JP6818046B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP6818046B2
JP6818046B2 JP2018556617A JP2018556617A JP6818046B2 JP 6818046 B2 JP6818046 B2 JP 6818046B2 JP 2018556617 A JP2018556617 A JP 2018556617A JP 2018556617 A JP2018556617 A JP 2018556617A JP 6818046 B2 JP6818046 B2 JP 6818046B2
Authority
JP
Japan
Prior art keywords
vehicle
inter
time
unit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556617A
Other languages
Japanese (ja)
Other versions
JPWO2018110401A1 (en
Inventor
秀昭 田中
秀昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2018110401A1 publication Critical patent/JPWO2018110401A1/en
Application granted granted Critical
Publication of JP6818046B2 publication Critical patent/JP6818046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、車両を制御する車両制御装置に関する。 The present invention relates to a vehicle control device that controls a vehicle.

自車両と先行車両との間の距離(車間距離)を目標車間距離で決まる設定範囲内に保つように自車両の走行状態を制御するクルーズコントロール(いわゆる、追従制御)に関する技術として、例えば、特許文献1(特開2009−199267号公報)には、自車両と先行車両との間の相対位置関係に基づいて自車両の走行状態を制御する走行制御装置であって、前記自車両に設けられた送信装置と、前記自車両の、前記送信装置と間隔を隔てて設けられた受信装置と、その受信装置において受信された前記送信装置から送信された信号の受信強度に基づいて、その信号の実際の減衰状態を取得し、その取得した減衰状態と、前記受信装置において受信された前記先行車両からの信号の受信強度とに基づいて前記相対位置関係を取得する相対位置関係取得装置とを備えた走行制御装置が開示されている。 As a technique related to cruise control (so-called follow-up control) that controls the running state of the own vehicle so as to keep the distance between the own vehicle and the preceding vehicle (inter-vehicle distance) within the set range determined by the target inter-vehicle distance, for example, a patent. Document 1 (Japanese Unexamined Patent Publication No. 2009-199267) is a travel control device that controls the traveling state of the own vehicle based on the relative positional relationship between the own vehicle and the preceding vehicle, and is provided in the own vehicle. Based on the transmission device, the reception device of the own vehicle provided at a distance from the transmission device, and the reception strength of the signal transmitted from the transmission device received by the reception device, the signal of the transmission device It is provided with a relative positional relationship acquisition device that acquires the actual damping state and acquires the relative positional relationship based on the acquired damping state and the reception intensity of the signal from the preceding vehicle received by the receiving device. The travel control device is disclosed.

特開2009−199267号公報JP-A-2009-199267

ところで、近年では上記従来技術のような追従走行(適応走行制御、ACC: Adaptive Cruise Control)に加え、車車間通信を用いて先行車の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な追従走行を行う協調型追従走行制御(CACC: Cooperative Adaptive Cruise Control)も高度運転支援技術の一つとして実用化が進められており、追従走行の精度向上や、車間時間短縮による道路の収容率の向上などが図られている。 By the way, in recent years, in addition to the follow-up driving (Adaptive Cruise Control, ACC: Adaptive Cruise Control) as in the above-mentioned conventional technology, vehicle information such as the vehicle speed and acceleration of the preceding vehicle is acquired by using inter-vehicle communication, and the obtained vehicle. Cooperative Adaptive Cruise Control (CACC), which performs more accurate follow-up driving based on information, is also being put into practical use as one of the advanced driving support technologies, improving the accuracy of follow-up driving and the inter-vehicle time. Improvements in road capacity are being made by shortening the roads.

しかしながら、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、対象車両間の距離や周囲環境など種々の条件によって受信状況が大きく異なってくる。このため、場合によっては車車間通信に必要な受信強度が得られなくなってしまい、通信型追従走行が不可能・不安定になってしまうことも考えられる。 However, in wireless communication used for vehicle-to-vehicle communication, a composite wave of a direct wave propagating linearly between target vehicles and a reflected wave such as ground reflection is received, so that the distance between target vehicles and the surrounding environment are various. The reception status varies greatly depending on the conditions of. For this reason, in some cases, the reception strength required for vehicle-to-vehicle communication may not be obtained, and communication-type follow-up driving may become impossible or unstable.

本発明は上記に鑑みてなされたものであり、通信型追従走行の安定性をより向上することができる車両制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device capable of further improving the stability of communication-type follow-up traveling.

