JP6825625B2 - 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム - Google Patents

画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム Download PDF

Info

Publication number
JP6825625B2
JP6825625B2 JP2018525034A JP2018525034A JP6825625B2 JP 6825625 B2 JP6825625 B2 JP 6825625B2 JP 2018525034 A JP2018525034 A JP 2018525034A JP 2018525034 A JP2018525034 A JP 2018525034A JP 6825625 B2 JP6825625 B2 JP 6825625B2
Authority
JP
Japan
Prior art keywords
image
unit
biological
inclination
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018525034A
Other languages
English (en)
Other versions
JPWO2018003503A1 (ja
Inventor
一木 洋
洋 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2018003503A1 publication Critical patent/JPWO2018003503A1/ja
Application granted granted Critical
Publication of JP6825625B2 publication Critical patent/JP6825625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000096Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope using artificial intelligence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Endoscopes (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Microscoopes, Condenser (AREA)

Description

本開示は、画像処理装置および画像処理装置の作動方法、並びに医療用撮像システムに関し、特に、内視鏡装置等における画像を術者に視聴し易い画像にできるようにした画像処理装置および画像処理装置の作動方法、並びに医療用撮像システムに関する。
内視鏡装置により撮像された内視鏡画像を視聴しながら実施される内視鏡手術が一般に普及している。
内視鏡装置により撮像される画像は、特殊な環境下で撮像される画像であるため、手術を行う術者にとって、視聴し易い画像へのニーズが高まっている。
そこで、近年においては、内視鏡画像を解析し、2値化や3次元表示だけでは抽出しにくい部分を分類し、視覚的に分かり易く表示する技術が提案されている(特許文献1参照)。
特開平7−284090号公報
ところで、内視鏡装置により撮像される内視鏡画像は、一般的な撮像と比べて特殊な環境下で撮像された画像であるため、内視鏡画像を用いて、例えば、AE(自動露出調整)やAF(自動焦点調整)を実行しようとすると適切な処理ができないことがあった。
すなわち、内視鏡画像において、金属製の術具、ガーゼ、および体内の生体組織による壁面などは、光反射物であり、例えば、白飛びするといった現象が発生するため、適切にAEやAFを実現できない恐れがあった。
また、術具、糸、針、臓器、指といったものが画像内に含まれるような場合、表示される術野内を頻繁に出入りすることにより、適切にAEやAFを実現できない恐れがあった。
さらに、照明に近い糸、映り込み、術具のキズ、および被写体の凹凸などは高輝度エッジとして検出されることがあり、また、脂肪などの組織、煙、レンズの汚れ等はローコントラストになりがちなため、いずれにおいてもAFを適切に実現できない恐れがあった。
また、同様に、内視鏡画像における術具やガーゼなどは、ブレ補正に不要な動き検出結果を生じさせることになるので、ブレ補正などを適切に実現できない恐れがあった。
本開示は、このような状況に鑑みてなされたものであり、特に、内視鏡画像に対して適切にAE、AF、およびブレ補正を掛けることにより、術者に視聴し易い内視鏡画像を提示できるようにするものである。
本開示の一側面の画像処理装置は、医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部と、前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換部と、前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算部とを含み、前記分類部は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類するを含む画像処理装置である。
前記所定サイズのブロックは、前記所定サイズよりも小さいサイズの複数の小ブロックから構成されるようにすることができ、前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムを前記小ブロック単位の傾斜偏り特徴量として求める傾斜偏り計算部をさらに含ませるようにすることができる。
前記傾斜偏り計算部には、前記ブロック単位で、複数の前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムの上位の傾斜強度を前記所定サイズのブロック単位の傾斜偏り特徴量として計算させるようにすることができ、前記分類部には、ブロック単位の前記明度、前記色度、並びに、前記傾斜偏り特徴量に基づいて、前記生体画像内の被写体を分類させるようにすることができる。
前記傾斜偏り計算部には、前記移動加算となるヒストグラムの所定の上位順位までの傾斜強度の和を前記所定サイズのブロック単位の傾斜偏り特徴量として計算させるようにすることができる。
前記分類部には、前記生体組織以外のものとして、前記生体画像内の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類させるようにすることができる。
前記分類部には、前記生体画像内の前記各領域に含まれる前記各被写体を生体組織以外の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類させるようにすることができ、いずれのものにも分類されない領域の被写体を生体組織として分類させるようにすることができる。
前記分類部は、ニューラルネットワークを用いた分類器より構成されるようにすることができる。
前記分類部は、ブースティングを用いた機械学習を用いた分類器より構成されるようにすることができる。
前記生体画像のうち、前記生体組織として分類された前記領域の輝度の情報に基づいて、前記医療用撮像装置における露出を調整する露出調整部をさらに含ませるようにすることができる。
前記生体画像内において、前記生体組織として分類された前記領域の情報のみに基づいて、前記医療用撮像装置における焦点を調整する焦点調整部をさらに含ませるようにすることができる。
前記生体画像のうち、前記生体組織として分類された前記領域の動きの情報に基づいて、前記生体画像のブレを補正するブレ補正部をさらに含ませるようにすることができる。
前記分類部の分類結果に基づいて、分類された被写体の種別に対応する、前記生体画像上の位置にハッチングを付するように画像を処理する画像処理部と、前記画像処理部により処理がなされた生体画像の表示を制御する表示制御部とをさらに含ませるようにすることができる。
前記表示された生体画像上に、再学習が必要とされる再学習範囲を指定すると共に正解の被写体を示す正解ラベルを指定する操作部をさらに含ませるようにすることができ、前記分類部には、前記再学習範囲において、前記正解ラベルに対応する被写体を分類するように再学習させるようにすることができる。
前記生体画像は、内視鏡装置により撮像される内視鏡画像とすることができる。
本開示の一側面の画像処理装置の作動方法は、画像を平滑化し、医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化し、前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する前記分類ステップと、前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換ステップと、前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算ステップとを含み、前記分類ステップの処理は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類する画像処理装置の作動方法である。
