JP6824526B2 - 大脳皮質ニューロンの誘導方法 - Google Patents

大脳皮質ニューロンの誘導方法 Download PDF

Info

Publication number
JP6824526B2
JP6824526B2 JP2017512611A JP2017512611A JP6824526B2 JP 6824526 B2 JP6824526 B2 JP 6824526B2 JP 2017512611 A JP2017512611 A JP 2017512611A JP 2017512611 A JP2017512611 A JP 2017512611A JP 6824526 B2 JP6824526 B2 JP 6824526B2
Authority
JP
Japan
Prior art keywords
cells
medium
days
inhibitor
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017512611A
Other languages
English (en)
Other versions
JPWO2016167372A1 (ja
Inventor
高橋 淳
淳 高橋
誠 元野
誠 元野
義彦 五百蔵
義彦 五百蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2016167372A1 publication Critical patent/JPWO2016167372A1/ja
Application granted granted Critical
Publication of JP6824526B2 publication Critical patent/JP6824526B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/08Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Description

本発明は、大脳皮質ニューロンの製造方法に関する。
虚血により脳組織の壊死等が引き起こされる脳梗塞は、死亡原因の中でも多くを占めている高頻度な疾患である上、後遺症を残して介護が必要となることが多く福祉の面でも大きな課題を伴う疾患である。近年、脳梗塞後には、神経幹細胞が誘導され、組織の自己治癒のシステムが解明されているが、大きな梗塞巣になれば、このような自己治癒は起きないため、外来性の神経細胞を投与する移植治療が検討されている。
近年では、多能性幹細胞から様々な組織細胞へと誘導する方法が開発されており、神経細胞についても多くの報告がなされている(非特許文献1、2、3)。
しかし、このような脳梗塞後の組織再生に適した神経細胞を効率よく作製するための誘導方法については、改良の余地がある。
Kim JE,et al.Proc Natl Acad Sci USA 108:3005−3010,2011 Hu BY,et al.Proc Natl Acad Sci USA 107:4335−4340,2010 Mariani J,et al.Proc Natl Acad Sci U S A.109:12770−12775,2012
本発明の目的は、多能性幹細胞から効率よく大脳皮質ニューロンを製造することである。したがって、本発明の課題は、多能性幹細胞から大脳皮質ニューロンの製造工程または製造に必要なキットを提供することである。
本発明者らは、上記の課題を解決すべく、多能性幹細胞から大脳皮質ニューロンの誘導工程において、培養条件を適宜検討し、得られた大脳皮質ニューロンを移植することで軸索を伸長させ、脳組織に適合することを見出し、本発明を完成するに至った。
すなわち、本発明は以下の通りである。
[1]以下の工程を含む多能性幹細胞から大脳皮質ニューロンを製造する方法:
(i)多能性幹細胞をTGFβ阻害剤、bFGF、Wnt阻害剤、およびBMP阻害剤を含む培養液中で浮遊培養する工程、
(ii)前記工程(i)で得られた細胞をWnt阻害剤、およびBMP阻害剤を含む培養液中で浮遊培養する工程、
(iii)前記工程(ii)で得られた細胞を培養する工程。
[2]前記多能性幹細胞が、ヒト多能性幹細胞である、[1]の方法。
[3]前記ヒト多能性幹細胞が、ヒトiPS細胞又はヒトES細胞である、[2]の方法。
[4]前記TGFβ阻害剤が、SB431542またはA−83−01である、[1]から[3]のいずれかの方法。
[5]前記Wnt阻害剤が、PORCN阻害剤である、[1]から[4]のいずれかの方法。
[6]前記Wnt阻害剤が、C59またはLGK−974である[1]から[5]のいずれかの方法。
[7]前記BMP阻害剤が、LDN193189である、[1]から[6]のいずれかの方法。
[8]前記培養液が血清又は血清代替物をさらに含む、[1]から[7]のいずれかの方法。
[9]前記工程(i)の培養液がROCK阻害剤をさらに含む、[1]から[8]のいずれかの方法。
[10]前記工程(iii)に続いてさらに、工程(iv)CD231、PCDH17およびCDH8から成る群より選択される少なくとも一つのマーカータンパク質が陽性である細胞を抽出する工程を含む[1]から[9]のいずれかの方法。
[11]前記大脳皮質ニューロンが、Ctip2陽性CoupTF1陰性であることを特徴とする大脳皮質の運動野の神経細胞である、[1]から[10]のいずれかの方法。
[12]前記工程(i)が、少なくとも3日間行われる、[1]から[11]のいずれかの方法。
[13]前記工程(ii)が、少なくとも6日間行われる、[1]から[12]のいずれかの方法。
[14][1]〜[13]のいずれかの方法で得られる、大脳皮質ニューロンを含む細胞培養物。
[15]TGFβ阻害剤、bFGF、Wnt阻害剤、及びBMP阻害剤を含む、多能性幹細胞から大脳皮質ニューロンを作製するためのキット。
[16]前記TGFβ阻害剤が、SB431542またはA−83−01であり、前記Wnt阻害剤が、C59またはLGK−974であり、前記BMP阻害剤が、LDN193189である、[15]のキット。
本発明によれば、脳梗塞の治療などに有用な、移植に適した大脳皮質ニューロンを効率よく得ることができる。
本明細書は本願の優先権の基礎となる日本国特許出願番号2015−082497号の開示内容を包含する。
図1には、大脳皮質ニューロンの製造プロトコールの一例を示す。 図2は、Wnt阻害剤として、DKK1、C59、XAV、またはIWP4を用いた場合の培養6日目(day6)、12日目(day12)および18日目(day18)の細胞におけるSix3、Sox1、Foxg1、Lhx2、Emx2、CoupTF1およびPax6の発現量を示すグラフである。図中、無添加は、Wnt阻害剤を用いなかった場合の結果を意味する。 図3Aは、Wnt阻害剤として、C59、DKK1、またはXAVを用いて培養した46日目の細胞のCtip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図3Bは、Wnt阻害剤として、C59、DKK1、またはXAVを用いて46日間培養した後のCtip2陽性細胞におけるCoupTF1陰性細胞の含有率(左図)および全細胞(DAPI)におけるCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。 図4Aは、Wnt阻害剤としてC59を0nM、2.5nMまたは10nM用いて培養した18日目の細胞のDAPIおよびPax6に対する染色像を示す。図4Bは、Wnt阻害剤としてC59を0nM、2.5nMまたは10nM用いて培養した0日目(d0)、6日目(d6)、12日目(d12)および18日目(d18)の細胞におけるCoupTF1、Emx2、Lhx2およびFoxg1の発現量を示すグラフである。 図5Aは、LDN193189を0.1μM、0.5μMまたは2μM用いて培養した46日目の細胞のCtip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図5Bは、LDN193189を0.1μM、0.5μMまたは2μM用いて培養した46日目のCtip2陽性細胞におけるCoupTF1陰性細胞の含有率(左図)および全細胞(DAPI)におけるCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。図5Cは、LDN193189を0.1μM、0.5μMまたは2μM用いて培養した46日目の細胞におけるCoupTF1およびSfrp1の発現量を示すグラフである。 図6Aは、KSRを10%、15%または20%用いて培養した46日目の細胞のCtip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図6Bは、KSRを10%、15%または20%用いて培養した46日目のCtip2陽性細胞におけるCoupTF1陰性細胞の含有率(左図)および全細胞におけるCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。図6Cは、KSRを10%、15%または20%用いて培養した46日目の細胞におけるCoupTF1およびSfrp1の発現量を示すグラフである。 図7Aは、SB431542の代わりにA−83−01を0.5μM、2μMまたは5μM用いて培養した46日目の細胞のCtip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図7Bは、SB431542の代わりにA−83−01を0.5μM、2μMまたは5μM用いて培養した46日目のCtip2陽性細胞におけるCoupTF1陰性細胞の含有率(左図)および全細胞におけるCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。 図8は、マウスの脳の模式図(上図)およびマウスの運動野へ本発明の方法で得られた誘導細胞を移植後6月目の各部位におけるヒトNCAMに対する免疫染色像(下図)を示す。上図において丸く囲まれた領域に細胞を移植した部位を示し、また図中の番号1または2における、免疫組織を下図に示す。免疫染色像において、移植細胞由来のヒト細胞の染色が示されている。 図9は、マウスの脳の模式図(上図)およびマウスの運動野へ本発明の方法で得られた誘導細胞を移植後6月目の各部位におけるヒトNCAMに対する免疫染色像(下図)を示す。上図中の番号1または2における、免疫組織を下図に示す。免疫染色像において、移植細胞由来のヒト細胞の染色が示されている。 図10Aは、マウスの運動野へ本発明の方法で得られた誘導細胞を移植後6月目の脊髄付近の位相差像(左図)およびヒトNCAMに対する免疫組織像(右図)を示す。図10Bは、マウスの運動野へ本発明の方法で得られた誘導細胞を移植後6月目の延髄付近の各部位での位相差像(上図)およびヒトNCAMに対する免疫組織像(下図)を示す。位相差像における枠で囲まれた部分の免疫染色像を下図にて示す。 図11は、分化誘導48日目の細胞におけるフローサイトメーターの解析結果を示す。左上図は、陰性対照の結果を示し、右上図は、CD231抗体により染色した結果を示し、左下図は、CDH8抗体により染色した結果を示し、右下図は、PCDH17抗体により染色した結果を示す。横軸は、蛍光強度を示す。図中、各マーカーの陽性細胞の含有率を数字で示す。 図12Aは、分化誘導48日目の細胞から各マーカー陽性細胞(CD231、PCDH17またはCDH8)を単離し、さらに14日間培養した後の細胞のCtip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図中Unsortは、分化誘導48日目の細胞を分離し、さらに14日間培養した後の細胞を示す。図12Bは、各マーカー陽性細胞(CD231、PCDH17またはCDH8)(図中+で示す)または各マーカー陰性細胞(図中−で示す)の再培養後14日目におけるCtip2陽性細胞の含有率(上図)およびCtip2陽性細胞CoupTF1陰性細胞の含有率(下図)を示すグラフである。グラフ中Unsortは、分化誘導48日目の細胞を解離し、さらに14日間培養した後の細胞におけるそれぞれの含有率を示す。 図13Aは、接着培養(上段)または浮遊培養(下段)にて分化誘導した46日目の細胞のDAPI(青)/Ctip2(赤)(左図)、DAPI(青)/CoupTF1(緑)(中央図)およびCtip2(赤色)およびCoupTF1(緑色)(右図)に対する染色像を示す。図13Bは、接着培養(Attach)または浮遊培養(Floating)にて分化誘導した46日目におけるCtip2陽性細胞の含有率(左図)およびCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。 図14Aは、WNT阻害剤として、C59、LGK−974、またはICG−001を用いて培養した46日目の細胞のDAPI(青色)、Ctip2(赤色)およびCoupTF1(緑色)に対する染色像を示す。図14Bは、WNT阻害剤として、C59、LGK−974、またはICG−001を用いて46日間培養した後の全細胞(DAPI)におけるCtip2陽性細胞の含有率(左図)および全細胞(DAPI)におけるCtip2陽性細胞CoupTF1陰性細胞の含有率(右図)を示すグラフである。
