JP6846072B1 - Light emitting device and lighting device - Google Patents

Light emitting device and lighting device Download PDF

Info

Publication number
JP6846072B1
JP6846072B1 JP2020118825A JP2020118825A JP6846072B1 JP 6846072 B1 JP6846072 B1 JP 6846072B1 JP 2020118825 A JP2020118825 A JP 2020118825A JP 2020118825 A JP2020118825 A JP 2020118825A JP 6846072 B1 JP6846072 B1 JP 6846072B1
Authority
JP
Japan
Prior art keywords
light emitting
light
wavelength
less
emission spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020118825A
Other languages
Japanese (ja)
Other versions
JP2021052175A (en
Inventor
智一 名田
智一 名田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZIGEN LIGHTING SOLUTION CO.,LTD.
Original Assignee
ZIGEN LIGHTING SOLUTION CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZIGEN LIGHTING SOLUTION CO.,LTD. filed Critical ZIGEN LIGHTING SOLUTION CO.,LTD.
Priority to PCT/JP2020/034962 priority Critical patent/WO2021054336A1/en
Application granted granted Critical
Publication of JP6846072B1 publication Critical patent/JP6846072B1/en
Publication of JP2021052175A publication Critical patent/JP2021052175A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】短波長側の青色光の低減された谷間の小さい連続的な発光スペクトルを有し、高い演色性と高い発光効率を両立させる。【解決手段】第1の発光部と第2の発光部を備え、第1の発光部と第2の発光部は、それぞれ430nm以上470nm以下の範囲にピーク波長を有する青色LED素子を備え、第1の発光部からの第1発光スペクトルにおいて、中心波長は530nm以下であり、470nm以上530nm以下の波長範囲におけるスペクトル強度の最小値は第1発光スペクトルの最大値の1/3以上であって、第2の発光部からの第2発光スペクトルにおいて、480nm以上の波長範囲におけるピーク波長は580nm以上であり、波長680nmのスペクトル強度は480nm以上の波長範囲における最大値の1/2以下であって、第1の発光部からの光と第2の発光部からの光の混合光の偏差duvが−0.02以上であって+0.02以下である。【選択図】図7PROBLEM TO BE SOLVED: To have a small continuous emission spectrum of a reduced valley of blue light on a short wavelength side, and to achieve both high color rendering property and high luminous efficiency. A first light emitting unit and a second light emitting unit are provided, and the first light emitting unit and the second light emitting unit are each provided with a blue LED element having a peak wavelength in the range of 430 nm or more and 470 nm or less. In the first emission spectrum from the light emitting portion of 1, the central wavelength is 530 nm or less, and the minimum value of the spectral intensity in the wavelength range of 470 nm or more and 530 nm or less is 1/3 or more of the maximum value of the first emission spectrum. In the second emission spectrum from the second light emitting portion, the peak wavelength in the wavelength range of 480 nm or more is 580 nm or more, and the spectral intensity of the wavelength 680 nm is 1/2 or less of the maximum value in the wavelength range of 480 nm or more. The deviation duv of the mixed light of the light from the first light emitting unit and the light from the second light emitting unit is −0.02 or more and +0.02 or less. [Selection diagram] FIG. 7

Description

本発明は、発光ダイオード(LED)が用いられた発光装置に関し、より特定的には白色光を発するLED発光装置に関する。 The present invention relates to a light emitting device using a light emitting diode (LED), and more specifically to an LED light emitting device that emits white light.

一般的な白色LEDの光は、430〜470nmの間にピーク波長を有する青色LED素子からの光と、蛍光体により発せられる光の混色光であって、480nm付近にスペクトルの谷間が生じるが、近年、高品質な光を発する白色LEDには、高い演色性だけでなく、太陽光のような谷間の無い連続的な発光スペクトルが求められている。 The light of a general white LED is a mixed color of light from a blue LED element having a peak wavelength between 430 and 470 nm and light emitted by a phosphor, and a spectral valley is generated in the vicinity of 480 nm. In recent years, white LEDs that emit high-quality light are required to have not only high color rendering properties but also a continuous emission spectrum without valleys such as sunlight.

また、青色光による網膜傷害の作用関数はJIS C7550に規定されるように、430〜440nmの間で最大、460nmで最大値の80%となり、青色光の中でも短波長側に位置する青色LED素子の発光スペクトルと重なる。そのため、短波長側の青色光の低減された白色LEDも求められている。 Further, as defined in JIS C7550, the action function of retinal damage caused by blue light is a maximum between 430 and 440 nm, which is 80% of the maximum value at 460 nm, and a blue LED element located on the short wavelength side of blue light. It overlaps with the emission spectrum of. Therefore, a white LED with reduced blue light on the short wavelength side is also required.

なお、短波長側の青色光はより眩しさを感じさせるため、青色光のピークを低減することで、眩しさを抑えた目に優しい光として提供できる。 Since the blue light on the short wavelength side makes the person feel more glare, by reducing the peak of the blue light, it is possible to provide the light as an eye-friendly light with suppressed glare.

短波長側の青色光の低減された連続的な発光スペクトルを実現するため、例えば、特許文献1においては、400〜420nmの間にピーク波長を有する紫色のLED素子と青色、緑色、赤色等の蛍光体を組み合わせた発光装置が提案されている。また、特許文献2、3においては、通常使われる青色LED素子に加えて480nm付近にピーク波長を有するLED素子を用いることが提案されている。 In order to realize a continuous emission spectrum with reduced blue light on the short wavelength side, for example, in Patent Document 1, a purple LED element having a peak wavelength between 400 and 420 nm and blue, green, red, etc. A light emitting device combining a phosphor has been proposed. Further, in Patent Documents 2 and 3, it is proposed to use an LED element having a peak wavelength in the vicinity of 480 nm in addition to the normally used blue LED element.

特表2017−200097号公報Special Table 2017-20997 特開2015−138809号公報JP-A-2015-138809 特開2017−118130号公報Japanese Unexamined Patent Publication No. 2017-118130

しかしながら、特許文献1の手法においては、紫色のLED素子からの光を蛍光体によって、可視光に変換するため、発光効率が通常の白色LEDと比べて30%以上低くなるという課題がある。また、450nm付近の青色光のピークは低減されるものの、より高いエネルギーを持つ430nm以下の光が出射されてしまうため、被照射物によっては、退色などのダメージを受けてしまうという課題もある。さらに、紫色のLED素子を用いることでコストが高くなる。 However, in the method of Patent Document 1, since the light from the purple LED element is converted into visible light by the phosphor, there is a problem that the luminous efficiency is 30% or more lower than that of a normal white LED. Further, although the peak of blue light near 450 nm is reduced, light having a higher energy of 430 nm or less is emitted, so that there is a problem that some objects to be irradiated are damaged such as fading. Further, the cost is increased by using the purple LED element.

特許文献2、3の手法においては、480nm付近にピーク波長を有するLED素子からの光がスペクトルの谷間を埋めるために用いられるが、通常の白色LEDと比べて20%程度発光効率が低くなり、また、480nm付近にピーク波長を有するLED素子のコストは通常の青色LED素子と比べて高く、入手性が良くないという課題もある。 In the methods of Patent Documents 2 and 3, light from an LED element having a peak wavelength in the vicinity of 480 nm is used to fill the valley of the spectrum, but the luminous efficiency is reduced by about 20% as compared with a normal white LED. Further, the cost of the LED element having a peak wavelength in the vicinity of 480 nm is higher than that of a normal blue LED element, and there is also a problem that the availability is not good.

本発明は、前記問題点に鑑みてなされたものであり、その目的とするところは、短波長側の青色光の低減された谷間の小さい連続的な発光スペクトルを有し、高い演色性と高い発光効率を両立することが可能な発光装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to have a small continuous emission spectrum of reduced valleys of blue light on the short wavelength side, high color rendering properties and high color rendering properties. It is an object of the present invention to provide a light emitting device capable of achieving both light emitting efficiency.

上記目的を達成するため、本発明の発光装置は、第1の発光部と第2の発光部を備え、第1の発光部と第2の発光部は、それぞれ430nm以上470nm以下の範囲にピーク波長を有する青色LED素子を備え、第1の発光部からの第1発光スペクトルにおいて、中心波長は530nm以下であり、470nm以上530nm以下の波長範囲におけるスペクトル強度の最小値は第1発光スペクトルの最大値の1/3以上であって、第2の発光部からの第2発光スペクトルにおいて、480nm以上の波長範囲におけるピーク波長は580nm以上であり、波長680nmのスペクトル強度は480nm以上の波長範囲における第2発光スペクトルの最大値の1/2以下であって、第1の発光部からの光と第2の発光部からの光の混合光のCIE(1931)XYZ表色系のxy色度図における黒体放射軌跡からの偏差duvが、−0.02以上であって+0.02以下であることを特徴とする。 In order to achieve the above object, the light emitting device of the present invention includes a first light emitting unit and a second light emitting unit, and the first light emitting unit and the second light emitting unit each peak in the range of 430 nm or more and 470 nm or less. A blue LED element having a wavelength is provided, and in the first emission spectrum from the first light emitting portion, the center wavelength is 530 nm or less, and the minimum value of the spectral intensity in the wavelength range of 470 nm or more and 530 nm or less is the maximum value of the first emission spectrum. In the second emission spectrum from the second light emitting portion, which is 1/3 or more of the value, the peak wavelength in the wavelength range of 480 nm or more is 580 nm or more, and the spectral intensity of the wavelength 680 nm is the second emission spectrum in the wavelength range of 480 nm or more. 2 In the xy chromaticity diagram of the CIE (1931) XYZ color system of the mixed light of the light from the first light emitting portion and the light from the second light emitting portion, which is ½ or less of the maximum value of the two emission spectra. The deviation duv from the black body radiation locus is −0.02 or more and +0.02 or less.

