JP6840019B2 - Polyester and its manufacturing method - Google Patents

Polyester and its manufacturing method Download PDF

Info

Publication number
JP6840019B2
JP6840019B2 JP2017078806A JP2017078806A JP6840019B2 JP 6840019 B2 JP6840019 B2 JP 6840019B2 JP 2017078806 A JP2017078806 A JP 2017078806A JP 2017078806 A JP2017078806 A JP 2017078806A JP 6840019 B2 JP6840019 B2 JP 6840019B2
Authority
JP
Japan
Prior art keywords
mol
polyester
acid
unit derived
isosorbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017078806A
Other languages
Japanese (ja)
Other versions
JP2018177942A (en
Inventor
敬成 松野
敬成 松野
窪田 俊介
俊介 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2017078806A priority Critical patent/JP6840019B2/en
Publication of JP2018177942A publication Critical patent/JP2018177942A/en
Application granted granted Critical
Publication of JP6840019B2 publication Critical patent/JP6840019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明はポリエステルおよびその製造方法に関する。 The present invention relates to polyester and a method for producing the same.

汎用ポリエステル樹脂であるポリエチレンテレフタレート(PET)は、低コストでありながら耐熱性、耐薬品性、耐溶剤性、透明性などに優れるとされている。骨格中にナフタレン環を有するポリエチレンナフタレート(PEN)はさらに耐熱性、耐薬品性、耐衝撃性などの特性が高い。しかし、PENであっても耐熱性が不足するような用途も存在し、そのような用途にはエンプラ、スーパーエンプラが用いられている。その一例として、医療容器が挙げられる。医療現場では加熱による滅菌が主流であるが、オートクレーブを用いた高温高圧水蒸気滅菌では134℃の温度に耐える必要がある。汎用ポリエステルの改質で耐熱性を高め、オートクレーブ滅菌にも耐えうるようなポリマーが得られれば高コストのエンプラ、スーパーエンプラに置き換わることが期待できる。 Polyethylene terephthalate (PET), which is a general-purpose polyester resin, is said to be excellent in heat resistance, chemical resistance, solvent resistance, transparency, etc. at a low cost. Polyethylene naphthalate (PEN), which has a naphthalene ring in its skeleton, has higher properties such as heat resistance, chemical resistance, and impact resistance. However, there are some applications in which heat resistance is insufficient even for PEN, and engineering plastics and super engineering plastics are used for such applications. One example is a medical container. In medical practice, sterilization by heating is the mainstream, but high-temperature and high-pressure steam sterilization using an autoclave needs to withstand a temperature of 134 ° C. If a polymer that can withstand autoclave sterilization by improving heat resistance by modifying general-purpose polyester can be obtained, it can be expected to replace high-cost engineering plastics and super engineering plastics.

一方、ポリエチレンナフタレートの共重合成分としてイソソルビド成分を用いることが知られている(特許文献1、2)。しかしながら、これらの文献はイソソルビド成分を少量使用したものであり、高度な耐熱性については記載されていない。 On the other hand, it is known that an isosorbide component is used as a copolymerization component of polyethylene naphthalate (Patent Documents 1 and 2). However, these documents use a small amount of isosorbide component and do not describe high heat resistance.

特表2002−512268号公報Special Table 2002-512268 特開2012−126821号公報Japanese Unexamined Patent Publication No. 2012-126821

本発明の目的は、汎用ポリエステルの耐熱性、すなわちガラス転移点を向上させた高耐熱ポリエステルおよびその製造方法を提供することである。 An object of the present invention is to provide a highly heat-resistant polyester having improved heat resistance of a general-purpose polyester, that is, a glass transition point, and a method for producing the same.

本発明者らは、剛直な骨格を有するジオールであるイソソルビドをPENに共重合することで耐熱性を向上させる、特に酸成分であるナフタレンジカルボン酸に対して35モル%以上含有させることで、高いガラス転移点を有するポリエステルを得られることを見出した。これまでにもイソソルビドを共重合したポリエステルの報告は存在しているが、PET共重合であるためガラス転移点が120℃未満であるか、20モル%を超えるような高い存在比で共重合させた報告例が存在していない。そのため、イソソルビド共重合PENによる耐熱ポリエステルには検討の余地があり、高い耐熱性を有するポリエステルを合成することが期待できる。 The present inventors improve the heat resistance by copolymerizing isosorbide, which is a diol having a rigid skeleton, with PEN, and particularly by containing 35 mol% or more of the acid component naphthalenedicarboxylic acid. It has been found that a polyester having a glass transition point can be obtained. There have been reports of polyesters copolymerized with isosorbide, but since they are PET copolymerized, they are copolymerized at a high abundance ratio such that the glass transition point is less than 120 ° C. or more than 20 mol%. There are no reported cases. Therefore, there is room for study on heat-resistant polyesters made from isosorbide copolymerized PEN, and it can be expected that polyesters having high heat resistance will be synthesized.