本開示の一側面の医療用撮像システムは、医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部と、前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換部と、前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算部とを含み、前記分類部は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類するを含む画像処理装置と、前記生体画像を撮像する撮像部を含む医療用撮像装置とからなる医療用撮像システムである。
本開示の一側面においては、医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像が平滑化され、前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体が分類され、前記平滑化画像の各画素の画素値が明度、色度、および輝度に変換され、前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度が求められ、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体が前記生体組織又は前記生体組織以外のものに分類される
本開示の一側面によれば、視聴し易い内視鏡画像を提示することが可能となる。
本開示の内視鏡システムの構成例を説明する図である。 図1の内視鏡システムによる表示処理を説明するフローチャートである。 BOXフィルタの例を説明する図である。 小ブロック単位での4次元特徴量を求める例を説明する図である。 ブロック単位での4次元特徴量を求める例を説明する図である。 ブロック単位での傾斜偏り特徴量を求める例を説明する図である。 ニューラルネットワークを用いた分類器の構成例を説明する図である。 TanhおよびReLuの特性を説明する図である。 画像表示部に表示される内視鏡画像の表示例を説明する図である。 画像表示部に表示される内視鏡画像の表示例を説明する図である。 画像表示部に表示される内視鏡画像の表示例を説明する図である。 画像表示部に表示される内視鏡画像の表示例を説明する図である。 本開示の画像処理装置による画像処理を説明する図である。 再学習処理を説明するフローチャートである。 再学習処理を説明する図である。 汎用のパーソナルコンピュータの構成例を示す図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、以下の順序で説明を行う。
1.本開示の画像処理装置の概要
2.本開示の画像処理装置を用いた内視鏡システムの構成例
3.応用例
<<1.本開示の画像処理装置の概要>>
内視鏡装置により撮像される内視鏡画像に対してAE(Auto Exporsure)、AF(Auto Focus)、およびブレ補正といった処理を施すには、内視鏡画像の特徴に適した処理が必要となる。
すなわち、内視鏡装置により撮像される内視鏡画像は、撮像面と被写体との距離が比較的近く、また、高強度の照明を用いた極狭い空間内で撮像される。
このため、術具の柄や腔内壁面などが照明に近くなる、照明の投光方向が撮像方向であるとき、その正面に正対するように腔内壁面が存在する、または、白色のガーゼなどが強い照明に照らされるといった条件が揃うと、術具、腔内壁面、およびガーゼなどが照明の光を強く反射するといったことが生じてしまう。結果として、いわゆる、白飛びといわれる現象が生じて、明るさを適切に認識することができず、AEを適切に機能させることができなくなることがあった。
また、腔内壁面、縫合糸、術具などは、局部的な範囲でコントラストが極度に強くなることがあるため、その部位に合焦してしまうことがあり、適切にAFを機能させることができないことがあった。また、電気メスなどの使用に伴った煙などが発生すると、その煙により被写体が低コントラストとなり、合焦できないことがあり、やはり、適切にAFを機能させることができなくなることがあった。
さらに、術具やガーゼは、ブレ補正が必要とされる患部とは異なる動きをするため、ブレ補正には不要な動き検出をさせてしまうことがあり、結果として、術者である医師が視聴したい患部の撮像に対して適切なブレ補正を実現させることができないことがあった。
また、術者である医師は、内視鏡画像を視聴する際、一般に、視聴対象である内視鏡画像内における患部となる生体組織を視聴したいという要求がある。
このような要求から、一般的には、内視鏡画像に対してエンハンス処理などを施して、患部を検出できるような高画質化処理を施して、物体検出および物体識別により、患部を検出してAE、AF、およびブレ補正を行うといったことが考えられる。
ところで、内視鏡手術を実施している状態で内視鏡画像を表示する上では、低遅延で内視鏡画像を提示することが必須となる。しかしながら、内視鏡画像に対してエンハンス処理を施した上で、物体検出および物体識別を実施するのは演算処理負荷が高く、内視鏡画像の提示を低遅延で実現するのは現実的ではない。
内視鏡画像に対して、低遅延を維持しつつ、AE、AF、およびブレ補正を適切に施す技術を考える上では、まず、処理負荷の低いパラメータを選択する必要がある。
より具体的には、AE、AF、およびブレ補正を実現する上で調整に利用できそうな内視鏡画像のパラメータとして、例えば、輝度情報、色度情報、ラベリング(面積・形状)、輪郭モデル(Snake等)、直線エッジ(HOUGH変換など)、パターン(HAA/LBP特徴量等)、画像勾配(傾斜)(HOG特徴量等)、ヒストグラム、および、テクスチャ等が考えられる。
上述したパラメータのうちラベリング(面積・形状)、輪郭モデル(Snake等)、直線エッジ(HOUGH変換など)、パターン(HAA/LBP特徴量等)については、逐次演算や繰り返し演算が必要とされるため、処理負荷が大きく、内視鏡画像に対する処理に適したパラメータとは言えない。また、ヒストグラムについては、被写体の大きさが激しく変化する中で使用すると処理負荷が大きくなり得る。また、テクスチャについては、焦点が合っていない画像が多く、検出すること自体が困難であることが多いため、適切な処理を施すには遅延が生じる恐れがある。
そこで、本開示の画像処理装置においては、AEの連動性が高い輝度情報、演算量が少量で、かつ、認識性能を学習により比較的高めることができる色度情報、および合焦に影響されることなく術具を検出できる画像勾配(傾斜)を用いてAE、AF、およびブレ補正を行う。
ただし、これらのパラメータでは、高精度に生体組織を識別することは困難である。そこで、本開示の画像処理装置では、目的となる生体組織を直接検出、および識別するのではなく、比較的検出が容易な術具、ガーゼ、マスク外、血だまり、および高輝度領域といった視聴対象となる生体組織以外の領域を検出、および識別し、それら以外の領域を視聴対象となる生体組織の領域であるものとみなすようにする。
この際、本開示の画像処理装置は、内視鏡装置により撮像された内視鏡画像に対してLPF(Low Pass Filter)を掛けて平滑化することにより、内視鏡画像の焦点が合っていない状態でも、術具部分等の生体組織以外の領域に対して画像傾斜に強い偏りが出るようにする。さらに、本開示の画像処理装置は、この画像傾斜の偏りを特徴量として抽出すると共に、特徴量の次元を縮退することにより、演算量を低減させて、処理負荷を低減しつつ、処理精度を向上させ、術者の視聴対象である内視鏡画像内の生体組織を低遅延で提示できるようにする。
<<2.本開示の画像処理装置を用いた内視鏡システムの構成例>>
図1を参照して、本開示の画像処理装置を用いた内視鏡システムの構成例について説明する。
図1の内視鏡システムは、画像処理装置11、内視鏡装置12、および画像表示部13から構成される。内視鏡装置12の先端部には、撮像素子62設けられている。すなわち、内視鏡装置12は、その先端部が患者14の体内に挿入された状態で、体内の内視鏡画像を撮像し、画像処理装置11に供給する。画像処理装置11は、内視鏡装置12より供給されてきた内視鏡画像を処理して、術者に対して視聴し易い内視鏡画像を提示する。
より詳細には、内視鏡装置12は、棒状の装置であり、その先端部に設けられた複数のレンズ等からなる光学ブロック61により撮像素子62上で結像される像を、撮像素子62が撮像する。
より具体的には、内視鏡装置12は、例えば、体内の画像を内視鏡画像として撮像し、2K画像(例えば、1920×1080程度)、4K画像(例えば、4096×2160程度、若しくは、3840×2160程度)、または、8K画像(例えば、7680×4320程度)といった高解像度画像として画像処理装置11に出力する。
