JP6827749B2 - Encapsulant - Google Patents

Encapsulant Download PDF

Info

Publication number
JP6827749B2
JP6827749B2 JP2016186333A JP2016186333A JP6827749B2 JP 6827749 B2 JP6827749 B2 JP 6827749B2 JP 2016186333 A JP2016186333 A JP 2016186333A JP 2016186333 A JP2016186333 A JP 2016186333A JP 6827749 B2 JP6827749 B2 JP 6827749B2
Authority
JP
Japan
Prior art keywords
encapsulant
filler
inorganic filler
polyhedral
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186333A
Other languages
Japanese (ja)
Other versions
JP2018050018A (en
Inventor
吉岡 謙
謙 吉岡
正樹 諏訪
正樹 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2016186333A priority Critical patent/JP6827749B2/en
Publication of JP2018050018A publication Critical patent/JP2018050018A/en
Application granted granted Critical
Publication of JP6827749B2 publication Critical patent/JP6827749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Details Of Resistors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、抵抗器等を含む電子部品の封止に使用する封入材に関する。 The present invention relates to an encapsulant used for encapsulating electronic components including resistors and the like.

従来より、セラミック製のケース内に巻線抵抗素子あるいは酸化金属皮膜抵抗素子を収納し、封入材により封止した大電力用の抵抗器が知られている。このような抵抗器は、例えば自動車のエンジンルーム内で使用され、発熱量が大きいため抵抗素子で発生した熱を外部へ逃がすことが重要になる。 Conventionally, there has been known a resistor for high electric power in which a winding resistance element or a metal oxide film resistance element is housed in a ceramic case and sealed with an encapsulant. Such a resistor is used, for example, in an engine room of an automobile, and since it generates a large amount of heat, it is important to release the heat generated by the resistance element to the outside.

例えば特許文献1は、基体上に抵抗膜を着膜した抵抗素子と、抵抗素子の両端に圧入した金属製キャップと、抵抗素子を内包するケースと、板状の電極端子と、抵抗素子をケース内に封止するための絶縁材料とで構成された、面実装が可能な高電力用の抵抗器を開示している。ここで絶縁材料は、アルミナ粉やシリカ粉を含有したセメント、樹脂等からなる。 For example, Patent Document 1 describes a resistance element having a resistance film formed on a substrate, metal caps press-fitted at both ends of the resistance element, a case containing the resistance element, a plate-shaped electrode terminal, and a resistance element. We disclose a surface mountable high power resistor composed of an insulating material for sealing inside. Here, the insulating material is made of cement, resin or the like containing alumina powder or silica powder.

また、大電力用の抵抗器として、従来よりセメント抵抗器(角型固定巻線抵抗器)が広く使用されている。例えば特許文献2は、抵抗素子と、抵抗素子を収容する絶縁ケースと、抵抗素子に当接するとともに絶縁ケースから導出される熱拡散板とを備え、抵抗素子を絶縁ケースに収容した状態で絶縁ケース内にセメントを充填して硬化させたセメント抵抗器を開示している。特許文献2のセメント抵抗器は、放熱効率を高めるため熱拡散板を抵抗素子に直接接触させた構造を有し、セメントは、砂状または粉末状の石英、ジルコニア、アルミナ、雲母等からなる耐熱絶縁材を主成分とし、シリコーン樹脂等のバインダー材を少量含む耐熱絶縁充填剤等を用いている。 Further, as a resistor for high power, a cement resistor (square fixed winding resistor) has been widely used conventionally. For example, Patent Document 2 includes a resistance element, an insulating case accommodating the resistance element, and a heat diffusion plate that comes into contact with the resistance element and is derived from the insulation case, and the insulation case is provided with the resistance element housed in the insulation case. A cement resistor in which a cement is filled and hardened is disclosed. The cement resistor of Patent Document 2 has a structure in which a heat diffusion plate is in direct contact with a resistance element in order to improve heat dissipation efficiency, and the cement is heat resistant made of sandy or powdery quartz, zirconia, alumina, mica, or the like. A heat-resistant insulating filler or the like containing an insulating material as a main component and a small amount of a binder material such as a silicone resin is used.

特開2000−82601号公報Japanese Unexamined Patent Publication No. 2000-8261 特開2015−106598号公報JP-A-2015-106598

上述した従来の高電力用の抵抗器において絶縁材料として使用しているシリカ粉は、保存性、安定性に欠けるため長期間の保管には適さないという問題がある。また、上記従来の大電力用抵抗器(セメント抵抗器)は、熱伝導率の高い板状の金属を屈曲させて形成した熱拡散板を抵抗素子に接触させる等、抵抗器の構造により放熱効率を向上させている。加えて、熱拡散板のうち絶縁ケースに収容された収容部とセラミック基板とを熱伝導率の高い接着剤を使用して面接触させていることから、抵抗器の構造および製造工程が複雑化する。 Silica powder used as an insulating material in the above-mentioned conventional high-power resistors has a problem that it is not suitable for long-term storage because it lacks storage stability and stability. Further, the above-mentioned conventional high-power resistor (cement resistor) has a heat dissipation efficiency due to the structure of the resistor, such as bringing a heat diffusion plate formed by bending a plate-shaped metal having a high thermal conductivity into contact with a resistance element. Is improving. In addition, since the accommodating portion of the thermal diffusivity plate housed in the insulating case and the ceramic substrate are brought into surface contact with each other using an adhesive having high thermal conductivity, the structure and manufacturing process of the resistor are complicated. To do.

一方、封入材の熱伝導率を向上させようとする場合、フィラーを多量にバインダー樹脂に配合する(充填率を高める)ことが有効であっても、フィラーの量を増やすと流動性が低下するという問題がある。また、フィラーの充填率を高めて熱伝導率を向上させることは、封入材の空隙率が小さくなることを意味する。この場合の空隙は、封入材の熱膨張を吸収する役割を果たすため、空隙率が小さくなり過ぎると熱膨張を吸収しきれず、封入材が注入された絶縁性ケースに亀裂が入ったり、絶縁性ケースが破壊されるおそれがある。 On the other hand, when trying to improve the thermal conductivity of the encapsulant, even if it is effective to add a large amount of filler to the binder resin (increasing the filling rate), increasing the amount of filler lowers the fluidity. There is a problem. Further, increasing the filling rate of the filler to improve the thermal conductivity means that the porosity of the encapsulant becomes smaller. Since the voids in this case play a role of absorbing the thermal expansion of the encapsulant, if the porosity becomes too small, the thermal expansion cannot be completely absorbed, and the insulating case into which the encapsulant is injected may be cracked or have an insulating property. The case may be destroyed.

本発明は、上述した課題に鑑みて成されたものであり、その目的とするところは、電子部品の封止に用いる封入材として熱伝導率を向上させた封入材を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an encapsulant having improved thermal conductivity as an encapsulant used for encapsulating electronic components.