本発明によれば、発明の課題は下記発明により達成される。 According to the present invention, the subject of the invention is achieved by the following invention.

1.ジカルボン酸成分由来の構成単位中、2,6−ナフタレンジカルボン酸由来の構成
単位を95〜100モル%を含み、ジオール成分由来の構成単位中、イソソルビド由来の構成単位を35〜100モル%含む、固有粘度が0.40〜0.75dl/gの範囲であり、且つ非架橋であるポリエステル。
2.ガラス転移点が150℃以上である、前項1に記載のポリエステル。
3.ジカルボン酸成分由来の構成単位中、2,6−ナフタレンジカルボン酸由来の構成単位を95〜100モル%、テレフタル酸および/またはイソフタル酸由来の構成単位を0〜5モル%含む項1または2に記載のポリエステル。
4.ジオール成分由来の構成単位中、イソソルビド由来の構成単位を35〜100モル%、炭素原子数2〜4のアルキレングリコール由来の構成単位を0〜65モル%含む項1〜3のいずれか1項に記載のポリエステル。
5.Tiを75ppm以上含有し、Pを50ppm以上含有する項1〜4のいずれか1項に記載のポリエステル。
6.2,6−ナフタレンジカルボン酸を95〜100モル%を含むジカルボン酸成分と、イソソルビドを35〜100モル%含むジオール成分とを、エステル化反応もしくはエステル交換反応させた後、触媒としてトリメリット酸チタンを用いて重縮合反応を行う項1記載のポリエステルの製造方法。
1. 1. The structural unit derived from the dicarboxylic acid component contains 95 to 100 mol% of the structural unit derived from 2,6-naphthalenedicarboxylic acid, and the structural unit derived from the diol component contains 35 to 100 mol% of the structural unit derived from isosorbide . A polyester having an intrinsic viscosity in the range of 0.40 to 0.75 dl / g and which is non-crosslinked .
2. 2. The polyester according to item 1 above, wherein the glass transition point is 150 ° C. or higher.
3. 3. During constitutional unit derived from dicarboxylic acid component, 2,6-naphthalene 95 to 100 mol% of constitutional unit derived from dicarboxylic acid, claim 1 or 2 before, including a constitutional unit derived from terephthalic acid and / or isophthalic acid 0-5 mol% The polyester described in.
4. During constitutional unit derived from a diol component, 35 to 100 mol% of constitutional unit derived from isosorbide, any one of claim 1 to 3 before containing 0-65 mol% of constitutional unit derived from an alkylene glycol having 2 to 4 carbon atoms The polyester described in.
5. Containing Ti or 75 ppm, the polyester according to any one of claim 1 to 4 before containing P or 50 ppm.
After a dicarboxylic acid component containing 95 to 100 mol% of 6.2,6-naphthalenedicarboxylic acid and a diol component containing 35 to 100 mol% of isosorbide are subjected to an esterification reaction or a transesterification reaction, trimellitic acid is used as a catalyst. process for producing a polyester of the previous claim 1, wherein performing the polycondensation reaction with an acid titanium.

ガラス転移点150℃以上とオートクレーブ処理にも耐えうる高耐熱ポリエステルを得られる。また、そのガラス転移点はポリエステル中に含まれるイソソルビド含有量に対して線型に変化することが確認できたため、容易に所望の耐熱性を有するポリエステルの合成が可能となった。 A highly heat-resistant polyester having a glass transition point of 150 ° C. or higher and capable of withstanding autoclaving can be obtained. Further, since it was confirmed that the glass transition point changes linearly with respect to the isosorbide content contained in the polyester, it became possible to easily synthesize a polyester having a desired heat resistance.

イソソルビド共重合量とガラス転移点の相関を示した図である。It is a figure which showed the correlation of the isosorbide copolymerization amount and the glass transition point.

以下、本発明を詳細に説明する。
<ポリエステル>
本発明におけるポリエステルとは、ジカルボン酸成分由来の構成単位中、ナフタレンジカルボン酸由来の成分を95〜100モル%を含み、ジオール成分由来の構成単位中、イソソルビド由来の成分を35〜100モル%含むポリエステルである。
Hereinafter, the present invention will be described in detail.
<Polyester>
The polyester in the present invention contains 95 to 100 mol% of a component derived from naphthalene carboxylic acid in a constituent unit derived from a dicarboxylic acid component, and 35 to 100 mol% of a component derived from isosorbide in a constituent unit derived from a diol component. It is polyester.