本発明は、次の工程を含む多能性幹細胞から大脳皮質ニューロンを製造する方法:
(i)多能性幹細胞をTGFβ阻害剤、bFGF、Wnt阻害剤、およびBMP阻害剤を含む培養液中で浮遊培養する工程、
(ii)前記工程(i)で得られた細胞をWnt阻害剤、およびBMP阻害剤を含む培養液中で浮遊培養する工程、
(iii)前記工程(ii)で得られた細胞をさらに培養する工程。
<多能性幹細胞>
本発明で使用可能な多能性幹細胞は、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞である。それらの多能性幹細胞の具体例は、以下のものに限定されないが、胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、***幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞などが含まれる。好ましい多能性幹細胞は、ES細胞、ntES細胞、およびiPS細胞である。より好ましい多能性幹細胞は、ヒト多能性幹細胞であり、特に好ましくはヒトES細胞、およびヒトiPS細胞である。
(A)胚性幹細胞
ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能とを有する幹細胞である。
ES細胞は、受精卵の8細胞期または桑実胚段階の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され(M.J.Evans and M.H.Kaufman(1981),Nature 292:154−156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された(J.A.Thomson et al.(1998),Science 282:1145−1147、J.A.Thomson et al.(1995),Proc.Natl.Acad.Sci.USA,92:7844−7848、J.A.Thomson et al.(1996),Biol.Reprod.,55:254−259およびJ.A.Thomson and V.S.Marshall(1998),Curr.Top.Dev.Biol.,38:133−165)。
ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養によるES細胞の維持は、白血病抑制因子(leukemia inhibitory factor(LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor(bFGF))などの物質を添加した培地を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばH.Suemori et al.(2006),Biochem.Biophys.Res.Commun.,345:926−932、M.Ueno et al.(2006),Proc.Natl.Acad.Sci.USA,103:9554−9559、H.Suemori et al.(2001),Dev.Dyn.,222:273−279およびH.Kawasaki et al.(2002),Proc.Natl.Acad.Sci.USA,99:1580−1585などに記載されている。
ES細胞作製のための培地として、例えば0.1mM 2−メルカプトエタノール、0.1mM非必須アミノ酸、2mM L−グルタミン酸、20%KSR及び4ng/ml bFGFを補充したDMEM/F−12培地を使用し、37℃、5%CO湿潤雰囲気下でヒトES細胞を維持することができる。また、ES細胞は、3〜4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl及び20%KSRを含有するPBS(リン酸緩衝生理食塩水)中の0.25%トリプシン及び0.1mg/mlコラゲナーゼIVを用いて行うことができる。
ES細胞の選択は、一般に、アルカリホスファターゼ、Oct−3/4、Nanogなどの遺伝子マーカーの発現を指標にして行うことができる。特に、ヒトES細胞の選択では、OCT−3/4、NANOG、などの遺伝子マーカーの発現をReal−Time PCR法で検出したり、および/または、細胞表面抗原であるSSEA−3、SSEA−4、TRA−1−60、TRA−1−81を免疫染色法にて検出することで行うことができる(Klimanskaya I,et al.(2006),Nature.444:481−485)。
ヒトES細胞株である例えばKhES−1、KhES−2及びKhES−3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
(B)***幹細胞
***幹細胞は、精巣由来の多能性幹細胞であり、***形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M.Kanatsu−Shinohara et al.(2003)Biol.Reprod.,69:612−616;K.Shinohara et al.(2004),Cell,119:1001−1012)。***幹細胞は、神経膠細胞系由来神経栄養因子(glial cell line−derived neurotrophic factor(GDNF))を含む培地で自己複製可能であるし、ES細胞と同様の培養条件下で継代を繰り返すことによって***幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41〜46頁,羊土社(東京、日本))。
(C)胚性生殖細胞
胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y.Matsui et al.(1992),Cell,70:841−847;J.L.Resnick et al.(1992),Nature,359:550−551)。
(D)人工多能性幹細胞
人工多能性幹(iPS)細胞は、ある特定の1種もしくは複数種の核初期化物質を、DNAまたはタンパク質の形態で体細胞に導入することによるか、または、ある特定の1種もしくは複数種の薬剤の使用により該核初期化物質の内在性のmRNAおよびタンパク質の発現量を上昇させることによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能を有する体細胞由来の人工の幹細胞である(K.Takahashi and S.Yamanaka(2006)Cell,126:663−676、K.Takahashi et al.(2007)Cell,131:861−872、J.Yu et al.(2007)Science,318:1917−1920、M.Nakagawa et al.(2008)Nat.Biotechnol.,26:101−106、国際公開WO 2007/069666および国際公開WO 2010/068955)。核初期化物質は、ES細胞に特異的に発現している遺伝子もしくはES細胞の未分化維持に重要な役割を果たす遺伝子、またはそれらの遺伝子産物であればよく、特に限定されないが、例えば、Oct3/4,Klf4,Klf1,Klf2,Klf5,Sox2,Sox1,Sox3,Sox15,Sox17,Sox18,c−Myc,L−Myc,N−Myc,TERT,SV40 Large T antigen,HPV16 E6,HPV16E7,Bmil,Lin28,Lin28b,Nanog,Esrrb,EsrrgおよびGlis1が例示される。これらの初期化物質は、iPS細胞樹立の際には、組み合わされて使用されてもよい。そのような組合せは、上記初期化物質を、少なくとも1種、2種もしくは3種含む組み合わせ、好ましくは3種もしくは4種を含む組み合わせとすることができる。
上記の各核初期化物質のマウスおよびヒトcDNAのヌクレオチド配列情報、並びに、該cDNAによってコードされるタンパク質のアミノ酸配列情報は、WO2007/069666に記載のGenBank(米国NCBI)またはEMBL(ドイツ国)のaccession numbersにアクセスすることによって入手可能である。また、L−Myc、Lin28、Lin28b、Esrrb、EsrrgおよびGlis1のマウスおよびヒトのcDNA配列情報およびアミノ酸配列情報については、表1に示したNCBI accession numbersにアクセスすることにより取得できる。当業者は、該cDNA配列またはアミノ酸配列情報に基づいて、常法により所望の核初期化物質を調製することができる。
これらの核初期化物質は、タンパク質の形態で、例えばリポフェクション、細胞膜透過性ペプチドとの結合、マイクロインジェクションなどの手法によって体細胞内に導入してもよいし、あるいは、DNAの形態で、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソームの使用、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(これらのベクターは、Cell,126,pp.663−676,2006;Cell,131,pp.861−872,2007;Science,318,pp.1917−1920,2007に準ずる。)、アデノウイルスベクター(Science,322,945−949,2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(Proc Jpn Acad Ser B Phys Biol Sci.85,348−62,2009)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BACおよびPAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science,322:949−953,2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトもしくはポリアデニル化シグナルなどの制御配列を含むことができる。使用されるプロモーターとしては、例えばEF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV−TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、EF1αプロモーター、CAGプロモーター、MoMuLV LTR、CMVプロモーター、SRαプロモーターなどが好ましい例として挙げられる。さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子またはピューロマイシン耐性遺伝子)、チミジンキナーゼ遺伝子、およびジフテリアトキシン遺伝子もしくはその断片などの選択マーカー配列、並びに、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)またはFLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、核初期化物質をコードする遺伝子もしくはプロモーターとそれに結合する核初期化物質をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。別の好ましい実施態様においては、トランスポゾンを用いて染色体に導入遺伝子を組み込んだ後に、プラスミドベクターもしくはアデノウイルスベクターを用いて細胞に転移酵素を作用させ、導入遺伝子を完全に染色体から除去する方法が用いられ得る。好ましいトランスポゾンとしては、例えば、鱗翅目昆虫由来のトランスポゾンであるpiggyBac等が挙げられる(Kaji,K.et al.,(2009),Nature,458:771−775、Woltjen et al.,(2009),Nature,458:766−770、WO 2010/012077)。さらに、ベクターには、染色体への組み込みがなくとも複製されて、エピソーマルに存在するように、リンパ指向性ヘルペスウイルス(lymphotrophic herpes virus)、BKウイルスおよび牛乳頭腫ウイルス(Bovine papillomavirus)の起点とその複製に関わる配列を含んでいてもよい。例えば、EBNA−1およびoriP、または、Large TおよびSV40ori配列を含むことが挙げられる(WO 2009/115295、WO 2009/157201およびWO 2009/149233)。また、2種またはそれ以上の核初期化物質を同時に導入するために、ポリシストロニックに発現させることができる発現ベクターを用いてもよい。ポリシストロニックに発現させるためには、遺伝子をコードする配列と配列の間は、IRESまたは口蹄病ウイルス(FMDV)2Aコード領域により結合されていてもよい(Science,322:949−953,2008、WO 2009/092042およびWO 2009/152529)。
