JP6820034B2 - Nanosilicon gallium heat insulating / explosion-proof glass and its manufacturing method - Google Patents

Nanosilicon gallium heat insulating / explosion-proof glass and its manufacturing method Download PDF

Info

Publication number
JP6820034B2
JP6820034B2 JP2019548509A JP2019548509A JP6820034B2 JP 6820034 B2 JP6820034 B2 JP 6820034B2 JP 2019548509 A JP2019548509 A JP 2019548509A JP 2019548509 A JP2019548509 A JP 2019548509A JP 6820034 B2 JP6820034 B2 JP 6820034B2
Authority
JP
Japan
Prior art keywords
weight
glass
parts
heat insulating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019548509A
Other languages
Japanese (ja)
Other versions
JP2020504703A (en
Inventor
何新橋
Original Assignee
理想新材料技術(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理想新材料技術(香港)有限公司 filed Critical 理想新材料技術(香港)有限公司
Publication of JP2020504703A publication Critical patent/JP2020504703A/en
Application granted granted Critical
Publication of JP6820034B2 publication Critical patent/JP6820034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Glass Compositions (AREA)

Description

本発明は建築の技術分野に関し、特に、ナノシリコンガリウム断熱・防爆ガラス及びその製造方法に関する。 The present invention relates to the technical field of construction, and more particularly to nanosilicon gallium heat insulating / explosion-proof glass and a method for producing the same.

住居への要求の高まりと建築レベルの進歩に伴って、住宅における各種ガラスの使用割合は明らかな上昇傾向にある。しかし、ガラスを透明性且つ断熱性・保温性とすることは、技術専門家らを悩ませ続ける重大な課題である。これまで、ガラスの断熱性問題を解決するためには、主として、断熱フィルム、熱反射フィルム及びLOW−Eガラスが使用されてきたが、これらの製品は透光性に劣る。また、現在最も使用されているLOW−Eガラスには、深刻な光害や防爆機能の欠如、及び価格の高騰といった問題が存在し、一般的には受け入れ難い。そこで、市場では、安全で、省エネ且つ低排出、価格が手頃で品質に優れた新世代の製品が早急に必要とされている。 The proportion of various types of glass used in homes is clearly on the rise with increasing demand for housing and advances in building levels. However, making glass transparent, heat-insulating, and heat-retaining is a serious issue that continues to plague technical experts. So far, heat insulating films, heat reflective films and LOW-E glasses have been mainly used to solve the problem of heat insulating properties of glass, but these products are inferior in translucency. In addition, the most used LOW-E glass at present has problems such as serious light pollution, lack of explosion-proof function, and soaring price, and is generally unacceptable. Therefore, there is an urgent need in the market for a new generation of safe, energy-saving, low-emission, affordable, and high-quality products.

上記の技術に存在する瑕疵に対し、本発明は、省エネ且つ低排出で価格が手頃なナノシリコンガリウム断熱・防爆ガラス及びその製造方法を提供する。 For the defects existing in the above technology, the present invention provides nanosilicon gallium heat insulating / explosion-proof glass which is energy-saving, low-emission, and affordable, and a method for manufacturing the same.

上記の目的を達成するために、本発明は、ナノシリコンガリウム断熱・防爆ガラスであって、2枚のガラスと1層の断熱フィルムを含み、前記断熱フィルムは2枚のガラスの間に挟持され、前記断熱フィルムは重量部換算で、ポリビニルブチラール樹脂80〜90重量部、ナノ二酸化ケイ素1〜2重量部、及びナノ酸化ガリウム(III)0.5〜1重量部、を成分として含む。 In order to achieve the above object, the present invention is nanosilicon gallium heat insulating and explosion-proof glass, which includes two pieces of glass and one layer of heat insulating film, and the heat insulating film is sandwiched between the two pieces of glass. The heat insulating film contains 80 to 90 parts by weight of polyvinyl butyral resin, 1 to 2 parts by weight of nanosilicon dioxide, and 0.5 to 1 part by weight of nanogallium oxide (III) as components.