ジカルボン酸成分由来の構成単位中、ナフタレンジカルボン酸を97〜100モル%を含むことが好ましく、実質的に100モル%含むことが好ましい。ナフタレンジカルボン酸としては、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸が挙げられ、2,6−ナフタレンジカルボン酸が好ましい。 Among the structural units derived from the dicarboxylic acid component, it is preferable to contain 97 to 100 mol% of naphthalene carboxylic acid, and it is preferable to contain substantially 100 mol%. Examples of the naphthalenedicarboxylic acid include 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid is preferable.

他の酸成分としては、テレフタル酸、イソフタル酸,ジフェニルケトンジカルボン酸,アンスラセンジカルボン酸などを挙げることができ、テレフタル酸、イソフタル酸が好ましい。他の酸成分は0〜5モル%を含み、0〜3モル%を含むことが好ましい。 Examples of other acid components include terephthalic acid, isophthalic acid, diphenylketonedicarboxylic acid, anthracendicarboxylic acid and the like, and terephthalic acid and isophthalic acid are preferable. The other acid component contains 0 to 5 mol%, preferably 0 to 3 mol%.

ジオール成分由来の構成単位中、イソソルビドを43〜100モル%含むことが好ましい。他のジオール成分として炭素原子数2〜4のアルキレングリコールが好ましい。具体的なアルキレングリコールとしては、エチレングリコール、トリメチレングリコール、テトラメチレングリコールを挙げられ、なかでもエチレングリコールが特に好ましい。他のジオール成分は0〜65モル%を含み、0〜57モル%を含むことが好ましい。 It is preferable to contain 43 to 100 mol% of isosorbide in the structural unit derived from the diol component. As another diol component, an alkylene glycol having 2 to 4 carbon atoms is preferable. Specific examples of the alkylene glycol include ethylene glycol, trimethylene glycol, and tetramethylene glycol, and ethylene glycol is particularly preferable. The other diol component contains 0 to 65 mol%, preferably 0 to 57 mol%.

本発明のポリエステルのガラス転移点は150℃以上であることが好ましく、160℃以上であることがさらに好ましい。ガラス転移点が上記温度以上であれば、耐熱性の点で好ましい。なお、ガラス転移点の上限は限定されないが、320℃以下が好ましく、300℃以下がより好ましい。ガラス転移点が上記温度以下であれば、成形時の取り扱い性の点で好ましい。 The glass transition point of the polyester of the present invention is preferably 150 ° C. or higher, and more preferably 160 ° C. or higher. When the glass transition point is equal to or higher than the above temperature, it is preferable in terms of heat resistance. The upper limit of the glass transition point is not limited, but is preferably 320 ° C. or lower, more preferably 300 ° C. or lower. When the glass transition point is equal to or lower than the above temperature, it is preferable in terms of handleability during molding.

本発明のポリエステルの固有粘度は、0.30〜0.75dl/gの範囲であることが好ましく、0.35〜0.70dl/gの範囲であることがより好ましく、0.40〜0.65dl/gの範囲であることがさらに好ましい。固有粘度が下限以上であれば強度に優れ、上限以下であれば流動性に優れる。 The intrinsic viscosity of the polyester of the present invention is preferably in the range of 0.30 to 0.75 dl / g, more preferably in the range of 0.35 to 0.70 dl / g, and 0.40 to 0. It is more preferably in the range of 65 dl / g. If the intrinsic viscosity is at least the lower limit, the strength is excellent, and if it is at least the upper limit, the fluidity is excellent.

<ポリエステルの製造方法>
本発明のポリエステルの製造方法は、2,6−ナフタレンジカルボン酸を95〜100モル%を含むジカルボン酸成分と、イソソルビドを35〜100モル%含むジオール成分とを、エステル化反応もしくはエステル交換反応させた後、重縮合反応を行う方法が好ましく採用される。
<Polyester manufacturing method>
In the method for producing a polyester of the present invention, a dicarboxylic acid component containing 95 to 100 mol% of 2,6-naphthalenedicarboxylic acid and a diol component containing 35 to 100 mol% of isosorbide are subjected to an esterification reaction or a transesterification reaction. After that, a method of carrying out a polycondensation reaction is preferably adopted.