核初期化に際して、iPS細胞の誘導効率を高めるために、上記の因子の他に、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)(Nat.Biotechnol.,26(7):795−797(2008))、トリコスタチンA、酪酸ナトリウム、MC1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5’−アザシチジン(5’−azacytidine))(Nat.Biotechnol.,26(7):795−797(2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX−01294(Cell Stem Cell,2:525−528(2008))等の低分子阻害剤、G9aに対するsiRNAおよびshRNA(例、G9a siRNA(human)(Santa Cruz Biotechnology)等)等の核酸性発現阻害剤など]、L−チャネルカルシウムアゴニスト(L−channel calcium agonist)(例えばBayk8644)(Cell Stem Cell,3,568−574(2008))、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)(Cell Stem Cell,3,475−479(2008))、Wntシグナル伝達活性化因子(例えば可溶性Wnt3a)(Cell Stem Cell,3,132−135(2008))、LIFまたはbFGFなどの増殖因子、ALK5阻害剤(例えば、SB431542)(Nat.Methods,6:805−8(2009))、有糸***活性化プロテインキナーゼシグナル伝達(mitogen−activated protein kinase signaling)阻害剤、グリコーゲンシンターゼキナーゼ(glycogen synthase kinase)−3阻害剤(PloS Biology,6(10),2237−2247(2008))、miR−291−3p、miR−294、miR−295などのmiRNA(R.L.Judson et al.,Nat.Biotech.,27:459−461(2009))、等を使用することができる。
薬剤によって核初期化物質の内在性のタンパク質の発現量を上昇させる方法に使用される、そのような薬剤としては、6−ブロモインジルビン−3’−オキシム、インジルビン−5−ニトロ−3’−オキシム、バルプロ酸、2−(3−(6−メチルピリジン−2−イル)−1H−ピラゾール−4−イル)−1,5−ナフチリジン、1−(4−メチルフェニル)−2−(4,5,6,7−テトラヒドロ−2−イミノ−3(2H)−ベンゾチアゾリル)エタノンHBr(pifithrin−alpha)、プロスタグランジンJ2およびプロスタグランジンE2等が例示される(WO 2010/068955)。
iPS細胞誘導のための培養培地としては、例えば(1)10〜15%FBSを含有するDMEM、DMEM/F12またはDME培地(これらの培地にはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L−グルタミン、非必須アミノ酸類、β−メルカプトエタノールなどを適宜含むことができる。)、(2)bFGFまたはSCFを含有するES細胞培養用培地、例えばマウスES細胞培養用培地(例えばTX−WES培地、トロンボX社)または霊長類ES細胞培養用培地(例えば霊長類(ヒトまたはサル)ES細胞用培地(販売先:リプロセル、京都、日本)、mTeSR−1)、などが含まれる。
培養法の例としては、例えば、37℃、5%CO存在下にて、10%FBS含有DMEMまたはDMEM/F12培地中で体細胞と核初期化物質(DNA、RNAまたはタンパク質)を接触させ約4〜7日間培養し、その後、細胞をフィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上にまきなおし、体細胞と核初期化物質の接触から約10日後からbFGF含有霊長類ES細胞培養用培地で培養し、該接触から約30〜約45日またはそれ以上ののちにES細胞様コロニーを生じさせることができる。また、iPS細胞の誘導効率を高めるために、5〜10%と低い酸素濃度の条件下で培養してもよい。
あるいは、前記細胞を、フィーダー細胞(例えば、マイトマイシンC処理STO細胞またはSNL細胞)上で10%FBS含有DMEM培地(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L−グルタミン、非必須アミノ酸類、b−メルカプトエタノールなどを適宜含むことができる。)で培養し、約25〜約30日またはそれ以上ののちにES様コロニーを形成させることができる。
上記培養の間には、培養開始2日目以降から毎日1回新鮮な培地と培地交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ(100cm)あたり約5×10〜約5×10細胞の範囲である。
マーカー遺伝子として薬剤耐性遺伝子を含むDNAを用いた場合は、対応する薬剤を含む培地(すなわち、選択培地)で細胞の培養を行うことによりマーカー遺伝子発現細胞を選択することができる。またマーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、または、発色酵素遺伝子の場合は発色基質を加えることによって、マーカー遺伝子発現細胞を検出することができる。
本明細書中で使用する「体細胞」は、哺乳動物(例えば、ヒト、マウス、サル、ブタおよびラット)由来の生殖細胞以外のいかなる細胞であってもよく、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞(組織前駆細胞)等が挙げられる。細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、未分化な前駆細胞(体性幹細胞も含む)であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。
本発明において、体細胞を採取する由来となる哺乳動物は特に制限されないが、好ましくはヒトである。
(E)核移植により得られたクローン胚由来のES細胞
nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T.Wakayama et al.(2001),Science,292:740−743;S.Wakayama et al.(2005),Biol.Reprod.,72:932−936;J.Byrne et al.(2007),Nature,450:497−502)。具体的には、nt ES(nuclear transfer ES)細胞は、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立される。nt ES細胞の作製のためには、核移植技術(J.B.Cibelli et al.(1998),Nat.Biotechnol.,16:642−646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊),47〜52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで再プログラム化することができる。
(F)融合幹細胞
融合幹細胞は、体細胞と卵子もしくはES細胞とを融合させることにより作製され、融合させたES細胞と同様な多能性を有し、さらに体細胞に特有の遺伝子も有する幹細胞である(Tada M et al.Curr Biol.11:1553−8,2001;Cowan CA et al.Science.2005 Aug 26;309(5739):1369−73)。
<大脳皮質ニューロン>
本発明において、大脳皮質ニューロンとは、特に断りがなければ、大脳皮質神経細胞、大脳皮質神経幹細胞及び大脳皮質神経前駆細胞から成る群から選択される一又は複数の細胞を含むものとする。本発明の方法によって製造される大脳皮質ニューロンは、好ましくは、Foxg1が陽性である細胞である。本発明において、Foxg1としては、NCBIアクセッション番号NM_005249で示されるポリヌクレオチドおよびこれらがコードするタンパク質が挙げられる。本発明の方法によって製造される大脳皮質ニューロンは、より好ましくは、大脳皮質の運動野の神経細胞または上位運動ニューロン、すなわち、大脳皮質の前方の神経細胞であり、さらに好ましくは大脳皮質の運動野の第V層の神経細胞である。このような神経細胞は、Ctip2が陽性であることを特徴とする細胞集団であり、これはCoupTF1が陰性であることを特徴とする細胞と言い換えることができる。本発明において、Ctip2としては、NCBIアクセッション番号NM_001282237、NM_001282238、NM_022898またはNM_138576で示されるポリヌクレオチドおよびこれらがコードするタンパク質が挙げられる。
本発明において製造される大脳皮質ニューロンは、他の細胞種が含まれる細胞集団として製造されてもよく、例えば、製造された細胞集団において15%以上、20%以上、30%以上、40%以上または50%以上が大脳皮質ニューロンであってもよい。本発明の方法により大脳皮質ニューロンを製造後、当該細胞を濃縮しても良い。大脳皮質ニューロンを濃縮する方法として、CD231、PCDH17およびCDH8から成る群より選択される少なくとも一つのマーカータンパク質が陽性である細胞を抗体により標識し、フローサイトメーター(FACS)や磁気細胞分離装置(MACS)を用いて濃縮する方法が例示される。これらの抗体は、市販の抗体を適宜利用することができる。従って、工程(iv)として、工程(iii)で得られた細胞から、CD231、PCDH17およびCDH8から成る群より選択される少なくとも一つのマーカータンパク質が陽性である細胞を抽出する工程をさらに含んでも良い。抽出後にさらに培養を継続しても良い。抽出後の培養は、例えば、工程(iii)と同様の条件で培養する方法が例示されるが、特に限定されない。
<TGFβ阻害剤>
本発明において、TGFβ阻害剤とは、TGFβの受容体への結合からSMADへと続くシグナル伝達を阻害する物質であり、受容体であるALKファミリーへの結合を阻害する物質、またはALKファミリーによるSMADのリン酸化を阻害する物質が挙げられる。このようなTGFβ阻害剤としては、例えば、Lefty−1(NCBI Accession No.として、マウス:NM_010094、ヒト:NM_020997が例示される)、SB431542、SB202190(以上、R.K.Lindemann et al.,Mol.Cancer,2003,2:20)、SB505124(GlaxoSmithKline)、NPC30345、SD093、SD908、SD208(Scios)、LY2109761、LY364947、LY580276(Lilly Research Laboratories)、A−83−01(WO 2009146408)およびこれらの誘導体などが例示される。本発明で使用されるTGFβ阻害剤は、好ましくは、下記の式Iで表されるSB431542または下記の式IIで表されるA−83−01であり得る。
培養液中におけるSB431542の濃度は、ALK5を阻害する濃度であれば特に限定されないが、例えば、100nM、500nM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μM、60μM、70μM、80μM、90μM、100μM、500μM、1mM、であるがこれらに限定されない。好ましくは、、1μMから100μMであり、より好ましくは、10μMである。
培養液中におけるA−83−01の濃度は、ALK5を阻害する濃度であれば特に限定されないが、例えば、1nM、10nM、50nM、100nM、500nM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μMであるがこれらに限定されない。好ましくは、500nMから5μMであり、より好ましくは、500nMから2μMである。
<bFGF>
本発明において、bFGFは、FGF2とも称し、例えばWako社やInvitrogen社等から市販されており容易に利用することが可能であるが、当業者に公知の方法によって細胞へ強制発現によって得てもよい。
