JP6836556B2 - Insulation paints and insulation - Google Patents

Insulation paints and insulation Download PDF

Info

Publication number
JP6836556B2
JP6836556B2 JP2018156903A JP2018156903A JP6836556B2 JP 6836556 B2 JP6836556 B2 JP 6836556B2 JP 2018156903 A JP2018156903 A JP 2018156903A JP 2018156903 A JP2018156903 A JP 2018156903A JP 6836556 B2 JP6836556 B2 JP 6836556B2
Authority
JP
Japan
Prior art keywords
heat insulating
silica airgel
insulating material
mass
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156903A
Other languages
Japanese (ja)
Other versions
JP2020029528A5 (en
JP2020029528A (en
Inventor
信志 熊谷
信志 熊谷
片山 直樹
直樹 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2018156903A priority Critical patent/JP6836556B2/en
Priority to PCT/JP2019/032553 priority patent/WO2020040171A1/en
Priority to CN201980039000.3A priority patent/CN112272689B/en
Publication of JP2020029528A publication Critical patent/JP2020029528A/en
Publication of JP2020029528A5 publication Critical patent/JP2020029528A5/ja
Application granted granted Critical
Publication of JP6836556B2 publication Critical patent/JP6836556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Description

本発明は、シリカエアロゲルを用いた断熱材用塗料および断熱材に関する。 The present invention relates to a coating material for a heat insulating material and a heat insulating material using silica airgel.

シリカエアロゲルは、シリカ微粒子が連結して骨格をなし10〜50nm程度の大きさの細孔構造を有する多孔質材料である。シリカエアロゲルの熱伝導率は、空気のそれよりも小さい。このため、シリカエアロゲルの高い断熱性を活かした断熱材の開発が進んでいる。 Silica airgel is a porous material in which silica fine particles are linked to form a skeleton and have a pore structure having a size of about 10 to 50 nm. The thermal conductivity of silica airgel is less than that of air. For this reason, the development of heat insulating materials utilizing the high heat insulating properties of silica airgel is in progress.

例えば、特許文献1には、水分散性ポリウレタンによって結合されたシリカエアロゲルを含み、熱伝導率が0.025W/m・K以下の物品が記載されている。特許文献2には、シリカエアロゲル粒子と、陰イオン性官能基を持つ有機ナノファイバーと、水溶性非イオン界面活性剤と、水溶性樹脂と、水と、を有するシリカエアロゲル粒子の水分散液が記載され、さらにそれを乾燥して断熱材を製造することが記載されている。特許文献3には、シリカエアロゲル粒子と、フェノール樹脂などの親水性接着剤と、親水基および疎水基を有する両親媒性化合物(界面活性剤)と、を有する断熱材が記載されている。 For example, Patent Document 1 describes an article containing silica airgel bonded with water-dispersible polyurethane and having a thermal conductivity of 0.025 W / m · K or less. Patent Document 2 describes an aqueous dispersion of silica airgel particles having silica airgel particles, organic nanofibers having anionic functional groups, a water-soluble nonionic surfactant, a water-soluble resin, and water. It is described that it is further dried to produce a heat insulating material. Patent Document 3 describes a heat insulating material having silica airgel particles, a hydrophilic adhesive such as a phenol resin, and an amphipathic compound (surfactant) having a hydrophilic group and a hydrophobic group.

特表2013−534958号公報Japanese Patent Application Laid-Open No. 2013-534958 特開2018−43927号公報Japanese Unexamined Patent Publication No. 2018-43927 特開2014−35045号公報Japanese Unexamined Patent Publication No. 2014-35045

断熱材に用いられるシリカエアロゲルは、内部に水分などが浸入して細孔を潰さないように、表面に疎水部位を有するものが多い。例えば特許文献1に記載されているように、シリカエアロゲルの固定などを目的としてウレタンバインダーを用いる場合、分散媒として疎水性溶媒を用いると、当該溶媒がシリカエアロゲルの細孔に浸入してしまう。このため、疎水性溶媒ではなく、水にウレタンバインダーを分散した分散液にシリカエアロゲルを添加して、塗料を調製している。しかしながら、シリカエアロゲルは、表面に疎水部位を有するため、水になじみにくい。加えて、比重が小さいため、水に浮きやすい。よって、水を分散媒とするバインダー分散液にシリカエアロゲルを分散させるのは難しく、分散工程に時間を要していた。また、一旦塗料を調製しても、すぐにシリカエアロゲルが水と分離して浮いてしまうという問題があった。このため、塗料を調製したら速やかに成形、塗工などの次工程を行わなければならず、作業工程上の制約が大きかった。さらに、塗料に圧力を加えると分離してしまうため、塗工機による塗工が難しく、連続生産に対応することができなかった。 Many silica airgels used as heat insulating materials have a hydrophobic portion on the surface so that moisture or the like does not infiltrate into the inside and crush the pores. For example, as described in Patent Document 1, when a urethane binder is used for the purpose of fixing silica airgel, if a hydrophobic solvent is used as the dispersion medium, the solvent penetrates into the pores of the silica airgel. Therefore, a coating material is prepared by adding silica airgel to a dispersion liquid in which a urethane binder is dispersed in water instead of a hydrophobic solvent. However, since silica airgel has a hydrophobic portion on the surface, it is difficult to be compatible with water. In addition, because of its low specific gravity, it easily floats on water. Therefore, it is difficult to disperse the silica airgel in a binder dispersion liquid using water as a dispersion medium, and the dispersion step takes time. Further, even if the paint is prepared once, there is a problem that the silica airgel immediately separates from water and floats. For this reason, once the paint is prepared, the next process such as molding and coating must be performed immediately, which imposes great restrictions on the work process. Furthermore, when pressure is applied to the paint, it separates, making it difficult to coat with a coating machine, making it impossible to support continuous production.

また、特許文献2に記載されている断熱材には、有機ナノファイバーが配合されている。ファイバー状の物質は、シリカエアロゲルの周りに絡みつき、増粘効果や、シリカエアロゲルの分散媒からの分離抑制効果を発揮する。しかしながら、本発明者の検討によると、ファイバー状の物質を配合した場合、それが熱の伝達経路になってしまい、配合量の増加と共に断熱材の熱伝導率が大きくなり断熱性が低下することがわかった。 Further, the heat insulating material described in Patent Document 2 contains organic nanofibers. The fibrous substance is entangled around the silica airgel and exerts a thickening effect and an effect of suppressing the separation of the silica airgel from the dispersion medium. However, according to the study of the present inventor, when a fibrous substance is blended, it becomes a heat transfer path, and as the blending amount increases, the thermal conductivity of the heat insulating material increases and the heat insulating property deteriorates. I understood.

本発明は、このような実情に鑑みてなされたものであり、シリカエアロゲルが分離しにくく塗工性が良好な断熱材用塗料を提供することを課題とする。また、当該断熱材用塗料を用いることにより、製造しやすく断熱性に優れた断熱材を提供することを課題とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a coating material for a heat insulating material in which silica airgel is difficult to separate and has good coatability. Another object of the present invention is to provide a heat insulating material that is easy to manufacture and has excellent heat insulating properties by using the heat insulating material paint.

(1)上記課題を解決するため、本発明の断熱材用塗料は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有することを特徴とする。 (1) In order to solve the above problems, the coating material for a heat insulating material of the present invention is characterized by having a silica airgel, an aqueous emulsion-based binder, and a polysaccharide.