第1の発光部からの光において、470〜485nmの長波長側の青色光が補完することで、青色LED素子からの短波長側の青色光を低減でき、495nm付近の光により、補色関係にある第2の発光部からの610nm付近の短波長側の赤色光を最大化することができる。 In the light from the first light emitting unit, the blue light on the long wavelength side of 470 to 485 nm is complemented, so that the blue light on the short wavelength side from the blue LED element can be reduced, and the light near 495 nm is in a complementary color relationship. It is possible to maximize the red light on the short wavelength side near 610 nm from a second light emitting unit.

また、470〜530nmの光を発する第1の発光部と、赤色蛍光体を含む第2の発光部が分かれていることで、第1の発光部からの470〜530nmの光は赤色蛍光体によって再吸収されることなく、高い発光効率で出射される。 Further, since the first light emitting portion that emits light of 470 to 530 nm and the second light emitting portion containing the red phosphor are separated, the light of 470 to 530 nm from the first light emitting portion is generated by the red phosphor. It is emitted with high luminous efficiency without being reabsorbed.

本発明の発光装置の一態様では、第1発光スペクトルにおいて、470nm以上500nm以下の波長範囲におけるスペクトル強度の最小値は第1発光スペクトルの最大値の60%以上であることを特徴とする。 One aspect of the light emitting device of the present invention is characterized in that, in the first light emitting spectrum, the minimum value of the spectral intensity in the wavelength range of 470 nm or more and 500 nm or less is 60% or more of the maximum value of the first light emitting spectrum.

本発明の発光装置の一態様では、第2発光スペクトルにおいて、波長580nmのスペクトル強度は第2発光スペクトルの最大値の1/2以上であることを特徴とする。 One aspect of the light emitting device of the present invention is characterized in that, in the second light emitting spectrum, the spectral intensity at a wavelength of 580 nm is ½ or more of the maximum value of the second light emitting spectrum.

また、本発明に係る照明装置において、上記いずれかに記載の発光装置を備え、黒体放射軌跡からの偏差duvが−0.01以上であって+0.01以下となる光を発することを特徴とする。 Further, the lighting device according to the present invention is provided with the light emitting device according to any one of the above, and is characterized in that it emits light having a deviation duv from the blackbody radiation locus of −0.01 or more and +0.01 or less. And.

もしくは、本発明に係る照明装置において、JIS Z8110に示される色度区分で示される、青緑領域もしくは緑領域内の色度点と、ピンク領域もしくは黄赤領域内の色度点の間で、光色を調整することが可能なことを特徴とする。 Alternatively, in the lighting device according to the present invention, between the chromaticity points in the blue-green region or the green region and the chromaticity points in the pink region or the yellow-red region, which are indicated by the chromaticity classification shown in JIS Z8110. It is characterized in that the light color can be adjusted.

本発明によれば、短波長側の青色光の低減された谷間の小さい連続的な発光スペクトルを有し、高い演色性と高い発光効率を両立することが可能な発光装置を提供することが可能となる。 According to the present invention, it is possible to provide a light emitting device having a small continuous emission spectrum of a reduced valley of blue light on the short wavelength side and capable of achieving both high color rendering properties and high luminous efficiency. It becomes.

本発明の実施の形態1に係る発光装置100の平面図である。It is a top view of the light emitting device 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る発光装置100のA−A’断面図である。FIG. 5 is a sectional view taken along the line AA'of the light emitting device 100 according to the first embodiment of the present invention. 本発明の実施の形態1に係る発光装置100の変形図である。It is a modification of the light emitting device 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1の発光部からの発光スペクトルを示す図である。It is a figure which shows the emission spectrum from the 1st light emitting part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1の発光部からの光と第2の発光部からの光が示す色度座標を説明する色度図である。FIG. 5 is a chromaticity diagram illustrating chromaticity coordinates indicated by light from a first light emitting unit and light from a second light emitting unit according to a first embodiment of the present invention. 本発明の実施の形態1に係る第2の発光部からの発光スペクトルを示す図である。It is a figure which shows the emission spectrum from the 2nd light emitting part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る混合光の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the mixed light which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る発光装置200の平面図である。It is a top view of the light emitting device 200 which concerns on Embodiment 2 of this invention. 実施例1及び比較例1に係る発光装置の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the light emitting apparatus which concerns on Example 1 and Comparative Example 1. 実施例2及び比較例2に係る発光装置の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the light emitting apparatus which concerns on Example 2 and Comparative Example 2. 実施例3に係る発光装置の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the light emitting apparatus which concerns on Example 3. FIG. 実施例4に係る発光装置の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the light emitting apparatus which concerns on Example 4. FIG.

以下、本発明の発光装置について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表すものである。さらに以下の説明において、同一の名称、符号については、原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略する。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。 Hereinafter, the light emitting device of the present invention will be described with reference to the drawings. In addition, in the drawing of this invention, the same reference numeral represents the same part or the corresponding part. Further, in the following description, the same names and symbols are shown as members of the same or the same quality in principle, and detailed description thereof will be omitted as appropriate. Further, the dimensional relationships such as length, width, thickness, and depth are appropriately changed for the purpose of clarifying and simplifying the drawings, and do not represent the actual dimensional relationships.

(実施の形態1)
図1に示すように、本発明の実施の形態1に係る発光装置100は、複数の青色LED素子が基板10に直接実装されたChipOnBoard(COB)構造のLEDモジュールであって、基板10上に電極端子11、12が配置され、第1の発光部1、第2の発光部2を備える。
(Embodiment 1)
As shown in FIG. 1, the light emitting device 100 according to the first embodiment of the present invention is an LED module having a ChipOnBorder (COB) structure in which a plurality of blue LED elements are directly mounted on the substrate 10, and is mounted on the substrate 10. The electrode terminals 11 and 12 are arranged, and the first light emitting unit 1 and the second light emitting unit 2 are provided.

図2に示すように、第1の発光部1、第2の発光部2は、青色LED素子4が透光性の封止材料に覆われて形成される。封止材料には、所望の発光色を発するように、蛍光体5、6などの波長変換材が含まれる。 As shown in FIG. 2, the first light emitting unit 1 and the second light emitting unit 2 are formed by covering the blue LED element 4 with a translucent sealing material. The sealing material contains a wavelength conversion material such as phosphors 5 and 6 so as to emit a desired emission color.

第1の発光部1、第2の発光部2はそれぞれ複数存在しても良いし、図3に示すように複数の第1の発光部1を第2の発光部2が取り囲むように配置されても良い。好ましくは、第1の発光部1と第2の発光部2は、上面視にて中心対象に配置されていることで、より均一な発光パターンが得られる。 A plurality of the first light emitting unit 1 and the second light emitting unit 2 may be present, or as shown in FIG. 3, the plurality of first light emitting units 1 are arranged so as to be surrounded by the second light emitting unit 2. You may. Preferably, the first light emitting unit 1 and the second light emitting unit 2 are arranged in a central object in a top view, so that a more uniform light emitting pattern can be obtained.

以下、発光装置100の各構成部材について詳細に説明する。 Hereinafter, each component of the light emitting device 100 will be described in detail.

(基板)
基板10は、セラミック、メタルなどが母材として用いられ、実装面に電極端子11、12や配線等が印刷などにより形成される。
(substrate)
Ceramic, metal, or the like is used as a base material for the substrate 10, and electrode terminals 11, 12 and wiring are formed on the mounting surface by printing or the like.

(電極端子および配線)
電極端子11、12は、コネクターやはんだ付けなどによって電源と電気的に接続されて、電力を受電する。電極端子11、12の一方はプラス側の接続端子であり、他方はマイナス側の接続端子である。受電された電力は、配線等を通じて各発光部内の青色LED素子に給電される。
(Electrode terminals and wiring)
The electrode terminals 11 and 12 are electrically connected to a power source by a connector, soldering, or the like to receive electric power. One of the electrode terminals 11 and 12 is a positive side connection terminal, and the other is a negative side connection terminal. The received electric power is supplied to the blue LED element in each light emitting unit through wiring or the like.

発光部ごとに電極端子が設けられていても良く、第1の発光部と第2の発光部の発光バランスを通電比率によって調整することが可能となる。また、電流値によって発光のバランスが変化するように抵抗などの電子部品が実装された回路が設けられても良い。 An electrode terminal may be provided for each light emitting unit, and the light emitting balance between the first light emitting unit and the second light emitting unit can be adjusted by the energization ratio. Further, a circuit in which electronic components such as resistors are mounted may be provided so that the balance of light emission changes depending on the current value.