上記目的を達成するために、本発明は、自車両の前方を走行する他車両の車両情報を無線通信で取得する車車間通信部と、前記他車両と前記自車両の間の無線通信における受信強度を計測する受信強度計測部と、前記受信強度計測部により計測された受信強度に基づいて、前記他車両に対する前記自車両の相対位置を制御する車間制御部と、前記他車両と前記自車両との間の車間時間を設定する車間時間設定部と、を備え、前記無線通信では前記他車両と前記自車両との間を直接伝播する直接波と反射波との合成波が前記自車両で受信され、前記直接波と前記反射波の伝播距離による受信側での位相の違いによって前記合成波が大きく、或いは、小さくなることにより前記受信強度計測部により計測された受信強度が変化し、前記車間制御部は、前記車車間通信部で取得された車両情報に基づいて、前記車間時間設定部で設定された車間時間を含むように定められる車間時間調整範囲内において、前記受信強度が最大または極大となるように、前記他車両と前記自車両との間の車間時間を制御する。 In order to achieve the above object, the present invention has a vehicle-to- vehicle communication unit that acquires vehicle information of another vehicle traveling in front of the own vehicle by wireless communication, and reception in wireless communication between the other vehicle and the own vehicle. A reception intensity measuring unit that measures the intensity, an inter-vehicle distance control unit that controls the relative position of the own vehicle with respect to the other vehicle based on the reception intensity measured by the reception intensity measurement unit , the other vehicle and the own vehicle. A vehicle-to-vehicle time setting unit for setting an inter-vehicle time between the vehicle and the vehicle is provided , and in the wireless communication, a combined wave of a direct wave and a reflected wave that directly propagates between the other vehicle and the own vehicle is generated by the own vehicle. When the combined wave becomes large or small due to the difference in phase on the receiving side due to the propagation distance of the direct wave and the reflected wave, the reception intensity measured by the reception intensity measuring unit changes, and the reception intensity is changed. Based on the vehicle information acquired by the inter-vehicle communication unit, the inter-vehicle control unit has the maximum reception intensity within the inter-vehicle time adjustment range determined to include the inter-vehicle time set by the inter-vehicle time setting unit. The inter-vehicle time between the other vehicle and the own vehicle is controlled so as to be maximum .

本発明によれば、通信型追従走行の安定性をより向上することができる。 According to the present invention, the stability of communication-type follow-up travel can be further improved.

車両制御装置の全体構成を概略的に示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the vehicle control device schematicly. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、車間制御処理によって車間時間が調整された後の状態を例示する図である。It is a figure which shows the state of the inter-vehicle distance control processing of the vehicle which is equipped with a vehicle control device schematicly, and is the figure which illustrates the state after the inter-vehicle distance time is adjusted by the inter-vehicle distance control processing. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、自車両が車間時間調整範囲よりも後方にある場合を例示する図である。It is a figure which shows the state of the inter-vehicle distance control processing of the vehicle which is equipped with a vehicle control device schematicly, and is the figure which illustrates the case where the own vehicle is behind the inter-vehicle time adjustment range. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、自車両が車間時間調整範囲内であって車間時間が未調整である場合を例示する図である。It is a figure which shows the state of the inter-vehicle distance control processing of the vehicle which is equipped with a vehicle control device schematicly, and is the figure which illustrates the case where the own vehicle is within the inter-vehicle time adjustment range, and the inter-vehicle time is not adjusted. 車間制御処理を示すフローチャートである。It is a flowchart which shows the inter-vehicle distance control process. 車車間通信を想定した送受信間の距離と受信電力の関係についてのシミュレーション結果の一例を概略的に示す図である。It is a figure which shows an example of the simulation result about the relationship between the distance between transmission and reception and received power assuming inter-vehicle communication.

以下、本発明の実施の形態を図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る車両制御装置の全体構成を概略的に示す機能ブロック図である。また、図2〜図4は、本発明に係る車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図である。 FIG. 1 is a functional block diagram schematically showing the overall configuration of the vehicle control device according to the present embodiment. Further, FIGS. 2 to 4 are diagrams schematically showing a state of inter-vehicle distance control processing of a vehicle equipped with the vehicle control device according to the present invention.

図1〜図4において、車両制御装置1は、車車間通信部2、外界認識部3、自車両挙動認識部4、車間時間設定部5、および車間制御部6から概略構成されている。 In FIGS. 1 to 4, the vehicle control device 1 is roughly composed of an inter-vehicle communication unit 2, an outside world recognition unit 3, an own vehicle behavior recognition unit 4, an inter-vehicle time setting unit 5, and an inter-vehicle control unit 6.

