JP6835008B2 - Cold rolling method of metal strip - Google Patents

Cold rolling method of metal strip Download PDF

Info

Publication number
JP6835008B2
JP6835008B2 JP2018027790A JP2018027790A JP6835008B2 JP 6835008 B2 JP6835008 B2 JP 6835008B2 JP 2018027790 A JP2018027790 A JP 2018027790A JP 2018027790 A JP2018027790 A JP 2018027790A JP 6835008 B2 JP6835008 B2 JP 6835008B2
Authority
JP
Japan
Prior art keywords
rolling
shape
plate
roll
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027790A
Other languages
Japanese (ja)
Other versions
JP2019141874A (en
Inventor
宏 安原
宏 安原
松原 行宏
行宏 松原
悦充 原田
悦充 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018027790A priority Critical patent/JP6835008B2/en
Publication of JP2019141874A publication Critical patent/JP2019141874A/en
Application granted granted Critical
Publication of JP6835008B2 publication Critical patent/JP6835008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Description

本発明は、金属帯の冷間圧延方法に関し、具体的には、低延性であるため破断し易い金属帯の冷間圧延方法に関するものである。 The present invention relates to a cold rolling method for a metal band, and more specifically, to a cold rolling method for a metal band which has low ductility and is easily broken.

以下、金属帯として、鋼板を例にとって説明する。
鋼板の冷間圧延においては、一般に、圧延時の板破断を防止するため、圧延機出側の鋼板形状をリアルタイムに測定し、該形状が目標形状と一致するよう、形状制御アクチュエータを操作することが行われている。しかし、近年、需要が増加している高張力鋼板や電磁鋼板、ステンレス鋼板等は、脆性材料、即ち、低延性材料であるため板破断を起こし易く、いわゆる「難圧延材」として知られている。
Hereinafter, a steel plate will be described as an example of the metal strip.
In cold rolling of steel sheets, in general, in order to prevent sheet breakage during rolling, the shape of the steel sheet on the exit side of the rolling mill is measured in real time, and the shape control actuator is operated so that the shape matches the target shape. Is being done. However, high-strength steel sheets, electromagnetic steel sheets, stainless steel sheets, etc., whose demand has been increasing in recent years, are brittle materials, that is, low ductility materials, and therefore easily cause plate breakage, and are known as so-called "difficult-to-roll materials". ..

鋼板を破断することなく圧延するためには、鋼板の両幅端部(エッジ部)のように破断の起点となり易い箇所への過度な応力集中を防止するため、鋼板の平坦度を確保し、板幅方向の張力分布が均一となるよう圧延後の鋼板形状を制御することが重要となる。しかし、上記のような難圧延材では、小さな応力集中でも板破断に至るため、形状制御範囲が狭いだけでなく、トライ&エラーで形状制御目標値を決定しようとした場合には、試行回数が多くなったり、試行時に板破断を起こして圧延設備の稼働率低下や歩留まり低下を招いたりするという問題を抱えている。 In order to roll the steel sheet without breaking it, the flatness of the steel sheet should be ensured in order to prevent excessive stress concentration at the points where the steel sheet tends to break, such as the both width ends (edges) of the steel sheet. It is important to control the shape of the steel sheet after rolling so that the tension distribution in the plate width direction becomes uniform. However, in the above-mentioned difficult-to-roll materials, even a small stress concentration leads to plate breakage, so not only the shape control range is narrow, but also when trying to determine the shape control target value by trial and error, the number of trials is increased. There is a problem that the number of sheets increases and the plate breaks during a trial, resulting in a decrease in the operating rate of the rolling equipment and a decrease in the yield.

圧延後の鋼板形状を測定する方法としては、例えば、図1に示したような接触式の形状測定装置(平坦度計)が実用化されている。この測定装置は、鋼板と接触するロールを鋼板の幅方向に複数に分割し、それぞれの分割ロールに埋め込んだ荷重センサ(ロードセル)によって鋼板幅方向の鋼板とロール間の接触荷重を測定し、該接触荷重分布から幅方向の張力分布を求める、即ち、伸び率差を求めることによって鋼板形状を推定するものである。 As a method for measuring the shape of a steel sheet after rolling, for example, a contact-type shape measuring device (flatness meter) as shown in FIG. 1 has been put into practical use. This measuring device divides a roll in contact with a steel sheet into a plurality of rolls in the width direction of the steel sheet, and measures the contact load between the steel sheet and the roll in the width direction of the steel sheet by a load sensor (load cell) embedded in each divided roll. The shape of the steel sheet is estimated by obtaining the tension distribution in the width direction from the contact load distribution, that is, by obtaining the difference in elongation.