(青色LED素子)
通電によって430〜470nmの間にピーク波長を有する青色光を発するLED素子であって、白色LEDにおいてはInGaN系の青色LED素子が一般に用いられる。
(Blue LED element)
An LED element that emits blue light having a peak wavelength between 430 and 470 nm when energized, and an InGaN-based blue LED element is generally used for white LEDs.

第1の発光部1と第2の発光部2からの光が適切な強度比となり、所望の混合光が得られるよう、それぞれの発光部に配される青色LED素子の数は調整される。なお、青色LED素子は基板上でそれぞれ電気的に直並列に接続されるが、いずれのLED素子がいずれの発光部内に配置されても良い。 The number of blue LED elements arranged in each light emitting unit is adjusted so that the light from the first light emitting unit 1 and the second light emitting unit 2 has an appropriate intensity ratio and a desired mixed light can be obtained. Although the blue LED elements are electrically connected in series and parallel on the substrate, any LED element may be arranged in any light emitting unit.

(封止材料)
封止材料は、シリコーン樹脂やエポキシ樹脂などの透光性の樹脂やガラスなどが用いられる。封止材料は波長変換材を含むことによって、LED素子からの青色光を所望のスペクトルの光に変換する。一般的には透光性樹脂に蛍光体が分散されて用いられる。
(Encapsulating material)
As the sealing material, a translucent resin such as a silicone resin or an epoxy resin, glass, or the like is used. By including a wavelength conversion material, the sealing material converts blue light from the LED element into light having a desired spectrum. Generally, a phosphor is dispersed in a translucent resin and used.

透光性樹脂の流出を防ぐため、発光部はDAM樹脂3によって囲われており、高チクソ性の樹脂を用いることなどによって、異なる発光色を発する樹脂が隣接して形成されていても良く、混色性を高めることができる。 In order to prevent the outflow of the translucent resin, the light emitting portion is surrounded by the DAM resin 3, and resins emitting different emission colors may be formed adjacent to each other by using a highly thixo property or the like. Color mixing can be enhanced.

(蛍光体)
蛍光体は、波長変換材の一種であり、その種類と濃度によって、青色LED素子からの光を特定のスペクトル形状の光に変換する。所望のスペクトルの光を得るために、蛍光体はいくつかの種類が組み合わされても良い。
(Fluorescent material)
A phosphor is a kind of wavelength conversion material, and converts light from a blue LED element into light having a specific spectral shape depending on the type and concentration thereof. Several types of phosphors may be combined to obtain light in the desired spectrum.

緑色蛍光体としては、例えばLuAl12:Ce で表されるLuAG蛍光体、CaSc:Ce で表されるCSO蛍光体、Y(Al,Ga)12:Ce で表されるGYAG蛍光体、(Si,Al)(O,N):Eu で表されるβ−SiAlON蛍光体、アルカリ土類金属シリケート蛍光体などが用いられる。 The green phosphor, for example, Lu 3 Al 5 O 12: Ce 3 + in LuAG phosphor represented, CaSc 2 O 4: CSO phosphor represented by Ce 3 +, Y 3 (Al , Ga) 5 O 12: GYAG phosphor represented by Ce 3 +, (Si, Al ) 3 (O, N) 4: β-SiAlON phosphor represented by Eu 2 +, and alkaline earth metal silicate phosphor used ..

赤色蛍光体としては、例えばCaAlSiN:Eu で表されるCASN蛍光体、(Sr,Ca)AlSiN:Eu で表されるSCASN蛍光体、KSiF:Mn で表されるKSF蛍光体などが用いられる。なお、一般にSCASAN蛍光体の発光のピーク波長は640nm以下であり、CASN蛍光体の発光のピーク波長は640nm以上である。 Examples of red phosphors, for example, CaAlSiN 3: CASN phosphor represented by Eu 2 +, (Sr, Ca ) AlSiN 3: SCASN phosphor represented by Eu 2 +, K 2 SiF 6 : Table with Mn 4 + KSF phosphors and the like are used. Generally, the peak wavelength of light emission of the SCASAn phosphor is 640 nm or less, and the peak wavelength of light emission of the CASN phosphor is 640 nm or more.

また、黄色蛍光体など他の蛍光体が用いられても良く、第1の発光部、第2の発光部に求められる発光スペクトル特性を満たすよう、蛍光体の種類や配合比率、濃度は適宜調整される。 Further, another phosphor such as a yellow phosphor may be used, and the type, compounding ratio, and concentration of the phosphor are appropriately adjusted so as to satisfy the emission spectral characteristics required for the first light emitting portion and the second light emitting portion. Will be done.

(第1の発光部)
第1の発光部1は、例えば、青色LED素子が510nm以下に発光のピーク波長を有するLuAG蛍光体の分散されたシリコーン樹脂に覆われて形成される。
(First light emitting part)
The first light emitting unit 1 is formed, for example, by covering a blue LED element with a silicone resin in which a LuAG phosphor having a peak wavelength of light emission of 510 nm or less is dispersed.

図4は、青色LED素子の発光スペクトルSbと、第1の発光部1からの第1発光スペクトルS1a、S1b、S1c、S1dをそれぞれのスペクトルの最大値(以下、ピーク強度と記す)を1として比較したグラフである。また、図4に示した発光スペクトルに対して、使用したLuAG蛍光体のピーク波長と、それぞれの発光スペクトルの特性を表1にまとめた。最小ピーク比は、470〜530nm間のスペクトル強度の最小値のピーク強度に対する比率であり、半値幅は、スペクトル強度がピーク強度の50%となる波長の間隔であり、中心波長は、波長にスペクトル強度を重みづけして得られる値の和を各波長のスペクトル強度の和で除算して得られる。 In FIG. 4, the emission spectrum Sb of the blue LED element and the first emission spectra S1a, S1b, S1c, and S1d from the first light emitting unit 1 are set to 1 with the maximum value (hereinafter referred to as peak intensity) of each spectrum. It is a comparison graph. Table 1 summarizes the peak wavelengths of the LuAG phosphors used and the characteristics of the respective emission spectra with respect to the emission spectra shown in FIG. The minimum peak ratio is the ratio of the minimum value of the spectral intensity between 470 and 530 nm to the peak intensity, the full width at half maximum is the interval between wavelengths at which the spectral intensity is 50% of the peak intensity, and the central wavelength is the wavelength spectrum. It is obtained by dividing the sum of the values obtained by weighting the intensity by the sum of the spectral intensities of each wavelength.

Figure 0006846072
Figure 0006846072

青色LED素子の中心波長は451nmであり、半値幅は約20nmであるのに対して、第1の発光部1からの光は、より長波長の中心波長とより広い半値幅を有し、青色LED素子からの光によるスペクトルを低減させながら、青色から緑色領域に渡るブロードなスペクトルの光を発する。 The center wavelength of the blue LED element is 451 nm and the half price width is about 20 nm, whereas the light from the first light emitting unit 1 has a longer wavelength center wavelength and a wider half price width and is blue. While reducing the spectrum due to the light from the LED element, it emits light with a broad spectrum over the blue to green region.

第1発光スペクトルは、使用する蛍光体の種類だけでなく、蛍光体の濃度によっても変化し、蛍光体の濃度が最適化されることで、中心波長が530nm以下であって、470〜530nmのスペクトル強度はピーク強度の1/3以上となるスペクトルが得られる。より好ましくは、470〜530nmのスペクトル強度は、ピーク強度の1/2以上であって、第2の発光部からの光との混色光において青色光のピークがより低減された光が得られる。また、470〜500nmのスペクトル強度は、ピーク強度の60%以上であることが好ましく、第2の発光部からの光との混色光において青色光のピークがより低減された光が得られ、かつ補色関係にある短波長側の赤色光の強度をより大きくすることができる。 The first emission spectrum changes not only with the type of phosphor used but also with the concentration of the phosphor, and by optimizing the concentration of the phosphor, the center wavelength is 530 nm or less and 470 to 530 nm. A spectrum having a spectrum intensity of 1/3 or more of the peak intensity can be obtained. More preferably, the spectral intensity of 470 to 530 nm is ½ or more of the peak intensity, and the light in which the peak of blue light is further reduced in the mixed color light with the light from the second light emitting portion can be obtained. Further, the spectral intensity of 470 to 500 nm is preferably 60% or more of the peak intensity, and light in which the peak of blue light is further reduced in the mixed color light with the light from the second light emitting portion can be obtained. The intensity of red light on the short wavelength side, which has a complementary color relationship, can be further increased.

なお、図示してはいないが、520nmにピーク波長を有するLuAG蛍光体が用いられた場合、480nm付近に発光スペクトルの谷間が形成されるため、470〜530nmにおいてピーク強度の1/3以上のスペクトル強度を実現することが難しく、520nmよりも短いピーク波長を有する蛍光体が使用されることが好ましい。また、例えば500nmにピーク波長を有する蛍光体と520nm以上にピーク波長を有する蛍光体が組み合わされても良いが、470〜530nmのスペクトル強度を維持したまま、さらにブロードな発光スペクトルを得ることは困難である。 Although not shown, when a LuAG phosphor having a peak wavelength at 520 nm is used, a valley in the emission spectrum is formed in the vicinity of 480 nm, so that the spectrum is 1/3 or more of the peak intensity at 470 to 530 nm. It is difficult to achieve the intensity, and it is preferable to use a phosphor having a peak wavelength shorter than 520 nm. Further, for example, a phosphor having a peak wavelength of 500 nm and a phosphor having a peak wavelength of 520 nm or more may be combined, but it is difficult to obtain a broader emission spectrum while maintaining the spectral intensity of 470 to 530 nm. Is.