培養液中におけるbFGFの濃度は、例えば、0.1ng/mL、0.5ng/mL、1ng/mL、2ng/mL、3ng/mL、4ng/mL、5ng/mL、6ng/mL、7ng/mL、8ng/mL、9ng/mL、10ng/mL、20ng/mL、30ng/mL、40ng/mL、50ng/mL、60ng/mL、70ng/mL、80ng/mL、90ng/mL、100ng/mL、500ng/mL、1000ng/mLであるがこれらに限定されない。好ましくは、1ng/mLから100ng/mLであり、より好ましくは、10ng/mLである。
<Wnt阻害剤>
本発明において、Wnt阻害剤とは、Wntの産生を抑制する物質、またはWntの受容体への結合からβカテニンの蓄積へと続くシグナル伝達を阻害する物質であり、受容体であるFrizzledファミリーへの結合を阻害する物質、またはβカテニンの分解を促進する物質などが挙げられる。このようなWnt阻害剤としては、例えば、DKK1タンパク質(例えば、ヒトの場合、NCBIのアクセッション番号:NM_012242)、スクレロスチン(例えば、ヒトの場合、NCBIのアクセッション番号:NM_025237)、IWR−1(Merck Millipore)、IWP−2(Sigma−Aldrich)、IWP−3(Sigma−Aldrich)、IWP−4(Sigma−Aldrich)、IWP−L6(EMD Millipore)、C59(または、Wnt−C59)(Cellagen technology)、ICG−001(Cellagen Technology)、LGK−974(または、NVP−LGK−974)(Cellagen Technology)、FH535(Sigma−Aldrich)、WIKI4(Sigma−Aldrich)、KYO2111(Minami I,et al,Cell Rep.2:1448−1460,2012)、PNU−74654(Sigma−Aldrich)、XAV939(Stemgent)およびこれらの誘導体などが例示される。本発明の多能性幹細胞から大脳皮質ニューロンを製造するにあたり、好ましいWnt阻害剤は、Wntの産生を抑制する物質であり、例えば、Wntタンパク質のプロセシングに関与するPORCN(ヒトの場合、NCBIのアクセション番号:NP_001269096、NP_073736、NP_982299、NP_982300、またはNP_982301で表されるタンパク質が例示される)を阻害する物質が挙げられ、例えば、C59、IWP−3、IWP−4、IWP−L6またはLGK−974である。本発明において、より好ましいWnt阻害剤は、下記の式IIIで表されるC59である。
培養液中におけるC59の濃度は、Wntを阻害する濃度であれば特に限定されないが、例えば、0.1nM、0.5nM、1nM、2nM、2.5nM、3nM、4nM、5nM、6nM、7nM、7.5nM、8nM、9nM、10nM、20nM、30nM、40nM、50nM、60nM、70nM、80nM、90nM、100nMであるがこれらに限定されない。好ましくは、1nMから50nMであり、例えば、2nMから50nM、より好ましくは10nMから50nMであるか、あるいは、10nM未満の濃度であり、例えば、2nM以上、10nM未満である。
また、本発明において、下記の式VIで表されるLGK−974もWnt阻害剤として好ましく利用することができる。
培養液中におけるLGK−974の濃度は、Wntを阻害する濃度であれば特に限定されないが、例えば、1nM、10nM、25nM、50nM、100nM、150nM、200nM、500nM、750nM、1μMであるがこれらに限定されない。好ましくは、1nMから1μMであり、例えば、1nMから500nM、より好ましくは10nMから200nMであるか、あるいは、10nMから150nMの濃度であり、例えば、10nM以上、100nM以下である。
<BMP阻害剤>
本発明において、BMP阻害剤とは、Chordin、Noggin、Follistatin、などのタンパク質性阻害剤、Dorsomorphin(すなわち、6−[4−(2−piperidin−1−yl−ethoxy)phenyl]−3−pyridin−4−yl−pyrazolo[1,5−a]pyrimidine)、その誘導体(P.B.Yu et al.(2007),Circulation,116:II_60;P.B.Yu et al.(2008),Nat.Chem.Biol.,4:33−41;J.Hao et al.(2008),PLoS ONE,3(8):e2904)およびLDN193189(すなわち、4−(6−(4−(piperazin−1−yl)phenyl)pyrazolo[1,5−a]pyrimidin−3−yl)quinoline)が例示される。DorsomorphinおよびLDN193189は市販されており、それぞれSigma−Aldrich社およびStemgent社から入手可能である。本発明で使用されるBMP阻害剤は、好ましくは、下記の式IVで表されるLDN193189であり得る。
培養液中におけるLDN193189の濃度は、BMPを阻害する濃度であれば特に限定されないが、例えば、1nM、10nM、50nM、100nM、500nM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μMであるがこれらに限定されない。好ましくは、2μM以下の濃度であり、例えば、100nMから2μMであり、より好ましくは、500nMから2μMであるか、あるいは、2μM未満の濃度であり、例えば、100nM以上、2μM未満であり、より好ましくは、500nM以上、2μM未満である。
<工程(i)>
本発明の工程(i)で用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として、上述したTGFβ阻害剤、bFGF、Wnt阻害剤、BMP阻害剤を添加して調製することができる。基礎培地としては、例えば、Glasgow’s Minimal Essential Medium(GMEM)培地、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、Neurobasal Medium(Invitrogen)およびこれらの混合培地などが包含される。好ましくは、DMEMとHam’s F12培地を1:1で混合した培地である。基礎培地には、血清が含有されていてもよいし、あるいは血清に代えて血清代替物を添加してもよい。血清代替物は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素およびこれらから選択される複数の組み合わせなどが挙げられる。好ましくは、血清代替物はKSRである。本発明の工程(i)において、KSRを用いる場合、基礎培地における濃度は、例えば、5%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%が挙げられるが、好ましくは、20%未満、例えば10%以上15%以下の濃度である。基礎培地には、2−メルカプトエタノール、3’−チオールグリセロール、脂質、アミノ酸、L−グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましい基礎培地は、KSR、2−メルカプトエタノール、非必須アミノ酸およびL−グルタミンを含有するDMEMとHam’s F12培地を1:1で混合した培地である。
本発明の工程(i)において、多能性幹細胞を解離させて用いてもよく、細胞を解離させる方法としては、例えば、力学的に解離する方法、プロテアーゼ活性とコラゲナーゼ活性を有する解離溶液(例えば、Accutase(商標)およびAccumax(商標)など)またはコラゲナーゼ活性のみを有する解離溶液を用いた解離方法が挙げられる。好ましくは、Accumaxが例示される)を用いて多能性幹細胞を解離する方法が用いられる。細胞を解離させた場合、ROCK阻害剤を適宜、解離後に添加して培養することが望ましい。ROCK阻害剤を添加する場合、少なくとも1日間添加して培養すればよい。多能性幹細胞を解離させる1日以上前、好ましくは1日前より、ROCK阻害剤を含有する培地で培養してもよい。
本発明において、ROCK阻害剤とは、Rhoキナーゼ(ROCK)の機能を抑制できるものである限り特に限定されず、例えば、Y−27632(例えば、Ishizaki et al.,Mol.Pharmacol.57,976−983(2000);Narumiya et al.,Methods Enzymol.325,273−284(2000)参照)、Fasudil/HA1077(例えば、Uenata et al.,Nature 389:990−994(1997)参照)、H−1152(例えば、Sasaki et al.,Pharmacol.Ther.93:225−232(2002)参照)、Wf−536(例えば、Nakajima et al.,Cancer Chemother Pharmacol.52(4):319−324(2003)参照)およびそれらの誘導体、ならびにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸(例えば、siRNA)、ドミナントネガティブ変異体、及びそれらの発現ベクターが挙げられる。また、ROCK阻害剤としては他の低分子化合物も知られているので、本発明においてはこのような化合物またはそれらの誘導体も使用できる(例えば、米国特許出願公開第20050209261号、同第20050192304号、同第20040014755号、同第20040002508号、同第20040002507号、同第20030125344号、同第20030087919号、及び国際公開第2003/062227号、同第2003/059913号、同第2003/062225号、同第2002/076976号、同第2004/039796号参照)。本発明では、1種または2種以上のROCK阻害剤が使用され得る。本発明で使用されるROCK阻害剤は、好ましくは、下記式(V)で表されるY−27632であり得る。
培地中のY−27632の濃度は、例えば、100nM、500nM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μM、60μM、70μM、80μM、90μM、100μMであるがこれらに限定されない。好ましくは、10μM以上、50μM以下である。
本発明の工程(i)の培養では、浮遊培養によって行われることが好ましい。本発明において、浮遊培養とは、細胞を培養容器へ非接着の状態で凝集体(スフェアとも言う)を形成させて培養することであり、特に限定はされないが、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリックス等によるコーティング処理)されていない培養容器、若しくは、人工的に接着を抑制する処理(例えば、ポリヒドロキシエチルメタクリル酸(poly−HEMA)、非イオン性の界面活性ポリオール(Pluronic F−127等)またはリン脂質類似構造物(例えば、2−メタクリロイルオキシエチルホスホリルコリンを構成単位とする水溶性ポリマー(Lipidure))によるコーティング処理した培養容器を使用することによって行う培養である。
本発明の工程(i)の培養条件について、培養温度は、特に限定されないが、約30〜40℃、好ましくは約37℃であり、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2〜5%である。O濃度は、通常の空気中におけるO濃度であってもよく、あるいは、通常以上の高酸素条件であっても通常以下の低酸素条件であってもよい。本発明において、高酸素条件とは、25%以上のO濃度、30%以上のO濃度、35%以上のO濃度、または40%以上のO濃度が例示される。低酸素条件とは、10%以下のO濃度、5%以下のO濃度、4%以下のO濃度、3%以下のO濃度、2%以下のO濃度、または1%以下のO濃度が例示される。
本発明の工程(i)は、特に限定されないが、例えば、3日以上、4日以上、5日以上、6日以上、7日以上、またはそれ以上の日数が挙げられ、上限は特に限定されないが、36日以下、30日以下、24日以下、18日以下、12日以下が挙げられる。より好ましくは、3日以上、12日以下であり、さらに好ましくは、6日である。
<工程(ii)>