車車間通信部2は、自車両102の周囲の他の車両(例えば、他車両101)の車両情報を車車間通信7によって取得するものである。車車間通信7とは、車車間通信7に必要な専用の車載器(無線装置)が搭載されている車両同士の無線通信により周囲の車両の情報(車両情報:位置、速度、加速度、ヨーレート、車両制御情報等)を入手し、得られた情報を必要に応じて運転支援等に用いるシステムであり、車車間通信部2は車車間通信7によって他車両101の車両情報を取得する。また、車車間通信部2は、車車間通信7において他車両101から送信される信号の受信強度を計測する受信強度計測部2aを有している。車車間通信7によって車車間通信部2で得られた他車両101の車両情報、および受信強度計測部2aで得られた受信強度(計測結果)は、車間制御部6に送られる。 The vehicle-to-vehicle communication unit 2 acquires vehicle information of other vehicles (for example, another vehicle 101) around the own vehicle 102 by vehicle-to-vehicle communication 7. Vehicle-to-vehicle communication 7 is information on surrounding vehicles (vehicle information: position, speed, acceleration, yaw rate, etc.) by wireless communication between vehicles equipped with a dedicated in-vehicle device (radio device) required for vehicle-to-vehicle communication 7. It is a system that obtains vehicle control information and the like and uses the obtained information for driving support and the like as needed, and the vehicle-to-vehicle communication unit 2 acquires vehicle information of another vehicle 101 by vehicle-to-vehicle communication 7. Further, the vehicle-to-vehicle communication unit 2 has a reception strength measuring unit 2a that measures the reception strength of a signal transmitted from another vehicle 101 in the vehicle-to-vehicle communication 7. The vehicle information of the other vehicle 101 obtained by the vehicle-to-vehicle communication unit 2 by the vehicle-to-vehicle communication 7 and the reception intensity (measurement result) obtained by the reception intensity measurement unit 2a are sent to the vehicle-to-vehicle control unit 6.

外界認識部3は、自車両102に搭載されたレーダやカメラなどのセンサ(以降、レーダ・カメラ8と称する)から得られた情報を解析し、レーダ・カメラ8において検知・撮像された他の車両や障害物、道路標識等を認識・判別し、また、それらと自車両102との相対位置や相対速度などの情報を取得する。また、これらの情報に基づいて、自車両102の前方を走行する他車両(先行車両)101と自車両102との車間時間を取得することができる。外界認識部3で得られた情報は、車間制御部6に送られる。 The outside world recognition unit 3 analyzes information obtained from sensors such as radars and cameras mounted on the own vehicle 102 (hereinafter referred to as radar camera 8), and is detected and imaged by the radar camera 8. It recognizes and discriminates vehicles, obstacles, road signs, etc., and acquires information such as the relative position and relative speed between them and the own vehicle 102. Further, based on this information, it is possible to acquire the inter-vehicle time between the other vehicle (preceding vehicle) 101 traveling in front of the own vehicle 102 and the own vehicle 102. The information obtained by the outside world recognition unit 3 is sent to the inter-vehicle distance control unit 6.

自車両挙動認識部4は、自車両102に搭載されたジャイロセンサや車輪速度センサ、舵角センサ、加速度センサなどの自車両センサ9なら得られた情報に基づいて自車両102の挙動を表すヨーレートや車輪速度、舵角、加速度等の情報を取得し、得られた情報を車間制御部6に送る。 The own vehicle behavior recognition unit 4 represents the behavior of the own vehicle 102 based on the information obtained by the own vehicle sensor 9 such as the gyro sensor, the wheel speed sensor, the steering angle sensor, and the acceleration sensor mounted on the own vehicle 102. , Wheel speed, steering angle, acceleration, etc. are acquired, and the obtained information is sent to the inter-vehicle distance control unit 6.

車間時間設定部5は、自車両102に設けられた車間時間入力部10(例えば、運転席付近に設置された運転者用入力スイッチ等)により入力された入力値に基づいて、車間制御処理(後述)において自車両102の前方を走行する他車両101(先行車両)と自車両102との間の車間時間の目標値を設定し、その設定値(目標値)を車間制御部6に出力する。車間時間入力部10で入力される入力値としては、車間距離を具体的数値で入力するもののほか、例えは、車間距離を大きめにとる「大」や、車間距離を小さめにとる「小」、それらの中間の車間距離とする「中」などのように段階的に入力するものが考えられる。 The inter-vehicle time setting unit 5 performs inter-vehicle distance control processing (for example, based on an input value input by an inter-vehicle time input unit 10 (for example, a driver input switch installed near the driver's seat) provided in the own vehicle 102. In (described later), a target value of the inter-vehicle time between the other vehicle 101 (preceding vehicle) traveling in front of the own vehicle 102 and the own vehicle 102 is set, and the set value (target value) is output to the inter-vehicle distance control unit 6. .. As the input value input by the inter-vehicle time input unit 10, in addition to inputting a specific numerical value, for example, "large" which takes a large inter-vehicle distance, "small" which takes a small inter-vehicle distance, and so on. It is conceivable to input in stages, such as "medium", which is the inter-vehicle distance between them.