前記断熱フィルムは、更に、酢酸エチル、酢酸ブチル及びメチルエーテルを含み、重量部換算で、酢酸エチル、酢酸ブチル及びメチルエーテルは合計5〜10重量部である。 The heat insulating film further contains ethyl acetate, butyl acetate and methyl ether, and the total amount of ethyl acetate, butyl acetate and methyl ether is 5 to 10 parts by weight in terms of parts by weight.

前記断熱フィルムはナノ酸化亜鉛を更に含み、重量部換算で、ナノ酸化亜鉛は1〜2重量部である。 The heat insulating film further contains nanozinc oxide, and the amount of nanozinc oxide is 1 to 2 parts by weight in terms of parts by weight.

前記断熱フィルムはナノエアロゲルを更に含み、重量部換算で、ナノエアロゲルは0.5〜1重量部である。 The heat insulating film further contains nano airgel, and the nano airgel is 0.5 to 1 part by weight in terms of weight.

重量部換算で、具体的に、ポリビニルブチラール樹脂85重量部、ナノ二酸化ケイ素1.5重量部、ナノ酸化ガリウム(III)0.5重量部、酢酸エチル2重量部、酢酸ブチル2重量部、メチルエーテル1重量部、ナノ酸化亜鉛1.5重量部、及びナノエアロゲル0.5重量部を含む。 In terms of parts by weight, specifically, 85 parts by weight of polyvinyl butyral resin, 1.5 parts by weight of nanosilicon dioxide, 0.5 parts by weight of nanogallium oxide (III), 2 parts by weight of ethyl acetate, 2 parts by weight of butyl acetate, methyl. It contains 1 part by weight of ether, 1.5 parts by weight of nanozinc oxide, and 0.5 part by weight of nanoaerogel.

本発明は、更に、合成ステップとして、ポリビニルブチラール樹脂、ナノ二酸化ケイ素、ナノ酸化ガリウム(III)、酢酸エチル、酢酸ブチル、メチルエーテル、ナノ酸化亜鉛及びナノエアロゲルを溶融炉に投入して攪拌し、均一に混合する材料の準備・混合ステップと、均一に混合した混合物をキャスティング装置に送り込んでフィルム材を流延し、断熱フィルムをロール状に巻き取る断熱フィルムの製造ステップと、自動切断機を用いてガラスを切断し、切断したガラスをエッジ処理した後、自動洗浄・乾燥機にガラスを投入して洗浄するガラスの切断準備ステップと、ガラスを乾燥させた後、自動合わせラインに投入して断熱フィルムを貼り付け、断熱フィルムの表面を更に別のガラスで覆ってから、オートクレーブで加熱し、高圧をかけることで、フィルムと上下のガラスを溶融させ、しっかりと密着させるフィルム接着による完成品の合成ステップ、を含むナノシリコンガリウム断熱・防爆ガラスの製造方法を開示する。 Further, in the present invention, as a synthesis step, polyvinyl butyral resin, nanosilicon dioxide, nanogallium oxide (III), ethyl acetate, butyl acetate, methyl ether, nanozinc oxide and nanoairgel are put into a melting furnace and stirred. Using an automatic cutting machine, a step of preparing and mixing materials to be uniformly mixed, a step of manufacturing a heat insulating film in which the uniformly mixed mixture is sent to a casting device to spread the film material, and the heat insulating film is wound into a roll. The glass is cut, the cut glass is edge-treated, and then the glass is put into an automatic cleaning / drying machine to be cleaned. After attaching the film and covering the surface of the heat insulating film with another glass, heat it with an airgel and apply high pressure to melt the film and the upper and lower glass, and synthesize the finished product by film adhesion that firmly adheres. Disclose a method for manufacturing nanosilicon gallium heat-insulating and explosion-proof glass including steps.