本発明の工程(ii)で用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として、上述したWnt阻害剤、BMP阻害剤を添加して調製することができる。基礎培地としては、例えば、Glasgow’s Minimal Essential Medium(GMEM)培地、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、Neurobasal Medium(Invitrogen)およびこれらの混合培地などが包含される。好ましくは、DMEMとHam’s F12培地を1:1で混合した培地である。基礎培地には、血清が含有されていてもよいし、あるいは血清に代えて血清代替物を添加してもよい。血清代替物は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素およびこれらから選択される複数の組み合わせなどが挙げられる。好ましくは、血清代替物はKSRである。本発明の工程(ii)において、KSRを用いる場合、基礎培地における濃度は、例えば、5%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%が挙げられるが、好ましくは、20%未満、例えば10%以上15%以下の濃度である。基礎培地には、2−メルカプトエタノール、3’−チオールグリセロール、脂質、アミノ酸、L−グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましい基礎培地は、KSR、2−メルカプトエタノール、非必須アミノ酸およびL−グルタミンを含有するDMEMとHam’s F12培地を1:1で混合した培地である。
本発明の工程(ii)において、前記工程(i)で得られた細胞を解離させて用いてもよく、そのまま用いても良い。より好ましくは、前記工程(i)で得られたを細胞において、培養液を交換して培養を継続する方法である。従って、本発明の工程(ii)の培養では、浮遊培養によって行われることが好ましい。
本発明の工程(i)の培養条件について、培養温度は、特に限定されないが、約30〜40℃、好ましくは約37℃であり、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2〜5%である。O濃度は、通常の空気中におけるO濃度であってもよく、あるいは、通常以上の高酸素条件であっても通常以下の低酸素条件であってもよい。
本発明の工程(ii)は、特に限定されないが、例えば、6日以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、またはそれ以上の日数が挙げられ、上限は特に限定されないが、48日以下、42日以下、36日以下、30日以下、24日以下、18日以下が挙げられる。より好ましくは、6日以上18日以下であり、さらに好ましくは、12日である。
<工程(iii)>
本発明の工程(iii)で用いる培養液は、動物細胞の培養に用いられる基礎培地を用いることができる。基礎培地としては、例えば、Glasgow’s Minimal Essential Medium(GMEM)培地、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、Neurobasal Medium(Invitrogen)およびこれらの混合培地などが包含される。好ましくは、Neurobasal Mediumである。基礎培地には、血清が含有されていてもよいし、あるいは血清に代えて血清代替物を添加してもよい。血清代替物は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素およびこれらから選択される複数の組み合わせなどが挙げられる。好ましくは、血清代替物はB27サプリメントである。基礎培地には、2−メルカプトエタノール、3’−チオールグリセロール、脂質、アミノ酸、L−グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。好ましい基礎培地は、B27サプリメントおよびL−グルタミンを含有するNeurobasal Mediumである。本発明の工程(iii)で用いる培養液は、上記基礎培地に例えば、FGF8(線維芽細胞成長因子8(fibroblast growth factor8))、神経栄養因子などを適宜添加したものを用いることができる。
本発明において、FGF8とは、特に限定されないが、ヒトFGF8の場合、FGF8a、FGF8b、FGF8eまたはFGF8fの4つのスプライシングフォームが例示され、本発明ではより好ましくは、FGF8bである。FGF8は、例えばWako社やR&D systems社等から市販されており容易に利用することが可能であるが、当業者に公知の方法によって細胞へ強制発現によって得てもよい。
培養液中におけるFGF8の濃度は、例えば、1ng/mL、5ng/mL、10ng/mL、50ng/mL、100ng/mL、150ng/mL、200ng/mL、250ng/mL、500ng/mL、1000ng/mL、2000ng/mL、5000ng/mLであるがこれらに限定されない。好ましくは、100ng/mLである。
本発明において、神経栄養因子とは、神経細胞の生存と機能維持に重要な役割を果たしている膜受容体へのリガンドであり、例えば、神経成長因子(Nerve Growth Factor(NGF))、脳由来神経栄養因子(Brain−derived Neurotrophic Factor(BDNF))、ニューロトロフィン3(NT−3)、ニューロトロフィン4/5(NT−4/5)、ニューロトロフィン6(NT−6)、bFGF、酸性FGF、FGF−5、上皮細胞増殖因子(Epidermal Growth Factor(EGF))、肝細胞増殖因子(Hepatocyte Growth Factor(HGF))、インスリン、インスリン様増殖因子1(IGF1)、インスリン様増殖因子2(IGF2)、グリア細胞株由来神経栄養因子(Glial cell line−derived Neurotrophic Factor(GDNF))、TGF−b2、TGF−b3、インターロイキン6(IL−6)、毛様体神経栄養因子(Ciliary Neurotrophic Factor(CNTF))およびLIFなどが挙げられる。神経栄養因子は、、例えばWako社やR&D systems社等から市販されており容易に利用することが可能であるが、当業者に公知の方法によって細胞へ強制発現によって得てもよい。
本発明の工程(iii)では、前記工程(ii)で得られた細胞を培養する工程であり、当該培養は、接着培養であっても浮遊培養であっても良い。接着培養を行う場合、細胞外基質をコーティング処理された培養容器を用いて培養することによって行い得る。コーティング処理は、細胞外基質を含有する溶液を培養容器に入れた後、当該溶液を適宜除くことによって行い得る。
本発明において、細胞外基質とは、細胞の外に存在する超分子構造体であり、天然由来であっても、人工物(組換え体)であってもよい。例えば、ポリリジン、ポリオルニチン、コラーゲン、プロテオグリカン、フィブロネクチン、ヒアルロン酸、テネイシン、エンタクチン、エラスチン、フィブリリン、ラミニンといった物質およびこれらの断片が挙げられる。これらの細胞外基質は、組み合わせて用いられてもよく、例えば、BD Matrigel(商標)などの細胞からの調製物であってもよい。好ましくは、ポリオルニチン、ラミニンおよびフィブロネクチンの混合物である。
本発明の工程(iii)において、浮遊培養を行う場合、前記工程(ii)で得られた細胞の培養液を適宜、上述の本発明の工程(iii)で用いる培養液に置換することによって行い得る。本発明において、培養液を置換するにあたり、全ての培養液を置換してもよく、例えば、半量の置換を数回に分けて行っても良い。
本発明の工程(iii)の培養条件について、培養温度は、特に限定されないが、約30〜40℃、好ましくは約37℃であり、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2〜5%である。O濃度は、通常の空気中におけるO濃度であってもよく、あるいは、通常以上の高酸素条件であっても通常以下の低酸素条件であってもよい。
本発明の工程(iii)は、大脳皮質ニューロンが得られるという観点から、長期にわたって培養を継続しても特に弊害がないことから、特に上限を設定する必要はないが、例えば、6日以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、14日以上、21日以上、28日以上、30日以上、35日以上、またはそれ以上の日数が挙げられる。より好ましくは、28日以上であり、さらに好ましくは、28日または30日である。
<大脳障害治療剤>
本発明で得られた大脳皮質ニューロンは、製剤として大脳障害患者に投与することができる。本発明において、大脳障害とは、虚血等により神経細胞が欠落した状態を言い、例えば、脳梗塞後の障害が挙げられる。上記の方法により製造された大脳皮質ニューロンを生理食塩水等に懸濁させ、患者の神経細胞欠落部位に移植することによって行われる。従って、本発明では、上記の方法で多能性幹細胞より得られた大脳皮質ニューロンを含む大脳障害治療剤、好ましくは、脳梗塞治療剤を提供する。
本発明において、大脳障害治療剤に含まれる大脳皮質ニューロンの細胞数は、移植片が投与後に生着できれば特に限定されないが、例えば、15×10個以上含まれ得る。また、症状や体躯の大きさに合わせて適宜増減して調製されてもよい。
大脳皮質ニューロンの疾患部位への移植は、例えば、Nature Neuroscience,2,1137(1999)もしくはN Engl J Med.;344:710−9(2001)に記載されるような手法によって行うことができる。
<キット>
本発明での他の実施態様において、多能性幹細胞から大脳皮質ニューロンを作製するキットが含まれる。当該キットには、上述した大脳皮質ニューロンを作製する各工程に使用する培養液、添加剤または培養容器等が含まれる。例えば、TGFβ阻害剤、bFGF、Wnt阻害剤およびBMP阻害剤から成る群より選択される試薬が挙げられる。本キットには、さらに製造工程の手順を記載した書面や説明書を含んでもよい。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
細胞
ヒトES細胞(KhES−1)は、京都大学再生医科学研究所より受領した(Suemori H,et al.Biochem Biophys Res Commun.345:926−32,2006)。ヒトiPS細胞である404C2は、Oct3/4、Sox2、Klf4、L−MYC、LIN28およびp53shRNAをヒト線維芽細胞にエピソーマルベクターにより導入して得られた細胞として京都大学の山中教授らより受領した(Okita,et al,Nat Methods.8:409−412,2011)。ヒトiPS細胞である836B1は、Oct3/4、Sox2、Klf4、L−MYC、LIN28、GLIS1およびp53shRNAをヒト線維芽細胞にエピソーマルベクターにより導入して得られた細胞として京都大学の山中教授らより受領した。ES細胞およびiPS細胞は、SNL細胞上で培養した(Takahashi K,et al,Cell.131:861−872,2007)。
大脳皮質の分化誘導方法
分化誘導前日に10μM Y−27632(WAKO)を培養液へ添加して培養したES細胞またはiPS細胞をSNL feeder上から分離させるためにCTKでSNL細胞を除去した後、Accumax(ICT)を用いて解離させ、96wellプレート(Lipidure−coat 96wellプレート(NOF Corporation))に1wellあたり9×10個を移し、50μM Y−27632(WAKO)、10μM SB43152(Sigma)、10ng/ml bFGF(Invitrogen)、各種Wnt阻害剤(DKK1(R&D,500ng/ml)、C59(Cellagen Technology,2−10nM)、XAV(Stemgent,500nM−2μM)またはIWP4(Stemgent,500nM−2.5μM))、LDN193189(Stemgent)、KSR(Invitrogen)、0.1mM MEM非必須アミノ酸(Invitrogen)、0.1mM 2−メルカプトエタノール(WAKO)および2mM L−Gln(Invitrogen)を含有するDMEM/F12(WAKO)中で、浮遊培養を行った(分化誘導開始、day0)。3日後、培地交換に際して、Y−27632を含有しない同培地へ交換した(day3)。3日後、各種Wnt阻害剤(DKK1、C59、XAV)またはIWP4(Stemgent))、LDN193189(Stemgent)、KSR(Invitrogen)、0.1mM MEM非必須アミノ酸(Invitrogen)、0.1mM 2−メルカプトエタノール(WAKO)および2mM L−Gln(Invitrogen)を含有するDMEM/F12(WAKO)へ培地を交換した(day6)。以後、3日毎に同じ培地に交換し、分化誘導開始から18日間培養を行った(day18)。
得られた細胞塊を、50μg/mlオルニチン(Sigma)、5μg/mlラミニン(Sigma)、5μg/mlフィブロネクチン(BD Bioscience Pharmingen)でコートしたディッシュ(24wellプレート(BD))上に移し、B27(Invitrogen)、2mM L−Glnおよび10units/mlペニシリン及びストレプトマイシン(Invitrogen)を添加したNeurobasal(Invitrogen)中で、培養を継続した。最長は、分化誘導開始から46日間培養を行った。なお、培地交換は、2または3日毎にて行った。誘導工程のプロトコールを図1に示す。