また、鋼板の形状を制御するアクチュエータとしては、ロールの両端にベンダ力を付与してワークロールの軸心たわみ量を変化させるロールベンダ機構や、片側端部にテーパを付与した中間ロールを板幅方向にシフトする中間ロールシフト機構、液圧によりロールクラウンを操作するVCロール機構などがある。また、ゼンジマー圧延機では、バックアップロールを鋼板の幅方向に分割して、それぞれを独立して圧下するAs−U機構などが知られている。 Further, as an actuator for controlling the shape of the steel plate, a roll bender mechanism that applies bender force to both ends of the roll to change the amount of axial deflection of the work roll, and an intermediate roll having a taper on one end are used. There is an intermediate roll shift mechanism that shifts in the direction, a VC roll mechanism that operates the roll crown by hydraulic pressure, and the like. Further, in the Zenzimer rolling mill, an As—U mechanism or the like in which a backup roll is divided in the width direction of a steel sheet and each is rolled independently is known.

また、冷間圧延時の板破断を防止する技術しては、例えば、特許文献1には、形状プロフィール制御手段を備える複数の6重(6Hi)圧延機を直列に配列して構成されるタンデム冷間圧延機において、最終スタンドを除く複数のスタンドで金属帯のエッジドロップが予め定める範囲を満たすように形状プロフィール制御手段の制御量を制御する際、少なくとも一箇所のスタンド間における金属帯の最大張力が予め定める範囲を満たすように形状プロフィール制御手段の制御量を補正し、最終スタンドを除く複数のスタンドで金属帯のエッジドロップが予め定める範囲を満たすよう制御することによって、耳割れや板破断を防止する方法が開示されている。 Further, as a technique for preventing plate breakage during cold rolling, for example, in Patent Document 1, a tandem composed of a plurality of 6-layer (6Hi) rolling mills provided with shape profile control means arranged in series. In a cold rolling mill, when controlling the control amount of the shape profile control means so that the edge drop of the metal strip satisfies a predetermined range in a plurality of stands other than the final stand, the maximum of the metal strip between at least one stand. By correcting the control amount of the shape profile control means so that the tension satisfies the predetermined range and controlling the edge drop of the metal band to satisfy the predetermined range on a plurality of stands excluding the final stand, ear cracking and plate breakage occur. The method of preventing the above is disclosed.

特開平08−215728号公報Japanese Unexamined Patent Publication No. 08-215728

しかしながら、上記特許文献1は、基本的に板幅方向の最大張力を適正範囲内に制御することによって板破断を防止する技術であるため、高強度鋼板や電磁鋼板、ステンレス鋼板のような脆性材料(低延性材料)、特に、引張強さが0.2%耐力以下となるような難圧延材においては、圧延時の板破断を完全に防止することはできなかった。 However, since Patent Document 1 is a technique for preventing plate breakage by basically controlling the maximum tension in the plate width direction within an appropriate range, brittle materials such as high-strength steel plates, electromagnetic steel plates, and stainless steel plates are used. (Low ductility material), especially in difficult-to-roll materials having a tensile strength of 0.2% or less, could not completely prevent plate breakage during rolling.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高強度鋼板や電磁鋼板、ステンレス鋼板のように引張強さが0.2%耐力以下となるような難圧延材でも板破断を起こすことなく圧延することができる金属帯の冷間圧延方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to have a tensile strength of 0.2% or less, such as a high-strength steel sheet, an electromagnetic steel sheet, or a stainless steel sheet. It is an object of the present invention to propose a cold rolling method for a metal strip capable of rolling even a difficult-to-roll material without causing plate breakage.

発明者らは、上記の課題を解決するべく、圧延時の鋼板に掛かる板幅方向の張力分布と鋼板形状との関係に着目して鋭意検討を重ねた。その結果、鋼板の板幅端部(エッジ部)には微小な割れ等の欠陥部が存在するため、他の箇所と比べて割れを起こし易いが、板幅端部の張力がゼロとなるように形状を制御して圧延を行うことで、板幅端部に存在する欠陥部への応力集中を抑止し、割れが拡大して板破断に到ることを防止できることを知見し、本発明を開発するに至った。 In order to solve the above problems, the inventors have made extensive studies focusing on the relationship between the tension distribution in the width direction of the steel sheet during rolling and the shape of the steel sheet. As a result, since there are defects such as minute cracks at the plate width end portion (edge portion) of the steel sheet, cracks are more likely to occur compared to other portions, but the tension at the plate width end portion becomes zero. It has been found that stress concentration on the defective portion existing at the edge of the plate width can be suppressed and cracks can be prevented from expanding and causing plate breakage by performing rolling by controlling the shape of the sheet. It came to be developed.