(2)上記課題を解決するため、本発明の断熱材は、基材の表面および内部の少なくとも一部に、上記(1)に記載した本発明の断熱材用塗料の硬化物を有することを特徴とする。 (2) In order to solve the above problems, the heat insulating material of the present invention has at least a part of the surface and the inside of the base material having a cured product of the paint for the heat insulating material of the present invention described in (1) above. It is a feature.

(1)本発明の断熱材用塗料は、多糖類を有する。多糖類は、一種または二種以上の単糖類がグリコシド結合したものであり、高い粘性を有する。多糖類が含まれることにより、塗料の粘性が高くなり、シリカエアロゲルが分散媒から分離しにくくなる。これにより、塗料中に、シリカエアロゲルが安定して保持される。また、塗料の粘性が高くなると液だれしにくくなるため、塗料を基材に塗布しやすい。多糖類は、分子鎖の絡み合いで増粘することによりシリカエアロゲルの分離を抑制する。このため、多糖類を配合しても、ファイバー状の物質とは異なり、熱の伝達経路が形成されにくい。よって、多糖類の配合量を増加しても断熱性が低下しにくい。 (1) The coating material for heat insulating material of the present invention has a polysaccharide. Polysaccharides are glycosidic bonds of one or more monosaccharides and have high viscosity. The inclusion of polysaccharides increases the viscosity of the paint and makes it difficult for silica airgel to separate from the dispersion medium. As a result, the silica airgel is stably retained in the paint. Further, as the viscosity of the paint increases, it becomes difficult for the paint to drip, so that the paint can be easily applied to the base material. Polysaccharides suppress the separation of silica airgel by thickening due to the entanglement of molecular chains. Therefore, even if a polysaccharide is blended, it is difficult to form a heat transfer path unlike a fibrous substance. Therefore, even if the amount of the polysaccharide compounded is increased, the heat insulating property is unlikely to decrease.

上述したように、シリカエアロゲルは表面に疎水部位を有し、これにより細孔構造を維持している。例えば、親水部位と疎水部位の両方を有する多糖類を配合すると、疎水部位がシリカエアロゲルの疎水部位と選択的に結合し、親水部位がシリカエアロゲルの周りを囲むように配置されることにより、保護コロイドのような状態になる。この作用によっても、分散媒からのシリカエアロゲルの分離が抑制されると共に、シリカエアロゲルの分散性が向上する。これにより、分散に要する時間を短縮することができ、塗料化が容易になる。また、親水部位を有する多糖類は、シリカエアロゲルの細孔に浸入しにくい。 As mentioned above, silica airgel has a hydrophobic site on the surface, thereby maintaining the pore structure. For example, when a polysaccharide having both a hydrophilic part and a hydrophobic part is blended, the hydrophobic part is selectively bonded to the hydrophobic part of the silica airgel, and the hydrophilic part is arranged so as to surround the silica airgel to protect the material. It becomes like a colloid. This action also suppresses the separation of the silica airgel from the dispersion medium and improves the dispersibility of the silica airgel. As a result, the time required for dispersion can be shortened, and the coating can be easily formed. In addition, polysaccharides having hydrophilic sites do not easily penetrate into the pores of silica airgel.

このように、本発明の断熱性塗料によると、シリカエアロゲルを容易に分散することができ、分散工程の時間を短縮することができる。また、塗料を調製した後に、シリカエアロゲルが水などの分散媒から分離しにくいため、作業工程上の制約が少なくなる。すなわち、塗料を調製した後、急いで次工程を行う必要はなくなるため、数日経ってから次工程を行うことができる。加えて、塗工機による塗工が可能になり、連続生産にも対応することができる。また、塗料の粘度が高いため、フィルム状の基材にも塗工しやすくなり、様々な形態の断熱材を容易に製造することができる。また、多糖類は、食品などの添加物としても用いられ入手が容易で安価である。よって、本発明の断熱材用塗料によると、断熱材を低コストで製造することができる。 As described above, according to the heat insulating coating material of the present invention, the silica airgel can be easily dispersed, and the time of the dispersion step can be shortened. In addition, after preparing the paint, the silica airgel is difficult to separate from the dispersion medium such as water, so that restrictions on the work process are reduced. That is, since it is not necessary to hurry to perform the next step after preparing the paint, the next step can be performed after several days have passed. In addition, coating with a coating machine becomes possible, and continuous production can be supported. Further, since the viscosity of the paint is high, it becomes easy to apply the film-like base material, and various forms of heat insulating materials can be easily manufactured. In addition, polysaccharides are also used as additives for foods and the like, and are easily available and inexpensive. Therefore, according to the heat insulating material coating material of the present invention, the heat insulating material can be manufactured at low cost.

ちなみに、特許文献2、3には、界面活性剤を配合することが記載されている。しかし、界面活性剤は保護コロイド性を有するものの、増粘性に乏しいため、塗工性の改善効果は小さい。 Incidentally, Patent Documents 2 and 3 describe that a surfactant is blended. However, although the surfactant has a protective colloidal property, the effect of improving the coatability is small because the viscosity is poor.

(2)本発明の断熱材は、塗工性に優れた本発明の断熱材用塗料を用いるため、製造しやすい。また、本発明の断熱材を構成する硬化物は、シリカエアロゲルを含む他、ファイバー状の物質と比較して熱の伝達経路が形成されにくい多糖類を含む。よって、硬化物の熱伝導率を小さくすることができ、これにより高い断熱性を有する断熱材を実現することができる。例えば、主鎖が長く分子鎖の絡み合いが生じやすい多糖類を使用すると、シリカエアロゲルの保持性がより高くなる。これにより、硬化物におけるシリカエアロゲルの脱落(いわゆる粉落ち)を抑制することができる。また、硬化物の強度が高くなることにより、ひび割れなども抑制することができる。 (2) The heat insulating material of the present invention is easy to manufacture because the paint for the heat insulating material of the present invention having excellent coatability is used. Further, the cured product constituting the heat insulating material of the present invention contains silica airgel and also contains a polysaccharide in which a heat transfer path is less likely to be formed as compared with a fibrous substance. Therefore, the thermal conductivity of the cured product can be reduced, and as a result, a heat insulating material having high heat insulating properties can be realized. For example, when a polysaccharide having a long main chain and easily entangled in a molecular chain is used, the retention of silica airgel becomes higher. As a result, it is possible to prevent the silica airgel from falling off (so-called powder falling off) in the cured product. Further, by increasing the strength of the cured product, cracks and the like can be suppressed.

以下、本発明の断熱材用塗料および断熱材の実施の形態について説明する。なお、本発明の断熱材用塗料および断熱材は、以下の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Hereinafter, embodiments of the heat insulating material coating material and the heat insulating material of the present invention will be described. The coating material for heat insulating material and the heat insulating material of the present invention are not limited to the following forms, and various forms to which a person skilled in the art can make changes, improvements, etc. within the range not deviating from the gist of the present invention. It can be carried out at.

<断熱材用塗料>
本発明の断熱材用塗料(以下適宜、「塗料」と称する)は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有する。
<Paint for heat insulating material>
The coating material for a heat insulating material of the present invention (hereinafter, appropriately referred to as "painting") has a silica airgel, an aqueous emulsion-based binder, and a polysaccharide.