車間制御部6は、車車間通信部2、受信強度計測部2a、外界認識部3、自車両挙動認識部4、及び車間時間設定部5からの情報に基づいて車間制御処理を行う。本実施の形態における車間制御処理は、自車両102の前方を走行する他車両101(先行車両)と自車両102との車間(車間時間)を車間時間の設定値(目標値)に基づいて決まる設定範囲(車間時間調整範囲)内に保つように自車両102の走行状態を制御するとともに、車車間通信7を用いて先行車両101の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な自車両102の走行状態の制御を行うものである。車間制御部6は、車間制御処理の結果として自車両102の走行状態を制御するための制御信号を出力する。 The inter-vehicle distance control unit 6 performs inter-vehicle distance control processing based on information from the inter-vehicle distance communication unit 2, the reception intensity measurement unit 2a, the outside world recognition unit 3, the own vehicle behavior recognition unit 4, and the inter-vehicle time setting unit 5. The inter-vehicle distance control process in the present embodiment determines the inter-vehicle distance (inter-vehicle time) between the other vehicle 101 (preceding vehicle) traveling in front of the own vehicle 102 and the own vehicle 102 based on the set value (target value) of the inter-vehicle time. The vehicle obtained by controlling the running state of the own vehicle 102 so as to keep it within the set range (inter-vehicle time adjustment range) and acquiring vehicle information such as the vehicle speed and acceleration of the preceding vehicle 101 using the inter-vehicle communication 7. It controls the running state of the own vehicle 102 more accurately based on the information. The inter-vehicle distance control unit 6 outputs a control signal for controlling the traveling state of the own vehicle 102 as a result of the inter-vehicle distance control process.

ここで、本実施の形態における車間制御処理の詳細について説明する。 Here, the details of the inter-vehicle distance control processing in the present embodiment will be described.

図2〜図4は、本発明に係る車両制御装置1が搭載された自車両102の車間制御処理の様子を概略的に示しており、例えば、自動車専用道路などの道路100を他車両101及び自車両102がある間隔をもって前方(図中左方向)に走行している場合を示している。また、図2は車間制御処理によって車間時間が調整された後の状態を例示する図であり、図3は自車両102が車間時間調整範囲よりも後方にある場合を例示する図であり、図4は自車両102が車間時間調整範囲内であって車間時間が未調整である場合を例示する図である。 2 to 4 schematically show a state of inter-vehicle distance control processing of the own vehicle 102 equipped with the vehicle control device 1 according to the present invention. For example, a road 100 such as an automobile-only road is referred to as another vehicle 101 and The case where the own vehicle 102 is traveling forward (to the left in the figure) at a certain interval is shown. Further, FIG. 2 is a diagram illustrating a state after the inter-vehicle time is adjusted by the inter-vehicle distance control process, and FIG. 3 is a diagram illustrating a case where the own vehicle 102 is behind the inter-vehicle time adjustment range. FIG. 4 is a diagram illustrating a case where the own vehicle 102 is within the inter-vehicle time adjustment range and the inter-vehicle time is not adjusted.

車間制御処理では、先行車両101と自車両102との車間時間を設定値(目標値)を含むように定められる車間時間調整範囲内に保つように処理を行い、さらに、車間時間調整範囲内において車間時間を調整する車間時間調整処理を行う。車間時間調整範囲は車間制御処理を行う車両の用途や環境によって種々の設定が考えられ、1つに限定されるものでは無いが、例えば、車間時間の設定値(目標値)が5秒であったとすると、車間時間調整範囲は車間時間で2.5秒〜3.5秒のように設定値(目標値)の前後に跨るように定められる。なお、車間時間調整範囲は、設定値(目標値)に対して前後(上下)が均等である必要はなく、また、自車両102の走行状態や周囲環境に基づいて変更されるような仕様としても良い。 In the inter-vehicle distance control process, processing is performed so as to keep the inter-vehicle time between the preceding vehicle 101 and the own vehicle 102 within the inter-vehicle time adjustment range determined to include the set value (target value), and further, within the inter-vehicle time adjustment range. Adjusting the inter-vehicle time Performs the inter-vehicle time adjustment process. The inter-vehicle time adjustment range can be set in various ways depending on the application and environment of the vehicle that performs the inter-vehicle distance control processing, and is not limited to one. For example, the inter-vehicle time setting value (target value) is 5 seconds. If so, the inter-vehicle time adjustment range is set so as to straddle before and after the set value (target value) such as 2.5 seconds to 3.5 seconds in the inter-vehicle time. The inter-vehicle time adjustment range does not have to be even in the front-rear direction (up and down) with respect to the set value (target value), and is changed based on the running condition of the own vehicle 102 and the surrounding environment. Is also good.