すなわち、本発明は、形状制御アクチュエータと、圧延機の出側に形状測定装置を有する冷間圧延機を用いた金属帯の冷間圧延方法において、上記形状測定装置で測定した圧延機出側の金属帯の板幅端部におけるユニット張力がゼロとなるよう、形状制御アクチュエータで金属帯の形状を制御しつつ圧延することを特徴とする金属帯の冷間圧延方法を提案する。 That is, in the present invention, in a cold rolling method for a metal strip using a shape control actuator and a cold rolling mill having a shape measuring device on the exit side of the rolling mill, the outside of the rolling mill measured by the shape measuring device. We propose a cold rolling method for a metal strip, which comprises rolling while controlling the shape of the metal strip with a shape control actuator so that the unit tension at the plate width end of the metal strip becomes zero.

本発明の冷間圧延方法が対象とする上記金属帯は、圧延後の圧延方向の引張強さが0.2%耐力以下であることを特徴とする。 The metal strip targeted by the cold rolling method of the present invention is characterized in that the tensile strength in the rolling direction after rolling is 0.2% proof stress or less.

本発明によれば、圧延機出側の鋼板端部の張力がゼロとなるよう、圧延後の鋼板形状を制御しつつ圧延するので、圧延時の耳割れや板破断を大幅に低減することができ、ひいては、生産性の向上や品質の向上に大いに寄与することができる。 According to the present invention, since rolling is performed while controlling the shape of the steel sheet after rolling so that the tension at the end of the steel sheet on the exit side of the rolling mill becomes zero, it is possible to significantly reduce ear cracks and plate breakage during rolling. As a result, it can greatly contribute to the improvement of productivity and quality.

分割ロール方式の形状測定装置を説明する図である。It is a figure explaining the shape measuring apparatus of the split roll type. 鋼板形状の形状を定義する急峻度λおよび伸び差率Δε(I−unit)を説明する図である。It is a figure explaining the steepness λ which defines the shape of a steel plate shape, and the elongation difference rate Δε (I-unit). 0.2%耐力を説明する図である。It is a figure explaining 0.2% proof stress. 本発明の実施例で用いた6Hi圧延機を説明する図である。It is a figure explaining the 6Hi rolling mill used in the Example of this invention. 実施例における発明例と比較例の圧延条件を説明する図である。It is a figure explaining the rolling condition of the invention example and comparative example in an Example. 実施例における板破断回数を、発明例と比較例で比較して示す図である。It is a figure which compares the number of plate breaks in an Example with an invention example and a comparative example.

先述したように、近年、需要が増加している高張力鋼板や電磁鋼板、ステンレス鋼板は、低延性の難圧延材料であるため、鋼板の平坦度を確保しつつ、かつ、板破断を起こすことなく冷間圧延することが難しいという問題がある。また、圧延時の板破断を防止するためには、圧延後の鋼板形状をリアルタイムに測定して板幅方向の鋼板張力分布が均一となるよう、鋼板形状を制御することが重要であるが、上記難圧延材は、形状制御の許容範囲が狭く、形状制御の目標値の設定にも時間を要するという問題がある。 As mentioned above, high-strength steel sheets, electromagnetic steel sheets, and stainless steel sheets, whose demand has been increasing in recent years, are low-ductility difficult-to-roll materials, so that the flatness of the steel sheets is ensured and the sheet breaks. There is a problem that it is difficult to perform cold rolling. Further, in order to prevent plate breakage during rolling, it is important to measure the shape of the steel plate after rolling in real time and control the shape of the steel plate so that the tension distribution of the steel plate in the plate width direction becomes uniform. The difficult-to-roll material has a problem that the allowable range of shape control is narrow and it takes time to set a target value for shape control.

上記問題に対しては、先述した特許文献1に開示されたように、板幅方向の最大張力を適正範囲内に制御することによって板破断を防止する技術が提案されているが、該技術では、目標張力とその算出方法を具体的に開示していないため、低延性材料、特に、引張強さが0.2%耐力以下となるような難圧延材においては、圧延時の板破断を完全に防止することはできなかった。 To solve the above problem, as disclosed in Patent Document 1 described above, a technique for preventing plate breakage by controlling the maximum tension in the plate width direction within an appropriate range has been proposed, but the technique has been proposed. Since the target tension and its calculation method are not specifically disclosed, the plate breakage during rolling is complete for low ductility materials, especially for difficult-to-roll materials whose tensile strength is 0.2% or less. Could not be prevented.