Wnt阻害剤の検討
前期の誘導方法において、Wnt阻害剤として、500ng/ml DKK1、2nM C59、500nM XAVまたは500nM IWP4を添加し、18日間培養した後の細胞において、Six3(前脳マーカー)、Sox1(神経外胚葉マーカー)、Foxg1(大脳皮質形成因子)、Lhx2(大脳皮質形成因子)、Emx2(前脳の後方マーカー)、CoupTF1(前脳の後方マーカー)およびPax6(前脳の前方マーカー)の遺伝子の発現量をqPCR法により測定した(図2)。その結果、Wnt阻害剤としてDKK1を用いた場合は、Emx2やCoupTF1の発現量が多く、前脳の後方の細胞が多く誘導されることが見出された。
さらに、Wnt阻害剤として、500ng/ml DKK1、2nM C59または500nM XAVを添加し、上記誘導方法にて、46日間培養した後の細胞に対して、CoupTF1および大脳皮質ニューロンの第V層のマーカーであるCtip2に対する抗体を用いて免疫染色を行ったところ、C59を用いた場合、CoupTF1陰性Ctip2陽性の大脳皮質ニューロンが多く誘導されることが確認された(図3)。
以上の結果より、C59がWnt阻害剤として好適に用いることができることが示唆された。
C59の濃度の検討
前期の誘導方法において、Wnt阻害剤としてC59を用いる場合の濃度について検討を行った。詳細には、無添加、2.5nM、10nMおよび1μMのC59を用いて18日間培養した。このとき、1μMのC59を用いた場合、浮遊培養において、スフェア(sphere)を形成しなかったため、以後の分析を行わなかった。得られたスフェアについて、Pax6に対する抗体を用いて免疫染色を行ったところ、いずれの条件においても陽性細胞が確認された(図4A)。さらに、得られたスフェアについて、Foxg1、Lhx2、Emx2およびCoupTF1の遺伝子の発現量をqPCR法により測定した(図4B)。その結果、10nMのC59を用いた場合に得られた細胞においてCoupTF1の発現量が低く、Lhx2およびFoxg1の発現量が高いことから、至適な条件であったことが確認できた。しかし、ES細胞(Kh−1)を用いた場合、10nMのC59を用いた場合に得られたスフェアは、OFLコートディッシュへの接着が少ないことから、10nMより低い濃度の方が適している場合もあることが示唆された。従って、以下の検討では、2nMのC59をWnt阻害剤として用いることとした。
LDN193189の濃度の検討
前期の誘導方法において、LDN193189の濃度について検討を行った。詳細には、0.1μM、0.5μMおよび2μMのLDN193189を用いて46日間培養した。得られた細胞について、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、濃度依存的に、CoupTF1陰性Ctip2陽性細胞が得られることが確認された(図5A,B)。さらに、CoupTF1およびSfrp1の遺伝子の発現量をqPCR法により測定した(図5C)。その結果、濃度依存的に、CoupTF1の発現量が低く、Sfrp1の発現量が高い細胞が得られることが確認された。しかし、2μMのLDN193189を用いた場合、培養18日目に得られたスフェアにおいて細胞死が多く確認されたことから、細胞毒性も強く現れることが確認された。LDN193189は、2μMより低い濃度の方が以後の操作を考慮すると適していることが示唆された。従って、以下の検討では、0.1μMまたは0.5μMのLDN193189を用いることとした。
KSRの濃度の検討
前期の誘導方法において、KSRの濃度について検討を行った。詳細には、10%、15%および20%のKSRを用いて46日間培養した。得られた細胞について、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、濃度依存的に、CoupTF1陰性Ctip2陽性細胞が減少することが確認された(図6A,B)。さらに、CoupTF1およびSfrp1の遺伝子の発現量をqPCR法により測定した(図6C)。その結果、濃度依存的に、CoupTF1の発現量が高く、Sfrp1の発現量が低い細胞が得られることが確認された。従って、KSRは、20%より低い濃度の方が大脳皮質の前方の大脳皮質ニューロンを誘導することに適していることが示唆された。以下の検討では、10%または15%のKSRを用いることとした。
SB431542の代替物の検討
前期の誘導方法において、SB431542の代替物として、A−83−01の濃度について検討を行った。詳細には、0.5μM、2μMまたは5μMのA−83−01(WAKO)を用いて46日間培養した。得られた細胞について、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、SB431542と同様に、CoupTF1陰性Ctip2陽性細胞が得られることが確認された(図7)。また、検討したA−83−01の濃度範囲では、大脳皮質ニューロンの誘導効率に大きな違いは見られなかった。
移植の効果
上記の方法で48日間誘導した大脳皮質ニューロンをPBSに懸濁させ、マウスの大脳皮質の運動野に移植し6月目に、摘出した脳切片をhuman NCAM抗体(Santa Cruz)で免疫染色し、解析したところ、移植細胞に由来する軸索が、中脳、橋、延髄と伸長し皮質脊髄路により、脊髄まで到達していることが確認された(図8〜10)。
iPS細胞の培養
iPS細胞(836B1)は、Miyazaki T et al.,Nat Commun.3:1236,2012に記載に準拠した方法で培養した。簡潔には、Laminin511E8でコーティングした6wellプレートにて培養した。
大脳皮質の分化誘導方法の改良
iPS細胞(836B1)をAccumaxを用いて解離させ、96wellプレート(Lipidure−coat 96well plate)に1wellあたり9×10個を移し、50μM Y−27632、10μM SB43152、10ng/ml bFGF、50nM C59、0.1μM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12中で、浮遊培養を行った(分化誘導開始、day0)。3日後、培地交換に際して、Y−27632を含有しない同培地へ交換した(day3)。3日後、50nM C59、0.1μM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12へ培地を交換した(day6)。以後、3日毎に同じ培地に交換し、分化誘導開始から18日間培養を行った(day18)。
得られた細胞塊を、50μg/mlオルニチン、5μg/mlラミニン、5μg/mlフィブロネクチンをコートしたディッシュ(24wellプレート)上に移し、B27、2mM L−Gln、および、10units/mlペニシリン及びストレプトマイシンを添加したNeurobasal中で、分化誘導開始から48日目まで培養を行った。なお、培地交換は、3または4日毎にて行った。
上述の分化誘導48日目の細胞をAccumaxを用いて解離し、抗CD231抗体(Thermo)、抗CDH8抗体(Antibodies)または抗PCDH17抗体(Thermo)を用いて標識し、FACSを用いて解析した(図11)。誘導後の細胞において、CD231、CDH8またはPCDH17が陽性である細胞が、それぞれ、6.9%、1.4%または8.4%を含有することが確認された。
続いて、このCD231、CDH8またはPCDH17の陽性細胞を回収し、96wellプレート(Lipidure−coat 96wellプレート)に1wellあたり1x10個を移し、B27、2mM L−Gln、10units/mlペニシリン及びストレプトマイシン、および10μM Y−27632を添加したNeurobasal中で3日間培養し、その後、Y−27632を除いた同培地で、さらに11日間培養を行った。培養後、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、Ctip2陽性細胞が、CD231、CDH8またはPCDH17の陽性細胞に多く確認された(図12A)。また、CoupTF1が陰性でCtip2が陽性である細胞も、CD231、CDH8またはPCDH17の陽性細胞に多く含まれることが確認された。以上より、上記方法により誘導した細胞からCD231、CDH8またはPCDH17が陽性である細胞を抽出することで、大脳皮質運動野に存在する神経細胞を濃縮することができる可能性が示唆された。
大脳皮質の分化誘導方法の改良
Laminin511E8を用いてフィーダーフリー条件で培養したiPS細胞(836B1)をAccumaxを用いて解離させ、96wellプレート(Lipidure−coat 96wellプレート)に1wellあたり9×10個を移し、50μM Y−27632、10μM SB43152、10ng/ml bFGF、10nM−50nM C59、0.1μM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12中で、浮遊培養を行った(分化誘導開始、day0)。3日後、培地交換に際して、Y−27632を含有しない同培地へ交換した(day3)。3日後、10nM−50nM C59、0.1μM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12へ培地を交換した(day6)。以後、3日毎に同じ培地に交換し、分化誘導開始から18日間培養を行った(day18)。
Day18の培地を半量吸引除去し、B27、2mM L−Gln、および、10units/mlペニシリンおよびストレプトマイシンを添加したNeurobasalを除去した量だけ添加した。同様に、Day21においても半量の培地を交換した。Day24において、ペトリディッシュへ細胞を移し、以後、3または4日毎に半量の培地を交換した。Day46にて、得られた細胞において、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、実施例1または2で得られた細胞とCoupTF1およびCtip2の発現において大きな違いは見られなかった(図13AおよびB)。以上より、Day18以降においても浮遊培養によって、所望の大脳皮質運動野に存在する神経細胞が誘導できることが確認された。
大脳皮質の分化誘導方法の改良
分化誘導前日に10μM Y27632を培養液へ添加して培養したiPS細胞(836B1)をSNL feeder上から分離させるためにCTKでSNL細胞を除去した後、Accumaxを用いて解離させ、96well plate(Lipidure−coat 96well plate)に1wellあたり9×10個を移し、50μM Y−27632、10μM SB43152、10ng/ml bFGF、各種Wnt阻害剤(C59 50nM,LGK−974 100nM,ICG−001 1μM(Cellagen Technology))、100nM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12中で、浮遊培養を行った(分化誘導開始、day0)。3日後、培地交換に際して、Y−27632を含有しない同培地へ交換した(day3)。3日後、各種WNT阻害剤(C59,LGK−974,ICG−001)、100nM LDN193189、10% KSR、0.1mM MEM非必須アミノ酸、0.1mM 2−メルカプトエタノールおよび2mM L−Glnを含有するDMEM/F12へ培地を交換した(day6)。以後、3日毎に同じ培地に交換し、分化誘導開始から18日間培養を行った(day18)。
Day18の培地を半量吸引除去し、B27、2mM L−Gln、および、10units/mlペニシリン及びストレプトマイシンを添加したNeurobasalを除去した量だけ添加した。同様に、Day21においても半量の培地を交換した。Day24において、ペトリディッシュへ細胞を移し、以後、3または4日毎に半量の培地を交換した。Day46にて、得られた細胞において、CoupTF1およびCtip2に対する抗体を用いて免疫染色を行ったところ、Ctip2の発現において、実施例1または2で得られた細胞と大きな違いは見られなかった(図14AおよびB)。また、CoupTF1陰性でCtip2陽性細胞の誘導効率はC59と類似の作用をもつLGK−974において、大きな違いはなかったが、C59と異なる作用をもつICG−001においては、著しく低かった(図14C)。以上より、C59と類似の作用をもつWNT阻害剤LGK−974を利用しても、所望の大脳皮質運動野に存在する神経細胞が誘導できることが確認された。
本発明は、再生医療、特に脳虚血等の傷害脳の治療に有用である。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (12)