車間時間とは、例えば道路上のある位置を先行車両(他車両101)が通過してから自車両102がそこ(ある位置)を通過するまでにかかる時間であり、この車間時間を制御することにより先行車両との車間を所望の間隔(目標車間距離)となるように制御する。 The inter-vehicle time is, for example, the time required for the own vehicle 102 to pass there (a certain position) after the preceding vehicle (another vehicle 101) passes a certain position on the road, and the inter-vehicle time is controlled. The distance between the vehicle and the preceding vehicle is controlled to be a desired distance (target vehicle-to-vehicle distance).

車間時間調整処理では、車間時間調整範囲内において車車間通信7に係る信号の受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する処理を行う。なお、言うまでもないが、車間時間調整範囲の端部(車間時間最大、或いは最小)で受信強度が最大となる場合も同様に、受信強度が最大の状態となるように、先行車両101と自車両102との間の車間時間を調整する処理を行う。 In the inter-vehicle time adjustment process, the inter-vehicle time between the preceding vehicle 101 and the own vehicle 102 is set to the maximum state (state in FIG. 2) of the signal related to the inter-vehicle communication 7 within the inter-vehicle time adjustment range. Performs the process of adjusting. Needless to say, even when the reception intensity is maximized at the end of the inter-vehicle time adjustment range (maximum or minimum inter-vehicle time), the preceding vehicle 101 and the own vehicle are similarly so as to maximize the reception intensity. The process of adjusting the inter-vehicle time with 102 is performed.

例えば、図3のように、自車両102が車間時間調整範囲よりも後方にある場合に車間制御処理が開始されると、自車両102の走行状態を制御して車間時間が車間時間調整範囲内となるように制御し、さらに、車車間通信7に係る信号の受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する。 For example, as shown in FIG. 3, when the inter-vehicle distance control process is started when the own vehicle 102 is behind the inter-vehicle time adjustment range, the traveling state of the own vehicle 102 is controlled and the inter-vehicle time is within the inter-vehicle time adjustment range. Further, the inter-vehicle time between the preceding vehicle 101 and the own vehicle 102 is adjusted so that the reception strength of the signal related to the inter-vehicle communication 7 is maximized (the state shown in FIG. 2). ..

また、図4のように、車間制御処理の開始時に自車両102が車間時間調整範囲にある場合においても、車車間通信7に係る信号の受信強度の現在値を取得しつつ自車両102の走行状態を制御して車間時間を変化させ、車間時間調整範囲における受信強度の変化を取得し、最終的に受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する。 Further, as shown in FIG. 4, even when the own vehicle 102 is in the inter-vehicle time adjustment range at the start of the inter-vehicle distance control process, the own vehicle 102 travels while acquiring the current value of the signal reception intensity related to the inter-vehicle communication 7. The preceding vehicle 101 and the own vehicle so as to control the state to change the inter-vehicle time, acquire the change in the reception intensity in the inter-vehicle time adjustment range, and finally reach the maximum reception intensity state (the state shown in FIG. 2). Adjust the inter-vehicle time to and from 102.

なお、図2〜図4の説明においては、車間時間調整範囲内において車車間通信7に係る信号の受信強度が最大になるように車間制御処理を行う場合を例示して示したが、車間時間調整範囲の全てに亘って車間時間を変化させ、受信強度の情報を取得することが適当でない場合(例えば、車間時間調整範囲が広い場合や、車間時間調整範囲内で受信強度が受信感度を下回る状態が有る場合)には、受信強度が極大値を示す車間時間となるように制御することも考えられる。 In the description of FIGS. 2 to 4, the case where the inter-vehicle control process is performed so that the reception strength of the signal related to the inter-vehicle communication 7 is maximized within the inter-vehicle time adjustment range is shown as an example. When it is not appropriate to change the inter-vehicle time over the entire adjustment range and acquire the reception intensity information (for example, when the inter-vehicle time adjustment range is wide or the reception intensity is lower than the reception sensitivity within the inter-vehicle time adjustment range). If there is a state), it is conceivable to control the reception intensity so that it becomes the inter-vehicle time showing the maximum value.

図5は、車間制御処理を示すフローチャートである。 FIG. 5 is a flowchart showing the inter-vehicle distance control process.