エステル化反応もしくはエステル交換反応は、260〜280℃、1〜2時間の条件で反応させることが好ましい。この際反応触媒を用いることができ、酢酸マンガンが好ましく使用される。反応触媒の添加量は、酸成分に対して、15〜50mmol%の範囲が好ましい。 The esterification reaction or transesterification reaction is preferably carried out under the conditions of 260 to 280 ° C. for 1 to 2 hours. At this time, a reaction catalyst can be used, and manganese acetate is preferably used. The amount of the reaction catalyst added is preferably in the range of 15 to 50 mmol% with respect to the acid component.

また、重縮合反応は、290〜300℃、1〜3時間の条件で反応させることが好ましい。この際反応触媒を用いることができ、アンチモン化合物やチタン化合物が好ましく、チタン化合物がより好ましく使用される。チタン化合物としてはトリメリット酸チタンが特に好ましく使用される。チタン化合物を使用すると反応性が高く、イソソルビドの含有割合や固有粘度を大きくすることが可能となり好ましい。反応触媒の添加量は、酸成分に対して、20〜120mmol%の範囲が好ましい。また、得られるポリエステル中のチタン(Ti)含有量は、55ppm 以上が好ましく、75ppm以上がより好ましい。また上限は特に制限されないが、240ppm以下が好ましい。 Further, the polycondensation reaction is preferably carried out under the conditions of 290 to 300 ° C. for 1 to 3 hours. At this time, a reaction catalyst can be used, and an antimony compound and a titanium compound are preferable, and a titanium compound is more preferably used. As the titanium compound, titanium trimellitic acid is particularly preferably used. It is preferable to use a titanium compound because it has high reactivity and can increase the content ratio of isosorbide and the intrinsic viscosity. The amount of the reaction catalyst added is preferably in the range of 20 to 120 mmol% with respect to the acid component. The titanium (Ti) content in the obtained polyester is preferably 55 ppm or more, more preferably 75 ppm or more. The upper limit is not particularly limited, but is preferably 240 ppm or less.

<用途、添加剤>
本発明のポリエステルは、耐熱性に優れることから加熱殺菌の必要な容器類に好適に用いることができる。また、本発明のポリエステルは、本発明の効果を損なわない範囲であれば、例えば滑剤,顔料,染料,酸化防止剤,光安定剤,遮光剤(例えばカーボンブラック,酸化チタン等)の如きそれ自体公知の添加剤を、必要に応じて含有させることもできる。
<Use, additives>
Since the polyester of the present invention has excellent heat resistance, it can be suitably used for containers that require heat sterilization. Further, the polyester of the present invention itself, such as a lubricant, a pigment, a dye, an antioxidant, a light stabilizer, and a light-shielding agent (for example, carbon black, titanium oxide, etc.), as long as the effect of the present invention is not impaired. Known additives can also be included, if desired.

また、本発明のポリエステルには、リン化合物を熱安定性や色調改善の観点から添加することができる。このようなリン化合物としてはリン酸系、亜リン酸系、ホスホン酸系、ホスフィン酸系、ホスフィンオキサイド系、亜ホスホン酸系、亜ホスフィン酸系、ホスフィン系の1種または2種以上を用いることが好ましい。なかでもホスホノ酢酸トリエチル等のホスホン酸系化合物が好ましく使用される。ポリエステル中のリン(P)含有量は、35ppm以上が好ましく、50ppm以上がより好ましい。また上限は特に制限されないが、150ppm以下が好ましい。 Further, a phosphorus compound can be added to the polyester of the present invention from the viewpoint of thermal stability and color tone improvement. As such a phosphorus compound, one or more of phosphoric acid-based, phosphorous acid-based, phosphonic acid-based, phosphinic acid-based, phosphine oxide-based, phosphonic acid-based, phosphinic acid-based, and phosphine-based are used. Is preferable. Of these, phosphonic acid compounds such as triethyl phosphonoacetate are preferably used. The phosphorus (P) content in the polyester is preferably 35 ppm or more, more preferably 50 ppm or more. The upper limit is not particularly limited, but is preferably 150 ppm or less.