  1. 以下の工程を含む、多能性幹細胞から大脳皮質ニューロンを製造する方法:
    (i)多能性幹細胞をTGFβ阻害剤、bFGF、Wnt阻害剤、及びBMP阻害剤を含む培養液中で浮遊培養する工程、
    (ii)前記工程(i)で得られた細胞をWnt阻害剤、及びBMP阻害剤を含む培養液中で浮遊培養してスフェアを得る工程、
    (iii)前記工程(ii)で得られたスフェアを培養して大脳皮質を形成させる工程、及び
    (iv)前記工程(iii)に続いてさらに、CD231、PCDH17及びCDH8から成る群より選択される少なくとも一つのマーカータンパク質が陽性である細胞を抽出する工程。
  2. 前記多能性幹細胞が、ヒト多能性幹細胞である、請求項1記載の方法。
  3. 前記ヒト多能性幹細胞が、ヒトiPS細胞又はヒトES細胞である、請求項2記載の方法。
  4. 前記TGFβ阻害剤が、SB431542又はA-83-01である、請求項1〜3のいずれか1項記載の方法。
  5. 前記Wnt阻害剤が、PORCN阻害剤である、請求項1〜4のいずれか1項記載の方法。
  6. 前記Wnt阻害剤が、C59又はLGK-974である、請求項1〜5のいずれか1項記載の方法。
  7. 前記BMP阻害剤が、LDN193189である、請求項1〜6のいずれか1項記載の方法。
  8. 前記培養液が血清又は血清代替物をさらに含む、請求項1〜7のいずれか1項記載の方法。
  9. 前記工程(i)の培養液がROCK阻害剤をさらに含む、請求項1〜8のいずれか1項記載の方法。
  10. 前記大脳皮質ニューロンが、Ctip2陽性CoupTF1陰性であることを特徴とする大脳皮質の運動野の神経細胞である、請求項1〜9のいずれか1項記載の方法。
  11. 前記工程(i)が、少なくとも3日間行われる、請求項1〜10のいずれか1項記載の方法。
  12. 前記工程(ii)が、少なくとも6日間行われる、請求項1〜11のいずれか1項記載の方法。
JP2017512611A 2015-04-14 2016-04-14 大脳皮質ニューロンの誘導方法 Active JP6824526B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015082497 2015-04-14
JP2015082497 2015-04-14
PCT/JP2016/062578 WO2016167372A1 (ja) 2015-04-14 2016-04-14 大脳皮質ニューロンの誘導方法