結果的に、第1の発光部からの発光色が示す色度座標は、図5に示すように、x=0.1241,y=0.0578とx=0.4087,y=0.5896を結ぶ直線L1よりもyが大きい領域にあることが好ましく、青色LED素子からの光の補色となる575nm付近の波長成分は主とならない。 As a result, the chromaticity coordinates indicated by the emission color from the first light emitting unit are x = 0.1241, y = 0.0578 and x = 0.4087, y = 0.5896, as shown in FIG. It is preferable that the region has a larger y than the straight line L1 connecting the two, and the wavelength component near 575 nm, which is the complementary color of the light from the blue LED element, is not the main component.

一方で、第1の発光部からの発光スペクトルにおいて、580nmを超える波長範囲にもスペクトルのすそが広がっていることが好ましく、その発光色が示す色度座標は、図5に示すように、x=0.1241,y=0.0578とx=0.1547,y=0.8058を結ぶ直線L2よりもxが大きい領域にあることが好ましい。 On the other hand, in the emission spectrum from the first light emitting portion, it is preferable that the skirt of the spectrum extends to a wavelength range exceeding 580 nm, and the chromaticity coordinates indicated by the emission color are x as shown in FIG. It is preferable that x is larger than the straight line L2 connecting = 0.1241, y = 0.0578 and x = 0.1547, y = 0.8058.

また、青色LED素子からの光のほとんどが蛍光体により変換されると、発光効率が大きく低下するため、第1の発光部からの発光色が示す色度座標は、図5に示すように、目標とする白色光の色度座標とx=0.0139,y=0.7502を結ぶ直線L3よりもyが小さい領域にあることが好ましい。 Further, when most of the light from the blue LED element is converted by the phosphor, the luminous efficiency is greatly reduced. Therefore, the chromaticity coordinates indicated by the emission color from the first light emitting portion are as shown in FIG. It is preferable that y is smaller than the straight line L3 connecting the chromaticity coordinates of the target white light and x = 0.0139, y = 0.7502.

青色LED素子からの光の一部は蛍光体によって470〜530nmにスペクトル成分を有する光に変換されることで、第1の発光部からの発光色が示す色度座標は、図5に示すように、目標とする白色光の色度座標とx=0.0913,y=0.1327を結ぶ直線L4よりもyが大きい領域にあることが好ましい。 A part of the light from the blue LED element is converted into light having a spectral component at 470 to 530 nm by a phosphor, and the chromaticity coordinates indicated by the emission color from the first light emitting portion are as shown in FIG. In addition, it is preferable that the region is in a region where y is larger than the straight line L4 connecting the chromaticity coordinates of the target white light and x = 0.0913, y = 0.1327.

なお、x=0.1241,y=0.0578は470nmの単色光に、x=0.1547,y=0.8058は530nmの単色光に、x=0.4087,y=0.5896は565nmの単色光に、x=0.0139,y=0.7502は510nmの単色光に、x=0.0913,y=0.1327は480nmの単色光に相当する。図5において、第1の発光部からの光と第2の発光部からの光の混合光の目標とする白色光の色度座標は5000K付近のx=0.346,y=0.359とした。 Note that x = 0.1241, y = 0.0578 is for 470 nm monochromatic light, x = 0.1547, y = 0.8058 is for 530 nm monochromatic light, and x = 0.4087, y = 0.5896 is for monochromatic light. 565 nm monochromatic light, x = 0.0139, y = 0.7502 corresponds to 510 nm monochromatic light, and x = 0.0913, y = 0.1327 corresponds to 480 nm monochromatic light. In FIG. 5, the chromaticity coordinates of the target white light of the mixed light of the light from the first light emitting unit and the light from the second light emitting unit are x = 0.346 and y = 0.359 near 5000K. did.

第1の発光部は、470nm以上のピーク波長を有するLED素子が組み合わされて形成されても良く、また合成されて得られるスペクトル形状が第1の発光部からの光としての特性を満たす複数の発光部から構成されても良い。 The first light emitting unit may be formed by combining LED elements having a peak wavelength of 470 nm or more, and a plurality of synthesized spectral shapes satisfying the characteristics of light from the first light emitting unit. It may be composed of a light emitting unit.

SCASN蛍光体、CASN蛍光体等の赤色蛍光体は、青色LED素子の発光スペクトル領域だけでなく、550nm付近まで励起スペクトルを有するため、第1の発光部に赤色蛍光体が配合されていると、470〜550nmの領域の光が赤色蛍光体によって再吸収されてしまう。色度調整等のために、第1の発光部に赤色蛍光体が配合されても良いが、僅かな量であることが好ましい。 Since red phosphors such as SCASN phosphors and CASN phosphors have an excitation spectrum not only in the emission spectrum region of the blue LED element but also up to around 550 nm, it is said that the red phosphor is blended in the first light emitting portion. Light in the region of 470 to 550 nm is reabsorbed by the red phosphor. A red phosphor may be blended in the first light emitting portion for chromaticity adjustment and the like, but it is preferably in a small amount.

(第2の発光部)
第2の発光部2は、例えば、青色LED素子が540nmに発光のピーク波長を有するLuAG蛍光体と628nmに発光のピーク波長を有するSCASN蛍光体の分散されたシリコーン樹脂に覆われて形成される。
(Second light emitting part)
The second light emitting unit 2 is formed, for example, by covering the blue LED element with a silicon resin in which a LuAG phosphor having a peak wavelength of light emission at 540 nm and a SCASN phosphor having a peak wavelength of light emission at 628 nm are dispersed. ..

図6は、青色LED素子と、540nmにピーク波長を有するLuAG蛍光体と赤色蛍光体によって得られるスペクトルをそれぞれのピーク強度を1として比較したグラフである。赤色蛍光体として628nmにピーク波長を有するSCASN蛍光体を用いた第2の発光部2からの第2発光スペクトルS2a、S2b、S2cと、比較のため648nmにピーク波長を有するCASN蛍光体を用いたスペクトルSrを示す。また、図6に示した発光スペクトルに対して、使用した赤色蛍光体の種類と、それぞれの発光スペクトルの特性を表2にまとめた。680nmピーク比、580nmピーク比はそれぞれ680nm、580nmのスペクトル強度のピーク強度に対する比率である。 FIG. 6 is a graph comparing the spectra obtained by the blue LED element, the LuAG phosphor having a peak wavelength at 540 nm, and the red phosphor, with the peak intensity of each being 1. The second emission spectra S2a, S2b, and S2c from the second light emitting unit 2 using the SCANS phosphor having a peak wavelength at 628 nm as the red phosphor were used, and the CASN phosphor having a peak wavelength at 648 nm was used for comparison. The spectrum Sr is shown. Table 2 summarizes the types of red phosphors used and the characteristics of each emission spectrum with respect to the emission spectrum shown in FIG. The 680 nm peak ratio and the 580 nm peak ratio are the ratios of the spectral intensities of 680 nm and 580 nm to the peak intensities, respectively.

Figure 0006846072
Figure 0006846072

なお、450nm付近にピーク波長を有する青色LED素子からの光によるスペクトル成分と、480nm以上の波長範囲にある蛍光体によるスペクトル成分とを分けて見ると、青色LED素子からの光によるスペクトルの最大値は、蛍光体によるスペクトル成分の最大値よりも小さいことが好ましく、短波長側の青色光の低減された発光を得られる。また、蛍光体によるスペクトル成分のピーク波長が580nm以上、より好ましくは600nm以上であることで、赤色領域により多くのスペクトル成分が得られる。 When the spectrum component due to the light from the blue LED element having a peak wavelength near 450 nm and the spectrum component due to the phosphor in the wavelength range of 480 nm or more are separately viewed, the maximum value of the spectrum due to the light from the blue LED element. Is preferably smaller than the maximum value of the spectral component of the phosphor, and reduced emission of blue light on the short wavelength side can be obtained. Further, when the peak wavelength of the spectral component due to the phosphor is 580 nm or more, more preferably 600 nm or more, more spectral components can be obtained in the red region.

CASN蛍光体を用いて得られる発光スペクトルSrは、より長波長の赤色領域にスペクトル成分を有し、680nmのスペクトル強度はピーク強度の1/2以上となる。 The emission spectrum Sr obtained by using the CASN phosphor has a spectral component in the red region having a longer wavelength, and the spectral intensity at 680 nm is ½ or more of the peak intensity.

一方、SCASN蛍光体を用いることで、図6に示すように、680nmのスペクトル強度はピーク強度の1/2以下となり、610〜625nmの短波長側の赤色領域にスペクトルのピークを有することで、赤色成分を確保しつつも、CASN蛍光体を用いる場合と比べて高い光束が得られる。 On the other hand, by using the SCASN phosphor, as shown in FIG. 6, the spectral intensity at 680 nm is 1/2 or less of the peak intensity, and the spectrum peak is provided in the red region on the short wavelength side of 610 to 625 nm. While securing the red component, a higher luminous flux can be obtained as compared with the case where the CASN phosphor is used.