尚、図示しないが、撮像素子62には信号処理部が設けられており、所定の信号処理がなされて、画像が生成されて、生成された画像が出力される。また、内視鏡装置12により撮像される画像の解像度は、これ以外の解像度の画像もよいものである。また、本実施の形態においては、特に断りがない限り、内視鏡装置12により撮像される内視鏡画像は、4K画像であるものとして説明を進めるものとする。
画像処理装置11は、内視鏡装置12より供給されてくる患者14の体内の内視鏡画像を処理して、ユーザである術者に対して視聴し易い内視鏡画像を提示する。
より詳細には、画像処理装置11は、画像縮小化部31、画像平滑化部32、輝度色度変換部33、輝度傾斜計算部34、傾斜偏り計算部35、特徴量生成部36、正規化調整部37、画像分類部38、画像処理部39、表示制御部40、操作部41、AE(Auto Exposure)制御部42、AF(Auto Focus)制御部43、およびブレ補正部44を備えている。
画像縮小化部31は、内視鏡装置12により撮像された、例えば、4K画像からなる高解像度の入力画像を、例えば、1024×540程度の解像度の画像に縮小化して画像平滑化部32に供給する。
画像平滑化部32は、画像縮小化部31により縮小された画像を、例えば、LPF(Low Pass Filter)をかけることにより平滑化して、後述する処理により、画像傾斜を取得し易い画像に変換し、輝度色度変換部33に供給する。
輝度色度変換部33は、平滑化された画像に基づいて、各画素の値を明度I、輝度Yおよび色度r,gに変換して輝度傾斜計算部34、および特徴量生成部36に供給する。
輝度傾斜計算部34は、ソーベルオペレータを掛けることにより各画素における傾斜の方向(勾配方向)と傾斜強度を算出し、算出した傾斜強度で荷重した、勾配方向のヒストグラムHsbを生成して、傾斜偏り計算部35に供給する。
傾斜偏り計算部35は、小ブロック単位で求められた勾配方向のヒストグラムHsbを移動加算して、複数の小ブロックからなるブロック単位の勾配方向の傾斜強度で荷重したヒストグラムHbを求める。さらに、傾斜偏り計算部35は、ブロック単位のヒストグラムHbを用いて、上位2位までの傾斜強度で荷重した傾斜強度(勾配強度)を加算して、ブロック単位の傾斜偏り特徴量Bbとして特徴量生成部36に供給する。
特徴量生成部36は、上述した小ブロック単位の明度Isb、および色度rsb,gsbを演算する。また、特徴量生成部36は、小ブロック単位の明度Isb、および色度rsb,gsbより、複数の小ブロックからなるブロック単位の明度Ib、および色度rb,gbを演算する。また、特徴量生成部36は、このブロック単位の傾斜偏り特徴量Bb、明度Ib、および色度rb,gbと共に4次元特徴量を構成して正規化調整部37に供給する。
正規化調整部37は、4次元特徴量を正規化して調整し、画像分類部38に供給する。
画像分類部38は、4次元特徴量に基づいて画像における被写体を分類する分類器51を備えており、4次元特徴量に基づいて分類器51により画像内の被写体を分類させ、分類結果を画像処理部39に供給する。また、画像分類部38は、表示された画像内における画像分類に誤りがある場合、ユーザの操作に応じて再学習するためのラベル等の入力を受け付けて、分類器51に供給し、再学習させる。
画像処理部39は、内視鏡装置12より供給されてくる画像に対して、画像分類部38より供給されてくる分類結果に応じた画像処理を施し、表示制御部40に供給すると共に、その画像をAE制御部42、AF制御部43、およびブレ補正部44に供給する。表示制御部40は、LCD(Liquid Crystal Display)等からなる画像表示部13を制御して、供給された画像を、内視鏡画像として表示させる。
すなわち、例えば、画像分類部38は、例えば、画像内における術具、ガーゼ、マスク外、血だまり、および高輝度部をそれぞれ画像内の所定のブロック単位で分類する。そこで、画像処理部39は、分類結果に基づいて、それぞれの分類結果対応する領域については、それぞれ対応する対象物毎に色分けしてハッチングを付すなどして視聴対象外であることを明示的に表示する。また、結果として、ハッチングが付されていない範囲が生体組織のみの画像として表示される。
AE制御部42は、内視鏡画像のうちの生体組織のみの領域の画像に基づいて、明るさを適切に制御して、内視鏡装置12における、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなる撮像素子62のAEを制御する。これにより、適切なAEが実現される。尚、図1におけるAE制御部42乃至撮像素子62までの点線については、現実には、例えば、内視鏡装置12から画像処理装置11に内視鏡画像を送信する伝送ケーブルと同様の配線により実現される。
AF制御部43は、内視鏡画像のうちの生体組織のみの領域の画像に基づいて、内視鏡装置12において、入射光を適切に撮像素子62上に合焦させるように、複数のレンズ等からなる光学ブロック61を制御して、AFを制御する。これにより、適切なAFが実現される。尚、図1におけるAF制御部43乃至光学ブロック61までの点線については、現実には、例えば、内視鏡装置12から画像処理装置11に内視鏡画像を送信する伝送ケーブルと同様の配線により実現される。
ブレ補正部44は、内視鏡画像のうちの生体組織のみの領域の画像に基づいて、動き検出し、検出した動きに応じて、ブレ補正を制御する。これにより、適切なブレ補正が実現される。
<表示処理>
次に、図2のフローチャートを参照して、内視鏡システムによる表示処理について説明する。
ステップS11において、内視鏡装置12の撮像素子62が、光学ブロック61により結像される像を、例えば、4K画像からなる内視鏡画像として撮像し、画像処理装置11に供給する。
より詳細には、撮像素子62は、撮像したRAW画像に簡易的な現像処理を施す、または、既に現像処理されたRGB画像をそのまま使用する。また、現像処理が必要な場合、ベイヤ構造のイメージセンサのとき、撮像素子62は、デモザイク処理、ゲイン調整およびホワイトバランス処理、欠陥画素補正、リニアマトリクスによる色補正、信号の値を有効範囲内に収めるクリップ処理、並びにガンマ補正を施す。
ステップS12において、画像縮小化部31は、内視鏡装置12により撮像された内視鏡画像を縮小化する。より詳細には、画像縮小化部31は、後段の平滑化処理において、タップ数の大きなBOXフィルタからなるLPFを4K画像に直接施すと演算量が大きくなるので、4K画像からなる内視鏡画像を、例えば、1024×540の解像度に縮小して、画像平滑化部32に供給する。
ステップS13において、画像平滑化部32は、所定のサイズのBOXフィルタからなるLPFを内視鏡画像の各画素に対して施して、内視鏡画像を平滑化し、輝度色度変換部33に供給する。BOXフィルタとは、例えば、図3で示されるようなフィルタであり、図3の場合、5画素×5画素のフィルタの例が示されており、図中において色が付された中心の注目画素に対して、その周辺の5画素×5画素のそれぞれの各画素に対して係数1/25が乗じられ、それらの積和が求められることで、平滑化される。
ステップS14において、輝度色度変換部33は、平滑化された内視鏡画像の各画素の画素値を明度、色度、および輝度に変換し、輝度を、輝度傾斜計算部34に供給し、明度、および色度を特徴量生成部36に供給する。
より詳細には、輝度色度変換部33は、画素(x,y)における画素値RGBを用いて、例えば、以下の式(1)乃至式(4)を演算することで、明度、色度、および輝度に変換する。
Figure 0006825625
Figure 0006825625
Figure 0006825625
Figure 0006825625
ここで、RGBは、赤色、緑色、青色の画素値であり、画素(x,y)のI(x,y)は明度であり、r(x,y),g(x,y)は色度であり、Y(x,y)は輝度である。
ステップS15において、輝度傾斜計算部34は、画素毎の輝度Yを用いて、画素単位の傾斜方向と傾斜強度とを算出し、傾斜偏り計算部35に供給する。
より具体的には、輝度傾斜計算部34は、以下の式(5),式(6)で表されるような係数のSobelオペレータを施す。
Figure 0006825625
Figure 0006825625
ここで、Sx,Syは、それぞれ座標(x,y)における画素の輝度Yに、それぞれ式(5),式(6)のSobelオペレータが掛けられた輝度である。
さらに、輝度傾斜計算部34は、以下の式(7),式(8)で表されるような演算により、各画素(x,y)の傾斜(勾配)方向ang(x,y)、および傾斜強度g(x,y)を演算する。
Figure 0006825625
Figure 0006825625
ここで、fx(x,y),fy(x,y)は、それぞれ座標(x,y)の画素に上述した式(5),式(6)のSobelオペレータが掛けられたSx(x,y),Sy(x,y)である。また、d(x,y)は、傾斜(勾配)角度(ラジアン)であり、ang(x,y)は、傾斜角度d(x,y)に基づいて割り付けられる傾斜(勾配)方向であり、整数精度に丸められた値である。さらに、BINは方向数であり、例えば、12である。