[シリカエアロゲル]
シリカエアロゲルの構造、形状、大きさなどは、特に限定されない。例えば、シリカエアロゲルの骨格をなすシリカ微粒子(一次粒子)の直径は2〜5nm程度、骨格と骨格との間に形成される細孔の大きさは、10〜50nm程度であることが望ましい。細孔の多くは、50nm以下のいわゆるメソ孔である。メソ孔は、空気の平均自由行程よりも小さいため、空気の対流が制限され熱の移動が阻害される。これにより、シリカエアロゲルは高い断熱性を有する。
[Silica airgel]
The structure, shape, size, etc. of the silica airgel are not particularly limited. For example, it is desirable that the diameter of the silica fine particles (primary particles) forming the skeleton of the silica airgel is about 2 to 5 nm, and the size of the pores formed between the skeletons is about 10 to 50 nm. Most of the pores are so-called mesopores of 50 nm or less. Since the mesopores are smaller than the mean free path of air, air convection is restricted and heat transfer is impeded. As a result, silica airgel has high heat insulating properties.

シリカエアロゲルの形状としては、球状、異形状の塊状などがあるが、球状が望ましい。球状の場合、分散性が向上するため塗料化しやすい。また、最密充填しやすいため充填量を多くすることができ、断熱性を高める効果が大きくなる。また、表面積が小さくなるため、熱伝導率が比較的大きいバインダーの量を低減することができ、断熱性の向上につながる。 The shape of the silica airgel includes a spherical shape and an irregularly shaped lump, but a spherical shape is preferable. In the case of a spherical shape, it is easy to make a paint because the dispersibility is improved. In addition, since it is easy to pack densely, the filling amount can be increased, and the effect of enhancing the heat insulating property is increased. Further, since the surface area is small, the amount of the binder having a relatively large thermal conductivity can be reduced, which leads to the improvement of the heat insulating property.

シリカエアロゲルの最大長さを粒子径とした場合、平均粒子径は1〜200μm程度が望ましい。シリカエアロゲルの粒子径が大きいほど、表面積が小さくなり細孔(空隙)容積が大きくなるため、断熱性を高める効果は大きくなる。例えば、平均粒子径が10μm以上のものが好適である。一方、塗料の安定性や塗工のしやすさを考慮すると、平均粒子径が100μm以下のものが好適である。また、粒子径が異なる二種類以上を併用すると、小径のシリカエアロゲルが大径のシリカエアロゲル間の隙間に入りこむため、充填量を多くすることができ、断熱性を高める効果が大きくなる。 When the maximum length of the silica airgel is taken as the particle size, the average particle size is preferably about 1 to 200 μm. The larger the particle size of the silica airgel, the smaller the surface area and the larger the pore (void) volume, so the effect of enhancing the heat insulating property becomes greater. For example, those having an average particle diameter of 10 μm or more are suitable. On the other hand, in consideration of the stability of the coating material and the ease of coating, those having an average particle size of 100 μm or less are preferable. Further, when two or more kinds having different particle diameters are used in combination, the small-diameter silica airgel enters the gap between the large-diameter silica airgels, so that the filling amount can be increased and the effect of enhancing the heat insulating property is enhanced.

シリカエアロゲルは、表面および内部のうち少なくとも表面に疎水部位を有するものが望ましい。この種のシリカエアロゲルは、製造過程において、疎水基を付与するなどの疎水化処理を施して製造することができる。少なくとも表面に疎水部位を有すると、水分などの染み込みを抑制することができるため、細孔構造が維持され、断熱性が損なわれにくい。シリカエアロゲルの製造方法は、特に限定されず、乾燥工程を常圧で行ったものでも、超臨界で行ったものでも構わない。例えば、疎水化処理を乾燥工程前に行うと、超臨界で乾燥する必要がなくなる、すなわち常圧で乾燥すればよいため、より容易かつ低コストに製造することができる。 The silica airgel preferably has a hydrophobic portion on at least the surface of the surface and the inside. This type of silica airgel can be produced by subjecting it to a hydrophobic treatment such as imparting a hydrophobic group in the production process. When at least the surface has a hydrophobic portion, it is possible to suppress the infiltration of water and the like, so that the pore structure is maintained and the heat insulating property is not easily impaired. The method for producing silica airgel is not particularly limited, and the drying step may be carried out at normal pressure or supercritical. For example, if the hydrophobizing treatment is performed before the drying step, it is not necessary to dry at supercritical, that is, it is sufficient to dry at normal pressure, so that it can be produced more easily and at low cost.

球状のシリカエアロゲルを常圧乾燥により製造する方法としては、例えば、特許第4960534号公報に記載されている方法が挙げられる。同公報によると、シリカエアロゲルは、水性シリカゾル調製工程→エマルジョン形成工程→ゲル化工程→溶媒置換工程→疎水化処理工程→乾燥工程を経て製造することができる。エマルジョン形成工程においては、前工程で得られた水性シリカゾルを疎水性溶媒中に分散させて、W/O型エマルジョン(疎水性溶媒中に水滴が分散しているエマルジョン)を形成する。これにより、分散質であるシリカゾルが表面張力などにより球状になり、それを後工程でゲル化することにより、球状のゲル化体を得ることができる。 Examples of the method for producing spherical silica airgel by atmospheric drying include the method described in Japanese Patent No. 4960534. According to the same publication, silica airgel can be produced through an aqueous silica sol preparation step → an emulsion forming step → a gelation step → a solvent replacement step → a hydrophobizing treatment step → a drying step. In the emulsion forming step, the aqueous silica sol obtained in the previous step is dispersed in a hydrophobic solvent to form a W / O type emulsion (an emulsion in which water droplets are dispersed in the hydrophobic solvent). As a result, the dispersoid silica sol becomes spherical due to surface tension or the like, and by gelling it in a subsequent step, a spherical gelled product can be obtained.

[多糖類]
多糖類としては、カルボキシルメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、キサンタンガム、アガロース、カラギナンなどが挙げられる。なかでも、シリカエアロゲルの細孔への浸入を抑制するという観点から、水との相溶性が高いものが望ましく、例えば、溶解度パラメータ(solubility parameter:SP値)が21以上で、水のSP値に近いものを採用することが望ましい。SP値が水のそれに近い多糖類は、水との相溶性が高い(水に溶けやすい)。後述のシミュレーションソフトウエアによると、水のSP値は29.7と推算される。よって、SP値が21以上の多糖類は親水性が高く、疎水性を有する細孔との親和性が低くなるため、シリカエアロゲルの細孔に浸入しにくくなる。多糖類のSP値が34以上であるとより好適である。一方、多糖類のSP値は、50以下であることが望ましい。
[Polysaccharide]
Examples of the polysaccharide include carboxylmethyl cellulose, carboxyethyl cellulose, carboxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, xanthan gum, agarose, carrageenan and the like. Among them, those having high compatibility with water are desirable from the viewpoint of suppressing the infiltration of silica airgel into the pores. For example, when the solubility parameter (SP value) is 21 or more, the SP value of water is used. It is desirable to use a similar one. Polysaccharides with an SP value close to that of water are highly compatible with water (easily soluble in water). According to the simulation software described later, the SP value of water is estimated to be 29.7. Therefore, polysaccharides having an SP value of 21 or more are highly hydrophilic and have a low affinity for hydrophobic pores, so that they are less likely to penetrate into the pores of silica airgel. It is more preferable that the SP value of the polysaccharide is 34 or more. On the other hand, the SP value of the polysaccharide is preferably 50 or less.

本明細書において、溶解度パラメータは、(株)JSOL製の材料物性シミュレーションソフトウエア「J−OCTA(登録商標)」により算出された値を採用する。同シミュレーションにおいては、原子団寄与法を用いてSP値を推算している。 In the present specification, the solubility parameter adopts the value calculated by the material property simulation software "J-OCTA (registered trademark)" manufactured by JSOL Co., Ltd. In the simulation, the SP value is estimated using the atomic group contribution method.