そのため、第2の発光部2においては、SCASN蛍光体が主な赤色蛍光体であることが好ましく、第1の発光部との混合光においてもより高い光束が得られる。なお、CASN蛍光体とSCASN蛍光体が混合して用いられても良いが、光束が大きく低下しないよう、SCASN蛍光体の重量パーセント濃度はCASN蛍光体の重量パーセント濃度よりも高いことが好ましい。 Therefore, in the second light emitting unit 2, the SCASN phosphor is preferably the main red phosphor, and a higher luminous flux can be obtained even in the mixed light with the first light emitting unit. Although the CASN phosphor and the SCASN phosphor may be mixed and used, it is preferable that the weight percent concentration of the CASN phosphor is higher than the weight percent concentration of the CASN phosphor so that the luminous flux does not decrease significantly.

第2の発光部2は、LuAG蛍光体などの緑色蛍光体や黄色蛍光体などを含むことで、580nmのスペクトル強度は蛍光体によるスペクトル成分の最大値に対して1/2以上となることが好ましい。黄緑色から黄色の領域にかけてのスペクトル成分を有することで、第1の発光部からの光との混合光において、より連続的なスペクトルが得られ、明るさと演色性を高めることができる。色度座標で示せば、第2の発光部からの光は、図5に示すように、x=0.6482,y=0.3514と青色LED素子の発光スペクトルが示す色度座標を結ぶ直線L5よりもyが大きい領域にあることが好ましい。 Since the second light emitting unit 2 contains a green phosphor such as a LuAG phosphor, a yellow phosphor, or the like, the spectral intensity at 580 nm may be 1/2 or more of the maximum value of the spectral component due to the phosphor. preferable. By having a spectral component in the yellow-green to yellow region, a more continuous spectrum can be obtained in the mixed light with the light from the first light emitting unit, and the brightness and color rendering properties can be enhanced. In terms of chromaticity coordinates, the light from the second light emitting unit is a straight line connecting x = 0.6482, y = 0.3514 and the chromaticity coordinates indicated by the emission spectrum of the blue LED element, as shown in FIG. It is preferably in a region where y is larger than L5.

なお、緑色蛍光体に替えて黄色蛍光体が用いられても良い。 A yellow phosphor may be used instead of the green phosphor.

第2の発光部2からの発光色は、目標の白色光に対して、第1の発光部1からの発光色との補色関係となるよう設定される。そのため、第2の発光部からの発光色が示す色度座標が、青色LED素子の発光が示す色度座標と目標の白色光の色度座標を結ぶ直線に近ければ、補色光として第1の発光部から青色LED素子の光が必要となり、第1の発光部からの光と第2の発光部からの光の混合光において青色LED素子によるスペクトル成分を低減させられない。 The emission color from the second light emitting unit 2 is set so as to have a complementary color relationship with the emission color from the first light emitting unit 1 with respect to the target white light. Therefore, if the chromaticity coordinates indicated by the emission color from the second light emitting unit are close to the straight line connecting the chromaticity coordinates indicated by the emission of the blue LED element and the chromaticity coordinates of the target white light, the first complementary color light is used. The light from the blue LED element is required from the light emitting unit, and the spectral component due to the blue LED element cannot be reduced in the mixed light of the light from the first light emitting unit and the light from the second light emitting unit.

従って、第2の発光部からの発光色が示す色度座標は、目標の白色光の示す相関色温度よりも10%低い色温度の黒体放射軌跡上の色度座標と青色LED素子の発光が示す色度座標とを結ぶ直線L6よりもyが小さい領域にあることが好ましい。 Therefore, the chromaticity coordinates indicated by the emission color from the second light emitting unit are the chromaticity coordinates on the blackbody radiation locus at a color temperature 10% lower than the correlated color temperature indicated by the target white light and the emission of the blue LED element. It is preferable that it is in a region where y is smaller than the straight line L6 connecting the chromaticity coordinates indicated by.

以上により、第2の発光部からの発光色が示す色度座標は、図5において、直線L5と直線L6の間にあって、かつ補色の関係から直線L3よりもyが高く、直線L4よりもyが小さい領域に位置することとなる。 As described above, the chromaticity coordinates indicated by the emission color from the second light emitting unit are located between the straight line L5 and the straight line L6 in FIG. 5, and y is higher than the straight line L3 and y is higher than the straight line L4 due to the complementary color relationship. Will be located in a small area.

第2の発光部は、赤色LED素子を含んでも良く、また、また合成されて得られるスペクトル形状が第2の発光部からの光としての特性を満たす第1の発光部以外の複数の発光部から構成されても良い。 The second light emitting unit may include a red LED element, and a plurality of light emitting units other than the first light emitting unit whose spectral shape obtained by synthesis satisfies the characteristics as light from the second light emitting unit. It may be composed of.

なお、各発光部の発光スペクトルは、それぞれ単独に発光させた際の発光スペクトルや同じ波長変換材の配合により得られる発光スペクトル、発光部内の微小領域からの発光スペクトルなどの測定により確認することができる。 The emission spectrum of each light emitting unit can be confirmed by measuring the emission spectrum when each light emitting unit emits light independently, the emission spectrum obtained by blending the same wavelength conversion material, the emission spectrum from a minute region in the light emitting unit, and the like. it can.

また、1つの青色LED素子が部位によって異なる蛍光体配合の樹脂に覆われて、一部の部位が第1の発光部となり、別の部位が第2の発光部となるように形成されても良く、本発明の発光装置は1つの青色LED素子により構成されることも可能である。 Further, even if one blue LED element is covered with a resin containing a different phosphor depending on the part, a part part becomes a first light emitting part and another part becomes a second light emitting part. At best, the light emitting device of the present invention can also be composed of one blue LED element.

(混合光の発光スペクトル)
上記のように構成された発光装置100は、電極端子11、12への給電により、配線パターンを通じて、それぞれの発光部内の青色LED素子が発光し、各発光部1、2は上記にて示された所定の発光スペクトルの光を発する。
(Emission spectrum of mixed light)
In the light emitting device 100 configured as described above, the blue LED elements in the respective light emitting units emit light through the wiring pattern by supplying power to the electrode terminals 11 and 12, and the light emitting units 1 and 2 are shown above. It emits light with a predetermined emission spectrum.

発光部1、2からの光の混合光として得られる発光装置100からの光は白色光であって、混合光が示すCIE(1931)XYZ表色系のxy色度図における色度座標は、黒体放射軌跡からの偏差duvが−0.02以上かつ+0.02以下となるよう、より好ましくは偏差duvが−0.01以上かつ+0.01以下となるよう、各発光部1、2からの光の出力比率は調整され、さらに好ましくは、色度座標はANSI C78.377−2015規格に準拠する。なお、偏差duvはJIS Z8725に準拠して得られる。 The light from the light emitting device 100 obtained as the mixed light of the light from the light emitting units 1 and 2 is white light, and the chromaticity coordinates in the xy chromaticity diagram of the CIE (1931) XYZ color system indicated by the mixed light are From each light emitting unit 1 and 2 so that the deviation duv from the blackbody radiation locus is -0.02 or more and +0.02 or less, more preferably the deviation duv is -0.01 or more and +0.01 or less. The light output ratio of the light is adjusted, and more preferably, the chromaticity coordinates conform to the ANSI C78.377-2015 standard. The deviation duv is obtained in accordance with JIS Z8725.

発光装置100からの光を各発光部からの発光スペクトルにより説明すると、図7に示すように、第1の発光部1からの光S1と第2の発光部2からの光S2が合成されて、混合光Swが得られる。第1の発光部1からの光S1は470〜530nmにかけてのスペクトル成分を有することにより、混合光Swの発光スペクトルは青色光のピークが低減され、480nm付近の谷間が埋められた連続的な形状となる。 Explaining the light from the light emitting device 100 by the emission spectrum from each light emitting unit, as shown in FIG. 7, the light S1 from the first light emitting unit 1 and the light S2 from the second light emitting unit 2 are combined. , Mixed light Sw is obtained. Since the light S1 from the first light emitting unit 1 has a spectral component from 470 to 530 nm, the emission spectrum of the mixed light Sw has a continuous shape in which the peak of blue light is reduced and the valley near 480 nm is filled. It becomes.

また、第1の発光部より495nm付近の光が高い出力で得られることで、その補色関係にある610nm付近の短波長側の赤色成分の光を第2の発光部において大きくすることができ、長波長側の赤色成分が少なくても、平均演色評価数Raや赤味の指標となる特殊演色評価数R9を高くすることができる。従来の白色LEDでは、SCASN蛍光体のみを赤色蛍光体として用いた場合、Raは85以下となるが、本実施の形態においては、87以上のRaが得られ、一般に高演色とされるRaと、高い発光効率の両立が可能となる。 Further, since the light near 495 nm is obtained at a higher output than the first light emitting portion, the light of the red component on the short wavelength side near 610 nm, which has a complementary color relationship, can be increased in the second light emitting portion. Even if the red component on the long wavelength side is small, the average color rendering index Ra and the special color rendering index R9, which is an index of redness, can be increased. In the conventional white LED, when only the SCASSN phosphor is used as the red phosphor, Ra is 85 or less, but in the present embodiment, Ra of 87 or more is obtained, and Ra is generally considered to have high color rendering. , High luminous efficiency can be achieved at the same time.