かかる目的を達成し、上述した課題を解決する一手段として、例えば、以下の構成を備える。すなわち、本発明は、抵抗器、コンデンサ、バリスタ、ヒューズの封止に使用する封入材であって、前記封止材は少なくとも、粒子形状が多面体形状の無機フィラーと、粒子形状が球形の無機フィラーと、シリコーン樹脂とを含有し、前記多面体形状の無機フィラーは酸化アルミニウム粒子であり、前記球形の無機フィラーは酸化マグネシウム粒子であることを特徴とする。
また、本発明は、抵抗器、コンデンサ、バリスタ、ヒューズの封止に使用する封入材であって、前記封止材は少なくとも、粒子形状が多面体形状の無機フィラーと、粒子形状が球形の無機フィラーと、シリコーン樹脂とを含有し、前記多面体形状の無機フィラーの平均粒径はサブミクロン〜数ミクロンであり、前記球形の無機フィラーの平均粒径は数十ミクロン〜数百ミクロンであり、前記多面体形状の無機フィラーは酸化アルミニウム粒子であり、前記球形の無機フィラーは酸化マグネシウム粒子であることを特徴とする。
As one means for achieving such an object and solving the above-mentioned problems, for example, the following configuration is provided. That is, the present invention is an encapsulant used for encapsulating resistors, capacitors, varistor, and fuses , and the encapsulant is at least an inorganic filler having a polyhedron shape and an inorganic filler having a spherical particle shape. The polyhedron-shaped inorganic filler contains aluminum oxide particles, and the spherical inorganic filler is magnesium oxide particles .
Further, the present invention is an encapsulant used for encapsulating resistors, capacitors, varistor, and fuses, and the encapsulant is at least an inorganic filler having a polyhedron shape and an inorganic filler having a spherical particle shape. And the silicone resin, the average particle size of the polyhedron-shaped inorganic filler is submicron to several microns, the average particle size of the spherical inorganic filler is several tens of microns to several hundreds of microns, and the polyhedron The shape of the inorganic filler is aluminum oxide particles, and the spherical inorganic filler is magnesium oxide particles.

えば前記球形の無機フィラーと前記多面体形状の無機フィラーの混合比は6:4〜8:2であることを特徴とする The mixing ratio of the inorganic filler example if the inorganic filler of the spherical said polyhedral shape 6: 4-8: characterized in that it is a 2.

また、本発明の抵抗器は、両端部に電極が装着された抵抗素子と、一面に開口部を有し、前記抵抗素子を収容する凹部が形成された絶縁性ケースとを備え、前記抵抗素子が収容された前記凹部を、前記開口部より充填した上記の封入材で封止してなることを特徴とする。例えば、前記封入材の空隙率が10〜35%であることを特徴とする。 Further, the resistor of the present invention includes a resistance element having electrodes mounted on both ends and an insulating case having an opening on one surface and a recess for accommodating the resistance element. The recess is sealed with the above-mentioned encapsulant filled from the opening. For example, the porosity of the encapsulant is 10 to 35%.

本発明によれば、平均粒径と材質の異なる複数の無機フィラーを混合した封入材により、総界面積を減らして界面での熱の損失を少なくして、熱伝導率を向上できる。 According to the present invention, the encapsulant in which a plurality of inorganic fillers having different average particle sizes and materials are mixed can reduce the total boundary area, reduce the heat loss at the interface, and improve the thermal conductivity.

本発明の実施の形態例に係る抵抗器の製造工程を時系列で示すフローチャートである。It is a flowchart which shows the manufacturing process of the resistor which concerns on embodiment of this invention in time series. 本実施の形態例に係る抵抗器を示しており、(a)はその分解構造図、(b)は、図1の工程を経て作製された抵抗器の外観斜視図である。A resistor according to an example of the present embodiment is shown, (a) is an exploded structure view thereof, and (b) is an external perspective view of the resistor manufactured through the steps of FIG.

以下、添付図面を参照して本発明に係る実施の形態例を詳細に説明する。図1は、本実施の形態例に係る抵抗器の製造工程を時系列で示すフローチャートである。また、図2(a)は、本実施の形態例に係る抵抗器の分解構造図、図2(b)は、図1の工程を経て作製された抵抗器の外観斜視図である。 Hereinafter, examples of embodiments according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a flowchart showing a manufacturing process of a resistor according to an example of the present embodiment in chronological order. 2 (a) is an exploded structural view of the resistor according to the embodiment of the present embodiment, and FIG. 2 (b) is an external perspective view of the resistor produced through the steps of FIG.

図1のステップS11において、抵抗器の抵抗素子を作製するため、例えばアルミナ等からなる円柱状の絶縁体、あるいはガラス繊維を束ねて長尺の棒状に形成した芯材の外周表面に、例えばNiCr系合金、NiFe系合金等からなる抵抗線を所定ピッチで巻き付ける。抵抗線を巻き付けた芯材は長尺の状態であるため、ステップS13で、カッターにより所定長の個片に切断し、抵抗素子を作製する。作製された抵抗素子を、図2(a)において符号12で示す。 In step S11 of FIG. 1, in order to manufacture a resistance element of a resistor, for example, a columnar insulator made of alumina or the like, or an outer peripheral surface of a core material formed by bundling glass fibers into a long rod shape, for example, NiCr. A resistance wire made of a system alloy, a NiFe system alloy, or the like is wound at a predetermined pitch. Since the core material around which the resistance wire is wound is in a long state, it is cut into pieces having a predetermined length by a cutter in step S13 to produce a resistance element. The manufactured resistance element is shown by reference numeral 12 in FIG. 2A.

ステップS15では、個片に切断された抵抗素子の両端部にキャップを装着する。具体的には、図2(a)に示すようにキャップ部11aと板状端子13aとが一体となった金属製キャップ15aと、キャップ部11bと板状端子13bとが一体となった金属製キャップ15b各々を、抵抗素子12の両端部に装着(嵌合)する。 In step S15, caps are attached to both ends of the resistance element cut into individual pieces. Specifically, as shown in FIG. 2A, a metal cap 15a in which the cap portion 11a and the plate-shaped terminal 13a are integrated, and a metal in which the cap portion 11b and the plate-shaped terminal 13b are integrated are made. Each of the caps 15b is attached (fitted) to both ends of the resistance element 12.

なお、図2(a)に示す金属製キャップ15a,15bは、キャップ部11aと板状端子13a、キャップ部11bと板状端子13bそれぞれを一体成型しているが、キャップ部と板状端子を個別に製造して、それらを溶接等で接続して一体化してもよい。 In the metal caps 15a and 15b shown in FIG. 2A, the cap portion 11a and the plate-shaped terminal 13a and the cap portion 11b and the plate-shaped terminal 13b are integrally molded, but the cap portion and the plate-shaped terminal are integrally molded. They may be manufactured individually and connected by welding or the like to be integrated.