多糖類のうち、主鎖が長く、側鎖がないか短いものは、分子鎖の絡み合いが多くなる。これにより、シリカエアロゲルの保持性が高くなるため、硬化物におけるシリカエアロゲルの脱落を抑制することができる。さらに硬化物の強度が高くなることにより、ひび割れなども抑制することができる。このような観点から、特にカルボキシメチルセルロースが好適である。 Among polysaccharides, those having a long main chain and no or short side chains have more entanglement of molecular chains. As a result, the holding property of the silica airgel is increased, so that the silica airgel can be suppressed from falling off in the cured product. Further, by increasing the strength of the cured product, cracks and the like can be suppressed. From this point of view, carboxymethyl cellulose is particularly preferable.

保護コロイド性を発揮させてシリカエアロゲルの分散性を向上させるという観点から、多糖類は、親水部位および疎水部位を有することが望ましい。また、分子鎖による絡み合いを多くして高い増粘効果を発揮させるという観点から、多糖類の分子量は大きい方が望ましい。例えば、主鎖が長く側鎖が短いという点で好適なカルボキシメチルセルロースの場合、分子量は7万以上、10万以上、さらには30万以上であるとよい。 From the viewpoint of exhibiting protective colloidal properties and improving the dispersibility of silica airgel, it is desirable that the polysaccharide has a hydrophilic site and a hydrophobic site. Further, from the viewpoint of increasing the entanglement by the molecular chains and exerting a high thickening effect, it is desirable that the molecular weight of the polysaccharide is large. For example, in the case of carboxymethyl cellulose which is suitable in that the main chain is long and the side chain is short, the molecular weight is preferably 70,000 or more, 100,000 or more, and further 300,000 or more.

多糖類としてカルボキシメチルセルロースを用いた場合、所望の増粘効果を発揮させるという理由から、その含有量を、塗料全体を100質量%とした場合の0.08質量%以上にすることが望ましい。0.2質量%以上にするとより好適である。他方、粘度が高くなりすぎると塗工性が低下するおそれがあるため、カルボキシメチルセルロース含有量は、塗料全体を100質量%とした場合の4質量%以下であることが望ましい。好適には2質量%以下、さらには0.6質量%以下である。 When carboxymethyl cellulose is used as the polysaccharide, it is desirable that the content thereof be 0.08% by mass or more when the total amount of the coating material is 100% by mass, because a desired thickening effect is exhibited. It is more preferable to make it 0.2% by mass or more. On the other hand, if the viscosity becomes too high, the coatability may decrease. Therefore, the carboxymethyl cellulose content is preferably 4% by mass or less when the total amount of the coating material is 100% by mass. It is preferably 2% by mass or less, more preferably 0.6% by mass or less.

[水性エマルジョン系バインダー]
水性エマルジョン系バインダーは、水を溶媒としたエマルジョン状のバインダーである。水性エマルジョン系バインダーは、界面活性剤または親水基の導入により乳化されている。水性エマルジョン系バインダーによると、乾燥時に界面活性剤や親水基が揮発することにより親水性が低下し、水に溶解しにくくなるため、塗料の硬化後にべたつきが生じにくいと考えられる。エマルジョン化する方法としては、界面活性剤を乳化剤として使用した強制乳化型でも、親水基が導入された自己乳化型でも構わない。
[Aqueous emulsion binder]
The aqueous emulsion-based binder is an emulsion-like binder using water as a solvent. Aqueous emulsion binders are emulsified by the introduction of surfactants or hydrophilic groups. According to the aqueous emulsion-based binder, the hydrophilicity is lowered due to the volatilization of the surfactant and the hydrophilic group during drying, and it becomes difficult to dissolve in water, so that it is considered that stickiness is less likely to occur after the coating material is cured. The emulsification method may be a forced emulsification type using a surfactant as an emulsifier or a self-emulsification type in which a hydrophilic group is introduced.

バインダー成分としては、樹脂でもゴムでもよい。すなわち、樹脂エマルジョンでもゴムエマルジョンでもよい。樹脂としては、アクリル樹脂、ウレタン樹脂、アクリル樹脂とウレタン樹脂との混合物などが挙げられる。ゴムとしては、スチレンブタジエンゴム、ニトリルゴム、シリコーンゴム、ウレタンゴム、アクリルゴムなどが挙げられる。塗料の硬化物を柔軟にするという観点から、ウレタン樹脂、スチレンブタジエンゴムなどが好適である。 The binder component may be resin or rubber. That is, it may be a resin emulsion or a rubber emulsion. Examples of the resin include acrylic resin, urethane resin, and a mixture of acrylic resin and urethane resin. Examples of the rubber include styrene-butadiene rubber, nitrile rubber, silicone rubber, urethane rubber, acrylic rubber and the like. Urethane resin, styrene-butadiene rubber, and the like are suitable from the viewpoint of making the cured product of the paint flexible.

塗料の硬化物において、バインダー層の強度を高めて、断熱材の強度を向上させるという観点から、架橋剤などを併用してバインダー成分を架橋させてもよい。すなわち、本発明の断熱材用塗料は、シリカエアロゲル、水性エマルジョン系バインダー、多糖類の他に、架橋剤などの他の成分を含んでいてもよい。 From the viewpoint of increasing the strength of the binder layer and improving the strength of the heat insulating material in the cured product of the paint, the binder component may be crosslinked by using a crosslinking agent or the like in combination. That is, the coating material for heat insulating material of the present invention may contain other components such as a cross-linking agent in addition to silica airgel, an aqueous emulsion binder, and a polysaccharide.

[調製方法]
本発明の断熱材用塗料は、シリカエアロゲル、水性エマルジョン系バインダー、多糖類と、必要に応じて添加剤と、を水に添加し撹拌して調製すればよい。なお、表面や内部に疎水部位を有するシリカエアロゲルは、水になじみにくい。加えて、比重が小さいため、水に浮きやすく分散しにくい。よって、シリカエアロゲルの分散性を考慮すると、水に水性エマルジョン系バインダーおよび多糖類を加えて液の粘度を高めてから、シリカエアロゲルを添加することが望ましい。撹拌は、羽根撹拌でもよいが、積極的にせん断力を加えたり、超音波を加えたりしてもよい。自転公転撹拌装置や、メディア型撹拌装置を用いてもよい。
[Preparation method]
The coating material for a heat insulating material of the present invention may be prepared by adding silica airgel, an aqueous emulsion binder, a polysaccharide, and if necessary, an additive to water and stirring the mixture. In addition, silica airgel having a hydrophobic part on the surface or inside is hard to be compatible with water. In addition, since it has a small specific gravity, it easily floats on water and is difficult to disperse. Therefore, considering the dispersibility of the silica airgel, it is desirable to add the aqueous emulsion binder and the polysaccharide to water to increase the viscosity of the liquid, and then add the silica airgel. The stirring may be blade stirring, but shearing force may be positively applied or ultrasonic waves may be applied. A rotation / revolution stirring device or a media type stirring device may be used.