そこで、本発明は、板幅方向の最大張力を適正範囲内に制御することによって板破断を防止する従来技術とは発想を変えて、圧延機出側の鋼板板幅端部のユニット張力(単位面積当たりの張力)がゼロとなるようにして鋼板を圧延する、すなわち、形状制御アクチュエータと圧延機の出側に平坦度計を有する圧延機を用いて、低延性の鋼板を冷間圧延するに際して、形状制御アクチュエータを動作させて、圧延機出側の平坦度計で実測した鋼板の板幅端部のユニット張力がゼロとなるよう鋼板形状を制御して圧延することによって、板幅端部に存在する微小な割れ等欠陥部への応力集中を防止し、圧延時の板破断を防止することを提案する。 Therefore, the present invention is different from the conventional technique of preventing plate breakage by controlling the maximum tension in the plate width direction within an appropriate range, and the unit tension (unit) at the end of the steel plate width on the rolling mill exit side. When rolling a steel sheet so that the tension per area) becomes zero, that is, when a low-rolling steel sheet is cold-rolled using a rolling mill having a shape control actuator and a flatness meter on the outlet side of the rolling mill. By operating the shape control actuator and rolling by controlling the shape of the steel sheet so that the unit tension at the end of the sheet width measured by the flatness meter on the exit side of the rolling mill becomes zero, the end of the sheet width is rolled. We propose to prevent stress concentration on existing defects such as minute cracks and prevent plate breakage during rolling.

図1に示したような分割ロールを用いた接触式の形状測定装置で測定した鋼板形状(平坦度)は、一般に、急峻度λや伸び差率ΔεまたはI−unitで表される。
ここで、急峻度λは、図2に示した波高さδと波のピッチLとの比であり、下記(1)式;
λ=δ/L ・・・(1)
のように表される。
また、伸び差率Δεは、同じく図2に示した伸び差ΔLと波のピッチLとの比であり、下記(2)式;
Δε=ΔL/L ・・・(2)
のように表される。また、I−unitは、下記(3)式;
I−unit=Δε×10 ・・・(3)
に示すように伸び差率Δεを10倍した値である。
なお、波を正弦曲線で近似した場合、急峻度λと伸び差率Δεは、下記(4)式;
Δε=2.47λ ・・・(4)
の関係にある。
The steel plate shape (flatness) measured by a contact-type shape measuring device using a split roll as shown in FIG. 1 is generally represented by a steepness λ, an elongation difference rate Δε, or an I-unit.
Here, the steepness λ is the ratio of the wave height δ and the wave pitch L shown in FIG. 2, and the following equation (1);
λ = δ / L ・ ・ ・ (1)
It is expressed as.
Further, the elongation difference rate Δε is the ratio of the elongation difference ΔL also shown in FIG. 2 to the wave pitch L, and is represented by the following equation (2);
Δε = ΔL / L ・ ・ ・ (2)
It is expressed as. The I-unit is the following equation (3);
I-unit = Δε × 10 5 ... (3)
A value 105 times the elongation difference ratio Δε as shown in.
When the wave is approximated by a sine curve, the steepness λ and the elongation difference rate Δε are calculated by the following equation (4);
Δε = 2.47λ 2 ... (4)
There is a relationship of.

また、上記鋼板形状の板幅方向の分布(平坦度分布)から、板幅方向のユニット張力Tの分布に換算するには、上記(3)式および(5)〜(8)式を用いる。
σ=T/(w×t) ・・・(5)
σmax=Max(σ1〜n) ・・・(6)
Δσ=σmax−σ ・・・(7)
Δε=Δσ/E ・・・(8)
ここで、nは、板幅方向の分割数、iは板幅方向の分割位置を表す1〜nの整数、wは各分割要素の幅、tは各分割要素の板厚、Eはヤング率である。
Further, in order to convert the distribution of the steel plate shape in the plate width direction (flatness distribution) into the distribution of the unit tension T in the plate width direction, the above equations (3) and (5) to (8) are used.
σ i = T i / (w i × t i) ··· (5)
σ max = Max (σ 1 to n ) ・ ・ ・ (6)
Δσ i = σ max -σ i ··· (7)
Δε i = Δσ i / E ・ ・ ・ (8)
Here, n is the number of divisions in the plate width direction, i is an integer of 1 to n representing the division position in the plate width direction, w is the width of each division element, t is the plate thickness of each division element, and E is Young's modulus. Is.

したがって、本発明は、上記(5)式におけるσとσがともに0となるように圧延機出側の鋼板形状を制御しつつ圧延することによって、圧延時の板破断を防止する技術であるといえる。したがって、板幅方向の最大張力を適正範囲に制御することによって板破断を防止する特許文献1の技術とは技術思想が基本的に異なる。 Therefore, the present invention is a technique for preventing plate breakage during rolling by rolling while controlling the shape of the steel plate on the exit side of the rolling mill so that both σ 1 and σ n in the above equation (5) are 0. It can be said that there is. Therefore, the technical idea is basically different from the technique of Patent Document 1 that prevents plate breakage by controlling the maximum tension in the plate width direction within an appropriate range.