ステップS17において、セラミックケース17の内部に封入材19を充填する。図2(a)に示すようにセラミックケース17は全体が直方体形状で、開口した一つの面を上面(開口面)17aとし、抵抗素子12を収納する凹部14が形成されている。この凹部14に、無機材料である充填剤をバインダー等と混合して液状(泥状)にした封入材19を充填する。なお、抵抗素子を収容するケースは、上述したセラミック等の絶縁材料の他、例えば樹脂製のケース、金属製(アルミ等)のケースであってもよい。 In step S17, the inside of the ceramic case 17 is filled with the encapsulant 19. As shown in FIG. 2A, the ceramic case 17 has a rectangular parallelepiped shape as a whole, one open surface is an upper surface (opening surface) 17a, and a recess 14 for accommodating the resistance element 12 is formed. The recess 14 is filled with an encapsulant 19 which is made into a liquid (mud) by mixing a filler which is an inorganic material with a binder or the like. In addition to the above-mentioned insulating material such as ceramic, the case for accommodating the resistance element may be, for example, a resin case or a metal (aluminum or the like) case.

続くステップS19では、両端部に金属製キャップ15a,15bが装着された抵抗素子12を、図2(a)において白抜き矢印で示すように移動して、封入材19が充填されたセラミックケース17の凹部14に収容する。セラミックケース17内に収容された抵抗素子12は、図2(b)に示すように封入材19に浸って没入するが、金属製キャップ15a,15bの板状端子13a,13bの一部はセラミックケース17の開口部17aから外部に突出し、それら突出した部位が抵抗器10の外部接続端子18a,18bとなる。 In the following step S19, the resistance element 12 having the metal caps 15a and 15b mounted on both ends is moved as shown by the white arrows in FIG. 2A, and the ceramic case 17 filled with the encapsulant 19 is formed. It is housed in the recess 14 of the. As shown in FIG. 2B, the resistance element 12 housed in the ceramic case 17 is immersed in the encapsulant 19, but some of the plate-shaped terminals 13a and 13b of the metal caps 15a and 15b are made of ceramic. It protrudes outward from the opening 17a of the case 17, and the protruding portions serve as external connection terminals 18a and 18b of the resistor 10.

次にステップS21において、例えば200℃程度の温度で乾燥・焼付けを行って封入材19を硬化させた後、ステップS23において、セラミックケース17の表面にレーザーによる定格等の表示を行う。そして、最後のステップS25で抵抗器の抵抗値の検測、外観等の検査を行う。 Next, in step S21, the encapsulant 19 is cured by drying and baking at a temperature of, for example, about 200 ° C., and then in step S23, the rating or the like is displayed on the surface of the ceramic case 17 by a laser. Then, in the final step S25, the resistance value of the resistor is inspected, the appearance and the like are inspected.

次に、本実施の形態例に係る抵抗器の封止に使用する封入材について詳細に説明する。本実施の形態例に係る抵抗器の封入材は、フィラー(充填材)、バインダー樹脂、溶剤、添加剤(主に沈降抑制剤)により構成される樹脂組成物である。ここでは、充填材である無機フィラー(無機充填材)の粒子形状を、例えば八面体等の多面体形状とすることで熱伝導率を向上させている。また、後述するように、粒子形状と平均粒径の異なる複数種類のフィラーを組み合せる。 Next, the encapsulant used for encapsulating the resistor according to the present embodiment will be described in detail. The encapsulant of the resistor according to the embodiment of the present embodiment is a resin composition composed of a filler (filler), a binder resin, a solvent, and an additive (mainly a sedimentation inhibitor). Here, the thermal conductivity is improved by changing the particle shape of the inorganic filler (inorganic filler), which is a filler, to a polyhedral shape such as an octahedron. Further, as will be described later, a plurality of types of fillers having different particle shapes and average particle sizes are combined.

封入材のバインダー樹脂として、シリコーン樹脂の一種であるポリシルセスキオキサンを用いる。バインダー樹脂の含有量は、例えばシリコーン組成物全体に対して10重量%以下とする。また、封入材の溶剤として、キシレンとIPA(イソプロピルアルコール)の混合溶媒、キシレンを用いないIPA、またはIPAとシクロヘキサンの混合溶媒のいずれかを用いる。 Polysilcesquioxane, which is a kind of silicone resin, is used as the binder resin of the encapsulant. The content of the binder resin is, for example, 10% by weight or less based on the entire silicone composition. Further, as the solvent of the encapsulant, either a mixed solvent of xylene and IPA (isopropyl alcohol), IPA without xylene, or a mixed solvent of IPA and cyclohexane is used.

なお、近年における環境保全の観点からは、環境負荷の大きい物質であるキシレンを用いない(キシレンレス)タイプの溶媒を使用することが望まれるとともに、IPAは、シリコーン樹脂を比較的良好に溶解でき、廉価で毒性が少ないため比較的安全に使用できる。また、IPAとシクロヘキサンの混合溶媒は、IPA/シクロヘキサン=1/2の重量比で共沸系(任意の温度で液相組成と気相組成が常に均一である)を形成し、共沸点が68.6℃と低いため、キシレンよりも蒸発速度が速いにもかかわらずコスト的に同程度であり、シリコーン樹脂との親和性もキシレンと同程度である。 From the viewpoint of environmental conservation in recent years, it is desirable to use a solvent of a type that does not use xylene (xylene-less), which is a substance having a large environmental load, and IPA can dissolve the silicone resin relatively well. It is inexpensive and less toxic, so it can be used relatively safely. Further, the mixed solvent of IPA and cyclohexane forms an azeotropic system (the liquid phase composition and the gas phase composition are always uniform at an arbitrary temperature) at a weight ratio of IPA / cyclohexane = 1/2, and the co-boiling point is 68. Since the temperature is as low as 0.6 ° C., the evaporation rate is faster than that of xylene, but the cost is the same, and the affinity with silicone resin is also the same as that of xylene.

封入材においてフィラーの比重が溶剤よりも大きいためフィラーが沈降しやすいことから、封入材の添加剤(沈降抑制剤)として、例えば、有機ベントナイト等の有機変性した層状鉱物を添加する。 Since the specific gravity of the filler in the encapsulant is larger than that of the solvent, the filler tends to settle. Therefore, as an additive (precipitation inhibitor) for the encapsulant, for example, an organically modified layered mineral such as organic bentonite is added.