<断熱材>
本発明の断熱材は、基材の表面および内部の少なくとも一部に、上述した本発明の断熱材用塗料の硬化物を有する。基材の材質は、不織布などの布、樹脂などが挙げられる。基材の形状は特に限定されず、フィルム状でも成形体でもよい。本発明の断熱材は、本発明の断熱材用塗料を基材の表面に塗布し、塗膜を乾燥して製造することができる。塗布には、バーコーター、ダイコーター、コンマコーター(登録商標)、ロールコーターなどの塗工機や、スプレーなどを使用すればよい。あるいは、本発明の断熱材用塗料に基材を浸漬した後、乾燥させてもよい。塗布、浸漬のいずれの方法においても、基材が布や多孔質な材料からなる場合には、塗布した塗料の一部が基材の内部に含浸する。
<Insulation material>
The heat insulating material of the present invention has the cured product of the above-mentioned coating material for heat insulating material of the present invention on at least a part of the surface and the inside of the base material. Examples of the material of the base material include cloth such as non-woven fabric and resin. The shape of the base material is not particularly limited, and may be a film or a molded product. The heat insulating material of the present invention can be produced by applying the heat insulating material coating material of the present invention to the surface of a base material and drying the coating film. For coating, a coating machine such as a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or a spray may be used. Alternatively, the base material may be dipped in the heat insulating material coating material of the present invention and then dried. In both the coating and dipping methods, when the base material is made of cloth or a porous material, a part of the applied paint is impregnated inside the base material.

断熱材用塗料の硬化物は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有する。各々の成分については、本発明の断熱材用塗料において説明したとおりである。硬化物におけるシリカエアロゲルの含有量は、硬化物の断熱性を向上させるという観点から、硬化物全体の質量を100質量%とした場合の40質量%以上であることが望ましい。50質量%以上、65質量%以上であるとより好適である。一方、シリカエアロゲルが多すぎると脱落しやすくなるため、シリカエアロゲルの含有量は、硬化物全体の質量を100質量%とした場合の75質量%以下であることが望ましい。 The cured product of the heat insulating material has a silica airgel, an aqueous emulsion-based binder, and a polysaccharide. Each component is as described in the heat insulating material coating material of the present invention. The content of silica airgel in the cured product is preferably 40% by mass or more when the total mass of the cured product is 100% by mass from the viewpoint of improving the heat insulating property of the cured product. It is more preferable that it is 50% by mass or more and 65% by mass or more. On the other hand, if the amount of silica airgel is too large, it is likely to fall off. Therefore, the content of silica airgel is preferably 75% by mass or less when the total mass of the cured product is 100% by mass.

次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be described in more detail with reference to examples.

<塗料の調製>
[実施例1〜3]
まず、水に、水性エマルジョン系バインダーとしてのウレタン樹脂エマルジョン(三洋化成工業(株)製「パーマリン(登録商標)UA−368」、固形分50質量%)と、多糖類としてのカルボキシルメチルセルロース(CMC:SP値34.4、分子量38万)を添加して撹拌した。そこに、球状のシリカエアロゲル(平均粒子径10μm)を添加して撹拌し、塗料を調製した。シリカエアロゲルは、上述した特許第4960534号公報に記載されている方法に準じて製造されたものであり、表面および内部に疎水部位を有する。CMCの添加量を変えて3種類の塗料を調製し、実施例1〜3の塗料とした。実施例1〜3の塗料は、本発明の断熱材用塗料の概念に含まれる。
<Preparation of paint>
[Examples 1 to 3]
First, in water, a urethane resin emulsion as an aqueous emulsion binder (“Permarin (registered trademark) UA-368” manufactured by Sanyo Kasei Kogyo Co., Ltd., solid content 50% by mass) and carboxylmethyl cellulose as a polysaccharide (CMC: SP value 34.4, molecular weight 380,000) was added and stirred. Spherical silica airgel (average particle size 10 μm) was added thereto and stirred to prepare a coating material. The silica airgel is produced according to the method described in Japanese Patent No. 4960534 described above, and has hydrophobic sites on the surface and inside. Three kinds of paints were prepared by changing the amount of CMC added, and used as the paints of Examples 1 to 3. The paints of Examples 1 to 3 are included in the concept of the heat insulating material paint of the present invention.

[実施例4]
CMCの種類(分子量)を変更した点以外は、実施例1と同様にして、実施例4の塗料を調製した。実施例4においては、分子量が10万のCMCを使用した。実施例4の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 4]
The paint of Example 4 was prepared in the same manner as in Example 1 except that the type (molecular weight) of CMC was changed. In Example 4, a CMC having a molecular weight of 100,000 was used. The paint of Example 4 is included in the concept of the heat insulating material paint of the present invention.

[実施例5]
多糖類として、CMCではなくキサンタンガム(SP値34.7、分子量200万以上)を使用した点以外は、実施例3と同様にして、実施例5の塗料を調製した。実施例5の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 5]
The paint of Example 5 was prepared in the same manner as in Example 3 except that xanthan gum (SP value 34.7, molecular weight 2 million or more) was used as the polysaccharide. The paint of Example 5 is included in the concept of the heat insulating material paint of the present invention.

[実施例6]
多糖類として、CMCではなくヒドロキシエチルセルロース(HEC:アシュランド社製「Natrosol(登録商標) HH」、SP値31.7、分子量130万)を使用した点以外は、実施例1と同様にして、実施例6の塗料を調製した。実施例6の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 6]
As the polysaccharide, hydroxyethyl cellulose (HEC: Ashland's "Natrosol (registered trademark) HH", SP value 31.7, molecular weight 1.3 million) was used instead of CMC, as in Example 1. The paint of Example 6 was prepared. The paint of Example 6 is included in the concept of the heat insulating paint of the present invention.

[実施例7]
多糖類として、CMCではなくヒドロキシプロピルセルロース(HPC:アシュランド社製「Klucel(登録商標) H」、SP値28.5、分子量115万)を使用した点以外は、実施例1と同様にして、実施例7の塗料を調製した。実施例7の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 7]
The same as in Example 1 except that hydroxypropyl cellulose (HPC: Ashland's "Klucel (registered trademark) H", SP value 28.5, molecular weight 1.15 million) was used as the polysaccharide. , The paint of Example 7 was prepared. The paint of Example 7 is included in the concept of the heat insulating paint of the present invention.

[比較例1]
多糖類ではなく、増粘剤1(非イオン性合成系会合型増粘剤:アシュランド社製「Aquaflow(登録商標) XLS−530」、SP値19.5)を9.89質量%添加した点以外は実施例1と同様にして、比較例1の塗料を調製した。
[Comparative Example 1]
Instead of polysaccharides, 9.89% by mass of thickener 1 (nonionic synthetic association type thickener: "Aquaflow (registered trademark) XLS-530" manufactured by Ashland Global, SP value 19.5) was added. The paint of Comparative Example 1 was prepared in the same manner as in Example 1 except for the points.

[比較例2]
多糖類ではなく、増粘剤2(非イオン性合成系会合型増粘剤:アシュランド社製「Aquaflow(登録商標) NHS−350」、SP値20.1)を9.89質量%添加した点以外は実施例1と同様にして、比較例2の塗料を調製した。増粘剤2は、疎水成分と会合することでネットワークを形成する増粘剤である。このため、単体ではあまり増粘しないが、疎水粒子を添加すると増粘する。
[Comparative Example 2]
Instead of polysaccharides, 9.89% by mass of thickener 2 (nonionic synthetic association type thickener: "Aquaflow (registered trademark) NHS-350" manufactured by Ashland Global, SP value 20.1) was added. The paint of Comparative Example 2 was prepared in the same manner as in Example 1 except for the points. The thickener 2 is a thickener that forms a network by associating with a hydrophobic component. For this reason, it does not thicken much by itself, but it thickens when hydrophobic particles are added.

[比較例3]
多糖類ではなく、ポリビニルピロリドン(PVP:SP値36.4、分子量200万)を2.67質量%添加した点以外は、実施例1と同様にして、比較例3の塗料を調製した。
[Comparative Example 3]
The coating material of Comparative Example 3 was prepared in the same manner as in Example 1 except that polyvinylpyrrolidone (PVP: SP value 36.4, molecular weight 2 million) was added in an amount of 2.67% by mass instead of the polysaccharide.