なお、異なる発光色を発する複数の発光部をDAM樹脂3で囲まれた単一の発光領域内に備えることで、光の混色が容易となる。 By providing a plurality of light emitting portions that emit different light emitting colors in a single light emitting region surrounded by the DAM resin 3, it is easy to mix the colors of the light.

(実施の形態2)
図8に示すように、本発明の実施の形態2に係る発光装置200は、基板20上に電極端子21、22が配置され、第1LEDデバイス7と、第2LEDデバイス8とを備える。
(Embodiment 2)
As shown in FIG. 8, the light emitting device 200 according to the second embodiment of the present invention has electrode terminals 21 and 22 arranged on the substrate 20, and includes a first LED device 7 and a second LED device 8.

第1LEDデバイス7、第2LEDデバイス8はそれぞれ一つ以上であり、所望の混色光を得るため、第1LEDデバイス7と第2LEDデバイス8の搭載数の比率は適宜設定され、電極端子11、12間で直並列に接続される。なお、第1LEDデバイス7と第2LEDデバイス8がそれぞれ異なる電極端子間に接続され、独立に駆動されることで、所望の混色光が得られても良い。 The first LED device 7 and the second LED device 8 are each one or more, and in order to obtain a desired mixed color light, the ratio of the number of the first LED device 7 and the second LED device 8 mounted is appropriately set, and between the electrode terminals 11 and 12. Is connected in series and parallel. A desired mixed color light may be obtained by connecting the first LED device 7 and the second LED device 8 between different electrode terminals and driving them independently.

第1LEDデバイス7、第2LEDデバイス8は共にパッケージ内に青色LED素子を備え、蛍光体などの波長変換材が分散された透光性樹脂により封止され、それぞれ実施の形態1に示した第1の発光部と第2の発光部と同様の発光スペクトルの光を発する。 Both the first LED device 7 and the second LED device 8 are provided with a blue LED element in a package, and are sealed with a translucent resin in which a wavelength conversion material such as a phosphor is dispersed, and each of them is the first shown in the first embodiment. It emits light having an emission spectrum similar to that of the light emitting portion of No. 1 and the second light emitting portion.

第1LEDデバイス7、第2LEDデバイス8によって得られる混色光に対して、発光色を調整するなどのため、異なる発光色を有する第3LEDデバイスが発光装置内に搭載されて、点灯されても良い。 A third LED device having a different emission color may be mounted in the light emitting device and turned on in order to adjust the emission color with respect to the mixed color light obtained by the first LED device 7 and the second LED device 8.

発光装置の前面を拡散板が覆うようにして照明装置が構成されることが好ましく、より混色された光を得ることができる。拡散板内に波長変換材を練り込むなどにより、照明器具から発せられる光の色度座標の偏差duvが−0.01以上かつ+0.01以下となるように調整されても良い。 It is preferable that the lighting device is configured so that the front surface of the light emitting device is covered with a diffuser plate, and more mixed color light can be obtained. The deviation duv of the chromaticity coordinates of the light emitted from the luminaire may be adjusted to be −0.01 or more and +0.01 or less by kneading a wavelength conversion material into the diffuser plate.

JIS Z8110の系統色名の一般的な色度区分によれば、第1の発光部からの光色は、青緑もしくは緑であり、第2の発光部からの光色は、ピンクもしくは黄赤であって、それらの光色は、緊張をほぐし、癒しやリラックス効果があると言われている。それぞれの光は、単色LEDの光による組み合わせで作られておらず、スペクトルの半値幅が広いため、目への刺激が少なく、優しい光となっている。 According to the general chromaticity classification of the system color name of JIS Z8110, the light color from the first light emitting part is blue-green or green, and the light color from the second light emitting part is pink or yellow-red. However, those light colors are said to have a relaxing and healing effect. Each light is not made by combining the light of a monochromatic LED, and has a wide half-value width of the spectrum, so that it is less irritating to the eyes and is a gentle light.

そのため、本発明の発光装置を用いた照明装置において、第1の発光部と第2の発光部を独立に発光させ、発光バランスにより全体の光色を第1の発光部の光色から第2の発光部の光色まで変化させられるヒーリングライトとして用いられても良い。 Therefore, in the lighting device using the light emitting device of the present invention, the first light emitting unit and the second light emitting unit are made to emit light independently, and the entire light color is changed from the light color of the first light emitting unit to the second light color by the light emission balance. It may be used as a healing light that can change the light color of the light emitting portion of the above.

本発明は上述した実施形態に限定されるものでは無く、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the technical means disclosed in each of the different embodiments. Is also included in the technical scope of the present invention.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

第一蛍光体および第二蛍光体として、LuAl12:Ce で表される2種類のLuAG蛍光体を準備した。第一蛍光体の発光ピーク波長は500nm、半値幅は98nmであり、第二蛍光体の発光ピーク波長は540nm、半値幅は105nmであった。 As the first phosphor and the second phosphor, Lu 3 Al 5 O 12: we were prepared two kinds of LuAG phosphor represented by Ce 3 +. The emission peak wavelength of the first phosphor was 500 nm and the half width was 98 nm, and the emission peak wavelength of the second phosphor was 540 nm and the half width was 105 nm.

第三蛍光体として、(Sr,Ca)AlSiN:Eu で表されるSCASN蛍光体を準備した。第三蛍光体の発光ピーク波長は628nm、半値幅は75nmであった。 As a third phosphor, (Sr, Ca) AlSiN 3 : were prepared SCASN phosphor represented by Eu 2 +. The emission peak wavelength of the third phosphor was 628 nm, and the half width was 75 nm.

第四蛍光体として、CaAlSiN:Eu で表されるCASN蛍光体を準備した。第四蛍光体の発光ピーク波長は648nm、半値幅は90nmであった。 A fourth phosphor, CaAlSiN 3: were prepared CASN phosphor represented by Eu 2 +. The emission peak wavelength of the fourth phosphor was 648 nm, and the half width was 90 nm.

(実施例1)
449nmにピーク波長を有する青色LED素子の搭載されたLEDパッケージを用い、第一蛍光体を配合した蛍光体含有樹脂によって青色LED素子を被覆して、第1のLEDを作成し、色度座標、発光スペクトルを得た。同様に、第二蛍光体および第三蛍光体を配合した蛍光体含有樹脂により、第2のLEDを作成し、色度座標、発光スペクトルを得た。色度座標がx=0.345、y=0.360付近となるよう、第1のLEDと第2のLEDを適宜選択し、それぞれの発光スペクトルにLEDの比率に応じた重みづけをして足し合わせ、混合光の色度座標、発光スペクトル、光束を得た。
(Example 1)
Using an LED package equipped with a blue LED element having a peak wavelength of 449 nm, the blue LED element is coated with a phosphor-containing resin containing a first phosphor to prepare a first LED, and chromaticity coordinates are used. The emission spectrum was obtained. Similarly, a second LED was prepared from a phosphor-containing resin containing a second phosphor and a third phosphor, and chromaticity coordinates and an emission spectrum were obtained. The first LED and the second LED are appropriately selected so that the chromaticity coordinates are in the vicinity of x = 0.345 and y = 0.360, and the respective emission spectra are weighted according to the ratio of the LEDs. By adding, the chromaticity coordinates of the mixed light, the light emission spectrum, and the luminous flux were obtained.

(比較例1)
色度座標がx=0.345、y=0.360付近となるよう、実施例1と同様に、第二蛍光体と第四蛍光体を混合した蛍光体含有樹脂により、白色LEDを作成し、色度座標、発光スペクトル、光束を測定した。
(Comparative Example 1)
Similar to Example 1, a white LED is produced from a phosphor-containing resin in which a second phosphor and a fourth phosphor are mixed so that the chromaticity coordinates are around x = 0.345 and y = 0.360. , The chromaticity coordinates, the emission spectrum, and the luminous flux were measured.

Figure 0006846072
Figure 0006846072

表3では、投入電力とLED素子当たりの電流密度がそれぞれ同じとなるように換算して、光束等の比較を行った。また、青色光傷害作用関数が0.8以上となる波長領域を含む460nm以下の波長範囲でのスペクトル積分強度を短波長青色強度とし、比較例1に対する比較を行った。 In Table 3, the luminous flux and the like were compared by converting so that the input power and the current density per LED element were the same. Further, the spectral integral intensity in the wavelength range of 460 nm or less including the wavelength region in which the blue light damage action function is 0.8 or more was defined as the short wavelength blue intensity, and comparison with Comparative Example 1 was performed.

比較例1と比べて、いずれの実施例も演色性が高くなっており、光束の低下は17%以下であるが、短波長青色強度を最大で40%以上小さくすることができた。光束が同じであっても、短波長青色強度を20%以上低減できることを示している。 Compared with Comparative Example 1, the color rendering properties of all the examples were higher, and the decrease in luminous flux was 17% or less, but the short wavelength blue intensity could be reduced by 40% or more at the maximum. It is shown that the short wavelength blue intensity can be reduced by 20% or more even if the luminous flux is the same.