上述したように、本実施の形態例に係る抵抗器の封入材において、多面体形状の無機フィラー(多面体フィラー)を使用することで、球状フィラーのみを使用した場合と比較して、フィラー同士が面で接触することとなり、熱伝導率を向上させることができる。すなわち、多面体フィラーは各面がほぼ平面であるため、破砕状フィラー、不定形フィラーよりもフィラー同士が面で接触しやすく、フィラー同士が面で接触することにより伝熱経路を確保し、熱伝導性が向上する。 As described above, by using the polyhedral-shaped inorganic filler (polyhedral filler) in the encapsulant of the resistor according to the embodiment of the present embodiment, the fillers face each other as compared with the case where only the spherical filler is used. The contact is made with, and the thermal conductivity can be improved. That is, since each surface of the polyhedral filler is almost flat, the fillers are more likely to come into contact with each other on the surface than the crushed filler and the amorphous filler, and the fillers come into contact with each other to secure a heat transfer path and conduct heat. Improves sex.

また、抵抗器内部の伝熱構造は、抵抗素子で発生した熱がフィラー内部の格子振動で伝わるので、フィラーは、熱損失が生じる結晶粒界を少なくすることが望ましい。このことから、結晶子のサイズが大きい(単結晶に近いものが望まれる)フィラーを使用する。よって、熱伝導率を向上させるためには、無機フィラーの粒径をできるだけ大きくして総界面積を減らし、界面での熱の損失を少なくすることが望ましい。 Further, in the heat transfer structure inside the resistor, the heat generated by the resistance element is transferred by the lattice vibration inside the filler, so that the filler preferably reduces the grain boundaries where heat loss occurs. For this reason, a filler having a large crystallite size (preferably close to a single crystal) is used. Therefore, in order to improve the thermal conductivity, it is desirable to increase the particle size of the inorganic filler as much as possible to reduce the total boundary area and reduce the heat loss at the interface.

さらに、封入材において熱伝導率を低下させる要因となる空気を含む空隙の割合を適切な範囲(10〜35%、望ましくは10〜20%)とするため、平均粒径が一種類のフィラーのみならず、複数種類の平均粒径のフィラーを組み合わせて、フィラーを高充填率化させる。 Furthermore, in order to keep the proportion of air-containing voids in the encapsulant, which is a factor that lowers the thermal conductivity, within an appropriate range (10 to 35%, preferably 10 to 20%), only fillers having one type of average particle size Instead, a plurality of types of fillers having an average particle size are combined to increase the filling rate of the fillers.

そこで、本実施の形態例に係る抵抗器の封入材の無機フィラーにおいて、多面体フィラーに球形フィラーを混合することにより、適切な流動性と空隙率を確保する。ここでは、無機フィラーとして、多面体状の酸化アルミニウム(アルミナ:Al23)粒子(小粒径フィラー)と、高温焼成された球状の酸化マグネシウム(マグネシア:MgO)粒子(大〜中粒径フィラー)の2種類の材質、粒径のフィラーを使用する。 Therefore, in the inorganic filler of the encapsulant of the resistor according to the embodiment of the present embodiment, an appropriate fluidity and porosity are ensured by mixing the spherical filler with the polyhedral filler. Here, as inorganic fillers, polyhedral aluminum oxide (alumina: Al 2 O 3 ) particles (small particle size filler) and spherical magnesium oxide (magnesia: MgO) particles (large to medium particle size filler) fired at a high temperature are used. ) Two types of materials and particle size fillers are used.

より具体的には、平均粒径がサブミクロン〜数ミクロン程度の多面体状のアルミナ粒子と、平均粒径が数十ミクロン〜数百ミクロン程度の球状のマグネシア粒子を使用する。これらの多面体状のアルミナ粒子を「小粒径フィラー」、球状のマグネシア粒子を「大〜中粒径フィラー」と総称すると、本実施の形態例に係る抵抗器の封入材における無機フィラーは、小粒径フィラーと大〜中粒径フィラーを各1種類ずつ混合してなると言える。 More specifically, polyhedral alumina particles having an average particle size of about submicron to several microns and spherical magnesia particles having an average particle size of about several tens of microns to several hundreds of microns are used. When these polyhedral alumina particles are collectively referred to as "small particle size filler" and spherical magnesia particles are collectively referred to as "large to medium particle size filler", the inorganic filler in the encapsulant of the resistor according to the present embodiment is small. It can be said that one type of each of the particle size filler and the large to medium particle size filler is mixed.

アルミナとマグネシアは熱伝導率が良いことに加え、熱伝導率に異方性がなく等方的に熱が逃げることから、これらを使用して封入材の熱伝導率を向上させることができる。上述した大〜中粒径フィラーであるマグネシア粒子は、それ自体単体で熱伝導率が大きく、化学安定性が高いため、封入材の熱伝導率向上に寄与する。しかしながら、フィラーのすべてを大〜中粒径のマグネシア粒子で構成すると、粒径が比較的大きいため高充填が困難であり、空隙率が高くなりすぎてしまい、熱伝導率を向上させることが難しい。そこで、本実施の形態例に係る抵抗器では、比較的安価で熱伝導率が良く、化学的安定性の高い多面体形状のアルミナを小粒径フィラーとして選択した。 In addition to having good thermal conductivity, alumina and magnesia have no anisotropy in thermal conductivity and heat escapes isotropically. Therefore, they can be used to improve the thermal conductivity of the encapsulant. The magnesia particles, which are the above-mentioned large to medium particle size fillers, have high thermal conductivity and high chemical stability by themselves, and thus contribute to the improvement of the thermal conductivity of the encapsulant. However, if all of the filler is composed of magnesia particles having a large to medium particle size, high filling is difficult due to the relatively large particle size, the porosity becomes too high, and it is difficult to improve the thermal conductivity. .. Therefore, in the resistor according to the present embodiment, polyhedral alumina having a relatively low cost, good thermal conductivity, and high chemical stability was selected as the small particle size filler.

なお、小粒径フィラーはフィラー同士の接触点が多いため熱損失が大きくなるという欠点がある。この点に鑑みて、本実施の形態例に係る抵抗器では、小粒径フィラーとして多面体形状の粒子を使用し、フィラー同士を面接触させることで熱伝導率を向上させている。 It should be noted that the small particle size filler has a drawback that heat loss increases because there are many contact points between the fillers. In view of this point, in the resistor according to the present embodiment, polyhedral particles are used as the small particle size filler, and the fillers are brought into surface contact with each other to improve the thermal conductivity.

また、後述するように封入材における球状フィラーと多面体状フィラーの混合比は、6:4〜8:2の範囲内、望ましくは7:3とする。これにより、従来の抵抗器における熱伝導率が1〜1.5W/m・K程度であったものを、2W/m・K以上まで向上できることが判明した。 Further, as will be described later, the mixing ratio of the spherical filler and the polyhedral filler in the encapsulant is in the range of 6: 4 to 8: 2, preferably 7: 3. As a result, it was found that the thermal conductivity of the conventional resistor, which was about 1 to 1.5 W / m · K, can be improved to 2 W / m · K or more.