以下実施例により本発明を詳細に説明するが、本発明はこれに限定されるものではない。なお、実施例中「部」とは「重量部」を意味する。評価方法は以下のとおりである。
1.ポリマー組成比(NMR)
日本電子製ECA−500のプロトンNMRにて各繰り返し単位を測定し、ポリマー組成比(モル比)を算出した。
2.ガラス転移点(Tg)
ポリエステル10mgを用いてPerkinElmer製のDSCを使用して、JIS K7121に準拠して窒素雰囲気下(窒素流量:50ml/min)、昇温速度:10℃/minの条件下で測定した。
3.固有粘度
ポリエステルを重量比が6:4のフェノール:トリクロロエタン混合溶媒に試料を溶解して、35℃の温度にて、オストワルド粘度計を用いて測定した。単位は[dl/g]で示す。
4.ポリエステル中のチタン元素およびリン元素の含有量
蛍光X線元素分析装置(理学製、Rataflex RU200)により測定した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. In the examples, "part" means "part by weight". The evaluation method is as follows.
1. 1. Polymer composition ratio (NMR)
Each repeating unit was measured by proton NMR of ECA-500 manufactured by JEOL Ltd., and the polymer composition ratio (molar ratio) was calculated.
2. 2. Glass transition point (Tg)
Measurements were made using 10 mg of polyester using a DSC manufactured by PerkinElmer under a nitrogen atmosphere (nitrogen flow rate: 50 ml / min) and a heating rate of 10 ° C./min in accordance with JIS K7121.
3. 3. Intrinsic Viscosity The sample was dissolved in a phenol: trichloroethane mixed solvent having a weight ratio of 6: 4 and measured at a temperature of 35 ° C. using an Ostwald viscometer. The unit is indicated by [dl / g].
4. The contents of titanium element and phosphorus element in polyester were measured by a fluorescent X-ray element analyzer (Rataflex RU200, manufactured by Rigaku).

[実施例1]
2,6−ナフタレンジカルボン酸ジメチル97.7g(0.40mol)、エチレングリコール20.9g(0.40mol)、およびイソソルビド58.5g(0.40mol)を酢酸マンガン29mg(30mmol%)存在下で、300mLのフラスコ中で撹拌し、生成するメタノールを系外に留出させながらエステル交換反応を行った。反応温度は270℃で1.5時間反応させた。ついで、ホスホノ酢酸トリエチル(TEPA)34.9mg(39mmol%)と三酸化二アンチモン23mg(20mmol%)を加え、反応温度295℃で徐々に減圧し、最終的に77Pa(0.58mmHg)の減圧下で重縮合反応を行い、式(1)のポリマー(ポリマー1)を得た。反応は所定のトルクに到達したところで終了とした。得られた生成物は粘度の高い暗褐色の透明ポリマーであった。ガラス転移点は151℃、固有粘度は0.474dl/gであった。HNMR分析よりポリマーのジオール成分中のイソソルビド量は35モル%であった。
[Example 1]
97.7 g (0.40 mol) of dimethyl 2,6-naphthalenedicarboxylic acid, 20.9 g (0.40 mol) of ethylene glycol, and 58.5 g (0.40 mol) of isosorbide in the presence of 29 mg (30 mmol%) of manganese acetate. The mixture was stirred in a 300 mL flask, and the transesterification reaction was carried out while distilling the produced methanol out of the system. The reaction temperature was 270 ° C. for 1.5 hours. Then, 34.9 mg (39 mmol%) of triethyl phosphonoacetate (TEPA) and 23 mg (20 mmol%) of diantimony trioxide were added, and the pressure was gradually reduced at a reaction temperature of 295 ° C., and finally under a reduced pressure of 77 Pa (0.58 mmHg). The polycondensation reaction was carried out in 1 to obtain the polymer of the formula (1) (polymer 1). The reaction was terminated when the predetermined torque was reached. The product obtained was a dark brown transparent polymer with high viscosity. The glass transition point was 151 ° C. and the intrinsic viscosity was 0.474 dl / g. 1 From 1 HNMR analysis, the amount of isosorbide in the diol component of the polymer was 35 mol%.

Figure 0006840019
Figure 0006840019

[実施例2]
IVが十分に高いイソソルビド共重合PENを得るため、仕込み組成、触媒を変更した。エチレングリコールを16.7g(0.32mol)とした以外は実施例1と同様にエステル交換反応を実施した。反応完了後、TEPA、三酸化二アンチモンの他にトリメリット酸チタン4.5mg(0.3mol%)を加えて重合反応を行った。得られた生成物は粘度の高い暗褐色の透明ポリマーであった。ガラス転移点は151℃、固有粘度は0.473dl/gであった。これは実施例1とほぼ同様のポリマーであり、IVの向上は確認できなかった。
[Example 2]
In order to obtain an isosorbide copolymerized PEN having a sufficiently high IV, the charged composition and catalyst were changed. The transesterification reaction was carried out in the same manner as in Example 1 except that ethylene glycol was adjusted to 16.7 g (0.32 mol). After completion of the reaction, in addition to TEPA and diantimony trioxide, 4.5 mg (0.3 mol%) of titanium trimellitic acid was added to carry out a polymerization reaction. The product obtained was a dark brown transparent polymer with high viscosity. The glass transition point was 151 ° C. and the intrinsic viscosity was 0.473 dl / g. This was almost the same polymer as in Example 1, and no improvement in IV could be confirmed.