なお、本発明は、冷間圧延時の板破断を防止する技術であることから、本発明を適用する対象鋼板としては、高張力鋼板や電磁鋼板、ステンレス鋼板等、加工硬化による延性低下が大きく、圧延時に板破断を起こし易い鋼板であることが好ましく、具体的には、圧延後の鋼板から圧延方向を引張方向とする試験片を採取して引張試験を行ったときの引張強さが0.2%耐力以下である、即ち、図3に示したように、永久歪が0.2%に達する前に破断を起こすような低延性の鋼板に適用するのが好ましい。延性の高い材料は、鋼板の板幅端部のユニット張力が0.2%耐力超えとなったときは、破断せずに塑性変形するため、本発明を適用する必要性に乏しいからである。なお、より確実に破断を防止する観点から、圧延後の引張強さが0.2%耐力超えの鋼板に適用してもよいことは勿論である。 Since the present invention is a technique for preventing plate breakage during cold rolling, the target steel plates to which the present invention is applied include high-tensile steel plates, electromagnetic steel plates, stainless steel plates, etc., and the ductility is significantly reduced due to work hardening. , It is preferable that the steel plate is prone to plate breakage during rolling. Specifically, the tensile strength when a test piece having the rolling direction as the tensile direction is collected from the rolled steel plate and subjected to a tensile test is 0. It is preferably applied to low ductility steel sheets having a withstand capacity of .2% or less, that is, as shown in FIG. 3, which causes breakage before the permanent strain reaches 0.2%. This is because a material having high ductility is less necessary to apply the present invention because it is plastically deformed without breaking when the unit tension at the end of the width of the steel plate exceeds 0.2% proof stress. Of course, from the viewpoint of more reliably preventing fracture, it may be applied to a steel sheet having a tensile strength after rolling exceeding 0.2% proof stress.

また、図1に示したような分割ロールを用いた形状測定装置では、鋼板が耳延びを起こしている場合、耳延びの大きさに拘わらず、鋼板とロール間の接触荷重が0となる。そのため、鋼板端部のユニット張力が0であっても、耳延びが大きくなると、逆に鋼板の板幅中央部に応力が集中し、板破断を起こしたりする。そのため、平坦度を確保する観点からも、ユニット張力が0となるよう制御するのは、板幅両端部のみとするのが好ましい。また、鋼板全幅において板破断を防止する観点から、板幅方向のユニット張力分布における最大ユニット張力は、可能な範囲で、できるだけ小さい値とすることがより好ましい。 Further, in the shape measuring device using the split roll as shown in FIG. 1, when the steel plate has the ear extension, the contact load between the steel plate and the roll becomes 0 regardless of the size of the ear extension. Therefore, even if the unit tension at the end of the steel plate is 0, if the ear extension becomes large, the stress concentrates on the central portion of the width of the steel plate, and the plate breaks. Therefore, from the viewpoint of ensuring flatness, it is preferable that the unit tension is controlled to be 0 only at both ends of the plate width. Further, from the viewpoint of preventing plate breakage in the entire width of the steel plate, it is more preferable that the maximum unit tension in the unit tension distribution in the plate width direction is as small as possible.

また、本発明を適用することができる冷間圧延機としては、圧延機出側に圧延後の鋼板形状を測定することができる形状測定装置と、該形状測定装置で測定した平坦度に応じて、鋼板形状を制御することができる形状制御アクチュエータとを有する圧延機であれば、いずれでもよく、制限はない。したがって、単スタンドのリバース式圧延機や圧延機を直列に並べたタンデム圧延機でもよく、また、上記圧延機は、2Hiや4Hi、6Hi等の多重圧延機でもよく、また、クラスター圧延機やゼンジミア圧延機であってよい。 Further, as a cold rolling mill to which the present invention can be applied, a shape measuring device capable of measuring the shape of a steel sheet after rolling on the exit side of the rolling mill and a flatness measured by the shape measuring device are used. Any rolling mill has a shape control actuator capable of controlling the shape of the steel plate, and there is no limitation. Therefore, a single-stand reverse type rolling mill or a tandem rolling mill in which rolling mills are arranged in series may be used, and the rolling mill may be a multi-rolling mill such as 2Hi, 4Hi, 6Hi, or a cluster rolling mill or Zendimia. It may be a rolling mill.