材料の準備・混合プロセスにおける各原材料は、重量部換算で、それぞれ、ポリビニルブチラール樹脂80〜90重量部、ナノ二酸化ケイ素1〜2重量部、ナノ酸化ガリウム(III)0.5〜1重量部、酢酸エチル2〜4重量部、酢酸ブチル2〜4重量部、メチルエーテル1〜2重量部、ナノ酸化亜鉛1〜3重量部、及びナノエアロゲル0.5〜1重量部である。 Each raw material in the material preparation / mixing process is 80 to 90 parts by weight of polyvinyl butyral resin, 1 to 2 parts by weight of nanosilicon dioxide, 0.5 to 1 part by weight of nanogallium oxide (III), respectively. 2 to 4 parts by weight of ethyl acetate, 2 to 4 parts by weight of butyl acetate, 1 to 2 parts by weight of methyl ether, 1 to 3 parts by weight of nanozinc oxide, and 0.5 to 1 part by weight of nanoaerogel.

材料の準備・混合プロセスでは、各原材料をそれぞれ溶融炉に投入して攪拌及び混合するが、具体的には、まず、ポリビニルブチラール樹脂を溶融炉に投入し、酢酸エチル、酢酸ブチル、メチルエーテルを加えて加熱及び攪拌した後、ナノ二酸化ケイ素を加えて攪拌し、ナノ酸化ガリウム(III)を加えて攪拌してから、最後にナノエアロゲルを加えて攪拌する。 In the material preparation / mixing process, each raw material is put into a melting furnace and stirred and mixed. Specifically, first, polyvinyl butyral resin is put into a melting furnace, and ethyl acetate, butyl acetate, and methyl ether are added. After heating and stirring, nanosilicon dioxide is added and stirred, nanogallium oxide (III) is added and stirred, and finally nanoairgel is added and stirred.

断熱フィルムの製造プロセスでは、均一に攪拌した混合物を80〜120度で加熱し、混合物を完全に溶融させてからキャスティング装置に送り込み、0.3〜1.2MMのフィルム材に流延してから、断熱フィルムをロール状に巻き取る。 In the process of manufacturing a heat insulating film, a uniformly agitated mixture is heated at 80-120 degrees, the mixture is completely melted, then sent to a casting device and cast on a film material of 0.3-1.2 MM. , Wind the heat insulating film into a roll.

フィルム接着による完成品の合成プロセスでは、切断して準備したガラスについて更にガラス強化処理のプロセスを実施するが、具体的なプロセスとしては、きれいに洗浄したガラスを強化炉に投入して強化した後、ヒートソーク炉に強化後のガラスを投入して自爆させ、強化ガラスの応力を取り除いてから、ガラスを洗浄・乾燥した後に、自動合わせラインに投入してフィルム接着プロセスを実施する。 In the process of synthesizing the finished product by film bonding, the glass prepared by cutting is further subjected to the process of tempering the glass. As a specific process, the glass that has been thoroughly washed is put into a tempering furnace and strengthened, and then the glass is strengthened. After the tempered glass is put into a heat soak furnace and self-destructed to remove the stress of the tempered glass, the glass is washed and dried, and then put into an automatic alignment line to carry out a film bonding process.

本発明によれば、以下の有益な効果が得られる。 According to the present invention, the following beneficial effects can be obtained.

従来技術と比較して、本発明におけるナノシリコンガリウム断熱・防爆ガラスは、ナノ二酸化ケイ素とナノ酸化ガリウム(III)を組み合わせて使用するため、製造されるガラスは、良好な透光性と断熱性及び保温性、紫外線遮断性、遮音性等の性能を備える。また、1平方メートルあたりの施工及び材料コストはLOW−Eガラス及び断熱フィルムの十分の一にすぎない。且つ、コーティング層は、良好な耐水性、高い表面硬度、強い付着力、良好な耐酸・耐アルカリ性、防カビ性、防湿性、耐温度差、耐摩耗性及び難燃性を備える。よって、自動車用ガラス、建築用ガラス、有機ガラスの透明性、断熱性・保温性及び省エネに幅広く応用可能であり、建築用フィルム等の同種の製品に代わる優良製品となる。 Compared with the prior art, the nanosilicon gallium adiabatic / explosion-proof glass in the present invention uses a combination of nanosilicon dioxide and nanogallium oxide (III), so that the produced glass has good translucency and adiabatic properties. It also has performance such as heat retention, UV blocking, and sound insulation. Also, the construction and material costs per square meter are only one tenth of LOW-E glass and heat insulating films. Moreover, the coating layer has good water resistance, high surface hardness, strong adhesive force, good acid / alkali resistance, mold resistance, moisture resistance, temperature difference, abrasion resistance and flame retardancy. Therefore, it can be widely applied to the transparency, heat insulation / heat retention, and energy saving of automobile glass, architectural glass, and organic glass, and it is an excellent product that replaces similar products such as architectural films.