[実施例3]
実施例2と同様の目的で、IVが十分に高いイソソルビド共重合PENを得るため、触媒量を増加させた。酢酸マンガン48mg(50mmol%)、三酸化二アンチモン57.5mg(50mmol%)、トリメリット酸チタンは添加しない、とした以外は実施例2と同様にして反応を行った。得られた生成物は粘度の高い暗褐色の透明ポリマーであった。ガラス転移点は156℃、固有粘度は0.397dl/gであり、IVの向上は確認できなかった。イソソルビドの反応性が低く、Sb触媒では量を増加させても十分に反応が進行しないと考えられる。
[Example 3]
For the same purpose as in Example 2, the amount of catalyst was increased in order to obtain an isosorbide copolymerized PEN having a sufficiently high IV. The reaction was carried out in the same manner as in Example 2 except that 48 mg (50 mmol%) of manganese acetate, 57.5 mg (50 mmol%) of diantimony trioxide, and titanium trimellitic acid were not added. The product obtained was a dark brown transparent polymer with high viscosity. The glass transition point was 156 ° C. and the intrinsic viscosity was 0.397 dl / g, and no improvement in IV could be confirmed. The reactivity of isosorbide is low, and it is considered that the reaction does not proceed sufficiently with the Sb catalyst even if the amount is increased.

[実施例4〜7]
実施例2とグリコール成分の質量を変化させずに、イソソルビド量を0.40〜0.52molの範囲で変化させ、触媒をトリメリット酸チタン60mg(40mmol%)に代えて、実施例2と同様の反応を行って暗褐色のポリマーを得た。組成と物性値を表1にまとめた。また、Ti含有量は78ppm、P含有量は51ppmであった 。
[Examples 4 to 7]
The same as in Example 2 by changing the amount of isosorbide in the range of 0.40 to 0.52 mol and replacing the catalyst with 60 mg (40 mmol%) of titanium trimellitic acid without changing the mass of the glycol component in Example 2. Reaction was carried out to obtain a dark brown polymer. The composition and physical characteristics are summarized in Table 1. The Ti content was 78 ppm and the P content was 51 ppm.

ガラス転移点はポリエチレンナフタレートの119℃から最大で177℃まで上昇した。HNMR分析から、イソソルビドの共重合量が増加すると、ガラス転移点は線形に上昇することが分かった(図1)。また、イソソルビドの増粘効果により、固有粘度は低下する傾向にあった。 The glass transition point increased from 119 ° C of polyethylene naphthalate to a maximum of 177 ° C. 1 1 HNMR analysis revealed that the glass transition point rises linearly as the amount of isosorbide copolymerization increases (Fig. 1). In addition, the intrinsic viscosity tended to decrease due to the thickening effect of isosorbide.

[実施例8]
実施例2とグリコール成分の質量を変化させずに、2,6−ナフタレンジカルボン酸ジメチル73.3g(0.3mol)、およびイソソルビド87.7g(0.6mol)をトリメリット酸チタン120mg(80mmol%)存在下で、実施例4−7と同様に300mLのフラスコ中で撹拌し、生成するメタノールを系外に留出させながらエステル交換反応を行った。反応温度は270℃で2時間反応させ。ついで、反応温度を295℃とし、徐々に減圧し、最終的に77Pa(0.58mmHg)の減圧下で重縮合反応を行い、式(1)のポリマー(ポリマー1)を得た。反応は所定のトルクに到達したところで終了とした。ガラス転移点は205℃、固有粘度は0.437であった。また、Ti含有量は156ppm、P含有量は102ppmであった 。
[Example 8]
120 mg (80 mmol%) of titanium trimellitic acid was added to Example 2 and 77.3 g (0.3 mol) of dimethyl 2,6-naphthalenedicarboxylic acid and 87.7 g (0.6 mol) of isosorbide without changing the mass of the glycol component. ) In the presence of the mixture, the mixture was stirred in a 300 mL flask in the same manner as in Example 4-7, and the transesterification reaction was carried out while distilling the produced methanol out of the system. The reaction temperature was 270 ° C. for 2 hours. Then, the reaction temperature was set to 295 ° C., the pressure was gradually reduced, and finally the polycondensation reaction was carried out under a reduced pressure of 77 Pa (0.58 mmHg) to obtain the polymer (polymer 1) of the formula (1). The reaction was terminated when the predetermined torque was reached. The glass transition point was 205 ° C. and the intrinsic viscosity was 0.437. The Ti content was 156 ppm and the P content was 102 ppm.