また、本発明に用いることができる形状測定装置(平坦度計)としては、圧延機出側の鋼板の板幅方向のユニット張力分布をリアルタイムに測定できるものであればよく、図1に示したような接触式の分割ロール方式のものの他に、非接触式の振動式や透磁率式、たわみ式などを用いることができる。なお、非接触式の振動式や透磁率式、たわみ式などで測定した鋼板の平坦度からユニット張力分布への換算は、前述した(3)式および(5)〜(8)式を用いて行えばよい。 Further, the shape measuring device (flatness meter) that can be used in the present invention may be any device that can measure the unit tension distribution in the plate width direction of the steel plate on the exit side of the rolling mill in real time, and is shown in FIG. In addition to the contact type split roll type, a non-contact type vibration type, magnetic permeability type, deflection type and the like can be used. The above-mentioned equations (3) and (5) to (8) are used to convert the flatness of the steel sheet measured by the non-contact vibration type, the magnetic permeability type, the deflection type, etc. to the unit tension distribution. Just do it.

また、本発明に用いることができる板形状制御アクチュエータも、鋼板形状を制御し、板幅端部のユニット張力を0に制御することができるものであればよく、制御方法は特に限定されない。したがって、例えば、先述したように、ワークロールを軸心を含む垂直面内で曲げてクラウン量を制御するロールベンダ方式や、油圧でロールを拡縮してクラウンを変化させるVCロール方式、片テーパを有する中間ロールや3次曲線カーブを有するロールを軸心方向に移動させてクラウン量を変化させるロールシフト方式、上下のロールのクロス角を変えることによってクラウン量を制御するロールクロス方式、バックアップロールを鋼板の幅方向に分割して、それぞれを独立して圧下するAs−U機構など、いずれを用いてもよい。 Further, the plate shape control actuator that can be used in the present invention is also limited as long as it can control the shape of the steel plate and control the unit tension at the end of the plate width to 0, and the control method is not particularly limited. Therefore, for example, as described above, a roll bender method in which the work roll is bent in a vertical plane including the axis to control the amount of crown, a VC roll method in which the roll is expanded or contracted hydraulically to change the crown, and a single taper are used. A roll shift method that changes the crown amount by moving an intermediate roll or a roll that has a cubic curve in the axial direction, a roll cross method that controls the crown amount by changing the cross angle of the upper and lower rolls, and a backup roll. Any method may be used, such as an As-U mechanism that divides the steel sheet in the width direction and presses each of them independently.

図4に示したように、圧延機の入側および出側のそれぞれに形状測定装置が1台ずつ設置された6Hi単スタンドのリバース式圧延機を用いて、Siを3mass%含有する板厚:0.45mm×板幅:1000mmの方向性電磁鋼板用の素材鋼板を、1パスで、板厚0.30mmまで圧延する実験を行った。なお、上記圧延後の鋼板から圧延方向を引張方向とする引張試験片を採取し、引張試験を行ったところ、0.2%耐力に達する前に破断した。
ここで、図4に示した6Hiの圧延機について説明すると、上記圧延機は、ワークロール2とバックアップロール4から構成される4Hi圧延機に対し、形状制御アクチュエータとして、ワークロール2とバックアップロール4の間に片側端部にテーパを付与した中間ロール3を配設し、該中間ロールを軸心方向(板幅方向)にシフトさせることで形状制御能力を高めたものである。具体的には、中間ロールのテーパ部を板幅の外側方向に移動させた場合には、鋼板端部の圧下が大きくなるため、圧延後の鋼板は耳延び傾向となり、鋼板端部に掛かる張力は低減する。一方、中間ロールのテーパ部を板幅の内側方向に移動させた場合には、鋼板端部の圧下が小さくなるため、圧延後の鋼板は中伸び傾向となり、鋼板端部に掛かる張力は増大する。
また、上記圧延実験においては、出側に設置された形状測定装置で測定した圧延後の鋼板形状が、予め設定しておいた2水準の目標形状となるように、中間ロールを軸心方向にシフトさせて圧延を行った。具体的には、図5(a)に示したように、鋼板の両幅端部のユニット張力が60MPaとなるよう中間ロールを制御した場合(比較例)と、鋼板の両幅端部のユニット張力が0(ゼロ)となるよう中間ロールを制御した場合(発明例)について、それぞれの水準で500コイルの圧延を行い、板破断が発生した回数を調査する実験を行った。この際、圧延時に鋼板に掛ける後方張力(入側張力)は90kN、前方張力(出側張力)は42kNに設定した。
As shown in FIG. 4, a 6Hi single-stand reverse rolling mill in which one shape measuring device is installed on each of the entry side and the exit side of the rolling mill is used, and the plate thickness containing 3 mass% of Si: An experiment was conducted in which a material steel sheet for a directional electromagnetic steel sheet of 0.45 mm × plate width: 1000 mm was rolled to a plate thickness of 0.30 mm in one pass. A tensile test piece having the rolling direction as the tensile direction was collected from the rolled steel sheet and subjected to a tensile test. As a result, the steel sheet broke before reaching 0.2% proof stress.
Here, the 6Hi rolling mill shown in FIG. 4 will be described. In contrast to the 4Hi rolling mill composed of the work roll 2 and the backup roll 4, the work roll 2 and the backup roll 4 are used as shape control actuators. An intermediate roll 3 having a taper on one end is arranged between the two, and the intermediate roll is shifted in the axial direction (plate width direction) to enhance the shape control ability. Specifically, when the tapered portion of the intermediate roll is moved in the outward direction of the plate width, the reduction of the steel plate end portion becomes large, so that the rolled steel plate tends to extend to the ear and the tension applied to the steel plate end portion. Is reduced. On the other hand, when the tapered portion of the intermediate roll is moved inward in the plate width, the reduction of the steel plate end portion becomes smaller, so that the rolled steel plate tends to stretch in the middle and the tension applied to the steel plate end portion increases. ..
Further, in the above rolling experiment, the intermediate roll is moved in the axial direction so that the shape of the steel plate after rolling measured by the shape measuring device installed on the output side becomes the target shape of two levels set in advance. Rolling was performed by shifting. Specifically, as shown in FIG. 5A, when the intermediate roll is controlled so that the unit tension at both width ends of the steel sheet is 60 MPa (comparative example), the unit at both width ends of the steel sheet When the intermediate roll was controlled so that the tension became 0 (zero) (invention example), 500 coils were rolled at each level, and an experiment was conducted to investigate the number of times the plate was broken. At this time, the rear tension (entrance side tension) applied to the steel sheet during rolling was set to 90 kN, and the front tension (outside tension) was set to 42 kN.

