JP6805189B2 - 物理量検出装置 - Google Patents

物理量検出装置 Download PDF

Info

Publication number
JP6805189B2
JP6805189B2 JP2018011926A JP2018011926A JP6805189B2 JP 6805189 B2 JP6805189 B2 JP 6805189B2 JP 2018011926 A JP2018011926 A JP 2018011926A JP 2018011926 A JP2018011926 A JP 2018011926A JP 6805189 B2 JP6805189 B2 JP 6805189B2
Authority
JP
Japan
Prior art keywords
movable body
signal
physical quantity
circuit
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011926A
Other languages
English (en)
Other versions
JP2019128327A (ja
Inventor
庸平 畠山
庸平 畠山
板倉 哲朗
哲朗 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2018011926A priority Critical patent/JP6805189B2/ja
Publication of JP2019128327A publication Critical patent/JP2019128327A/ja
Application granted granted Critical
Publication of JP6805189B2 publication Critical patent/JP6805189B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明の実施形態は、物理量検出装置に関する。
角速度等の物理量検出装置として、第1の方向に振動可能な第1の可動体を含む第1の振動機構と、第1の可動体の第1の方向の振動に伴って第1の方向に振動するとともに、第1の方向に対して垂直な第2の方向に振動可能な第2の可動体を含む第2の振動機構とを備えたものがある。
上述した物理量検出装置において正確な物理量を検出するためには、外乱信号を除去することが重要である。しかしながら、従来は、必ずしも外乱信号を効果的に除去できているとは言えなかった。
特許第4971490号公報 米国特許第8800369号明細書 特許第4370331号公報
外乱信号を効果的に除去することが可能な物理量検出装置を提供する。
実施形態に係る物理量検出装置は、第1の方向に振動可能な第1の可動体を含む第1の振動機構と、前記第1の可動体の前記第1の方向の振動に伴って前記第1の方向に振動するとともに、前記第1の方向に対して垂直な第2の方向に振動可能な第2の可動体を含む第2の振動機構と、前記第1の可動体の振動に基づく前記第1の可動体の位置に関する第1の信号を生成する第1のトランスデューサと、前記第2の可動体の振動に基づく前記第2の可動体の位置に関する第2の信号を生成する第2のトランスデューサと、前記第1の信号を増幅する第1の増幅回路と、前記第2の信号を増幅する第2の増幅回路と、前記第2の増幅回路で増幅された信号を第1の振り分け信号及び第2の振り分け信号に振り分けるための振り分け制御回路と、前記第1の増幅回路の出力と前記第1の振り分け信号とを乗算する乗算回路と、前記第2の振り分け信号の位相を調整する位相調整回路と、前記位相調整回路で調整された信号に基づいて前記第2の可動体の振動を調整する第1のアクチュエータと、を備え、前記第1の振り分け信号に対する前記第2の振り分け信号の比率は、前記第1の可動体が振動を開始した後に時間の経過とともに減少する。
実施形態に係る物理量検出装置の基本的な概念を示した図である。 実施形態に係る物理量検出装置の具体的な構成例を示したブロック図である。 実施形態に係る物理量検出装置の動作を示したタイミング図である。 図2に示した物理量検出装置の一部の第1の構成例を示した電気回路図である。 図2に示した物理量検出装置の一部の第2の構成例を示した電気回路図である。 実施形態に係る物理量検出装置に含まれる切り替え制御回路の詳細な構成を示した電気回路図である。
以下、図面を参照して実施形態を説明する。