<塗料の評価方法>
調製した塗料の分離性、塗工性、および細孔への浸入性を次の方法により評価した。調製した塗料における各成分の含有量、および塗料の評価結果については、後出の表1にまとめて示す。
<Paint evaluation method>
The separability, coatability, and penetration into pores of the prepared paint were evaluated by the following methods. The content of each component in the prepared paint and the evaluation results of the paint are summarized in Table 1 below.

[分離性]
調製した塗料を静置し、目視観察により分離するまでの時間を測定した。なお、比較例1、2については、シリカエアロゲルが塊状に凝集して分散しなかったため塗料化することができなかった。
[Separability]
The prepared paint was allowed to stand, and the time until separation was measured by visual observation. In Comparative Examples 1 and 2, the silica airgel could not be made into a paint because it was not dispersed in a mass.

[塗工性]
調製した塗料を、ポリエチレンテレフタレート(PET)フィルムにブレードコーティングした。そして、はじきや固形分の分離がなく塗工できた場合を塗工性良好(後出の表1中、〇印で示す)、塗工できたが、厚さが均一にならないなど若干の問題があった場合を塗工性普通(同表中、△印で示す)、はじきや固形分の分離があり塗工できなかった場合を塗工性不良(同表中、×印で示す)と評価した。
[Paintability]
The prepared paint was blade-coated on a polyethylene terephthalate (PET) film. Then, when the coating was successful without repelling or separation of solids, the coating performance was good (indicated by a circle in Table 1 below), and the coating was successful, but there were some problems such as the thickness not being uniform. If there is, the coatability is normal (indicated by a triangle in the table), and if the coat cannot be applied due to the separation of repellent or solid content, the coatability is poor (indicated by a cross in the table). evaluated.

[細孔への浸入性]
添加剤(実施例1〜7においては多糖類、比較例1〜3においては順に増粘剤1、増粘剤2、PVP)を水に溶解した水溶液に、シリカエアロゲルを添加、撹拌した。そして、シリカエアロゲルが沈まなかった場合を細孔への浸入なし(後出の表1中、〇印で示す)、シリカエアロゲルが沈んだ場合を細孔への浸入あり(同表中、×印で示す)と評価した。
[Invasion into pores]
Silica airgel was added to and stirred in an aqueous solution in which additives (polysaccharides in Examples 1 to 7 and thickener 1, thickener 2 and PVP in order in Comparative Examples 1 to 3) were dissolved in water. Then, when the silica airgel did not sink, there was no penetration into the pores (indicated by a circle in Table 1 below), and when the silica airgel sank, there was penetration into the pores (x mark in the same table). (Indicated by).

<断熱材の製造および評価>
調製した塗料を基材に塗布、乾燥して断熱材を製造し、その断熱性、塗膜におけるひび割れおよびシリカエアロゲルの脱落の有無を評価した。
<Manufacturing and evaluation of heat insulating materials>
The prepared paint was applied to a base material and dried to produce a heat insulating material, and the heat insulating property, cracks in the coating film, and the presence or absence of silica airgel falling off were evaluated.

[断熱性]
断熱性の評価用サンプルを、次のようにして製造した。まず、調製した塗料を不織布(倉敷繊維加工(株)製、厚さ5mm、目付け130g/m)の両面にブレードコーティングし、100℃下で1時間乾燥した。ブレードコーティングの際、不織布の内部に空気層ができないよう注意した。このようにして両面に塗膜が形成された不織布を2枚準備し、各々の一面に同じ塗料を重ねてブレードコーディングした後、当該一面同士を貼り合わせた。そして、重ね合わせた二枚の不織布に、1kgのおもりを載せ、その状態で100℃下で30分間乾燥した。その後、おもりを外して100℃下で2時間乾燥した。このようにして、積層された2枚の不織布の表面および内部に塗料の硬化物を有するサンプル(縦200mm、横200mm、厚さ10mmの正方形状)を製造した。実施例1〜7の塗料を用いたサンプルは、本発明の断熱材の概念に含まれる。
[Thermal insulation properties]
A sample for evaluation of heat insulation was produced as follows. First, the prepared paint was blade-coated on both sides of a non-woven fabric (manufactured by Kurashiki Textile Manufacturing Co., Ltd., thickness 5 mm, basis weight 130 g / m 2 ), and dried at 100 ° C. for 1 hour. At the time of blade coating, care was taken not to form an air layer inside the non-woven fabric. Two non-woven fabrics having coating films formed on both sides in this way were prepared, and the same paint was applied on each side for blade coding, and then the one side was bonded to each other. Then, a 1 kg weight was placed on the two laminated non-woven fabrics, and in that state, the weight was dried at 100 ° C. for 30 minutes. Then, the weight was removed and it was dried at 100 ° C. for 2 hours. In this way, a sample (square shape having a length of 200 mm, a width of 200 mm, and a thickness of 10 mm) having a cured product of the paint on the surface and inside of the two laminated non-woven fabrics was produced. Samples using the paints of Examples 1-7 are included in the concept of insulation of the present invention.

次に、製造したサンプルの熱伝導率を、JIS A1412−2(1999)の熱流計法に準拠した、英弘精機(株)製の熱流束計「HC−074」を用いて測定した。 Next, the thermal conductivity of the produced sample was measured using a heat flux meter "HC-074" manufactured by Eiko Seiki Co., Ltd., which complies with the heat flow meter method of JIS A1412-2 (1999).

[塗膜のひび割れ、シリカエアロゲルの脱落性]
調製した塗料を不織布(同上)の一面にブレードコーティングし、100℃下で1時間乾燥して、塗膜の評価用サンプルを製造した。実施例1〜7の塗料を用いたサンプルは、本発明の断熱材の概念に含まれる。
[Cracks in the coating film, shedding property of silica airgel]
The prepared paint was blade-coated on one surface of the non-woven fabric (same as above) and dried at 100 ° C. for 1 hour to prepare a sample for evaluation of the coating film. Samples using the paints of Examples 1-7 are included in the concept of insulation of the present invention.

まず、製造したサンプルの塗膜を目視観察し、ひび割れの有無を調べた。後出の表1中、ひび割れがなかった場合を〇印で、あった場合を×印で示す。次に、サンプルの塗膜に、弱粘着テープ(スリーエム社製「スコッチ(登録商標)はってはがせるテープ」(製品番号:811−3−12))を貼り、それを剥がした時にシリカエアロゲルが付着するか否かを調べた。そして、シリカエアロゲルが付着しなかった場合を脱落なし(以下の表1中、〇印で示す)、一部付着した場合を若干の脱落あり(同表中、△印で示す)、多量に付着した場合を脱落多し(同表中、×印で示す)と評価した。 First, the coating film of the produced sample was visually observed to check for cracks. In Table 1 below, the case where there is no crack is indicated by a ◯ mark, and the case where there is a crack is indicated by a cross mark. Next, a weak adhesive tape (3M's "Scotch (registered trademark) peelable tape" (product number: 811-3-12)) was attached to the coating film of the sample, and when it was peeled off, silica airgel appeared. It was examined whether or not it adhered. Then, when the silica airgel did not adhere, it did not fall off (indicated by ◯ in Table 1 below), and when it partially adhered, it fell off slightly (indicated by △ in the same table), and a large amount of it adhered. In this case, it was evaluated as a large number of dropouts (indicated by a cross in the table).