その結果、圧延後の鋼板の形状は、図5(b)に示したように、比較例の圧延条件でも両幅端部のI−unitが板幅中央部より大きく、耳延び傾向であったが、発明例の圧延条件では、さらに鋼板の両幅端部のI−unitが大きくなり、圧延後の鋼板形状はより耳延び傾向となった。しかし、500コイル圧延時の板破断は、図6に示したように、板幅端部のユニット張力を60MPaに設定した比較例の圧延条件では2回発生したが、板幅端部のユニット張力を0MPaに設定した発明例の圧延条件では0回であり、本発明の適用が有効であることが確認された。 As a result, as shown in FIG. 5B, the shape of the steel sheet after rolling showed that the I-units at both width ends were larger than those at the center of the plate width even under the rolling conditions of the comparative example, and the ears tended to extend. However, under the rolling conditions of the example of the invention, the I-unit at both width ends of the steel sheet became larger, and the shape of the steel sheet after rolling tended to extend more ears. However, as shown in FIG. 6, the plate breakage during 500 coil rolling occurred twice under the rolling conditions of the comparative example in which the unit tension at the plate width end was set to 60 MPa, but the unit tension at the plate width end was unit tension. Was set to 0 MPa under the rolling conditions of the invention example, which was 0 times, confirming that the application of the present invention was effective.

本発明の技術は、引張強さが0.2%耐力以下の低延性の鋼板に限定されるものではなく、引張強さが0.2%超えの高延性の鋼板にも好適に用いることができる。 The technique of the present invention is not limited to low ductility steel sheets having a tensile strength of 0.2% or less proof stress, and may be suitably used for high ductility steel sheets having a tensile strength of more than 0.2%. it can.

1:被圧延材(鋼板)
2:ワークロール
3:中間ロール
4:バックアップロール
5:形状測定装置の分割ロール(平坦度計)
6:入側(出側)コイル
1: Rolled material (steel plate)
2: Work roll 3: Intermediate roll 4: Backup roll 5: Divided roll of shape measuring device (flatness meter)
6: Enter (exit) coil

Claims (2)

形状制御アクチュエータと、出側に形状測定装置を有する冷間圧延機を用いた金属帯の冷間圧延方法において、
上記形状測定装置で測定した形状の情報を幅方向での張力値に換算し、圧延機出側の金属帯の板幅端部における張力がゼロとなるよう、形状制御アクチュエータで金属帯の形状を制御しつつ圧延することを特徴とする金属帯の冷間圧延方法。
In a cold rolling method for a metal strip using a shape control actuator and a cold rolling machine having a shape measuring device on the output side.
The shape information measured by the above shape measuring device is converted into a tension value in the width direction, and the shape of the metal strip is determined by the shape control actuator so that the tension at the plate width end of the metal strip on the exit side of the rolling mill becomes zero. A cold rolling method for metal strips, which comprises rolling while controlling.
上記金属帯は、圧延後の圧延方向の引張強さが0.2%耐力以下であることを特徴とする請求項1に記載の金属帯の冷間圧延方法。ここで、引張強さが0.2%耐力以下であるか否かは、永久歪が0.2%に達する前に破断を起こすか否かで判断する。 The cold rolling method for a metal strip according to claim 1, wherein the metal strip has a tensile strength of 0.2% proof stress or less in the rolling direction after rolling. Here, whether or not the tensile strength is 0.2% proof stress or less is determined by whether or not fracture occurs before the permanent strain reaches 0.2%.
JP2018027790A 2018-02-20 2018-02-20 Cold rolling method of metal strip Active JP6835008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027790A JP6835008B2 (en) 2018-02-20 2018-02-20 Cold rolling method of metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027790A JP6835008B2 (en) 2018-02-20 2018-02-20 Cold rolling method of metal strip