図1は、本発明のナノシリコンガリウム断熱・防爆ガラス及びその製造方法のフローチャートである。FIG. 1 is a flowchart of the nanosilicon gallium heat insulating / explosion-proof glass of the present invention and a method for manufacturing the same.

本発明についてより明確に記載すべく、以下に、図面を組み合わせて本発明につき更に述べる。 In order to describe the present invention more clearly, the present invention will be further described below in combination with the drawings.

図1を参照して、本発明におけるナノシリコンガリウム断熱・防爆ガラスの製造方法は、以下の合成ステップを含む。 With reference to FIG. 1, the method for producing nanosilicon gallium adiabatic / explosion-proof glass in the present invention includes the following synthesis steps.

材料の準備・混合:まず、ポリビニルブチラール樹脂を溶融炉に投入し、酢酸エチル、酢酸ブチル、メチルエーテルを加えて加熱及び5分間攪拌する。続いて、ナノ二酸化ケイ素を加えて2分間攪拌し、ナノ酸化ガリウム(III)を加えて2分間攪拌してから、最後にナノエアロゲルを加えて10分間攪拌する。 Preparation and mixing of materials: First, the polyvinyl butyral resin is put into a melting furnace, ethyl acetate, butyl acetate and methyl ether are added, and the mixture is heated and stirred for 5 minutes. Subsequently, nanosilicon dioxide is added and stirred for 2 minutes, nanogallium oxide (III) is added and stirred for 2 minutes, and finally nanoairgel is added and stirred for 10 minutes.

断熱フィルムの製造:均一に攪拌した混合物を80〜120度で加熱し、混合物を完全に溶融させてからキャスティング装置に送り込み、0.3〜1.2MMのフィルム材に流延してから、断熱フィルムをロール状に巻き取る。 Manufacture of Insulation Film: A uniformly stirred mixture is heated at 80-120 degrees to completely melt the mixture before feeding it into a casting device, casting it on a film material of 0.3-1.2 MM and then insulating it. Wind the film into a roll.

ガラスの切断準備:自動切断機を用いてガラスを切断し、切断したガラスをエッジ処理した後、自動洗浄・乾燥機にガラスを投入して洗浄する。 Preparation for cutting glass: The glass is cut using an automatic cutting machine, the cut glass is edge-treated, and then the glass is put into an automatic washing / drying machine for cleaning.

ガラスの強化処理:きれいに洗浄したガラスを強化炉に投入して強化した後、ヒートソーク炉に強化後のガラスを投入して自爆させ、強化ガラスの応力を取り除く。次に、ガラスを洗浄・乾燥した後、自動合わせラインに投入してフィルム接着プロセスを実施する。 Glass strengthening treatment: After the cleanly washed glass is put into a tempered furnace and strengthened, the strengthened glass is put into a heat soak furnace and self-destructed to remove the stress of the tempered glass. Next, after the glass is washed and dried, it is put into an automatic alignment line to carry out a film bonding process.

フィルム接着による完成品の合成:ガラスを乾燥させた後、自動合わせラインに投入して断熱フィルムを貼り付け、断熱フィルムの表面を更に別のガラスで覆う。これをオートクレーブで加熱し、高圧をかけることで、フィルムと上下のガラスを溶融させ、しっかりと密着させる。 Synthesis of finished product by film bonding: After the glass is dried, it is put into an automatic alignment line to attach a heat insulating film, and the surface of the heat insulating film is covered with another glass. By heating this in an autoclave and applying high pressure, the film and the upper and lower glass are melted and firmly adhered.