図1は、実施形態に係る物理量検出装置の基本的な概念を示した図である。図1では、物理量検出装置として、コリオリ力(Coriolis force)に基づく角速度検出装置について説明する。
図1に示した角速度検出装置は、駆動系11、検出系12、駆動系トランスデューサ13及び検出系トランスデューサ14を含んでいる。
駆動系11は、x方向(第1の方向)に振動可能な可動体及び可動体を振動させる駆動機構等によって構成されている。検出系12は、y方向(第2の方向)に振動可能な可動体及び検出機構等によって構成されている。検出系12に含まれる可動体が駆動系11に含まれる可動体に振動に伴ってx方向にも振動するように、検出系12に含まれる可動体は、駆動系11に含まれる可動体に機械的に結合している。以下、便宜上、駆動系11に含まれる可動体を可動体11mと呼び、検出系12に含まれる可動体を可動体12mと呼ぶ。
駆動系トランスデューサ13は、可動体11mの位置情報を例えば電圧信号に変換するものである。検出系トランスデューサ14は、可動体12mの位置情報を例えば電圧信号に変換するものである。
可動体11mがx方向に振動している最中に回転運動が生じると、コリオリ力によって可動体12mがy方向に振動する。このy方向の振動に基づく可動体12mのy方向の変位を検出することで、角速度を検出することが可能である。
理想的には、コリオリ力に基づく可動体12mの振動にはy方向の振動成分のみが含まれていることが好ましい。しかしながら、実際には、可動体11mがx方向に振動しているため、可動体12mの振動にはx方向の振動成分も含まれている。可動体12mの振動に含まれるx方向の振動成分は、直交バイアス(quadrature error とも呼ばれる)と呼ばれ、一種の外乱信号となる。したがって、検出系トランスデューサ14で検出される信号には、y方向成分に加えてx方向成分も含まれていることになる。したがって、外乱信号成分である直交バイアスを低減させることが重要である。
また、振動はステップ的に開始されるため、ステップ応答も外乱信号成分となる。そのため、ステップ応答を低減することも重要である。
上述したように、角速度検出装置のような物理量検出装置では、検出信号に直交バイアス及びステップ応答といった外乱信号成分が含まれている。このような外乱信号成分が検出信号に含まれていると、検出回路のダイナミックレンジが外乱信号に占有され、SN比が大きく減少することになる。したがって、このような外乱信号を効果的に除去することが重要である。
ステップ応答を除去するためには、y方向の変位に基づく信号成分を検出系にフィードバックすることが有効である。ステップ応答の原因は、検出系における共振周波数を有する2次系の伝達関数である。したがって、フィードバック制御を行うことで、伝達関数のピークを平坦化することができ、共振を抑えることが可能である。しかしながら、フィードバック制御によって位相遅れが生じるため、直交バイアス成分を効果的に除去できなくなる。
一方、直交バイアス成分を除去するためには、オープンループ制御を行うことが有効である。オープンループ制御を行うことで、位相遅れをほぼゼロにすることが可能であり、同期検波によって直交バイアス成分を除去するが可能である。しかしながら、オープンループ制御では、フィードバックループが存在しないため、ステップ応答成分を効果的に除去できなくなる。
そこで、本実施形態に係る角速度検出装置(物理量検出装置)では、フィードバック制御とオープンループ制御とを組み合わせることで、ステップ応答及び直交バイアスの両外乱信号成分を低減するようにしている。ただし、本実施形態では、単純にフィードバック制御からオープンループ制御に切り替えるわけではなく、両制御の比率を時間的に徐々に変化させながら切り替えを行うようにしている。
図2は、本実施形態に係る角速度検出装置(物理量検出装置)の具体的な構成例を示したブロック図である。
図2に示した角速度検出装置(物理量検出装置)は、駆動回路100、機械式センサ200、検出回路300、アクチュエータ410、420及び430、並びにトランスデューサ510及び520を含んでいる。
駆動回路100は、捕捉及び解放(catch and release)制御部110及び発振回路120を含んでいる。捕捉及び解放制御部110は、駆動系210に含まれる可動体(可動マス)211の捕捉及び解放を制御するものである。この捕捉及び解放動作については、後で詳細に説明する。発振回路120は、可動体(可動マス)211をx方向(第1の方向)に強制的に振動させるものであり、主としてスタートアップ時に動作する。