ステップS16において、傾斜偏り計算部35は、小ブロック単位の上記傾斜強度で荷重した勾配方向のヒストグラムを計算する。
より具体的には、図4で示されるように平滑化された内視鏡画像を、例えば、M画素×N画素の小ブロックに分割し、各小ブロックについて、以下の式(9)を演算する。
Figure 0006825625
ここで、(sx,sy)は、小ブロックの座標を表している。Hsb(sx,sy)は、小ブロック単位の傾斜強度g(x,y)で重み付けした傾斜方向ang(x,y)のヒストグラムからなる特徴量である。すなわち、式(9)は、傾斜強度g(x,y)で重み付けした傾斜方向ang(x,y)の頻度を個別に算出することで、結果としてヒストグラムを生成することを表しており、生成されたヒストグラムの集合そのものが特徴量となる。この特徴量は、一般にHOG(Histograms of Oriented Gradients)と呼ばれるものである。
尚、上述したように、内視鏡画像が、例えば、1024×540の解像度である場合、例えば、M=8、N=6であるときには、内視鏡画像は128×90個の小ブロックに分割されることになる。
ステップS17において、傾斜偏り計算部35は、複数の小ブロックからなるブロック単位で、小ブロック単位の傾斜強度で荷重した勾配方向のヒストグラムHsb(sx,sy)を用いて、傾斜偏り特徴量Bbを計算し、計算結果を特徴量生成部36に供給する。
より具体的には、図5の太線枠で示されるように平滑化された内視鏡画像を、例えば、M小ブロック×N小ブロックのブロックに分割し、各ブロックについて、以下の式(10)を演算する。
Figure 0006825625
ここで、(bx,by)は、ブロックの座標を表している。Hb(bx,by)は、傾斜強度で荷重した勾配方向のヒストグラムあり、傾斜方向毎の傾斜強度の加算結果となるヒストグラムからなる特徴量である。
さらに、傾斜偏り計算部35は、ブロック単位の傾斜強度のヒストグラムHb(bx,by)に基づいて、以下の式(11)を演算することにより、傾斜偏り特徴量Bbを算出する。
Figure 0006825625
ここで、Bbは、傾斜偏り特徴量であり、maxQ(bx,by)は、ブロック(bx,by)における傾斜強度のヒストグラムのQ位を表している。すなわち、式(11)は、実質的に、上位2位までの傾斜強度の和が、ブロック毎の傾斜偏り特徴量Bbとなる。
所定のブロックにおいて、例えば、図6で示されるような傾斜強度のヒストグラムが求められている場合、傾斜強度(勾配強度)が最上位となる傾斜(勾配)方向Aの傾斜強度と、2位となる傾斜(勾配)方向Bの傾斜強度との和が、所定のブロックにおける傾斜偏り特徴量Bbとなる。
尚、上述したように、内視鏡画像が、例えば、1024×540の解像度である場合、例えば、M=4、N=4であるときには、内視鏡画像は125×87個のブロックに分割されることになる。
ステップS18において、特徴量生成部36は、図5のブロック単位の明度Ib、および色度rb,gbを算出し、傾斜偏り特徴量と併せて4次元特徴量を生成する。
より詳細には、特徴量生成部36は、まず、以下の式(12)乃至式(14)を演算して、上述した図4の小ブロック単位の明度Isb、および色度rsb,gsbを算出する。
Figure 0006825625
Figure 0006825625
Figure 0006825625
ここで、Isbは、小ブロック単位の明度の特徴量であり、rsb,gsbは、小ブロック単位の色度の特徴量である。
次に、特徴量生成部36は、以下の式(15)乃至式(17)を演算して、上述した図5のブロック単位の明度Ib、および色度rb,gbを算出する。
Figure 0006825625
Figure 0006825625
Figure 0006825625
ここで、(bx,by)は、ブロックの座標を表している。Ibは、ブロック単位の明度の特徴量であり、rb,gbは、ブロック単位の色度の特徴量である。
そして、特徴量生成部36は、明度Ib(bx,by)、色度rb(bx,by),gb(bx,by)、および傾斜偏り特徴量Bb(x,y)からなる4次元特徴量を生成して正規化調整部37に供給する。
尚、特徴量Bb(x,y)については、上位2位の2種類の方向が隣接していることが前提となるが、上述したステップS13の処理により内視鏡画像は平滑化されており、傾斜偏りが強く表れる画像となっているので、上位の傾斜方向は隣接した方向となる。また、2位の傾斜方向については、傾斜強度が所定値よりも大きい場合に採用するようにしてもよく、この場合、2位の傾斜方向の傾斜強度が所定値よりも小さい場合には、最上位の傾斜方向の傾斜強度のみを採用するようにしてもよい。さらに、所定値よりも大きな傾斜方向に傾斜強度を全て足し合わせて採用するようにしてもよい。
ステップS19において、正規化調整部37は、4次元特徴量を、後述する分類器51に受け付けられる、例えば、0乃至1,−1乃至+1の様な信号レベルに収めるために正規化すると共に、後述する分類器51の効き方を調整したり、現像パラメータに合わせこむために調整し、画像分類部38に供給する。より具体的には、正規化調整部37は、例えば、以下の式(18)乃至式(21)を演算することにより、4次元特徴量を正規化すると共に調整する。
Figure 0006825625
Figure 0006825625
Figure 0006825625
Figure 0006825625
ここで、Ib'(bx,by),rb'(bx,by),gb'(bx,by),Bb'(bx,by)は、正規化され、かつ、調整された明度、色度、および傾斜偏り特徴量であり、iOffset,rOffset,gOffset,bOffsetは、明度、色度、および傾斜偏り特徴量のオフセット量であり、iGain,rGain,gGain,bGainは、ゲイン制御係数である。
ステップS20において、画像分類部38は、分類器51を制御して、正規化され、かつ、調整された4次元特徴量を用いて、画像内の被写体を分類し、分類結果を画像処理部39に供給する。
分類器51は、例えば、ニューラルネットワークを用いた構成とするようにしてもよい。図7は、ニューラルネットワークを用いて構成された分類器51の構成例を示している。図7の分類器51は、入力層71、ReLu72、tanh73、およびDropout+softmax74より構成されている。
入力層71は、4次元特徴量を受け付けてランプ関数(ReLu)72に供給する。
ランプ関数(ReLu)72は、例えば、図8の右部で示されるような関数であり、4次元特徴量に対して、この関数を用いた処理を施し、tanh73に供給する。
tanh73は、例えば、図8の左部で示されるような関数であり、ランプ関数72による処理が施された4次元特徴量に対して、図8の左部で示されるような関数による処理を施し、Dropout+softmax74に供給する。
Dropout+softmax74は、Dropoutとsoftmaxとからなり、このうち、Dropoutは、学習時にネットワークの過学習を防ぐための関数であり、例えば、単純に素子の出力を半分にするといった処理を施す。また、softmaxは、主に分類機能を持ったニューラルネットワークの出力値を正規化するために用いられ、例えば、以下の式(22)で表される。
Figure 0006825625
これらの構成により、分類器51は、4次元特徴量に基づいて、例えば、生体組織、術具、ガーゼ、マスク外、血だまり、および高輝度部を分類する。より詳細には、分類器51は、4次元特徴量により、術具、ガーゼ、マスク外、血だまり、および高輝度部となる領域を分類し、それらに分類されない領域を生体組織であるものとして分類する。
より具体的には、例えば、術具、ガーゼ、マスク外、血だまり、高輝度部、および生体組織を分類するような場合、分類器51は、枠F11単位で被写体を分類し、例えば、術具およびガーゼについては、マスク外と分類された図5のブロックが含まれず、ガーゼと判定されたブロックよりも、術具と判定されたブロックの方が多ければ術具であるものとみなし、その逆であればガーゼであるものとみなす。
また、分類器51は、例えば、各枠F11のうち、マスク外、血だまり、および高輝度部と分類された図5のブロックが所定の割合以上であれば、それぞれマスク外、血だまり、および高輝度部であるものとみなす。そして、分類器51は、術具、ガーゼ、マスク外、血だまり、および高輝度部のいずれにもみなされなかった枠F11については、生体組織であるものとみなす。
このような分類により、分類器51の分類精度がそれほど高いものではなくても検出可能な術具、ガーゼ、マスク外、血だまり、および高輝度部を検出し、それ以外を生体組織として認識することで、類似に係る処理負荷を低減しつつ、高い精度で生体組織を分類することが可能となる。