本実施例では、材料の準備・混合プロセスにおける各原材料は、重量部換算で、それぞれ、ポリビニルブチラール樹脂80〜90重量部、ナノ二酸化ケイ素1〜2重量部、ナノ酸化ガリウム(III)0.5〜1重量部、酢酸エチル2〜4重量部、酢酸ブチル2〜4重量部、メチルエーテル1〜2重量部、ナノ酸化亜鉛1〜3重量部、及びナノエアロゲル0.5〜1重量部である。 In this embodiment, each raw material in the material preparation / mixing process is 80 to 90 parts by weight of polyvinyl butyral resin, 1 to 2 parts by weight of nanosilicon dioxide, and 0.5 parts by weight of nanogallium oxide (III), respectively. ~ 1 part by weight, ethyl acetate 2-4 parts by weight, butyl acetate 2-4 parts by weight, methyl ether 1-2 parts by weight, nanozinc oxide 1-3 parts by weight, and nanoaerogel 0.5-1 part by weight. ..

各原材料は、以下の3つの割合で配合可能である。 Each raw material can be blended in the following three ratios.

1.ポリビニルブチラール樹脂85重量部、ナノ二酸化ケイ素1.5重量部、ナノ酸化ガリウム(III)0.5重量部、酢酸エチル2重量部、酢酸ブチル2重量部、メチルエーテル1重量部、ナノ酸化亜鉛1.5重量部、及びナノエアロゲル0.5重量部。 1. 1. 85 parts by weight of polyvinyl butyral resin, 1.5 parts by weight of nanosilicon dioxide, 0.5 parts by weight of nanogallium oxide (III), 2 parts by weight of ethyl acetate, 2 parts by weight of butyl acetate, 1 part by weight of methyl ether, 1 part by weight of nanozinc oxide .5 parts by weight and 0.5 parts by weight of nano airgel.

2.ポリビニルブチラール樹脂80重量部、ナノ二酸化ケイ素1重量部、ナノ酸化ガリウム(III)0.5重量部、酢酸エチル2重量部、酢酸ブチル2重量部、メチルエーテル1重量部、ナノ酸化亜鉛1重量部、及びナノエアロゲル0.5重量部。 2. 2. 80 parts by weight of polyvinyl butyral resin, 1 part by weight of nanosilicon dioxide, 0.5 part by weight of nanogallium oxide (III), 2 parts by weight of ethyl acetate, 2 parts by weight of butyl acetate, 1 part by weight of methyl ether, 1 part by weight of nanozinc oxide , And nano airgel 0.5 parts by weight.

3.ポリビニルブチラール樹脂90重量部、ナノ二酸化ケイ素2重量部、ナノ酸化ガリウム(III)1重量部、酢酸エチル4重量部、酢酸ブチル4重量部、メチルエーテル2重量部、ナノ酸化亜鉛3重量部、及びナノエアロゲル1重量部。 3. 3. 90 parts by weight of polyvinyl butyral resin, 2 parts by weight of nano-silicon dioxide, 1 part by weight of nano-gallium (III) oxide, 4 parts by weight of ethyl acetate, 4 parts by weight of butyl acetate, 2 parts by weight of methyl ether, 3 parts by weight of nano-zinc oxide, and 1 part by weight of nano airgel.

以上の開示は本発明におけるいくつかの具体的実施例にすぎず、本発明はこれらに限定されない。当業者が考え得るあらゆる変形は、いずれも本発明による保護の範囲に含まれる。 The above disclosure is only a few specific examples in the present invention, and the present invention is not limited thereto. Any modifications that can be considered by those skilled in the art are included in the scope of protection according to the present invention.