本実施の形態例に係る抵抗器は、上述したようにセラミックケース等の容器内に抵抗素子を配置し、封入材で封止している。そのため、封止材に熱膨張による体積の変化を吸収する空隙がある程度存在しないと、封入材が充填されたケースに亀裂が入り、破裂するおそれがある。一方、熱伝導率を向上させて放熱性を改善するためには、フィラー同士の接触面積を増やすことが重要であり、フィラーの充填率を高めれば、熱伝導率は向上する。しかし、フィラーの充填率が高いことは、封止材の空隙率が低下することを意味しており、熱膨張を吸収できなくなる。 In the resistor according to the embodiment of the present embodiment, as described above, the resistance element is arranged in a container such as a ceramic case and sealed with an encapsulant. Therefore, if the encapsulant does not have a certain amount of voids that absorb the change in volume due to thermal expansion, the case filled with the encapsulant may crack and burst. On the other hand, in order to improve the thermal conductivity and improve the heat dissipation, it is important to increase the contact area between the fillers, and if the filling rate of the fillers is increased, the thermal conductivity is improved. However, a high filler filling rate means that the porosity of the encapsulant is reduced, and thermal expansion cannot be absorbed.

そこで、本実施の形態例に係る抵抗器では、フィラーの充填率を65〜90%、望ましくは80〜90%以内(すなわち、空隙率を10〜35%、望ましくは10〜20%以内)に抑え、多面体状フィラーと球状フィラーにより接触面積を確保して、粒径と混合比を制御している。こうすることで熱伝導率が向上し、封止材の硬化時における封止材の空隙率が望ましい範囲となる。具体的には、熱伝導率が2W/m・K以上、かつ空隙率が10〜35%、望ましくは10〜20%以内の抵抗器を得ることができる。 Therefore, in the resistor according to the present embodiment, the filling rate of the filler is 65 to 90%, preferably 80 to 90% or less (that is, the porosity is 10 to 35%, preferably 10 to 20% or less). The contact area is secured by suppressing the polyhedral filler and the spherical filler, and the particle size and the mixing ratio are controlled. By doing so, the thermal conductivity is improved, and the porosity of the sealing material at the time of curing of the sealing material becomes a desirable range. Specifically, a resistor having a thermal conductivity of 2 W / m · K or more and a porosity of 10 to 35%, preferably 10 to 20% or less can be obtained.

次に、本実施の形態例に係る抵抗器における封入材の具体的な組成(配合)について、実施例を参照して説明する。なお、以下の各実施例において熱伝導率の測定には、非定常法の一つである面加熱法を用いたホットディスク法と定常法を使用した。また、充填率は、封入材の見掛け上の密度を封入材の真密度で割って100を掛けることによって求めた。 Next, the specific composition (blending) of the encapsulant in the resistor according to the present embodiment will be described with reference to the examples. In each of the following examples, the hot disk method and the steady method using the surface heating method, which is one of the unsteady methods, were used for the measurement of the thermal conductivity. The filling rate was determined by dividing the apparent density of the encapsulant by the true density of the encapsulant and multiplying by 100.

<実施例1>
表1は、実施例1に係る封入材として、キシレンを含有し、粒径の異なる2種類のフィラー(平均粒径のオーダーが一桁異なる2種類のフィラー)を使用した封入材であって、大粒径フィラー(フィラー1(F1))と小粒径フィラー(フィラー2(F2))の組成を65/30に固定した封入材(試料1〜9)について、熱伝導率と充填率を測定した結果を示している。
<Example 1>
Table 1 shows the encapsulant according to Example 1, which contains xylene and uses two types of fillers having different particle sizes (two types of fillers having an order of magnitude different in average particle size). Measure the thermal conductivity and filling rate of the encapsulant (Samples 1 to 9) in which the composition of the large particle size filler (filler 1 (F1)) and the small particle size filler (filler 2 (F2)) is fixed at 65/30. The result is shown.

表1より、実施例1に係る封入材は、充填率と熱伝導率の間に明確な相関は見受けられないものの、大〜中粒径フィラーとして大粒径MgOと中粒径MgOを使用し、小粒径フィラーとして小粒径多面体Al23を使用した試料において高い熱伝導率を示した。特に試料5(マグネシア粒子MgO(45.3μm)/多面体Al23(3.4μm)=65/30(重量比))の場合、熱伝導率が最大の3.988W/m・Kを示した。これは、比較対象とした現行品の2.3倍に当たり、このときの充填率は80.5%であった。 From Table 1, in the encapsulant according to Example 1, although no clear correlation was found between the filling rate and the thermal conductivity, large particle size MgO and medium particle size MgO were used as the large to medium particle size fillers. , High thermal conductivity was shown in the sample using the small particle size polyhedron Al 2 O 3 as the small particle size filler. In particular, in the case of sample 5 (magnesia particle MgO (45.3 μm) / polyhedron Al 2 O 3 (3.4 μm) = 65/30 (weight ratio)), the thermal conductivity is 3.988 W / m · K at the maximum. It was. This was 2.3 times that of the current product to be compared, and the filling rate at this time was 80.5%.

その理由は、多面体アルミナ粒子Al23(3.4μm)が多面体形状であるため、大粒径の粒子の隙間に入り込んで高い充填率を確保できたと同時に、球状粒子と違って点接触ではなく面接触することで熱伝導のロスが少なくなる上、多面体アルミナ粒子は、例えば結晶子径が122nmと他のフィラーと比べて大きいため、結晶粒界での熱伝導の損失が少ないことに起因すると考えられる。 The reason is that since the polyhedron alumina particles Al 2 O 3 (3.4 μm) have a polyhedron shape, they can enter the gaps of large particle size particles to secure a high filling rate, and at the same time, unlike spherical particles, in point contact. This is due to the fact that the loss of heat conduction at the crystal grain boundary is small because the polyhedron alumina particles have a crystallite diameter of 122 nm, which is larger than that of other fillers. It is thought that.

<実施例2>
表2は、実施例2に係る封入材として、キシレンを含有し、粒径の異なる3種類のフィラー(フィラー1(F1)、フィラー2(F2)、およびフィラー3(F3))を使用した封入材(試料10〜16)について熱伝導率と充填率を測定した結果を示している。
<Example 2>
Table 2 shows the encapsulation material according to Example 2, which contains xylene and uses three types of fillers (filler 1 (F1), filler 2 (F2), and filler 3 (F3)) having different particle sizes. The results of measuring the thermal conductivity and the filling rate of the materials (samples 10 to 16) are shown.