また、分類器51の分類結果については、枠F11毎に、術具、ガーゼ、マスク外、血だまり、高輝度部、および生体組織といった分類対象毎のスコアを計算して、スコアに応じて分類結果を決定するようにしてもよい。この場合、スコアが最上位の分類対象を分類結果とするようにしてもよいし、上位2位までの分類結果を提示して選択できるようにしてもよい。さらに、上位2位までの分類結果を提示するときには、2位となるスコアの分類対象については、所定のスコア以上であるときにのみ、上位2位までを提示して選択できるようにしてもよい。尚、本開示においては、ガーゼ、マスク外、血だまり、高輝度部、および生体組織を分類する例について説明してきたが、それ以外の被写体を分類するようにしてもよい。ただし、生体組織の分類に際しては、それ以外の被写体として分類されていない範囲であることは同様である。
ステップS21において、画像処理部39は、分類結果に基づいて、撮像された内視鏡画像に画像処理を施し、処理結果をAE制御部42、AF制御部43、およびブレ補正部44に供給する。
より具体的には、例えば、図9で示されるように、画像処理部3は、鉗子Kが存在する範囲が、術具として検出された場合、内視鏡画像の対応する範囲を、分類された術具であることを示す色や模様等でハッチングする。この他にも、AE、AF、およびブレ補正等に影響を及ぼす可能性があり、かつ、生体組織以外の領域を分類結果に応じた色や模様等でハッチングする。
例えば、この他にもガーゼ、マスク外、血だまり、および高輝度部など、AE、AF、およびブレ補正等に影響を及ぼす可能性があり、かつ、生体組織以外の領域について、分類結果に応じた色や模様等でハッチングする。尚、生体組織の範囲は、ガーゼ、マスク外、血だまり、および高輝度部として認識された範囲外であるものとみなされる。
尚、図9において、格子状に設けられた枠F11は、AE制御部42およびブレ補正部44により、AEおよびブレ補正を制御するためのブロックであり、太線からなる単独の枠F1は、AF制御部43によりAFが制御される範囲を示している。枠F1,F11のいずれにおいても、AE制御、AF制御、およびブレ補正のそれぞれの制御に適したサイズに設定されていると共に、上述した図5のブロックよりも大きな範囲である。すなわち、図5のブロックは、枠F1,F11を用いたAE、およびAFの処理における最小処理単位となる。
例えば、枠F11のサイズが、内視鏡画像に対して、例えば、12個×5個分割するサイズの場合、ハッチングの範囲は、図10の上段で示されるようなものとなるが、内視鏡画像に対して、例えば、40個×30個に分割するサイズの場合、ハッチングの範囲は、図10の下段で示されるようなものとなる。すなわち、枠F11のサイズは、図10の下段で示されるようなより小さなサイズである場合、図10の上段で示されるような大きなサイズであるよりも、より高い解像度で範囲を設定することが可能となる。
尚、以上においては、分類器51は、ニューラルネットワークにより構成する例について説明してきたが、分類器51として機能すれば、他の構成でもよく、例えば、ブースティング(Boosting)などに代表される機械学習を用いたものでもよい。
ステップS22において、AE制御部42は、生体組織であるものとみなされた範囲内における枠F11単位の輝度情報を用いてAEを制御する。すなわち、このような処理により、金属製の術具などに反射した光で色飛びしてしまうような画素をも用いたAE制御とならないため、適切なAE制御を実現することが可能となる。
すなわち、図10の上段、または下段で示されるように、術具が撮像された範囲と、ガーゼが撮像された範囲が、それぞれ区別された色または模様等でハッチングされ、それ以外の範囲の枠F11における輝度情報が利用されて、AEが実現される。結果として、生体組織が撮像された範囲の輝度情報のみが用いられた状態でAEが実現されるので、適切なAEを実現することが可能となる。尚、必要とされる輝度は、術式や診療科などにより異なる場合があるので、それぞれに適した輝度となるようにAEが制御される。
ステップS23において、AF制御部43は、生体組織であるとみなされた範囲の画像を利用してAFを実現する。より詳細には、AF制御部43は、内視鏡画像内の中心付近において、生体組織のみが含まれる位置になるまで、所定サイズの枠F1を画像内で移動させて、注目領域を探索する。このとき、もし、注目領域を検索できない場合、枠F1のサイズをより小さくして、注目領域が探索できるまで、繰り返し枠F1により注目領域を探索する。
そして、注目領域が探索できたとき、AF制御部43は、注目領域における画像を用いてAF制御を実現する。より具体的には、例えば、エッジ検出により焦点が合った状態を探索することで、AFの制御を実現する。
すなわち、図10の上部で示されるように、AF制御部43は、ハッチングされた領域を含まない位置まで枠F1を移動させる。
枠F1により注目領域が特定できたとき、AF制御部43は、エッジが十分に検出されるように光学ブロック61を制御することで、AF制御を実現する。このように生体組織のみからなる枠F1で特定される注目領域のエッジを検出することでAFを実現することにより、適切なAFの制御を実現することができる。
ステップS24において、ブレ補正部44は、生体組織であるものとみなされた範囲内の動き情報を用いてブレを補正する。
すなわち、ブレ補正部44は、図11で示されるように、術具が撮像された範囲と、ガーゼが撮像された範囲を検索すると、図12で示されるように白色にハッチングする。そして、ブレ補正部44は、ハッチングされた範囲以外の範囲の枠F21における動き情報を利用して、ブレ補正を実現する。結果として、生体組織が撮像された範囲の動き情報のみが用いられた状態でブレが補正されるので、適切なブレ補正を実現することが可能となる。
ステップS25において、画像処理部39は、処理を施した画像を表示制御部40に供給し、画像表示部13への表示を制御させる。ここで表示される画像については、AE、AF、およびブレ補正が施された状態の画像が表示されることになる。すなわち、以上のような処理により、適切なAE、AF、およびブレ補正が施された内視鏡画像を提示することが可能となり、術者である医師に対して、視聴対象となる生体組織を見易く提示することが可能となる。
ステップS26において、画像分類部38は、操作部41が操作されて再学習が指示されたか否かを判定し、再学習が指示された場合、処理は、ステップS27に進む。
ステップS27において、画像分類部38は、再学習処理を実行して、分類器51を再学習させる。尚、再学習処理については、図14のフローチャートを参照して、後述する。
尚、ステップS26において、再学習が指示されていない場合、ステップS27の処理がスキップされる。
ステップS28において、画像処理装置11は、終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS11に戻り、以降の処理が繰り返される。そして、ステップS28において、終了が指示された場合、処理は終了する。
ここで、図13を参照して、以上の処理をまとめる。
すなわち、術具である鉗子が生体組織の前に映し出された図13の画像P1のような場合、ステップS16において、一般的なHOGが、小ブロック単位の画像勾配方向のヒストグラムの集合として求められることになる。
このため、図13の画像P1の方形状の枠で示されるように、例えば、4ブロック×4ブロックの範囲について、各ブロックで12方向の傾き方向別のヒストグラムを持つと、その情報は、4×4×12の192次元の情報となる。
ところが、本開示の画像処理装置11においては、元の内視鏡画像に対してLPFを掛けて平滑化した上で、HOGを求めるようにすることで、広い範囲で強い傾きが生じるようにすることが可能となる。さらに、平滑化された画像内において、4ブロック×4ブロックの範囲の、それぞれのブロックの傾斜方向に対する傾斜強度(頻度)ヒストグラムを加算して、その上位2位までの傾斜強度の和のみからなる1次元の情報を傾斜偏り特徴量とすることで、図13の画像P2で示されるような傾斜の偏りとして表現させることが可能となる。このため、少ない次元数の特徴量で分類することが可能となるので、分類に係る演算量を低減することが可能となる。尚、図13の画像P1,P2においては、各ブロックにおける傾斜方向と傾斜強度が画像上において、棒状のゲージの太さ、および長さ、並びに、傾いた方向で表現されている。また、画像P2においては、鉗子Kの部分に術具が検出されていることを示すハッチングが施されている。さらに、画像P1上の方形状の枠より矢印で示される画像P2上の棒状のゲージが枠内の192次元の傾斜偏り特徴量を1次元で表現した例であることを示している。
さらに、生体組織の範囲については、分類が比較的容易な術具、およびガーゼ等を分類し、分類が困難な生体組織については、分類が容易な範囲以外とすることで、内視鏡装置12により撮像される内視鏡画像において、演算量を低減しつつ、生体組織となる範囲を低遅延で分類して、提示することが可能となる。
<再学習処理>
次に、図14のフローチャートを参照して、再学習処理について説明する。