Claims (7)

2枚のガラスと1層の断熱フィルムを含み、前記断熱フィルムは2枚のガラスの間に挟持され、前記断熱フィルムは重量部換算で、
ポリビニルブチラール樹脂80〜90重量部、
ナノ二酸化ケイ素1〜2重量部、及び
ナノ酸化ガリウム(III)0.5〜1重量部、を成分として含むことを特徴とするナノシリコンガリウム断熱・防爆ガラス。
It contains two pieces of glass and one layer of heat insulating film, the heat insulating film is sandwiched between two pieces of glass, and the heat insulating film is converted into parts by weight.
80-90 parts by weight of polyvinyl butyral resin,
Nanosilicon gallium heat-insulating and explosion-proof glass, which comprises 1 to 2 parts by weight of nano-silicon dioxide and 0.5 to 1 part by weight of nano-gallium (III) oxide as components.
前記断熱フィルムは、更に、酢酸エチル、酢酸ブチル及びメチルエーテルを含み、重量部換算で、酢酸エチル、酢酸ブチル及びメチルエーテルは合計5〜10重量部であることを特徴とする請求項1に記載のナノシリコンガリウム断熱・防爆ガラス。 The first aspect of claim 1, wherein the heat insulating film further contains ethyl acetate, butyl acetate and methyl ether, and the total amount of ethyl acetate, butyl acetate and methyl ether is 5 to 10 parts by weight in terms of parts by weight. Nano-silicon gallium insulation and explosion-proof glass. 前記断熱フィルムはナノ酸化亜鉛を更に含み、重量部換算で、ナノ酸化亜鉛は1〜2重量部であることを特徴とする請求項2に記載のナノシリコンガリウム断熱・防爆ガラス。 The nanosilicon gallium heat insulating / explosion-proof glass according to claim 2, wherein the heat insulating film further contains nanozinc oxide, and the amount of nanozinc oxide is 1 to 2 parts by weight in terms of parts by weight. 合成ステップとして、
ポリビニルブチラール樹脂、ナノ二酸化ケイ素、ナノ酸化ガリウム(III)、酢酸エチル、酢酸ブチル、メチルエーテル、ナノ酸化亜鉛及びナノエアロゲルを溶融炉に投入して攪拌し、均一に混合する材料の準備・混合ステップと、
均一に混合した混合物をキャスティング装置に送り込んでフィルム材を流延し、断熱フィルムをロール状に巻き取る断熱フィルムの製造ステップと、
自動切断機を用いてガラスを切断し、切断したガラスをエッジ処理した後、自動洗浄・乾燥機にガラスを投入して洗浄するガラスの切断準備ステップと、
ガラスを乾燥させた後、自動合わせラインに投入して断熱フィルムを貼り付け、断熱フィルムの表面を更に別のガラスで覆ってから、オートクレーブで加熱し、高圧をかけることで、フィルムと上下のガラスを溶融させ、しっかりと密着させるフィルム接着による完成品の合成ステップ、を含むことを特徴とするナノシリコンガリウム断熱・防爆ガラスの製造方法。
As a synthesis step
Polyvinyl butyral resin, nano-silicon dioxide, nano-gallium oxide (III), ethyl acetate, butyl acetate, methyl ether, nano-zinc oxide and nano-airgel are put into a melting furnace and stirred to prepare and mix materials uniformly. When,
A step of manufacturing a heat insulating film in which a uniformly mixed mixture is sent to a casting device, the film material is cast, and the heat insulating film is wound into a roll.
The glass is cut using an automatic cutting machine, the cut glass is edge-treated, and then the glass is put into an automatic washing / drying machine to be washed.
After drying the glass, put it in the automatic alignment line, attach the heat insulating film, cover the surface of the heat insulating film with another glass, heat it with an autoclave, and apply high pressure to the film and the upper and lower glass. A method for manufacturing nanosilicon gallium heat-insulating and explosion-proof glass, which comprises a step of synthesizing a finished product by film bonding, in which the glass is melted and firmly adhered.