図9のグラフは、比較例1と実施例1それぞれの発光スペクトルを図示したものである。比較例1と比べて実施例1の発光スペクトルはいずれも青色LEDからの光によるスペクトル成分が低減された連続的な形状となった。特に、第1のLEDの470〜500nmのスペクトル強度が、ピーク強度の60%以上となる実施例1−1、1−2、1−3においては、青色LEDからのスペクトル成分がより低減された発光スペクトルが得られた。 The graph of FIG. 9 illustrates the emission spectra of Comparative Example 1 and Example 1. Compared with Comparative Example 1, the emission spectra of Example 1 all had a continuous shape in which the spectral components due to the light from the blue LED were reduced. In particular, in Examples 1-1, 1-2, and 1-3 in which the spectral intensity of the first LED at 470 to 500 nm is 60% or more of the peak intensity, the spectral component from the blue LED is further reduced. The emission spectrum was obtained.

(実施例2)
449nmにピーク波長を有する青色LED素子の搭載されたLEDパッケージを用い、第一蛍光体を配合した蛍光体含有樹脂を用いて、第1のLEDを作成し、色度座標、発光スペクトルを得た。同様に、第二蛍光体および第三蛍光体を配合した蛍光体含有樹脂により、第2のLEDを作成し、色度座標、発光スペクトルを得た。色度座標がx=0.440、y=0.405付近となるよう、第1のLEDと第2のLEDを適宜選択し、それぞれの発光スペクトルにLEDの比率に応じた重みづけをして足し合わせ、混合光の色度座標、発光スペクトル、光束を得た。
(Example 2)
Using an LED package equipped with a blue LED element having a peak wavelength of 449 nm, a first LED was prepared using a phosphor-containing resin containing a first phosphor, and chromaticity coordinates and an emission spectrum were obtained. .. Similarly, a second LED was prepared from a phosphor-containing resin containing a second phosphor and a third phosphor, and chromaticity coordinates and an emission spectrum were obtained. The first LED and the second LED are appropriately selected so that the chromaticity coordinates are in the vicinity of x = 0.440 and y = 0.405, and the respective emission spectra are weighted according to the ratio of the LEDs. By adding, the chromaticity coordinates of the mixed light, the light emission spectrum, and the luminous flux were obtained.

(比較例2)
色度座標がx=0.440、y=0.405付近となるよう、実施例2と同様に、第二蛍光体と第四蛍光体を混合した蛍光体含有樹脂により、白色LEDを作成し、色度座標、発光スペクトル、光束を測定した。
(Comparative Example 2)
Similar to Example 2, a white LED is produced from a phosphor-containing resin in which a second phosphor and a fourth phosphor are mixed so that the chromaticity coordinates are around x = 0.440 and y = 0.405. , The chromaticity coordinates, the emission spectrum, and the luminous flux were measured.

Figure 0006846072
Figure 0006846072

表4では、実施例1と同様に比較を行った。 In Table 4, comparisons were made in the same manner as in Example 1.

比較例2と比べて、いずれの実施例も演色性は同等であり、光束の低下は11%以下であるが、短波長青色強度を最大で40%以上小さくすることができた。光束が同じであっても、短波長青色強度を20%以上低減できることを示している。 Compared with Comparative Example 2, the color rendering properties were the same in all the examples, and the decrease in luminous flux was 11% or less, but the short wavelength blue intensity could be reduced by 40% or more at the maximum. It is shown that the short wavelength blue intensity can be reduced by 20% or more even if the luminous flux is the same.

図10のグラフは、比較例2と実施例2それぞれの発光スペクトルを図示したものである。比較例2と比べて実施例2の発光スペクトルはいずれも青色LEDからの光によるスペクトル成分が低減された連続的な形状となった。 The graph of FIG. 10 illustrates the emission spectra of Comparative Example 2 and Example 2. Compared with Comparative Example 2, the emission spectra of Example 2 all had a continuous shape in which the spectral components due to the light from the blue LED were reduced.

(実施例3)
青色LED素子が24素子配置されているCOBパッケージで、第一蛍光体を配合した蛍光体含有樹脂を用いて16素子を被覆して第1の発光部とし、第二蛍光体および第三蛍光体を配合した蛍光体含有樹脂を用いて8素子を被覆して第2の発光部とした。なお、第1の発光部において第一蛍光体の透光性樹脂に対する重量比は100%であり、第2の発光部において第二蛍光体の透光性樹脂に対する重量比は37.5%であり、第三蛍光体の透光性樹脂に対する重量比は12.5%であった。
(Example 3)
In a COB package in which 24 blue LED elements are arranged, 16 elements are coated with a phosphor-containing resin containing a first phosphor to form a first light emitting portion, and a second phosphor and a third phosphor are used. Eight elements were coated with a phosphor-containing resin containing the above to form a second light emitting portion. In the first light emitting part, the weight ratio of the first phosphor to the translucent resin is 100%, and in the second light emitting part, the weight ratio of the second phosphor to the translucent resin is 37.5%. The weight ratio of the third phosphor to the translucent resin was 12.5%.

色度座標x=0.344、y=0.361、Ra 92、R9 78の色温度5000K付近の白色光が得られた。発光スペクトルは図11に示す通りであって、従来のLEDと比較して、短波長青色強度が上記実施例と同様に大幅に低減されたが、光束低下は約10%に留まった。 White light with a chromaticity coordinate x = 0.344, y = 0.361, Ra 92, and R978 at a color temperature of around 5000 K was obtained. The emission spectrum is as shown in FIG. 11, and the short wavelength blue intensity was significantly reduced as in the above embodiment as compared with the conventional LED, but the luminous flux reduction was only about 10%.

(実施例4)
青色LED素子が24素子配置されているCOBパッケージで、第一蛍光体を配合した蛍光体含有樹脂を用いて8素子を被覆して第1の発光部とし、第二蛍光体および第三蛍光体を配合した蛍光体含有樹脂を用いて16素子を被覆して第2の発光部とした。なお、第1の発光部において第一蛍光体の透光性樹脂に対する重量比は100%であり、第2の発光部において第二蛍光体の透光性樹脂に対する重量比は50%であり、第三蛍光体の透光性樹脂に対する重量比は16.7%であった。
(Example 4)
In a COB package in which 24 blue LED elements are arranged, 8 elements are coated with a phosphor-containing resin containing a first phosphor to form a first light emitting portion, and a second phosphor and a third phosphor are used. 16 elements were coated with a phosphor-containing resin containing the above to form a second light emitting portion. In the first light emitting part, the weight ratio of the first phosphor to the translucent resin is 100%, and in the second light emitting part, the weight ratio of the second phosphor to the translucent resin is 50%. The weight ratio of the third phosphor to the translucent resin was 16.7%.

色度座標x=0.435、y=0.405、Ra 91、R9 51の色温度3000K付近の光が得られた。発光スペクトルは図12に示す通りであって、従来のLEDと比較して、短波長青色強度が上記実施例と同様に大幅に低減されたが、光束低下は約7%に留まった。 Light with chromaticity coordinates x = 0.435, y = 0.405, Ra 91, and R951 at a color temperature of around 3000 K was obtained. The emission spectrum is as shown in FIG. 12, and the short wavelength blue intensity was significantly reduced as in the above embodiment as compared with the conventional LED, but the luminous flux reduction was only about 7%.

1 第1の発光部
2 第2の発光部
3 ダム樹脂
4 青色LED素子
5、6 蛍光体
7 第1LEDデバイス
8 第2LEDデバイス
10、20 基板
11、12、21、22 電極端子
100、200 発光装置
1 1st light emitting part 2 2nd light emitting part 3 Dam resin 4 Blue LED element 5, 6 Fluorescent body 7 1st LED device 8 2nd LED device 10, 20 Substrate 11, 12, 21, 22 Electrode terminal 100, 200 Light emitting device

Claims (6)