図5において、車間制御部6は、車車間通信部2や外界認識部3から得られる情報に基づいて、自車両102の前方に車車間通信対応可能な他車両(先行車両)101があるかどうかを判定し(ステップS100)、判定結果がNOの場合には処理を終了する。また、ステップS100において、判定結果がYESの場合、すなわち、車車間通信対応可能な他車両101があると判定した場合には、運転席付近に設けられたモニタやランプ、スピーカ等の図示しない通知手段によって運転者に車間制御が可能であることを通知する(ステップS110)。続いて、運転者の車間時間入力部10の操作による入力値に基づいて車間時間設定部5で設定された車間時間の設定値(目標値)を取得し(ステップS120)、得られた設定値に基づいて車間時間調整範囲を設定する(ステップS130)。続いて、先行車両101と自車両102との車間時間は車間時間調整範囲内かどうかを判定し(ステップS140)、判定結果がNOの場合には、車間時間が車間時間調整範囲内となるように自車両102の走行状態を制御する(ステップS141)。ステップS140での判定結果がYESの場合、又は、ステップS141の処理が終了すると、車間時間調整処理(ステップS150〜S160)として、車間時間の調整(ステップS150)と、車間時間調整範囲内において車車間通信に係る信号の受信強度が車間時間調整範囲内において最大になったかどうかの判定(ステップS160)とを行い、ステップS160での判定結果がNOの場合は、ステップS150の車間時間の調整を繰り返す。また、ステップS160での判定結果がYESの場合、すなわち、受信強度が最大値となった場合には処理を終了する。 In FIG. 5, the inter-vehicle distance control unit 6 has another vehicle (preceding vehicle) 101 capable of inter-vehicle inter-vehicle communication in front of the own vehicle 102 based on the information obtained from the inter-vehicle distance communication unit 2 and the outside world recognition unit 3. It is determined whether or not (step S100), and if the determination result is NO, the process is terminated. Further, in step S100, when the determination result is YES, that is, when it is determined that there is another vehicle 101 capable of inter-vehicle communication, a monitor, a lamp, a speaker, or the like provided near the driver's seat is notified (not shown). The driver is notified by means that the inter-vehicle distance control is possible (step S110). Subsequently, the set value (target value) of the inter-vehicle time set by the inter-vehicle time setting unit 5 is acquired based on the input value operated by the driver's inter-vehicle time input unit 10 (step S120), and the obtained set value is obtained. The inter-vehicle time adjustment range is set based on (step S130). Subsequently, it is determined whether the inter-vehicle time between the preceding vehicle 101 and the own vehicle 102 is within the inter-vehicle time adjustment range (step S140), and if the determination result is NO, the inter-vehicle time is within the inter-vehicle time adjustment range. The running state of the own vehicle 102 is controlled (step S141). If the determination result in step S140 is YES, or when the process of step S141 is completed, the inter-vehicle time adjustment process (steps S150 to S160) includes the inter-vehicle time adjustment (step S150) and the vehicle within the inter-vehicle time adjustment range. It is determined whether or not the reception strength of the signal related to the inter-vehicle communication is maximized within the inter-vehicle time adjustment range (step S160), and if the determination result in step S160 is NO, the inter-vehicle time adjustment in step S150 is performed. repeat. Further, when the determination result in step S160 is YES, that is, when the reception intensity reaches the maximum value, the process ends.

以上のように構成した本実施の形態の効果を説明する。 The effects of the present embodiment configured as described above will be described.

近年、追従走行(適応走行制御、ACC: Adaptive Cruise Control)に加え、車車間通信を用いて先行車の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な追従走行を行う協調型追従走行制御(CACC: Cooperative Adaptive Cruise Control)も高度運転支援技術の一つとして実用化が進められており、追従走行の精度向上や、車間時間短縮による道路の収容率の向上などが図られている。しかしながら、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、対象車両間の距離や周囲環境など種々の条件によって受信状況が大きく異なってくる。 In recent years, in addition to following driving (Adaptive Cruise Control, ACC: Adaptive Cruise Control), vehicle information such as the vehicle speed and acceleration of the preceding vehicle is acquired using vehicle-to-vehicle communication, and more accurate tracking is performed based on the obtained vehicle information. Cooperative Adaptive Cruise Control (CACC), which performs driving, is also being put into practical use as one of the advanced driving support technologies, and the accuracy of following driving is improved and the road accommodation rate is improved by shortening the inter-vehicle time. Etc. are planned. However, in wireless communication used for vehicle-to-vehicle communication, a composite wave of a direct wave propagating linearly between target vehicles and a reflected wave such as ground reflection is received, so that the distance between target vehicles and the surrounding environment are various. The reception status varies greatly depending on the conditions of.

図6は、車車間通信を想定した送受信間の距離と受信電力の関係についてのシミュレーション結果の一例を概略的に示す図である。図6において、縦軸には受信側での信号の受信電力を、横軸には送信側と受信側の距離(送受信間の距離)をそれぞれ示している。 FIG. 6 is a diagram schematically showing an example of a simulation result regarding the relationship between the distance between transmission and reception and the received power assuming inter-vehicle communication. In FIG. 6, the vertical axis shows the received power of the signal on the receiving side, and the horizontal axis shows the distance between the transmitting side and the receiving side (distance between transmission and reception).