実施例2は、実施例1において最大の熱伝導率を示した試料5(MgO(45.3μm)/多面体Al23(3.4μm)=65/30(重量比))の組成に対して、コスト的な観点から、高価な多面体Al23粒子を使用しないか、あるいはその使用量を抑えた試料についての特性を示している。 Example 2 is based on the composition of sample 5 (MgO (45.3 μm) / polyhedron Al 2 O 3 (3.4 μm) = 65/30 (weight ratio)) showing the maximum thermal conductivity in Example 1. Therefore, from the viewpoint of cost, the characteristics of the sample in which the expensive polyhedral Al 2 O 3 particles are not used or the amount used is suppressed are shown.

表2に示すように、フィラーとして粒径の異なる3種類のMgOを組み合わせた場合、熱伝導率の向上は期待できなかったが、大、中、小の3種類の粒径のMgOのうち、小粒径のMgOを多面体Al23に変更することで熱伝導率の向上が確認できた。 As shown in Table 2, when three types of MgO having different particle sizes were combined as a filler, improvement in thermal conductivity could not be expected, but among the three types of MgO, large, medium, and small, It was confirmed that the thermal conductivity was improved by changing the small particle size MgO to the polyhedron Al 2 O 3 .

そこで、3種類のフィラー(F1,F2,F3)とバインダー(B)の重量比F1/F2/F3/Bにおいて、大粒径フィラーとしてのMgO粒子(45.3μm)の重量比率を65に固定し、残りのF2/F3についてMgO粒子(6.23μm)と多面体Al23粒子(3.4μm)の重量比率を25/5(試料12)、20/10(試料13)、15/15(試料14)、10/20(試料15)、5/25(試料16)にして、比較検討した。 Therefore, in the weight ratio F1 / F2 / F3 / B of the three types of fillers (F1, F2, F3) and the binder (B), the weight ratio of MgO particles (45.3 μm) as the large particle size filler is fixed at 65. Then, for the remaining F2 / F3, the weight ratio of MgO particles (6.23 μm) and polyhedron Al 2 O 3 particles (3.4 μm) was 25/5 (sample 12), 20/10 (sample 13), 15/15. (Sample 14), 10/20 (Sample 15), and 5/25 (Sample 16) were used for comparative examination.

その結果、試料13(MgO(45.3μm)/MgO(6.23μm)/多面体Al23粒子(3.4μm)=65/20/10の組成)において最大の熱伝導率2.989W/m・Kが得られた。また、このときの充填率は83%と最も大きかった。よって、大粒径フィラーと中粒径フィラーをMgO、小粒径フィラーを多面体Al23粒子にすることで、封入材のコストダウンとともに熱伝導率の高いフィラーの配合組成が得られた。 As a result, the maximum thermal conductivity of sample 13 (MgO (45.3 μm) / MgO (6.23 μm) / polyhedral Al 2 O 3 particles (3.4 μm) = 65/20/10 composition) was 2.989 W / m · K was obtained. The filling rate at this time was the highest at 83%. Therefore, by using MgO for the large particle size filler and the medium particle size filler and polyhedral Al 2 O 3 particles for the small particle size filler, a blending composition of the filler having high thermal conductivity was obtained while reducing the cost of the encapsulant.

<実施例3>
表3は、実施例3に係る封入材として、キシレンを含有しない(キシレンレス)溶剤を用い、粒径の異なる2種類のフィラーの混合割合を変更した試料20〜24について、熱伝導率と充填率を測定した結果を示している。ここでは、実施例1で熱伝導率が最も大きい試料5に着目し、フィラー1(F1)として球形フィラーであるマグネシア粒子MgO(45.3μm)、フィラー2(F2)として多面体フィラーである多面体Al23(3.4μm)を選定した。
<Example 3>
Table 3 shows the thermal conductivity and filling of samples 20 to 24 in which a xylene-free (xylene-less) solvent was used as the encapsulant according to Example 3 and the mixing ratio of two types of fillers having different particle sizes was changed. The result of measuring the rate is shown. Here, focusing on the sample 5 having the highest thermal conductivity in Example 1, the magnesia particles MgO (45.3 μm) which is a spherical filler as the filler 1 (F1) and the polyhedral Al which is a polyhedral filler as the filler 2 (F2). 2 O 3 (3.4 μm) was selected.

実施例3では、フィラーF1,F2とバインダー樹脂Bの重量組成比(F1+F2)/Bを95/5に固定し、フィラーF1とフィラーF2の重量比率F1/F2を、90/10(試料20)、80/20(試料21)、70/30(試料22)、60/40(試料23)、50/50(試料24)とした。また、沈降抑制剤としてGARAMITE7305(ビックケミー社製)を、フィラーとバインダー樹脂の合計重量に対して外比で1重量%となるように添加した。 In Example 3, the weight composition ratio (F1 + F2) / B of the fillers F1 and F2 and the binder resin B is fixed to 95/5, and the weight ratio F1 / F2 of the filler F1 and the filler F2 is 90/10 (sample 20). , 80/20 (Sample 21), 70/30 (Sample 22), 60/40 (Sample 23), 50/50 (Sample 24). Further, GARAMITE 7305 (manufactured by Big Chemie) was added as a sedimentation inhibitor so as to be 1% by weight in terms of external ratio with respect to the total weight of the filler and the binder resin.

表3に示すように、粒径の異なる2種類のフィラーF1,F2の混合割合F1/F2を変更した封入材(試料20〜24)のうち、F1/F2=70/30(7:3)の試料22が熱伝導率、充填率ともに最も高く、F1/F2=80/20(8:2)の試料21、F1/F2=60/40(6:4)の試料23についても、従来品を超える良好な熱伝導率が得られた。これらより、封入材における球形の無機フィラーと多面体形状の無機フィラーの混合比は、6:4〜8:2の範囲が望ましく、7:3が好適と言える。また、いずれの試料においても、外観上フィラーが分離していない均一な状態が確認できた。なお、充填率は、試料20〜24のいずれも、上述した65〜90%の範囲内であった。 As shown in Table 3, among the encapsulants (samples 20 to 24) in which the mixing ratio F1 / F2 of the two types of fillers F1 and F2 having different particle sizes was changed, F1 / F2 = 70/30 (7: 3). Sample 22 has the highest thermal conductivity and filling rate, and F1 / F2 = 80/20 (8: 2) sample 21 and F1 / F2 = 60/40 (6: 4) sample 23 are also conventional products. Good thermal conductivity exceeding the above was obtained. From these, it can be said that the mixing ratio of the spherical inorganic filler and the polyhedral inorganic filler in the encapsulant is preferably in the range of 6: 4 to 8: 2, and preferably 7: 3. In addition, in all the samples, it was confirmed that the filler was not separated in appearance and was in a uniform state. The filling rate of each of the samples 20 to 24 was in the range of 65 to 90% described above.