第1の発光部と第2の発光部を備え、
前記第1の発光部と前記第2の発光部は、それぞれ430nm以上470nm以下の範囲にピーク波長を有する青色LED素子を備え、
前記第1の発光部からの第1発光スペクトルにおいて、波長に前記波長におけるスペクトル強度を乗じて得られる値の和を各前記波長における前記スペクトル強度の和で除算して得られる中心波長は530nm以下であり、470nm以上500nm以下の波長範囲における前記スペクトル強度の最小値は前記第1発光スペクトルの最大値の60%以上であり、470nm以上530nm以下の波長範囲における前記スペクトル強度の最小値は前記第1発光スペクトルの前記最大値の1/3以上であって、
前記第2の発光部からの第2発光スペクトルにおいて、ピーク波長は580nm以上かつ625nm以下であり、波長680nmのスペクトル強度は前記第2発光スペクトルの最大値の1/2未満であって、
前記第1の発光部からの光と前記第2の発光部からの光の混合光の平均演色評価数Raは87以上であり、前記混合光のCIE(1931)XYZ表色系のxy色度図における黒体輻射軌跡曲線からの偏差duvが、−0.02以上であって+0.02以下であることを特徴とする、発光装置。
It has a first light emitting part and a second light emitting part.
The first light emitting unit and the second light emitting unit each include a blue LED element having a peak wavelength in the range of 430 nm or more and 470 nm or less.
In the first emission spectrum from the first light emitting unit, the center wavelength obtained by dividing the sum of the values obtained by multiplying the wavelength by the spectral intensity at the wavelength by the sum of the spectral intensities at each wavelength is 530 nm or less. , and the minimum value of the spectral intensity at 500nm or less the wavelength range of 470nm is 60% or more of the maximum value of the first emission spectrum, the minimum value of the spectral intensity at 530nm or less the wavelength range of 470nm is the first and from 1/3 of the maximum value of the first emission spectrum,
In the second emission spectrum from the second emission portion, the peak wavelength is 580 nm or more and 625 nm or less, and the spectral intensity at the wavelength of 680 nm is less than 1/2 of the maximum value of the second emission spectrum.
The average color rendering index Ra of the mixed light of the light from the first light emitting unit and the light from the second light emitting unit is 87 or more, and the xy chromaticity of the CIE (1931) XYZ color system of the mixed light. A light emitting device, wherein the deviation duv from the blackbody radiation locus curve in the figure is −0.02 or more and +0.02 or less.
前記第1発光スペクトルにおいて、前記470nm以上530nm以下の波長範囲における前記スペクトル強度の前記最小値は前記第1発光スペクトルの前記最大値の1/2以上であることを特徴とする、請求項1に記載の発光装置。 In the first emission spectrum, wherein the minimum value of the spectral intensity in the wavelength range of the 470nm or 530nm or less is less than 1/2 of the maximum value of the first emission spectrum, in claim 1 The light emitting device described. 前記第2発光スペクトルにおける波長580nmのスペクトル強度は前記第2発光スペクトルの前記最大値の1/2以上であることを特徴とする、請求項1に記載の発光装置。 The spectral intensity of the wavelength 580nm in the second emission spectrum is characterized by at least 1/2 of the maximum value of the second emission spectrum, the light-emitting device according to claim 1. 複数の異なる発光色を発する発光部を備え、
少なくとも1つの前記発光部からなる第1の発光部群からの第1発光スペクトルにおいて、波長に前記波長におけるスペクトル強度を乗じて得られる値の和を各前記波長の前記スペクトル強度の和で除算して得られる中心波長は530nm以下であり、470nm以上500nm以下の波長範囲における前記スペクトル強度の最小値は前記第1発光スペクトルの最大値の60%以上であり、470nm以上530nm以下の波長範囲における前記スペクトル強度の最小値は前記第1発光スペクトルの前記最大値の1/3以上であって、
前記第1の発光部群とは異なる少なくとも1つの前記発光部からなる第2の発光部群からの第2発光スペクトルにおいて、ピーク波長は580nm以上かつ625nm以下であり、波長680nmのスペクトル強度は前記第2発光スペクトルの最大値の1/2未満であって、
前記第1の発光部群からの光と前記第2の発光部群からの光の混合光の平均演色評価数Raは87以上であり、前記混合光のCIE(1931)XYZ表色系のxy色度図における黒体放射軌跡からの偏差duvが、−0.02以上であって+0.02以下であることを特徴とする、発光装置。
Equipped with a light emitting part that emits multiple different emission colors,
In the first emission spectrum from the first light emitting unit group consisting of at least one of the light emitting units, the sum of the values obtained by multiplying the wavelength by the spectral intensity at the wavelength is divided by the sum of the spectral intensities of each of the wavelengths. The central wavelength obtained is 530 nm or less, the minimum value of the spectral intensity in the wavelength range of 470 nm or more and 500 nm or less is 60% or more of the maximum value of the first emission spectrum, and the said in the wavelength range of 470 nm or more and 530 nm or less. the minimum value of the spectral intensity is from 1/3 of the maximum value of the first emission spectrum,
In the second emission spectrum from the second light emitting unit group consisting of at least one light emitting unit different from the first light emitting unit group, the peak wavelength is 580 nm or more and 625 nm or less, and the spectral intensity at the wavelength of 680 nm is the above. It is less than 1/2 of the maximum value of the second emission spectrum,
The average color rendering index Ra of the mixed light of the light from the first light emitting unit group and the light from the second light emitting unit group is 87 or more, and the xy of the CIE (1931) XYZ color system of the mixed light. A light emitting device, characterized in that the deviation duv from the blackbody radiation locus in the color rendering index is −0.02 or more and +0.02 or less.
請求項1から4のいずれか一項に記載の発光装置を備え、前記黒体放射軌跡からの偏差duvが−0.01以上であって+0.01以下である色度座標の光を発することを特徴とする、照明装置。 The light emitting device according to any one of claims 1 to 4 is provided, and light having chromaticity coordinates having a deviation duv from the blackbody radiation locus of −0.01 or more and +0.01 or less is emitted. A lighting device that features. 請求項1から4のいずれか一項に記載の発光装置を備え、JIS Z8110に示される色度区分における、青緑領域もしくは緑領域内の色度点と、ピンク領域もしくは黄赤領域内の色度点と、白色領域内の色度点による発光が可能なことを特徴とする、照明装置。 The chromaticity point in the blue-green region or the green region and the color in the pink region or the yellow-red region in the chromaticity classification shown in JIS Z8110 provided with the light emitting device according to any one of claims 1 to 4. An illuminating device characterized in that it can emit light by a chromaticity point and a chromaticity point in a white region.
JP2020118825A 2019-09-17 2020-07-09 Light emitting device and lighting device Active JP6846072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034962 WO2021054336A1 (en) 2019-09-17 2020-09-15 Light emitting device, and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168634 2019-09-17
JP2019168634 2019-09-17

Publications (2)

Publication Number Publication Date
JP6846072B1 true JP6846072B1 (en) 2021-03-24
JP2021052175A JP2021052175A (en) 2021-04-01

Family

ID=74878931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118825A Active JP6846072B1 (en) 2019-09-17 2020-07-09 Light emitting device and lighting device

Country Status (2)

Country Link
JP (1) JP6846072B1 (en)
WO (1) WO2021054336A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790199B1 (en) * 2004-06-29 2013-08-14 Panasonic Corporation Illumination source
JP5320655B2 (en) * 2004-06-30 2013-10-23 三菱化学株式会社 LIGHT EMITTING DEVICE, LIGHTING, BACKLIGHT UNIT FOR DISPLAY DEVICE, AND DISPLAY DEVICE
JP4526559B2 (en) * 2007-11-13 2010-08-18 スタンレー電気株式会社 LED lighting fixtures
CN102083941B (en) * 2008-07-02 2016-04-27 迪睿合电子材料有限公司 Red-emitting phosphors, the method manufacturing red-emitting phosphors, white light source, means of illumination and liquid crystal indicator
WO2012046642A1 (en) * 2010-10-05 2012-04-12 株式会社ネモト・ルミマテリアル Green light-emitting phosphor and light-emitting device
JP5578739B2 (en) * 2012-07-30 2014-08-27 住友金属鉱山株式会社 Alkaline earth metal silicate phosphor and method for producing the same
JP6853614B2 (en) * 2013-03-29 2021-03-31 株式会社朝日ラバー LED lighting device, its manufacturing method and LED lighting method
JP6284738B2 (en) * 2013-10-18 2018-02-28 シチズン電子株式会社 Semiconductor light emitting device
JP2016219519A (en) * 2015-05-18 2016-12-22 サンケン電気株式会社 Light-emitting device
KR102092573B1 (en) * 2016-07-21 2020-03-24 산켄덴키 가부시키가이샤 Light emitting device
KR102373817B1 (en) * 2017-05-02 2022-03-14 삼성전자주식회사 White light emitting device and lighting apparatus
TWI631728B (en) * 2017-05-03 2018-08-01 詮興開發科技股份有限公司 Light-emitting diode module for plant growth
JP7009879B2 (en) * 2017-09-26 2022-01-26 豊田合成株式会社 Luminescent device
JP6773018B2 (en) * 2017-12-26 2020-10-21 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
WO2021054336A1 (en) 2021-03-25
JP2021052175A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
EP1160883B1 (en) LED lamp
JP4386693B2 (en) LED lamp and lamp unit
CN104011457B (en) White light source and include the white light source system of described white light source
US9530944B2 (en) High color-saturation lighting devices with enhanced long wavelength illumination
RU2444813C2 (en) Light-emitting diode module, light-emitting diode source and light-emitting diode lamp for energy-efficient generation of white light
US20200126958A1 (en) Light source with tunable cri
US9231170B2 (en) Phosphor LED
US20090026913A1 (en) Dynamic color or white light phosphor converted LED illumination system
JP2002057376A (en) Led lamp
EP3425023B1 (en) White light emitting devices
JP2006527501A (en) Light emitting element and phosphor of light emitting element
JP2004505470A (en) Illumination unit with at least one LED as light source
JP5443959B2 (en) Lighting device
JP2003045206A (en) Illuminating light source
US20110286210A1 (en) Led light source in a single-package for raising color-rendering index
JP2007214603A (en) Led lamp and lamp unit
CN207146291U (en) A kind of light source module group and the lighting device including the light source module group
JP4890017B2 (en) Blue light emitting phosphor and light emitting module using the same
JP6354607B2 (en) Light emitting device
JP6846072B1 (en) Light emitting device and lighting device
JP2017069284A (en) Light-emitting device and illumination apparatus
CN114396572A (en) Light source module, lighting system and lamp
EP2830093A1 (en) LED-module with high color rendering index
CN101364549B (en) Making method for white light LED
JP2020140810A (en) Luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200709

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6846072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250