表1に、調製した塗料における各成分の含有量、塗料の評価結果、および断熱材の評価結果を示す。なお、断熱材の評価に使用したサンプルの塗膜におけるシリカエアロゲルの含有量は、以下のとおりである(塗膜全体を100質量%とする)。
実施例1、4、6、7:72.2質量%、実施例2:72.8質量%、実施例3、5:71.7質量%、比較例1、2:46.3質量%、比較例3:64.3質量%。

Figure 0006836556
Table 1 shows the content of each component in the prepared paint, the evaluation result of the paint, and the evaluation result of the heat insulating material. The content of silica airgel in the coating film of the sample used for the evaluation of the heat insulating material is as follows (the entire coating film is 100% by mass).
Examples 1, 4, 6, 7: 72.2% by mass, Example 2: 72.8% by mass, Example 3, 5: 71.7% by mass, Comparative Example 1, 2: 46.3% by mass, Comparative Example 3: 64.3% by mass.
Figure 0006836556

表1に示すように、多糖類を含む実施例1〜7の塗料によると、比較例3の塗料と比較して、シリカエアロゲルが分離するまでの時間が長くなり、塗工性も向上した。比較例3の塗料に添加されたPVPは、分子鎖が短く、保護コロイド性を有しない。このため、シリカエアロゲルの分離を抑制したり分散性を向上させる効果は見られなかった。なお、比較例1、2の塗料については、SP値が21未満の増粘剤を添加した。このため、増粘剤がシリカエアロゲルの細孔に浸入し、シリカエアロゲルを分散させることができず、塗料としての体をなさなかった。結果、比較例1〜3の塗料によると、塗膜を形成することができず、断熱材としての評価を行うことができなかった。 As shown in Table 1, according to the coating materials of Examples 1 to 7 containing polysaccharides, the time required for the silica airgel to separate was longer and the coatability was improved as compared with the coating materials of Comparative Example 3. The PVP added to the coating material of Comparative Example 3 has a short molecular chain and does not have protective colloidal properties. Therefore, the effect of suppressing the separation of silica airgel and improving the dispersibility was not observed. For the paints of Comparative Examples 1 and 2, a thickener having an SP value of less than 21 was added. Therefore, the thickener penetrated into the pores of the silica airgel, and the silica airgel could not be dispersed, so that the body did not form a paint. As a result, according to the paints of Comparative Examples 1 to 3, the coating film could not be formed and the evaluation as a heat insulating material could not be performed.

実施例1〜7の塗料を用いたサンプル(断熱材)においては、いずれも熱伝導率が小さくなった。例えば、40℃の空気の熱伝導率は0.0272W/m・K以下である。したがって、実施例1〜7の塗料を用いたサンプルは、当該空気よりも高い断熱性を有していることがわかる。 In the samples (heat insulating materials) using the paints of Examples 1 to 7, the thermal conductivity was reduced in each case. For example, the thermal conductivity of air at 40 ° C. is 0.0272 W / m · K or less. Therefore, it can be seen that the samples using the paints of Examples 1 to 7 have higher heat insulating properties than the air.

塗膜にCMCを含む実施例1〜4のサンプルにおいては、シリカエアロゲルの脱落はほとんどなく、ひび割れも見られなかった。実施例4のサンプルにおいて、若干の脱落が認められたが、これは、CMCの分子量が、実施例1〜3のサンプルと比較して小さかったため、分子鎖による絡み合いが少なくなり、シリカエアロゲルの保持性が低下したためと考えられる。一方、塗膜にキサンタンガムを含む実施例5のサンプルにおいては、シリカエアロゲルの脱落が多く、ひび割れが生じてしまった。この理由は、キサンタンガムは主鎖が短く側鎖を有するため、分子鎖の絡み合いが少なくなり、シリカエアロゲルの保持性が低下したためと考えられる。同様に、塗膜にHECまたはHPCを含む実施例6、7のサンプルにおいても、シリカエアロゲルの脱落が多く、ひび割れが生じてしまった。この理由は、HEC、HPCは大きな分子量を有するが、それは側鎖が長いためであり、CMCと比較して主鎖の絡み合いが少ない分、シリカエアロゲルの保持性が低下したためと考えられる。 In the samples of Examples 1 to 4 in which the coating film contained CMC, the silica airgel was hardly shed and no crack was observed. A slight dropout was observed in the sample of Example 4, because the molecular weight of CMC was smaller than that of the samples of Examples 1 to 3, so that the entanglement due to the molecular chain was reduced and the silica airgel was retained. It is probable that the sex was reduced. On the other hand, in the sample of Example 5 in which the coating film contained xanthan gum, the silica airgel often fell off and cracks occurred. It is considered that this is because xanthan gum has a short main chain and has side chains, so that the entanglement of molecular chains is reduced and the retention of silica airgel is lowered. Similarly, in the samples of Examples 6 and 7 in which the coating film contained HEC or HPC, the silica airgel often fell off and cracks occurred. It is considered that the reason for this is that HEC and HPC have a large molecular weight because the side chains are long, and the retention of silica airgel is lowered due to the less entanglement of the main chain as compared with CMC.

本発明の断熱材は、自動車用断熱内装材、住宅用断熱材、家電用断熱材、電子部品用断熱材、保温保冷容器用断熱材などに好適である。 The heat insulating material of the present invention is suitable for a heat insulating interior material for automobiles, a heat insulating material for houses, a heat insulating material for home appliances, a heat insulating material for electronic parts, a heat insulating material for heat insulating and cold insulating containers, and the like.

Claims (10)

水と、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有し、非発泡性であり、
固形分を100質量%とした場合の該シリカエアロゲルの含有量は、40質量%以上75質量%以下である断熱材用塗料。
And water, and silica airgel, it possesses an aqueous emulsion binder, and polysaccharides, and a non-foaming,
A coating material for a heat insulating material in which the content of the silica airgel is 40% by mass or more and 75% by mass or less when the solid content is 100% by mass.
前記多糖類の溶解度パラメータ(SP値)は、21以上である請求項1に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 1, wherein the solubility parameter (SP value) of the polysaccharide is 21 or more. 前記多糖類は、親水部位および疎水部位を有する請求項1または請求項2に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 1 or 2, wherein the polysaccharide has a hydrophilic portion and a hydrophobic portion. 前記多糖類は、カルボキシメチルセルロースを有する請求項1ないし請求項3のいずれかに記載の断熱材用塗料。 The coating material for a heat insulating material according to any one of claims 1 to 3, wherein the polysaccharide has carboxymethyl cellulose. 前記カルボキシメチルセルロースの含有量は、塗料全体を100質量%とした場合の0.08質量%以上4質量%以下である請求項4に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 4, wherein the content of the carboxymethyl cellulose is 0.08% by mass or more and 4% by mass or less when the entire coating material is 100% by mass. 前記シリカエアロゲルは、少なくとも表面に疎水部位を有する請求項1ないし請求項5のいずれかに記載の断熱材用塗料。 The coating material for a heat insulating material according to any one of claims 1 to 5, wherein the silica airgel has at least a hydrophobic portion on the surface. 前記水性エマルジョン系バインダーは、ウレタン樹脂を有する請求項1ないし請求項6のいずれかに記載の断熱材用塗料。 The coating material for a heat insulating material according to any one of claims 1 to 6, wherein the aqueous emulsion binder has a urethane resin. 基材の表面および内部の少なくとも一部に断熱材用塗料の硬化物を有し
該断熱材用塗料は、水と、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有し、
該硬化物における該シリカエアロゲルの含有量は、40質量%以上75質量%以下である断熱材。
Has a cured product of the sectional heat material for paint to at least a portion of the surface and the interior of the substrate,
The coating material for a heat insulating material contains water, silica airgel, an aqueous emulsion-based binder, and a polysaccharide.
The content of the silica airgel in the cured product is 40% by mass or more and 75% by mass or less .
前記断熱材用塗料は、非発泡性である請求項8に記載の断熱材。The heat insulating material according to claim 8, wherein the heat insulating paint is non-foamable. 前記基材は、樹脂または布である請求項8または請求項9に記載の断熱材。 The heat insulating material according to claim 8 or 9, wherein the base material is resin or cloth.
JP2018156903A 2018-08-24 2018-08-24 Insulation paints and insulation Active JP6836556B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018156903A JP6836556B2 (en) 2018-08-24 2018-08-24 Insulation paints and insulation
PCT/JP2019/032553 WO2020040171A1 (en) 2018-08-24 2019-08-21 Coating material for heat insulation material and heat insulation material
CN201980039000.3A CN112272689B (en) 2018-08-24 2019-08-21 Coating material for heat insulating material and heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156903A JP6836556B2 (en) 2018-08-24 2018-08-24 Insulation paints and insulation