材料の準備・混合プロセスにおける各原材料は、重量部換算で、それぞれ、ポリビニルブチラール樹脂80〜90重量部、ナノ二酸化ケイ素1〜2重量部、ナノ酸化ガリウム(III)0.5〜1重量部、酢酸エチル2〜4重量部、酢酸ブチル2〜4重量部、メチルエーテル1〜2重量部、ナノ酸化亜鉛1〜3重量部、及びナノエアロゲル0.5〜1重量部であることを特徴とする請求項に記載のナノシリコンガリウム断熱・防爆ガラスの製造方法。 Each raw material in the material preparation / mixing process is 80 to 90 parts by weight of polyvinyl butyral resin, 1 to 2 parts by weight of nanosilicon dioxide, 0.5 to 1 part by weight of nanogallium oxide (III), respectively. It is characterized by having 2 to 4 parts by weight of ethyl acetate, 2 to 4 parts by weight of butyl acetate, 1 to 2 parts by weight of methyl ether, 1 to 3 parts by weight of nanozinc oxide, and 0.5 to 1 part by weight of nano airgel. The method for producing a nanosilicon gallium heat-insulating / explosive-proof glass according to claim 4 . 断熱フィルムの製造プロセスでは、均一に攪拌した混合物を80〜120度で加熱し、混合物を完全に溶融させてからキャスティング装置に送り込み、0.3〜1.2mmのフィルム材に流延してから、断熱フィルムをロール状に巻き取ることを特徴とする請求項に記載のナノシリコンガリウム断熱・防爆ガラスの製造方法。 In the process of manufacturing a heat insulating film, a uniformly stirred mixture is heated at 80-120 degrees, the mixture is completely melted, then sent to a casting device and cast on a film material of 0.3-1.2 mm. The method for producing nanosilicon gallium heat-insulating / explosion-proof glass according to claim 4 , wherein the heat-insulating film is wound into a roll. フィルム接着による完成品の合成プロセスでは、切断して準備したガラスについて更にガラス強化処理のプロセスを実施するが、具体的なプロセスとしては、
きれいに洗浄したガラスを強化炉に投入して強化した後、ヒートソーク炉に強化後のガラスを投入して自爆させ、強化ガラスの応力を取り除いてから、ガラスを洗浄・乾燥した後に、自動合わせラインに投入してフィルム接着プロセスを実施することを特徴とする請求項に記載のナノシリコンガリウム断熱・防爆ガラスの製造方法。
In the process of synthesizing the finished product by film bonding, a glass strengthening process is further carried out on the glass prepared by cutting. As a specific process,
After putting the thoroughly washed glass into the tempered glass and strengthening it, put the strengthened glass into the heat soak furnace and let it self-destruct to remove the stress of the tempered glass, then wash and dry the glass, and then put it on the automatic alignment line. The method for producing nanosilicon gallium heat-insulating / explosion-proof glass according to claim 4 , wherein the film is charged and the film bonding process is carried out.
JP2019548509A 2016-11-29 2017-11-08 Nanosilicon gallium heat insulating / explosion-proof glass and its manufacturing method Active JP6820034B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201611066859.8A CN106746759B (en) 2016-11-29 2016-11-29 The heat-insulated of nano-silicon gallium, implosion guard and preparation method thereof
CN201611066859.8 2016-11-29
PCT/CN2017/109902 WO2018099251A1 (en) 2016-11-29 2017-11-08 Nano-silicon gallium heat-insulating and explosion-proof glass and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2020504703A JP2020504703A (en) 2020-02-13
JP6820034B2 true JP6820034B2 (en) 2021-01-27