以上説明したように本実施の形態例に係る抵抗器の封入材の組成として、粒径と材質の異なる2種類のフィラー、すなわち、小粒径フィラーとして多面体状のアルミナ粒子と、大〜中粒径フィラーとして球状のマグネシア粒子とを混合することで、熱伝導率の比較的良好な大〜中粒径フィラーをベースとして無機フィラーを高充填して空隙率を減らし、総界面積を減らして界面での熱の損失を少なくして、熱伝導率を向上させることができる。また、小粒径フィラーとして多面体状のアルミナ粒子を用いることにより、フィラー同士の接触点を減らすとともにフィラー同士の接触面積を増やし、点接触ではなく面接触とすることにより、熱伝導率を向上させることができる。 As described above, the composition of the encapsulant of the resistor according to the embodiment of the present embodiment includes two types of fillers having different particle sizes and materials, that is, polyhedral alumina particles as small particle size fillers and large to medium particles. By mixing spherical magnesia particles as a diameter filler, an inorganic filler is highly filled based on a large to medium particle size filler with relatively good thermal conductivity to reduce porosity, reduce the total boundary area, and interface. The thermal conductivity can be improved by reducing the heat loss in. Further, by using polyhedral alumina particles as the small particle size filler, the contact points between the fillers are reduced and the contact area between the fillers is increased, and the thermal conductivity is improved by making surface contact instead of point contact. be able to.

さらに、粒径と材質の異なる3種類のフィラー、すなわち、大粒径フィラーおよび中粒径フィラーとして球状のマグネシア粒子と、小粒径フィラーとして多面体状のアルミナ粒子とを混合した封入材においても、高い熱伝導率が得られた。 Further, even in an encapsulant in which three types of fillers having different particle sizes and materials, that is, spherical magnesia particles as a large particle size filler and a medium particle size filler and polyhedral alumina particles as a small particle size filler are mixed. High thermal conductivity was obtained.

また、封入材において複数種類の平均粒径のフィラーを組み合わせることでフィラーを高充填率化させて、封入材における空気を含む空隙の割合を少なくするとともに、多面体状フィラーと球状フィラーにより接触面積を確保し、粒径と混合比を制御することにより、熱伝導率の向上のみならず、封入材としての適切な流動性と空隙率を確保できる。 In addition, the filler is increased in filling rate by combining a plurality of types of fillers having an average particle size in the encapsulant to reduce the proportion of air-containing voids in the encapsulant, and the contact area is increased by the polyhedral filler and the spherical filler. By securing and controlling the particle size and the mixing ratio, it is possible not only to improve the thermal conductivity but also to secure appropriate fluidity and porosity as an encapsulant.

<変形例>
本発明は上述した実施の形態例に限定されず、種々の変形が可能である。例えば、上述した実施の形態例では抵抗器の抵抗素子を巻線型の抵抗素子としたが、これに限定されない。抵抗素子は、例えば円柱状絶縁体の外周に抵抗皮膜(金属皮膜、炭素皮膜、メタルグレーズ被膜、酸化金属皮膜)を着膜し、両端に金属製のキャップを嵌合した皮膜抵抗素子であってもよい。また、抵抗素子として、長方形状の金属板(CuNi系合金、NiCr系合金等)を所定パターンに形成した、平板状の金属板抵抗素子、あるいは長方形状の絶縁基板に酸化ルテニウム等の厚膜抵抗体と、抵抗体両端に電気的に接続した電極(銀等)をスクリーン印刷により形成し、その電極に外部接続端子を接続した厚膜抵抗素子を使用できる。
<Modification example>
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, in the above-described embodiment, the resistance element of the resistor is a winding type resistance element, but the present invention is not limited to this. The resistance element is, for example, a film resistance element in which a resistance film (metal film, carbon film, metal glaze film, metal oxide film) is formed on the outer circumference of a columnar insulator, and metal caps are fitted on both ends. May be good. Further, as the resistance element, a flat metal plate resistance element in which a rectangular metal plate (CuNi-based alloy, NiCr-based alloy, etc.) is formed in a predetermined pattern, or a thick film resistor such as ruthenium oxide on a rectangular insulating substrate. A thick film resistor element can be used in which electrodes (silver, etc.) electrically connected to both ends of the body and the resistor are formed by screen printing, and external connection terminals are connected to the electrodes.

上記実施の形態例に係る抵抗器では、外部に突出した板状端子13a,13bを抵抗器の外部接続端子18a,18bとしているが、これらの板状端子に代えてリード線をキャップ部11a,11bと一体成型するか、あるいは溶接等で接続して一体化して外部接続端子としてもよい。また、抵抗素子が上記の金属板抵抗素子の場合には、外部接続端子として、金属板の端部に接合した板状端子あるいはリード線を備える構成としてもよい。 In the resistor according to the above embodiment, the plate-shaped terminals 13a and 13b protruding to the outside are the external connection terminals 18a and 18b of the resistor, but instead of these plate-shaped terminals, a lead wire is used as a cap portion 11a, It may be integrally molded with 11b, or may be connected by welding or the like and integrated to form an external connection terminal. Further, when the resistance element is the above-mentioned metal plate resistance element, the external connection terminal may be configured to include a plate-shaped terminal or a lead wire joined to the end of the metal plate.

さらに、上記実施の形態例では外部接続端子18a,18bをケース開口部17aより突出させているが、例えばセラミックケース17の長手方向の側面に溝を形成して、その溝より外部接続端子を外部へ突出させてもよい。 Further, in the above embodiment, the external connection terminals 18a and 18b are projected from the case opening 17a. For example, a groove is formed on the side surface of the ceramic case 17 in the longitudinal direction, and the external connection terminal is externally formed from the groove. It may be projected to.

また、上記実施の形態例では抵抗器の封止に使用する封入材を例に挙げたが、抵抗器に限定されず、ケース内に素子を封入するタイプの電子部品、例えばコンデンサ、バリスタ、ヒューズ等の封入材にも適用できる。 Further, in the above embodiment, the encapsulant used for encapsulating the resistor is given as an example, but the present invention is not limited to the resistor, and electronic components of the type in which the element is enclosed in the case, such as a capacitor, a varistor, and a fuse It can also be applied to encapsulants such as.