Publications (2)

Publication Number Publication Date
JP2019141874A JP2019141874A (en) 2019-08-29
JP6835008B2 true JP6835008B2 (en) 2021-02-24

Family

ID=67770693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027790A Active JP6835008B2 (en) 2018-02-20 2018-02-20 Cold rolling method of metal strip

Country Status (1)

Country Link
JP (1) JP6835008B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123911A1 (en) * 2020-12-07 2022-06-16 Jfeスチール株式会社 Cold rolling method and method for producing cold-rolled steel sheet
US20240033798A1 (en) * 2020-12-07 2024-02-01 Jfe Steel Corporation Cold rolling method and method for producing cold-rolled steel sheet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126903A (en) * 1984-11-24 1986-06-14 Kawasaki Steel Corp Method and device for rolling plate material
JPS61162218A (en) * 1985-01-11 1986-07-22 Nippon Steel Corp Method for controlling shape of rolled thin plate
JPS62158511A (en) * 1986-01-07 1987-07-14 Nippon Steel Corp Shape control method for plate rolling
JPS62192205A (en) * 1986-02-17 1987-08-22 Nippon Steel Corp Method for controlling rolling shape of strip
JPH0576905A (en) * 1991-09-25 1993-03-30 Kawasaki Steel Corp Method for preventing edge crack in cold rolling of silicon steel sheet
JPH0687005A (en) * 1992-09-08 1994-03-29 Kobe Steel Ltd Cold rolling method
JPH08215728A (en) * 1995-02-10 1996-08-27 Nisshin Steel Co Ltd Method and device for controlling edge drop of metallic strip in tandem cold rolling mill
JP3354792B2 (en) * 1996-06-14 2002-12-09 新日本製鐵株式会社 Cold tandem rolling equipment
JP3252751B2 (en) * 1997-04-28 2002-02-04 住友金属工業株式会社 Strip width control method in cold tandem rolling
JP2002224727A (en) * 2001-02-06 2002-08-13 Kawasaki Steel Corp Controlling system and method for shape of metal strip
JP2007283320A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Cold tandem rolling mill
JP6020479B2 (en) * 2014-01-29 2016-11-02 Jfeスチール株式会社 Cold rolling equipment and cold rolling method
JP6256365B2 (en) * 2015-02-04 2018-01-10 Jfeスチール株式会社 Method and equipment for measuring flat shape of steel strip

Also Published As

Publication number Publication date
JP2019141874A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
KR20220061151A (en) Rolling method of super austenitic stainless steel
JP6835008B2 (en) Cold rolling method of metal strip
CN113020319B (en) Strip steel leveling process method and production line
CA1038662A (en) Method for controlling flatness of metal sheet in rolling
JP4238198B2 (en) Skin pass rolling machine and rolling method thereof
JP3458731B2 (en) Shape control method and shape control device for cold tandem rolling mill
JPH0521653B2 (en)
JP2000167604A (en) Plate rolling mill and plate rolling method
JP3649208B2 (en) Tandem rolling equipment control method and tandem rolling equipment
JP4813014B2 (en) Shape control method for cold tandem rolling mill
JP2007118024A (en) Method for straightening metallic sheet with roller leveler
JP5949569B2 (en) Method for temper rolling of steel sheet and ultra high strength steel sheet
JP4412442B2 (en) Correction method of metal plate by roller leveler
JP7067541B2 (en) Rolling mill control method and control device
JP7226381B2 (en) cold rolling method
JP5761071B2 (en) Temper rolling method, temper rolling equipment and rolling line for high strength steel plate
JP7200918B2 (en) Cold-rolling method for steel plate and method for manufacturing cold-rolled steel plate
JP6354718B2 (en) Cold tandem rolling mill and manufacturing method of high strength cold rolled steel sheet
JP6733396B2 (en) Rolling mill
JP3327212B2 (en) Cold rolling method with reduced edge drop
JP6685785B2 (en) Shape control method in cold rolling
JP2006198661A (en) Cold tandem mill and cold tandem rolling method
JP2981135B2 (en) Cold rolling method for sheet material
RU2148449C1 (en) Method for profiling equal-flange angles
JP5928221B2 (en) Temper rolling method for cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6835008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250