図6に示すように、送受信間の距離によって受信電力(受信強度に対応)が変化することがわかる。これは、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、直接波や反射波の伝播距離による受信側での位相の違いによって合成波が大きく、或いは、小さくなってしまうためである。例えば、図6のA部やB部においては、車車間通信の受信側で想定される(最低)受信感度を下回ると考えられるため、車車間通信を行う先行車両と自車両との距離(車間時間)がこのような範囲に入った場合には、車車間通信に必要な受信強度が得られなくなってしまい、通信型追従走行が不可能・不安定になってしまうことも考えられる。 As shown in FIG. 6, it can be seen that the received power (corresponding to the reception intensity) changes depending on the distance between transmission and reception. This is because in wireless communication used for vehicle-to-vehicle communication, a composite wave of a direct wave propagating linearly between target vehicles and a reflected wave such as ground reflection is received, so it depends on the propagation distance of the direct wave and the reflected wave. This is because the composite wave becomes large or small due to the difference in phase on the receiving side. For example, in the parts A and B of FIG. 6, it is considered that the reception sensitivity is lower than the (minimum) reception sensitivity assumed on the receiving side of the inter-vehicle communication, so that the distance between the preceding vehicle and the own vehicle (inter-vehicle distance) in which the inter-vehicle communication is performed. If the time) falls within such a range, it is possible that the reception strength required for vehicle-to-vehicle communication cannot be obtained, and communication-type follow-up driving becomes impossible or unstable.

これに対して本実施の形態においては、自車両102の周囲を走行する他車両101の車両情報を無線通信で取得する車車間通信部2と、他車両101と自車両102の間の無線通信における受信強度を計測する受信強度計測部2aと、受信強度計測部2aにより計測された受信強度に基づいて、他車両101に対する自車両102の車間時間等の相対位置を制御する車間制御部6とを備えたので、通信型追従走行の安定性をより向上することができる。 On the other hand, in the present embodiment, the vehicle-to-vehicle communication unit 2 that acquires the vehicle information of the other vehicle 101 traveling around the own vehicle 102 by wireless communication, and the wireless communication between the other vehicle 101 and the own vehicle 102. The reception intensity measuring unit 2a that measures the reception intensity in the vehicle, and the inter-vehicle distance control unit 6 that controls the relative position of the own vehicle 102 with respect to the other vehicle 101, such as the inter-vehicle time, based on the reception intensity measured by the reception intensity measurement unit 2a. Therefore, the stability of the communication type follow-up running can be further improved.

なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
Further, each of the above configurations, functions and the like may be realized by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function.

1 車両制御装置、2 車車間通信部、2a 受信強度計測部、3 外界認識部、4 自車両挙動認識部、5 車間時間設定部、6 車間制御部、7 車車間通信、8 レーダ・カメラ、9 自車両センサ、10 車間時間入力部、100 道路、101 他車両(先行車両)、102 自車両 1 Vehicle control device, 2 Vehicle-to-vehicle communication unit, 2a Reception strength measurement unit, 3 External world recognition unit, 4 Own vehicle behavior recognition unit, 5 Vehicle-to-vehicle time setting unit, 6 Vehicle-to-vehicle control unit, 7 Vehicle-to-vehicle communication, 8 Radar camera, 9 Own vehicle sensor, 10 Inter-vehicle time input unit, 100 Road, 101 Other vehicle (preceding vehicle), 102 Own vehicle

Claims (3)