10 抵抗器
11a,11b キャップ部
12 抵抗素子
13a,13b 板状端子
14 凹部
15a,15b 金属製キャップ
17 セラミックケース
17a 上面(開口面)
18a,18b 外部接続端子
19 封入材
10 Resistors 11a, 11b Caps 12 Resistors 13a, 13b Plate-shaped terminals 14 Recesses 15a, 15b Metal caps 17 Ceramic case 17a Upper surface (opening surface)
18a, 18b External connection terminal 19 Encapsulating material

Claims (5)

抵抗器、コンデンサ、バリスタ、ヒューズの封止に使用する封入材であって、
前記封止材は少なくとも、粒子形状が多面体形状の無機フィラーと、粒子形状が球形の無機フィラーと、シリコーン樹脂とを含有し、
前記多面体形状の無機フィラーは酸化アルミニウム粒子であり、前記球形の無機フィラーは酸化マグネシウム粒子であることを特徴とする封入材。
Encapsulant used to seal resistors, capacitors, varistor, and fuses.
The encapsulant contains at least an inorganic filler having a polyhedral particle shape, an inorganic filler having a spherical particle shape, and a silicone resin.
The inorganic filler of polyhedral shape is aluminum oxide particles, sealing Irizai inorganic filler of said spherical you, wherein the magnesium oxide particles.
抵抗器、コンデンサ、バリスタ、ヒューズの封止に使用する封入材であって、
前記封止材は少なくとも、粒子形状が多面体形状の無機フィラーと、粒子形状 が球形の無機フィラーと、シリコーン樹脂とを含有し、
前記多面体形状の無機フィラーの平均粒径はサブミクロン〜数ミクロンであり、前記球形の無機フィラーの平均粒径は数十ミクロン〜数百ミクロンであり、
前記多面体形状の無機フィラーは酸化アルミニウム粒子であり、前記球形の無機フィラーは酸化マグネシウム粒子であることを特徴とする封入材。
Encapsulant used to seal resistors, capacitors, varistor, and fuses.
The encapsulant contains at least an inorganic filler having a polyhedral particle shape, an inorganic filler having a spherical particle shape, and a silicone resin.
The average particle size of the polyhedral inorganic filler is submicron to several microns, and the average particle size of the spherical inorganic filler is several tens to several hundreds of microns.
The inorganic filler of polyhedral shape is aluminum oxide particles, sealing Irizai inorganic filler of said spherical you, wherein the magnesium oxide particles.
前記球形の無機フィラーと前記多面体形状の無機フィラーの混合比は6:4〜8:2であることを特徴とする請求項1または2に記載の封入材。The encapsulant according to claim 1 or 2 , wherein the mixing ratio of the spherical inorganic filler and the polyhedral inorganic filler is 6: 4 to 8: 2. 両端部に電極が装着された抵抗素子と、
一面に開口部を有し、前記抵抗素子を収容する凹部が形成された絶縁性ケースとを備え、
前記抵抗素子が収容された前記凹部を、前記開口部より充填した請求項1からのいずれか1項に記載の封入材で封止してなることを特徴とする抵抗器。
Resistor elements with electrodes mounted on both ends,
It is provided with an insulating case having an opening on one surface and a recess for accommodating the resistance element.
A resistor characterized in that the recess in which the resistance element is housed is sealed with the encapsulant according to any one of claims 1 to 3 , which is filled from the opening.
前記封入材の空隙率が10〜35%であることを特徴とする請求項に記載の抵抗器。The resistor according to claim 4 , wherein the porosity of the encapsulant is 10 to 35%.
JP2016186333A 2016-09-23 2016-09-23 Encapsulant Active JP6827749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186333A JP6827749B2 (en) 2016-09-23 2016-09-23 Encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186333A JP6827749B2 (en) 2016-09-23 2016-09-23 Encapsulant

Publications (2)

Publication Number Publication Date
JP2018050018A JP2018050018A (en) 2018-03-29
JP6827749B2 true JP6827749B2 (en) 2021-02-10

Family

ID=61767832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186333A Active JP6827749B2 (en) 2016-09-23 2016-09-23 Encapsulant

Country Status (1)

Country Link
JP (1) JP6827749B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203412A1 (en) * 2019-03-29 2020-10-08 積水ポリマテック株式会社 Heat-conducting composition and heat-conducting member
JP7390548B2 (en) * 2019-09-05 2023-12-04 パナソニックIpマネジメント株式会社 Thermal conductive silicone compositions and thermally conductive silicone materials
JP2021075630A (en) * 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 Thermally conductive silicone composition and thermally conductive silicone material
WO2022191238A1 (en) * 2021-03-09 2022-09-15 パナソニックIpマネジメント株式会社 Thermally conductive resin composition and thermally conductive resin material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030217A (en) * 2000-07-17 2002-01-31 Fujitsu Ltd Thermally conductive silicone composition
JP4089636B2 (en) * 2004-02-19 2008-05-28 三菱電機株式会社 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JPWO2010103852A1 (en) * 2009-03-12 2012-09-13 国立大学法人信州大学 Thermally conductive material, method for producing the same, and inductor for large current
JP2013159748A (en) * 2012-02-08 2013-08-19 Kyushu Institute Of Technology Resin composition, and method for producing the same
JP6159016B2 (en) * 2013-08-14 2017-07-05 東レ・ダウコーニング株式会社 Novel organopolysiloxane, surface treatment agent containing the same, resin composition containing the same, and gel or cured product thereof
JP6334138B2 (en) * 2013-11-12 2018-05-30 ミクロン電気株式会社 Resistive element and resistor using the same
JP2016018827A (en) * 2014-07-04 2016-02-01 住友ベークライト株式会社 Heating element support substrate and substrate assembly
JP6420588B2 (en) * 2014-08-11 2018-11-07 ミクロン電気株式会社 Cement resistor
JP2016124908A (en) * 2014-12-26 2016-07-11 株式会社トクヤマ Resin molded body

Also Published As

Publication number Publication date
JP2018050018A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6827749B2 (en) Encapsulant
JP6545193B2 (en) Semiconductor module comprising sealing compound covering at least one semiconductor component
TWI312602B (en) Varistor and method for producing the same
US20200227225A1 (en) Chip-type fuse
JP6491074B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor using the same
KR20210047876A (en) Potting compounds, methods of electrically insulating electrical or electronic components, and electrical insulating components
JPS62132765A (en) Manufacture of high insulation high alumina base ceramic composition
KR101908775B1 (en) Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP5780620B2 (en) PTC thermistor member
JP6848327B2 (en) A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.
JP2015509287A (en) Circuit protection element having ceramic heat dissipation structure and method for manufacturing the same
CN108292635B (en) Electrical device with an encapsulating housing
KR100228295B1 (en) Ptc device
JP6621170B2 (en) PTC thermistor member and PTC thermistor element
JP2006332192A (en) Thick-film thermistor composition and its manufacturing method, and thick-film thermistor element
WO2020021898A1 (en) Electric resistor, honeycomb structure, and electrically heated catalyst device
CN204464220U (en) Circuit protecting element
CN203659553U (en) Wafer resistor
JP2014099432A (en) Inorganic ptc thermistor member
TWM562485U (en) Resistance material, conductive terminal material and resistor
JPS58188082A (en) Sheathed heater
WO2015033688A1 (en) Cooling device
JP2010182996A (en) Method of manufacturing electronic component
JP2017108087A (en) Composite material and PTC thermistor
JP2017509151A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250