Figure 0006840019
[比較例1〜7]
イソソルビド量を0〜0.40molの範囲で変化させ、触媒を酢酸マンガン、三酸化二アンチモンとして、実施例1と同様の反応を行って暗褐色のポリマーを得た。組成と物性値を表2にまとめた。この触媒条件ではイソソルビド/エチレングリコールのモル比が1.0より大きい場合は、十分に反応が進行しなかった。
Figure 0006840019
[Comparative Examples 1 to 7]
The amount of isosorbide was changed in the range of 0 to 0.40 mol, the catalyst was manganese acetate and diantimony trioxide, and the same reaction as in Example 1 was carried out to obtain a dark brown polymer. The composition and physical characteristics are summarized in Table 2. Under this catalytic condition, when the molar ratio of isosorbide / ethylene glycol was greater than 1.0, the reaction did not proceed sufficiently.

Figure 0006840019
Figure 0006840019

上記の結果より、ポリエチレンナフタレートにイソソルビドを共重合したポリエステル樹脂は、ポリエチレンナフタレートと比べて著しく耐熱性が向上することが分かる。したがって、ポリエチレンナフタレートがもつ耐薬品性やガスバリア性などの特性を残しつつ、耐熱性を向上させたポリエステルが作製できると期待できる。また、イソソルビドの共重合量に対してガラス転移点は線型に増加することが判明した。したがって、イソソルビドとエチレングリコールの量と比を調節することで、119℃から205℃の間で所望のガラス転移点を有するポリマーを合成できる可能性が示された。その際用いる重合触媒は、三酸化二アンチモンよりトリメリット酸チタンなどチタン系触媒である方が反応性が高く、より好適であることが判明した。さらに、イソソルビドはバイオマス原料であるため、本発明は化石燃料に依存しないバイオポリマーとして、持続可能な社会の実現に貢献する。 From the above results, it can be seen that the polyester resin obtained by copolymerizing polyethylene naphthalate with isosorbide has significantly improved heat resistance as compared with polyethylene naphthalate. Therefore, it can be expected that a polyester having improved heat resistance can be produced while retaining the characteristics such as chemical resistance and gas barrier property of polyethylene naphthalate. It was also found that the glass transition point linearly increases with respect to the copolymerization amount of isosorbide. Therefore, it was shown that by adjusting the amount and ratio of isosorbide and ethylene glycol, it is possible to synthesize a polymer having a desired glass transition point between 119 ° C and 205 ° C. As the polymerization catalyst used at that time, it was found that a titanium-based catalyst such as titanium trimellitic acid has higher reactivity than diantimony trioxide and is more preferable. Furthermore, since isosorbide is a raw material for biomass, the present invention contributes to the realization of a sustainable society as a biopolymer that does not depend on fossil fuels.

本発明のポリエステルは、オートクレーブ処理にも耐えうる高耐熱ポリエステルであり、加熱砂金が必要な医療用容器、医療器具、食器等の用途に好適に使用される。 The polyester of the present invention is a highly heat-resistant polyester that can withstand autoclaving, and is suitably used for applications such as medical containers, medical instruments, and tableware that require heated gold dust.

Claims (6)