Family

ID=58904795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019548509A Active JP6820034B2 (en) 2016-11-29 2017-11-08 Nanosilicon gallium heat insulating / explosion-proof glass and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6820034B2 (en)
CN (1) CN106746759B (en)
WO (1) WO2018099251A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106746759B (en) * 2016-11-29 2018-03-23 何新桥 The heat-insulated of nano-silicon gallium, implosion guard and preparation method thereof
CN107999254B (en) * 2017-12-01 2020-02-07 唐峰 Production process of special-shaped glass mosaic for gas heating furnace body
CN109233222A (en) * 2018-09-21 2019-01-18 佛山市禅城区诺高环保科技有限公司 A kind of vehicle glass thermal isolation film and preparation method thereof
CN110802896A (en) * 2019-10-28 2020-02-18 台玻武汉工程玻璃有限公司 Light-filtering laminated glass and preparation method thereof
CN117143487A (en) * 2023-09-05 2023-12-01 广东中城海创新材料有限公司 Glass heat-insulating film for removing formaldehyde by negative ions and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808474B3 (en) * 2000-05-03 2002-05-31 Saint Gobain Vitrage SHEET GLAZING WITH MECHANICAL STRENGTH AND SOUND INSULATION PROPERTIES
CN100346992C (en) * 2004-01-02 2007-11-07 清华大学 Autombobile windshield glass possessing infrared reflection performance and its preparation method
US7625634B2 (en) * 2004-07-06 2009-12-01 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
CN101698366B (en) * 2009-11-05 2012-07-04 广州市奥吉斯新材料有限公司 Soundproof and explosionproof film and application thereof
CN101704979B (en) * 2009-11-05 2011-06-15 广州市奥吉斯新材料有限公司 Heat-insulating anti-explosion membrane and application thereof
TWI513780B (en) * 2010-12-31 2015-12-21 Eternal Materials Co Ltd Coating composition and uses thereof
CN102225846B (en) * 2011-04-20 2012-12-05 福州大学 Glass sealing material as well as preparation and use methods thereof
CN106746759B (en) * 2016-11-29 2018-03-23 何新桥 The heat-insulated of nano-silicon gallium, implosion guard and preparation method thereof

Also Published As

Publication number Publication date
CN106746759B (en) 2018-03-23
CN106746759A (en) 2017-05-31
WO2018099251A1 (en) 2018-06-07
JP2020504703A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6820034B2 (en) Nanosilicon gallium heat insulating / explosion-proof glass and its manufacturing method
CN106881881B (en) Weather-proof glass fiber reinforced plastics product vacuum imports processing method
CN102086349B (en) Non-curing waterproof glue with double character
WO2012019364A1 (en) Modified wood fiber-reinforced cement external wall panel and producing method therefor
CN103319978B (en) A kind of anti-shedding fireproof coating
CN102766366B (en) Reflective insulation coating
CN108795200A (en) Lightweight complex building heat insulating coatings and preparation method thereof
CN103553543A (en) Preparation method of flame-retardant insulation board for building exterior wall
CN104844132A (en) Flame-retardant heat insulating material preparation method
CN104358373B (en) A kind of heat-insulating flame-retardant light wall tile and preparation method thereof
CN102942351A (en) High-strength keelless La Nina mineral wool board
CN104130725B (en) A kind of core-shell type infrared resistant auxiliary agent and heat insulation EVA not gummosis glued membrane and preparation method
CN102557535A (en) Vitreous micro-bead inorganic heat insulation plate and production process thereof
CN101823855A (en) Imitation natural stone sheet and making process thereof
CN106497201A (en) A kind of mildew-proof flame retarded Thermal insulating putty for exterior wall of building
CN203613662U (en) Building exterior wall flame-resistant heat insulating board
CN103057215B (en) Cement glass fiber felt veneer material and preparation and application method thereof
CN112341857A (en) Ceramic tile putty with good adsorption effect and processing method thereof
CN106479289A (en) Heat-insulated radial pattern coating of the strong fluorine carbon of a kind of adhesive force and preparation method thereof
CN104178071A (en) Decorative material for rapid bonding of marble
CN104926203B (en) A kind of decoration pressure heat-barrier material and preparation method thereof
CN117227280A (en) Durable glass and production process thereof
CN108191456A (en) A kind of building flooring sound insulation heat preservation board and preparation method thereof
CN102766425A (en) Bicomponent seam paste
CN106517806A (en) Preparation method for hot-melt glass

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6820034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250