ステップS41において、画像分類部38は、操作部41が操作されて、画像表示部13上における再学習領域の入力が受け付ける。
ステップS42において、画像分類部38は、再学習領域に属するブロックにおける4次元特徴量を読み出す。
ステップS43において、画像分類部38は、正解ラベルの入力を受け付ける。
ステップS44において、画像分類部38は、分類器51を制御して、4次元特徴量を分類し、必要に応じて追加し、正解ラベルが求められるように学習する。
ステップS45において、画像分類部38は、再学習が完了した分類器51を制御して、再学習領域として受け付けられた4次元特徴量を用いて、画像を分類し、分類結果を画像処理部39に供給する。
ステップS46において、画像処理部39は、分類結果に基づいて、画像を処理する。
ステップS47において、画像処理部39は、画像処理結果を表示制御部40に供給し、画像表示部13への表示を制御させる。
ステップS48において、画像分類部38は、再学習処理が終了か否かを判定する。例えば、分類に誤りがあり、再び再学習が必要であり、操作部41が操作されて、その旨が指示されると、処理は、ステップS41に戻り、以降の処理が繰り返される。そして、ステップS48において、終了が指示されると、処理は、終了する。
すなわち、図15の画像P11で示されるように、鉗子Kが存在する範囲Z1がハッチングされておらず、術具として分類されていないような場合、術者である医師が、例えば、画像P12で示されるように、分類による認識ミスであるものとして、再学習領域として範囲Z11が指定されるものとする。すると、通常の表示が停止されて、対応する範囲のブロックの4次元特徴量が選別され、また、必要に応じて追加されるといった処理により再学習がなされた後、画像P13の範囲Z21で示されるように、術具として分類されてハッチングさせるようにすることが可能となる。
尚、以上においては、内視鏡画像のAE、AF、およびブレ補正について説明してきたが、内視鏡画像と同様の条件で撮像されるような画像であれば、内視鏡画像に限らず、その他の画像であっても同様の効果を奏することができ、例えば、顕微鏡画像などであっても同様の効果を奏することができる。
以上の如く、本開示によれば、内視鏡画像における視聴対象に焦点が合っていない、いわゆるピンボケの画像や露出不良状態であっても、術具やガーゼといった、AE、AF、およびブレ補正といった撮像制御の精度を低下させるような物体の位置を特定することが可能となる。
これにより、物体の位置が特定された範囲以外を生体組織として分類することが可能となり、生体組織を対象にした、適切なAE、AFおよびブレ補正を実現することが可能となる。結果として、術者にとって視聴し易い内視鏡画像を低遅延で提示することが可能となる。
また、分類に失敗が生じた場合については、その都度、再学習処理を実行させることで、正解ラベルに基づいた再学習させることが可能となるので、視聴し難い状態を迅速に解消させて、視聴し易い内視鏡画像を提示することが可能となる。
<<3.応用例>>
<ソフトウェアにより実行させる例>
ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
図16は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
尚、本開示は、以下のような構成も取ることができる。
<1> 医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、
前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部とを含む
画像処理装置。
<2> 前記分類部は、前記平滑化画像に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類する
<1>に記載の画像処理装置。
<3> 前記分類部は、前記平滑化画像の明度、色度、および輝度に基づいて、前記各領域に含まれる前記各被写体を分類する
<2>に記載の画像処理装置。
<4> 前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換部と、
前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算部とをさらに含み、
前記分類部は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記生体画像内の被写体を分類する
<3>に記載の画像処理装置。
<5> 前記所定サイズのブロックは、前記所定のサイズよりも小さいサイズの複数の小ブロックから構成され、
前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムを前記小ブロック単位の傾斜偏り特徴量として求める傾斜偏り計算部をさらに含む
<4>に記載の画像処理装置。
<6> 前記傾斜偏り計算部は、前記ブロック単位で、複数の前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムの上位の傾斜強度を前記所定サイズのブロック単位の傾斜偏り特徴量として計算し、
前記分類部は、ブロック単位の前記明度、前記色度、並びに、前記傾斜偏り特徴量に基づいて、前記生体画像内の被写体を分類する
<5>に記載の画像処理装置。
<7> 前記傾斜偏り計算部は、前記移動加算となるヒストグラムの所定の上位順位までの傾斜強度の和を前記所定サイズのブロック単位の傾斜偏り特徴量として計算する
<6>に記載の画像処理装置。
<8> 前記分類部は、前記生体組織以外のものとして、前記生体画像内の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類する
<2>に記載の画像処理装置。
<9> 前記分類部は、前記生体画像内の前記各領域に含まれる前記各被写体を生体組織以外の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類し、いずれのものにも分類されない領域の被写体を生体組織として分類する
<8>に記載の画像処理装置。
<10> 前記分類部は、ニューラルネットワークを用いた分類器より構成される
<1>に記載の画像処理装置。
<11> 前記分類部は、ブースティングを用いた機械学習を用いた分類器より構成される
<1>に記載の画像処理装置。
<12> 前記生体画像のうち、前記生体組織として分類された前記領域の輝度の情報に基づいて、前記医療用撮像装置における露出を調整する露出調整部をさらに含む
<2>に記載の画像処理装置。
<13> 前記生体画像内において、前記生体組織として分類された前記領域の情報のみに基づいて、前記医療用撮像装置における焦点を調整する焦点調整部をさらに含む
<2>に記載の画像処理装置。
<14> 前記生体画像のうち、前記生体組織として分類された前記領域の動きの情報に基づいて、前記生体画像のブレを補正するブレ補正部をさらに含む
<2>に記載の画像処理装置。
<15> 前記分類部の分類結果に基づいて、分類された被写体の種別に対応する、前記生体画像上の位置にハッチングを付するように画像を処理する画像処理部と、
前記画像処理部により処理がなされた生体画像の表示を制御する表示制御部とをさらに含む
<1>に記載の画像処理装置。
<16> 前記表示された生体画像上に、再学習が必要とされる再学習範囲を指定すると共に正解の被写体を示す正解ラベルを指定する操作部をさらに含み、
前記分類部は、前記再学習範囲において、前記正解ラベルに対応する被写体を分類するように再学習する
<15>に記載の画像処理装置。
<17> 前記生体画像は、内視鏡装置により撮像される内視鏡画像である
<1>に記載の画像処理装置。
<18> 画像を平滑化し、
医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化し、
前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類するステップを含む
画像処理方法。
<19> 医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、
前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部とを含む
画像処理装置と、
前記画像を撮像する撮像部を含む
医療用撮像装置とからなる
医療用撮像システム。
11 画像処理装置, 12 内視鏡装置, 13 画像表示部, 14 患者, 31 画像縮小化部, 32 画像平滑化部, 33 輝度色度変換部, 34 輝度傾斜計算部, 35 傾斜偏り計算部, 36 特徴量生成部, 37 正規化調整部, 38 画像分類部, 39 画像処理部, 40 表示制御部, 41 操作部, 42 AE制御部, 43 AF制御部, 44 ブレ補正部, 51 分類器, 71 入力層, 72 ReLu, 73 tanh, 74 Dropout+softmax