Publications (2)

Publication Number Publication Date
JPWO2016167372A1 JPWO2016167372A1 (ja) 2018-02-08
JP6824526B2 true JP6824526B2 (ja) 2021-02-03

Family

ID=57127079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017512611A Active JP6824526B2 (ja) 2015-04-14 2016-04-14 大脳皮質ニューロンの誘導方法

Country Status (3)

Country Link
US (1) US10626368B2 (ja)
JP (1) JP6824526B2 (ja)
WO (1) WO2016167372A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3083344A1 (en) * 2017-11-24 2019-05-31 Sumitomo Chemical Company, Limited Production method for cell mass including neural cells/tissue and non-neural epithelial tissue, and cell mass from same
CN111386336A (zh) * 2017-11-24 2020-07-07 住友化学株式会社 包含垂体组织的细胞团块的制备方法及该细胞团块
EP3814774A1 (en) * 2018-06-28 2021-05-05 L'Oréal Kit, method for screening an active compound in vitro and uses of a kit
JPWO2020045578A1 (ja) * 2018-08-29 2021-08-12 学校法人慶應義塾 前脳型興奮性神経細胞の製造方法
JP2022043373A (ja) * 2018-12-28 2022-03-16 国立大学法人京都大学 大脳皮質細胞からのl1cam陽性細胞の取得およびその細胞製剤としての使用
US20220195383A1 (en) * 2019-03-29 2022-06-23 Kaneka Corporation Method for producing pluripotent stem cells
JP7364208B2 (ja) 2019-06-21 2023-10-18 独立行政法人国立病院機構 前脳型の神経前駆細胞の製造方法、分化用培地、及び、前脳型の神経前駆細胞
CN114585729A (zh) * 2019-09-10 2022-06-03 小利兰·斯坦福大学托管委员会 功能性神经调节类组装体
WO2022265086A1 (ja) 2021-06-17 2022-12-22 国立大学法人京都大学 ヒト多能性幹細胞由来大脳皮質細胞製剤の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144696A1 (en) * 2009-06-11 2010-12-16 Burnham Institute For Medical Research Directed differentiation of stem cells
US8841284B2 (en) * 2009-07-21 2014-09-23 Lead Chemical Co., Ltd Compound having neurite-outgrowing activity
US9487752B2 (en) * 2011-03-30 2016-11-08 Cellular Dynamics International, Inc. Priming of pluripotent stem cells for neural differentiation
CA2910394A1 (en) 2013-04-26 2014-10-30 Memorial Sloan-Kettering Cancer Center Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells
JP2015019628A (ja) * 2013-07-19 2015-02-02 学校法人慶應義塾 単層細胞層の製造方法
US10220117B2 (en) * 2013-10-09 2019-03-05 The Regents Of The University Of California Methods of mammalian retinal stem cell production and applications
GB201322333D0 (en) * 2013-12-17 2014-01-29 Agency Science Tech & Res WNT pathway modulators
WO2015108893A1 (en) * 2014-01-14 2015-07-23 Yale University Compositions and methods of preparing airway cells
WO2016076368A1 (ja) * 2014-11-12 2016-05-19 テルモ株式会社 心筋細胞シート
US20190010451A1 (en) * 2015-08-07 2019-01-10 The J. David Gladstone Institutes, a testamentary trust established under the Will of J. David Glads Chemical reprogramming to generate neuronal cells

Also Published As

Publication number Publication date
WO2016167372A1 (ja) 2016-10-20
US20180094241A1 (en) 2018-04-05
JPWO2016167372A1 (ja) 2018-02-08
US10626368B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6933843B2 (ja) 新規ドーパミン産生神経前駆細胞の誘導方法
JP6824526B2 (ja) 大脳皮質ニューロンの誘導方法
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
EP2596096B1 (en) Method for inducing differentiation of human pluripotent stem cell into intermediate mesoderm cell
JP6143268B2 (ja) ヒト多能性幹細胞から中間中胚葉細胞への分化誘導方法
AU2010283229B2 (en) Method for inducing differentiation of pluripotent stem cells into neural precursor cells
JP6473686B2 (ja) 細胞の選別方法
US8883498B2 (en) Method for inducing differentiation of pluripotent stem cells into skeletal muscle or skeletal muscle progenitor cells
JP6143027B2 (ja) アストロサイトの誘導方法
JPWO2015064754A1 (ja) 新規軟骨細胞誘導方法
JPWO2020022261A1 (ja) 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
WO2018199142A1 (ja) 神経堤細胞および交感神経細胞の製造方法
JP5842289B2 (ja) 効率的な内皮細胞の誘導方法
JP7072756B2 (ja) 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法
WO2020138510A1 (ja) 大脳皮質細胞からのl1cam陽性細胞の取得および細胞製剤としてのその使用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210105

R150 Certificate of patent or registration of utility model

Ref document number: 6824526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250