自車両の前方を走行する他車両の車両情報を無線通信で取得する車車間通信部と、
前記他車両と前記自車両の間の無線通信における受信強度を計測する受信強度計測部と、
前記受信強度計測部により計測された受信強度に基づいて、前記他車両に対する前記自車両の相対位置を制御する車間制御部と
前記他車両と前記自車両との間の車間時間を設定する車間時間設定部と、
を備え
前記無線通信では前記他車両と前記自車両との間を直接伝播する直接波と反射波との合成波が前記自車両で受信され、前記直接波と前記反射波の伝播距離による受信側での位相の違いによって前記合成波が大きく、或いは、小さくなることにより前記受信強度計測部により計測された受信強度が変化し、
前記車間制御部は、前記車車間通信部で取得された車両情報に基づいて、前記車間時間設定部で設定された車間時間を含むように定められる車間時間調整範囲内において、前記受信強度が最大または極大となるように、前記他車両と前記自車両との間の車間時間を制御することを特徴とする車両制御装置。
The inter-vehicle communication unit that acquires vehicle information of other vehicles traveling in front of the own vehicle by wireless communication,
A reception strength measuring unit that measures the reception strength in wireless communication between the other vehicle and the own vehicle,
An inter-vehicle distance control unit that controls the relative position of the own vehicle with respect to the other vehicle based on the reception strength measured by the reception strength measurement unit .
An inter-vehicle time setting unit that sets an inter-vehicle time between the other vehicle and the own vehicle,
Equipped with a,
In the wireless communication, a composite wave of a direct wave and a reflected wave directly propagating between the other vehicle and the own vehicle is received by the own vehicle, and on the receiving side due to the propagation distance of the direct wave and the reflected wave. The reception intensity measured by the reception intensity measuring unit changes as the composite wave becomes larger or smaller due to the difference in phase.
Based on the vehicle information acquired by the inter-vehicle communication unit, the inter-vehicle control unit has the maximum reception intensity within the inter-vehicle time adjustment range determined to include the inter-vehicle time set by the inter-vehicle time setting unit. Alternatively, a vehicle control device characterized in that the inter-vehicle time between the other vehicle and the own vehicle is controlled so as to be maximized .
請求項1記載の車両制御装置において
車間制御部は、前記車間時間調整範囲の端部で受信強度が最大となるように、前記他車両と前記自車両との間の車間時間を制御することを特徴とする車両制御装置。
In the vehicle control device according to claim 1 ,
Prior Symbol vehicle control unit, so that the reception intensity at the end portion of the inter-vehicle time adjustment range is maximum, the vehicle control apparatus characterized by controlling the inter-vehicle time between the other vehicle and the own vehicle.
請求項1に記載の車両制御装置において
車間制御部は、前記受信強度が最大となるように、前記他車両と前記自車両との間の車間時間を制御することを特徴とする車両制御装置。
In the vehicle control device according to claim 1 ,
Prior Symbol vehicle control unit, as before Symbol reception intensity becomes maximum, the vehicle control apparatus characterized by controlling the inter-vehicle time between the other vehicle and the own vehicle.
JP2018556617A 2016-12-15 2017-12-07 Vehicle control device Active JP6818046B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016243112 2016-12-15
JP2016243112 2016-12-15
PCT/JP2017/043933 WO2018110401A1 (en) 2016-12-15 2017-12-07 Vehicle control device

Publications (2)

Publication Number Publication Date
JPWO2018110401A1 JPWO2018110401A1 (en) 2019-10-24
JP6818046B2 true JP6818046B2 (en) 2021-01-20

Family

ID=62558532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556617A Active JP6818046B2 (en) 2016-12-15 2017-12-07 Vehicle control device

Country Status (2)

Country Link
JP (1) JP6818046B2 (en)
WO (1) WO2018110401A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199267A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Travelling control device
JP5293699B2 (en) * 2010-08-11 2013-09-18 トヨタ自動車株式会社 Vehicle control device
JP5593946B2 (en) * 2010-08-11 2014-09-24 トヨタ自動車株式会社 Vehicle control device
JP5668359B2 (en) * 2010-08-11 2015-02-12 トヨタ自動車株式会社 Vehicle control device
JP6221445B2 (en) * 2013-07-17 2017-11-01 日産自動車株式会社 Vehicle travel control device

Also Published As

Publication number Publication date
JPWO2018110401A1 (en) 2019-10-24
WO2018110401A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR102277338B1 (en) Vehicle driving control method and device
US9796416B2 (en) Automated driving apparatus and automated driving system
US9733348B2 (en) Vehicle radar with beam adjustment
US20190359215A1 (en) Vehicle Travel Control Method and Travel Control Device
US7142130B2 (en) Driving support system for vehicle, driving support apparatus for vehicle, and driving support method for vehicle
US20190094882A1 (en) Vehicle control system, external electronic control unit, vehicle control method, and application
US20200166360A1 (en) Travel obstruction detection device and vehicle navigation system
US11840227B2 (en) Vehicle control device, vehicle control method, and storage medium
US10895470B2 (en) Travel control apparatus, travel control system, and travel control method
KR20160037544A (en) System and method for controlling group driving based on v2v and das sensor
JP2008008679A (en) Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus
JP6451464B2 (en) Collision avoidance device and collision avoidance system
US11731692B2 (en) Driving support device that performs steering control and deceleration control for avoiding an object
US11501539B2 (en) Vehicle control system, sensing device and sensing data processing method
US20180009466A1 (en) Drive assist device
KR20240035960A (en) Autonomous driving apparatus and method
US20180284790A1 (en) Automatic driving system
JP6818046B2 (en) Vehicle control device
JP6943221B2 (en) Anomaly detection device
US20220388533A1 (en) Display method and system
JP6954251B2 (en) Vehicle control system
KR102530702B1 (en) Autonomous driving apparatus and method
KR102616971B1 (en) Autonomous driving apparatus and method
JP6787376B2 (en) Driving support method
KR102648470B1 (en) Autonomous driving apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6818046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250