Publications (3)

Publication Number Publication Date
JP2020029528A JP2020029528A (en) 2020-02-27
JP2020029528A5 JP2020029528A5 (en) 2021-02-25
JP6836556B2 true JP6836556B2 (en) 2021-03-03

Family

ID=69593252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156903A Active JP6836556B2 (en) 2018-08-24 2018-08-24 Insulation paints and insulation

Country Status (3)

Country Link
JP (1) JP6836556B2 (en)
CN (1) CN112272689B (en)
WO (1) WO2020040171A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4289911A4 (en) * 2021-03-09 2024-03-13 Resonac Corp Method for producing coating liquid and method for producing thermal insulation material
CN114702867B (en) * 2022-04-06 2023-03-21 湖南大途新材料有限公司 Aerogel thermal insulation decorative water-based paint, and preparation method and application thereof
WO2024080252A1 (en) * 2022-10-11 2024-04-18 株式会社レゾナック Coating liquid, method for producing coating liquid, and method for producing composite material
WO2024080239A1 (en) * 2022-10-11 2024-04-18 株式会社レゾナック Coating liquid, method for producing coating liquid, and method for producing composite material
WO2024080254A1 (en) * 2022-10-11 2024-04-18 株式会社レゾナック Coating liquid, method for producing coating liquid, and method for producing composite material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4437424A1 (en) * 1994-10-20 1996-04-25 Hoechst Ag Airgel-containing composition, process for its preparation and its use
JP2001279877A (en) * 2000-04-03 2001-10-10 Dainippon Printing Co Ltd Thermal insulation roof material
BRPI1016122A2 (en) * 2009-04-27 2016-04-19 Cabot Corp airgel compositions and methods for preparing and using them
JP2011105855A (en) * 2009-11-18 2011-06-02 Nippon Paint Co Ltd Water-based foamable fireproof coating composition
JP6026504B2 (en) * 2012-03-23 2016-11-16 井前工業株式会社 Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
CN103031049A (en) * 2012-12-21 2013-04-10 青岛格尔美环保涂料有限公司 Aqueous glass insulating paint and preparation method thereof
CN103333542A (en) * 2013-07-04 2013-10-02 河南工业大学 Silica aerogel microsphere composite thermal insulation coating
CN103589258B (en) * 2013-10-16 2015-12-23 纳诺科技有限公司 A kind of aerogel coating, production method and application
CN104761936B (en) * 2015-04-07 2017-04-12 泉州三欣新材料科技有限公司 Waterborne inorganic heat-insulating and corrosion-resistant coating and preparation method thereof
KR102023531B1 (en) * 2015-04-07 2019-09-24 주식회사 엘지화학 Aerogel containing composition and thermal insulation blanket prepared by using the same
CN105038495A (en) * 2015-07-08 2015-11-11 当涂县科辉商贸有限公司 Nanometer cellulose-loaded super thermal-insulation heat-preserving paint and preparation method thereof
CN105199521A (en) * 2015-09-22 2015-12-30 天长市开林化工有限公司 Hydrophobic silica aerogel modified acrylate emulsion coating
CN105368204A (en) * 2015-11-23 2016-03-02 宁波尚高新材料有限公司 Antistripping decorative building paint and preparation method thereof
JP6892807B2 (en) * 2016-09-12 2021-06-23 株式会社Kri Hydrophobic silica airgel particles aqueous dispersion as well as solid composites, insulation and sound absorbing materials
JP6932572B2 (en) * 2017-07-13 2021-09-08 株式会社トクヤマ Spherical silica airgel, its manufacturing method, and its use
CN107267010A (en) * 2017-07-27 2017-10-20 莱恩创科(北京)科技有限公司 A kind of multifunctional and composite type nanometer reflection heat insulating coatings and preparation method thereof
JP7121595B2 (en) * 2017-09-28 2022-08-18 住友理工株式会社 Insulation coatings and insulation
CN107556862A (en) * 2017-10-09 2018-01-09 江苏海晟涂料有限公司 A kind of heat-insulation energy-saving hull paint and preparation method thereof
CN108129628A (en) * 2017-12-20 2018-06-08 福建师范大学泉港石化研究院 From fire-retardant heat insulation aqueous polyurethane composition, foaming body and preparation method thereof

Also Published As

Publication number Publication date
JP2020029528A (en) 2020-02-27
WO2020040171A1 (en) 2020-02-27
CN112272689A (en) 2021-01-26
CN112272689B (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP6836556B2 (en) Insulation paints and insulation
JP7285085B2 (en) Insulation material and its manufacturing method
JP2019065264A (en) Coating for heat insulation material and heat insulation material
DE60308159T2 (en) PROCESS FOR THE PRODUCTION OF POLYMERIC MICROSPHERES
US20110039087A1 (en) Emulsions Of Dilatant Organopolysiloxanes
CN111154396A (en) Nano silicon dioxide modified silicon resin super-hydrophobic coating and preparation method and application thereof
JP7196854B2 (en) Coating liquid, method for producing coating film, and coating film
CN108480650A (en) A kind of liquid metal nano particle and preparation method thereof
BRPI0612595A2 (en) process for the production of porous crosslinked composite materials
CN108164744A (en) A kind of preparation method of elastomer element aeroge and its hydrophobic fibre element aeroge
MXPA05008650A (en) Reinforced polymer.
CN105887491A (en) Super-hydrophobic spraying transparent solution as well as preparation method and application thereof
CN107189659A (en) A kind of antibacterial water color polyurethane carpentry paint and preparation method thereof
JP3694032B2 (en) Chipping resistant paint
CN111074675B (en) Hydrophobic slurry and preparation method and application thereof
Fortunato et al. Reinforcement of polymeric submicrometer‐sized fibers by microfibrillated cellulose
CN107474693A (en) Low-surface-energy metal water-base epoxy paint base composition and preparation method thereof
Shen et al. Nanocellulose-based composite phase change materials for thermal energy storage: status and challenges
CN103224408A (en) Reinforcement material for preservation of cultural relics, and preparation method and application thereof
Wu et al. Synthesis and characterization of novel epoxy resins‐filled microcapsules with organic/inorganic hybrid shell for the self‐healing of high performance resins
CN106930109B (en) A kind of superhydrophobic fibers fabric and preparation method thereof
POLAT et al. Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers
JP2014087786A (en) Method for manufacturing microcapsule and microcapsule
JP2014055367A (en) Process of producing nanofibers
JP2022055295A (en) Composition for heat insulators and heat insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R150 Certificate of patent or registration of utility model

Ref document number: 6836556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150