ジカルボン酸成分由来の構成単位中、2,6−ナフタレンジカルボン酸由来の構成単位を95〜100モル%を含み、ジオール成分由来の構成単位中、イソソルビド由来の構成単位を35〜100モル%含む、固有粘度が0.40〜0.75dl/gの範囲であり、且つ非架橋であるポリエステル。 The structural unit derived from the dicarboxylic acid component contains 95 to 100 mol% of the structural unit derived from 2,6-naphthalenedicarboxylic acid, and the structural unit derived from the diol component contains 35 to 100 mol% of the structural unit derived from isosorbide . A polyester having an intrinsic viscosity in the range of 0.40 to 0.75 dl / g and which is non-crosslinked . ガラス転移点が150℃以上である、請求項1に記載のポリエステル。 The polyester according to claim 1, wherein the glass transition point is 150 ° C. or higher. ジカルボン酸成分由来の構成単位中、2,6−ナフタレンジカルボン酸由来の構成単位を95〜100モル%、テレフタル酸および/またはイソフタル酸由来の構成単位を0〜5モル%含む請求項1または2に記載のポリエステル。 Claim 1 or 2 containing 95 to 100 mol% of the structural unit derived from 2,6-naphthalenedicarboxylic acid and 0 to 5 mol% of the structural unit derived from terephthalic acid and / or isophthalic acid among the structural units derived from the dicarboxylic acid component. The polyester described in. ジオール成分由来の構成単位中、イソソルビド由来の構成単位を35〜100モル%、炭素原子数2〜4のアルキレングリコール由来の構成単位を0〜65モル%含む請求項1〜3のいずれか1項に記載のポリエステル。 Any one of claims 1 to 3 which contains 35 to 100 mol% of the structural unit derived from isosorbide and 0 to 65 mol% of the structural unit derived from alkylene glycol having 2 to 4 carbon atoms among the structural units derived from the diol component. The polyester described in. Tiを55ppm以上含有し、Pを35ppm以上含有する請求項1〜4のいずれか1項に記載のポリエステル。 The polyester according to any one of claims 1 to 4, which contains 55 ppm or more of Ti and 35 ppm or more of P. 2,6−ナフタレンジカルボン酸を95〜100モル%を含む酸成分と、イソソルビドを35〜100モル%含むジオール成分とを、エステル化反応もしくはエステル交換反応させた後、触媒としてトリメリット酸チタンを用いて重縮合反応を行う請求項1記載のポリエステルの製造方法。 An acid component containing 95 to 100 mol% of 2,6-naphthalenedicarboxylic acid and a diol component containing 35 to 100 mol% of isosorbide are subjected to an esterification reaction or a transesterification reaction, and then titanium trimellitic acid is used as a catalyst. The method for producing a polyester according to claim 1, wherein the polycondensation reaction is carried out using the ester.
JP2017078806A 2017-04-12 2017-04-12 Polyester and its manufacturing method Active JP6840019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017078806A JP6840019B2 (en) 2017-04-12 2017-04-12 Polyester and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078806A JP6840019B2 (en) 2017-04-12 2017-04-12 Polyester and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018177942A JP2018177942A (en) 2018-11-15
JP6840019B2 true JP6840019B2 (en) 2021-03-10

Family

ID=64281178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078806A Active JP6840019B2 (en) 2017-04-12 2017-04-12 Polyester and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6840019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242647B1 (en) * 2019-10-11 2021-04-20 성균관대학교산학협력단 Copolyester containing cyclic aliphatic units, preparing method of the same, and optical film with low water absorption and low birefringence including the same
CN116199871A (en) * 2023-02-24 2023-06-02 四川轻化工大学 All-bio-based polyester and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112770A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Method of producing polyester resin composition

Also Published As

Publication number Publication date
JP2018177942A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
TWI502020B (en) Polyester resin and method for preparing the same
CN101864068B (en) Preparation method of polybutylene terephthalate/butanediol adipate copolyester
JP5370994B2 (en) Soluble copolyester resin
CN112126046B (en) Carbon dioxide-based copolyester and preparation method and application thereof
KR101492129B1 (en) Co-polyester Composition and Fibers for Thermally Adhesive Binder and Method of Preparing Same
CN111511798A (en) Polyester resin and method for producing polyester resin
US10889684B2 (en) Polyester resin
JP6840019B2 (en) Polyester and its manufacturing method
KR101276100B1 (en) Biodegradable Copolyester Resin made from Biomass Resources
CN114805779B (en) Method for synthesizing aromatic-aliphatic copolyester from aromatic polyester and product thereof
WO2014204296A1 (en) Semi-crystalline polyester
KR20190121003A (en) Eco-friendly thermoplastic polyether ester elastomer comprising anhydrosugar alcohol derivative and method for preparing the same
KR20190064304A (en) Polyester resin with improved heat resistance
JP5114993B2 (en) Polyester resin
WO2016064241A1 (en) Polycyclohexylenedimethylene terephthalate resin having enhanced crystallization speed and method for preparing same
TWI506055B (en) Preparation of modified copolyester
JP5643072B2 (en) Liquid crystal polyester
JP4048955B2 (en) Polyester and its production method
KR101807001B1 (en) Thermal adhesive co-polyester resin and binder fiber including the same
CN111116883B (en) Biodegradable copolyester and preparation method thereof
CN103588962A (en) Modified polyester composition
JP7369178B2 (en) Polyester resin and its manufacturing method
JP6357795B2 (en) Polyester resin and method for producing the same
CN114057998A (en) 2, 5-furandicarboxylic acid copolyester and preparation method thereof
KR102589193B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol and anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6840019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150