Claims (16)

  1. 医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、
    前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部と
    前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換部と、
    前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算部とを含み、
    前記分類部は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類する
    画像処理装置。
  2. 前記所定サイズのブロックは、前記所定サイズよりも小さいサイズの複数の小ブロックから構成され、
    前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムを前記小ブロック単位の傾斜偏り特徴量として求める傾斜偏り計算部をさらに含む
    請求項に記載の画像処理装置。
  3. 前記傾斜偏り計算部は、前記ブロック単位で、複数の前記小ブロック単位の傾斜強度のヒストグラムの移動加算を求め前記移動加算となるヒストグラムの上位の傾斜強度を前記所定サイズのブロック単位の傾斜偏り特徴量として計算し、
    前記分類部は、ブロック単位の前記明度、前記色度、並びに、前記傾斜偏り特徴量に基づいて、前記生体画像内の被写体を分類する
    請求項に記載の画像処理装置。
  4. 前記傾斜偏り計算部は、前記移動加算となるヒストグラムの所定の上位順位までの傾斜強度の和を前記所定サイズのブロック単位の傾斜偏り特徴量として計算する
    請求項に記載の画像処理装置。
  5. 前記分類部は、前記生体組織以外のものとして、前記生体画像内の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類する
    請求項に記載の画像処理装置。
  6. 前記分類部は、前記生体画像内の前記各領域に含まれる前記各被写体を生体組織以外の術具、ガーゼ、マスク外、血だまり、又は高輝度部のうちのいずれかに分類し、いずれのものにも分類されない領域の被写体を生体組織として分類する
    請求項に記載の画像処理装置。
  7. 前記分類部は、ニューラルネットワークを用いた分類器より構成される
    請求項1に記載の画像処理装置。
  8. 前記分類部は、ブースティングを用いた機械学習を用いた分類器より構成される
    請求項1に記載の画像処理装置。
  9. 前記生体画像のうち、前記生体組織として分類された前記領域の輝度の情報に基づいて、前記医療用撮像装置における露出を調整する露出調整部をさらに含む
    請求項に記載の画像処理装置。
  10. 前記生体画像内において、前記生体組織として分類された前記領域の情報のみに基づいて、前記医療用撮像装置における焦点を調整する焦点調整部をさらに含む
    請求項に記載の画像処理装置。
  11. 前記生体画像のうち、前記生体組織として分類された前記領域の動きの情報に基づいて、前記生体画像のブレを補正するブレ補正部をさらに含む
    請求項に記載の画像処理装置。
  12. 前記分類部の分類結果に基づいて、分類された被写体の種別に対応する、前記生体画像上の位置にハッチングを付するように画像を処理する画像処理部と、
    前記画像処理部により処理がなされた生体画像の表示を制御する表示制御部とをさらに含む
    請求項1に記載の画像処理装置。
  13. 前記表示された生体画像上に、再学習が必要とされる再学習範囲を指定すると共に正解の被写体を示す正解ラベルを指定する操作部をさらに含み、
    前記分類部は、前記再学習範囲において、前記正解ラベルに対応する被写体を分類するように再学習する
    請求項12に記載の画像処理装置。
  14. 前記生体画像は、内視鏡装置により撮像される内視鏡画像である
    請求項1に記載の画像処理装置。
  15. 医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化し、
    前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類ステップと、
    前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換ステップと、
    前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算ステップとを含み、
    前記分類ステップの処理は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類する
    画像処理装置の作動方法。
  16. 医療用撮像装置により生体組織を含む生体内を撮像して生成された生体画像を平滑化する平滑化部と、
    前記平滑化部により前記生体画像が平滑化された平滑化画像に基づいて、前記生体画像内の各領域に含まれる各被写体を分類する分類部と
    前記平滑化画像の各画素の画素値より明度、色度、および輝度に変換する変換部と、
    前記平滑化画像における各画素の輝度の傾斜方向および傾斜強度を求める輝度傾斜計算部とを含み、
    前記分類部は、前記生体画像における所定サイズのブロック単位で、前記明度、前記色度、並びに、前記傾斜方向および前記傾斜強度に基づいて、前記各領域に含まれる前記各被写体を前記生体組織又は前記生体組織以外のものに分類する
    画像処理装置と、
    前記生体画像を撮像する撮像部を含む
    医療用撮像装置とからなる
    医療用撮像システム。
JP2018525034A 2016-06-28 2017-06-14 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム Active JP6825625B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016127687 2016-06-28
JP2016127687 2016-06-28
PCT/JP2017/021949 WO2018003503A1 (ja) 2016-06-28 2017-06-14 画像処理装置および画像処理方法、並びに医療用撮像システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021003498A Division JP2021065718A (ja) 2016-06-28 2021-01-13 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム

