ratio of 2000 ppm / ° C or less, and a resistance value stability of ± 0.02% or less in a temperature range of 350 ° C. or higher and 400 ° C. or lower is used. A method for manufacturing a strain sensor for high temperature, which comprises manufacturing a strain sensor using a resistance film as a strain material.
JP2016169410A 2016-08-31 2016-08-31 Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method Active JP6850566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169410A JP6850566B2 (en) 2016-08-31 2016-08-31 Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169410A JP6850566B2 (en) 2016-08-31 2016-08-31 Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018036143A JP2018036143A (en) 2018-03-08
JP6850566B2 true JP6850566B2 (en) 2021-03-31

Family

ID=61565657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169410A Active JP6850566B2 (en) 2016-08-31 2016-08-31 Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6850566B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666162B2 (en) * 1988-12-02 1994-08-24 株式会社豊田中央研究所 Thin film resistor for strain gauge
JP3156593B2 (en) * 1996-07-24 2001-04-16 松下電工株式会社 Thin film element and method of manufacturing the same
JP5928863B2 (en) * 2011-03-29 2016-06-01 地方独立行政法人大阪府立産業技術総合研究所 Strain resistance thin film and sensor using the strain resistance thin film

Also Published As

Publication number Publication date
JP2018036143A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP2022009950A (en) Strain resistance film and strain sensor, and manufacturing method of them
Yang et al. Wearable temperature sensor based on graphene nanowalls
JP6022881B2 (en) Strain gauge
Sim et al. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope
CN101246136A (en) Electric test method for thermal expansion coefficient of surface finished polysilicon thin film
JP2013535832A (en) Compensation for stress-induced resistance variation
CN109916960A (en) A kind of dual temperature control measurement method of micro Nano material thermoelectricity capability
Phero et al. Additively manufactured strain sensors for in-pile applications
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
JP6850566B2 (en) Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method
Kravchuk et al. Properties and long-term behavior of nanoparticle based inkjet printed strain gauges
JP4482250B2 (en) Strain gauge with reduced pressure sensitivity and temperature sensitivity and design method thereof
JP6774861B2 (en) Strain resistance film and strain sensor for high temperature, and their manufacturing method
Aviles et al. Physical properties of Au and Al thin films measured by resistive heating
CN109613054B (en) Direct-electrifying longitudinal heat conductivity coefficient testing method
Uhlig et al. Pressure sensitivity of piezoresistive nickel–carbon Ni: aC: H thin films
Kalpana et al. Influence of annealing and thickness on the electrical properties of invar36 thin film for strain gauge applications
JP6153395B2 (en) Infrared stress measurement method and infrared stress measurement system
Ang et al. Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater
JP2022074104A (en) Strain gauge and manufacturing method thereof
US3324706A (en) Apparatus for temperature compensation of strain gages
JP7060378B2 (en) Thermal conductivity measurement method for metal film
Zhao et al. Combining 3D Printing and Magnetron Sputtering Technique for Fabricating High Temperature AgPd Thick Film Strain Gauge
Kim et al. Heat treatment effects on mechanical properties of Ni–Co alloy thin films
Liu et al. Preparation and evaluation of PdCr thin film resistive strain gauges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250