Publications (2)

Publication Number Publication Date
JPWO2018003503A1 JPWO2018003503A1 (ja) 2019-04-18
JP6825625B2 true JP6825625B2 (ja) 2021-02-03

Family

ID=60786241

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018525034A Active JP6825625B2 (ja) 2016-06-28 2017-06-14 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム
JP2021003498A Ceased JP2021065718A (ja) 2016-06-28 2021-01-13 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021003498A Ceased JP2021065718A (ja) 2016-06-28 2021-01-13 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム

Country Status (5)

Country Link
US (1) US11087461B2 (ja)
EP (1) EP3476272A4 (ja)
JP (2) JP6825625B2 (ja)
CN (1) CN109310306B (ja)
WO (1) WO2018003503A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048628B2 (ja) 2016-11-28 2022-04-05 アダプティブエンドウ エルエルシー 分離可能使い捨てシャフト付き内視鏡
JPWO2020009127A1 (ja) * 2018-07-06 2021-08-02 ソニーグループ株式会社 医療用観察システム、医療用観察装置、及び医療用観察装置の駆動方法
CN112367896A (zh) * 2018-07-09 2021-02-12 富士胶片株式会社 医用图像处理装置、医用图像处理***、医用图像处理方法及程序
JP7079849B2 (ja) * 2018-08-20 2022-06-02 富士フイルム株式会社 医療画像処理システム
JP7128135B2 (ja) * 2019-03-08 2022-08-30 富士フイルム株式会社 内視鏡画像学習装置、方法及びプログラム、内視鏡画像認識装置
US10799090B1 (en) * 2019-06-13 2020-10-13 Verb Surgical Inc. Method and system for automatically turning on/off a light source for an endoscope during a surgery
CN111091536B (zh) * 2019-11-25 2023-04-07 腾讯科技(深圳)有限公司 医学图像处理方法、装置、设备、介质以及内窥镜
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
EP4094714A4 (en) * 2020-03-11 2023-08-02 Sony Olympus Medical Solutions Inc. DEVICE FOR PROCESSING MEDICAL IMAGES AND MEDICAL OBSERVATION SYSTEM
CN113011418B (zh) * 2021-02-09 2024-02-23 杭州海康慧影科技有限公司 确定图像中待处理区域的方法、装置、设备
USD1031035S1 (en) 2021-04-29 2024-06-11 Adaptivendo Llc Endoscope handle
CN113591961A (zh) * 2021-07-22 2021-11-02 深圳市永吉星光电有限公司 一种基于神经网络的微创医用摄像头图像识别方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163191A (ja) 1992-11-18 1994-06-10 Mitsubishi Electric Corp 加速器およびこれを用いた半導体製造装置
JPH06162191A (ja) * 1992-11-18 1994-06-10 Matsushita Electric Ind Co Ltd 図形判別方法
JP3974946B2 (ja) 1994-04-08 2007-09-12 オリンパス株式会社 画像分類装置
JP3955126B2 (ja) * 1997-05-14 2007-08-08 オリンパス株式会社 内視鏡の視野変換装置
JP4472631B2 (ja) * 2005-12-28 2010-06-02 オリンパスメディカルシステムズ株式会社 画像処理装置および当該画像処理装置における画像処理方法
JP4197008B2 (ja) * 2006-05-15 2008-12-17 セイコーエプソン株式会社 画像処理方法、プログラム及び画像処理装置
US7794396B2 (en) * 2006-11-03 2010-09-14 Stryker Corporation System and method for the automated zooming of a surgical camera
JP4905187B2 (ja) * 2007-03-09 2012-03-28 ソニー株式会社 画像処理装置、撮像装置、および画像処理方法、並びにコンピュータ・プログラム
JP5374078B2 (ja) * 2008-06-16 2013-12-25 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
US8526719B2 (en) * 2009-12-29 2013-09-03 Postech Academy-Industry Foundation Method of converting color image into grayscale image and recording medium storing program for performing the same
JP5385163B2 (ja) * 2010-01-06 2014-01-08 オリンパスメディカルシステムズ株式会社 内視鏡システム
US8345930B2 (en) * 2010-01-22 2013-01-01 Sri International Method for computing food volume in a method for analyzing food
WO2012011303A1 (ja) * 2010-07-21 2012-01-26 オリンパスメディカルシステムズ株式会社 画像処理装置及び画像処理方法
EP2685881B1 (en) * 2011-03-16 2020-08-19 Koninklijke Philips N.V. Medical instrument for examining the cervix
JP5865606B2 (ja) * 2011-05-27 2016-02-17 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
JP5855358B2 (ja) * 2011-05-27 2016-02-09 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
JP5959168B2 (ja) * 2011-08-31 2016-08-02 オリンパス株式会社 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5962092B2 (ja) * 2012-03-16 2016-08-03 ソニー株式会社 画像処理装置と画像処理方法
CN103366177B (zh) * 2012-03-28 2016-12-07 佳能株式会社 对象检测分类器生成方法和设备、图像对象检测方法和设备
JP5413501B1 (ja) * 2012-12-07 2014-02-12 富士ゼロックス株式会社 画像処理装置、画像処理システム及びプログラム
US9396403B2 (en) * 2012-12-31 2016-07-19 Instytut Badawczy Drog I Mostow Method of vehicle identification and a system for vehicle identification
JP6176978B2 (ja) * 2013-01-31 2017-08-09 オリンパス株式会社 内視鏡用画像処理装置、内視鏡装置、内視鏡用画像処理装置の作動方法及び画像処理プログラム
CN103971361B (zh) * 2013-02-06 2017-05-10 富士通株式会社 图像处理装置和方法
JP6587610B2 (ja) * 2013-10-11 2019-10-09 マウナ ケア テクノロジーズ 映像医療機器により取得した画像を処理するシステムおよびそのシステムの作動方法
JP2016000065A (ja) * 2014-06-11 2016-01-07 ソニー株式会社 画像処理装置、画像処理方法、プログラム、および内視鏡システム
JP2016007273A (ja) * 2014-06-23 2016-01-18 オリンパス株式会社 内視鏡装置
JP6909979B2 (ja) * 2015-11-05 2021-07-28 日本電気株式会社 画像処理システム、画像処理方法、および画像処理プログラム

Also Published As

Publication number Publication date
JP2021065718A (ja) 2021-04-30
US20190206053A1 (en) 2019-07-04
US11087461B2 (en) 2021-08-10
JPWO2018003503A1 (ja) 2019-04-18
CN109310306A (zh) 2019-02-05
CN109310306B (zh) 2021-09-24
EP3476272A4 (en) 2019-07-31
EP3476272A1 (en) 2019-05-01
WO2018003503A1 (ja) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6825625B2 (ja) 画像処理装置および画像処理装置の作動方法、並びに医療用撮像システム
US7953251B1 (en) Method and apparatus for detection and correction of flash-induced eye defects within digital images using preview or other reference images
JP3810776B2 (ja) ディジタル画像中の赤目を検出し補正する方法
US9253388B2 (en) Image processing device and method, and program
JP4454657B2 (ja) ぶれ補正装置及び方法、並びに撮像装置
US20110158551A1 (en) Image composition device, image composition method, and storage medium storing program
KR101634228B1 (ko) 디지털 이미지 처리장치, 추적방법, 추적방법을 실행시키기위한 프로그램을 저장한 기록매체 및 추적방법을 채용한 디지털 이미지 처리장치
JPWO2017168986A1 (ja) 制御装置、内視鏡撮像装置、制御方法、プログラムおよび内視鏡システム
US11423515B2 (en) Image processing apparatus
KR101385743B1 (ko) 수술 영상의 실시간 시각적 노이즈 자동 제거 장치, 방법 및 시스템
JP5504990B2 (ja) 撮像装置、画像処理装置及びプログラム
US10362213B2 (en) Imaging apparatus and imaging method
US20230255443A1 (en) Apparatuses, systems, and methods for discounting an object while managing auto-exposure of image frames depicting the object
JP6436840B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JPWO2018016002A1 (ja) 画像処理装置、内視鏡システム、プログラム及び画像処理方法
JP6238673B2 (ja) 画像処理装置、撮像装置、撮像システム、画像処理方法、画像処理プログラム、および、記憶媒体
EP4249850A1 (en) Controller for an imaging system, system and corresponding method
CN117529930A (zh) 基于深度的自动曝光管理
JP6098227B2 (ja) 画像処理装置、撮像装置、及び画像処理プログラム
JP2016201601A (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP2015106304A (ja) 被写体特定装置、撮像装置およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6825625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151