機械式センサ200は、駆動系(第1の振動機構)210及び検出系(第2の振動機構)220を含んでいる。駆動系(第1の振動機構)210及び検出系(第2の振動機構)220、アクチュエータ410、420及び430、並びにトランスデューサ510及び520は、MEMS(micro electromechanical systems)技術を用いて同一基板上に形成されている。
駆動系210は、可動体(第1の可動体)211、固定端212、バネ213及びダンパー214を含んでいる。可動体211は、バネ213を介して固定端212に接続されており、バネ213によってx方向(第1の方向)に振動可能である。
可動体211は、第2のアクチュエータ(捕捉及び解放機構)420によって捕捉及び解放されることが可能である。すなわち、第2のアクチュエータ420は、x方向に振動している可動体211を捕捉し、捕捉された可能体211を解放してx方向へ振動させる機能を有している。第2のアクチュエータ420による可動体211の捕捉及び解放動作は、捕捉及び解放制御部110によって制御される。可動体211が第2のアクチュエータ420から解放されると、可動体211はx方向に自由振動する。
また、スタートアップ時には、発振回路120からの発振信号に基づき、第3のアクチュエータ430によって可動体211がx方向に強制的に振動させられる。通常の動作時には、可動体211を第2のアクチュエータ420から解放することで可動体は自由振動を開始することができるが、スタートアップ時には、可動体211は第2のアクチュエータ420に捕捉されていないため、自由振動を開始することができない。そのため、スタートアップ時に可動体211を強制的に振動させるために、第3のアクチュエータ430が設けられている。
検出系220は、可動体(第2の可動体)221、固定端222、バネ223及びダンパー224を含んでいる。可動体221は、バネ223を介して固定端222に接続されており、バネ223によってy方向(第2の方向)に振動可能である。
可動体221は、バネ230によって可動体211にも接続されている。したがって、可動体221は、可動体211のx方向の振動に伴ってx方向に振動する。また、可動体211のx方向の振動に伴って可動体221がx方向に振動している最中に、回転運動によるコリオリ力が可動体221に働くことで、可動体221はx方向に対して垂直なy方向に振動する。したがって、可動体221のy方向の振幅を検出することで、回転運動の角速度を検出することが可能である。
検出回路300は、第1の増幅回路310、第2の増幅回路320、振り分け制御回路330、乗算回路340及び位相調整回路350を含んでいる。
第1の増幅回路310は、第1のトランスデューサ510からの信号を増幅するものである。第1のトランスデューサ510は、可動体211の振動に基づく可動体211の位置に関する第1の信号(以下、便宜上、第1の位置信号と呼ぶ場合がある)を生成する。したがって、第1の増幅回路310は、第1のトランスデューサ510から出力される第1の位置信号を増幅する。具体的には、第1のトランスデューサ510は、可動体211と第1の固定電極(図示せず)とで構成される可変キャパシタのキャパシタンスであり、このキャパシタンス変化を第1の位置信号として出力するものである。
第2の増幅回路320は、第2のトランスデューサ520からの信号を増幅するものである。第2のトランスデューサ520は、可動体221の振動に基づく可動体221の位置に関する第2の信号(以下、便宜上、第2の位置信号と呼ぶ場合がある)を生成する。したがって、第2の増幅回路320は、第2のトランスデューサ520から出力される第2の位置信号を増幅する。具体的には、第2のトランスデューサ520は、可動体221と第2の固定電極(図示せず)とで構成される可変キャパシタのキャパシタンスであり、このキャパシタンス変化を第2の位置信号として出力するものである。第2の位置信号に基づき、可動体221の振動の振幅を求めることができる。この振幅に基づき、角速度を算出することが可能である。
振り分け回路330は、捕捉及び解放制御部110からの信号に基づき、第2の増幅回路320で増幅された信号を第1の振り分け信号及び第2の振り分け信号に振り分けるための振り分け制御信号を生成するものである。
乗算回路340は、第1の増幅回路310の出力信号と、第2の増幅回路320の出力信号の一部(第1の振り分け信号)とを乗算するものである。乗算回路340では、2値化された第1の増幅回路310の出力によって制御されたSW切り換え型の乗算器によって同期検波が行われる。
位相調整回路350は、第2の増幅回路320からの第2の振り分け信号の位相を調整するものである。
以下、振り分け回路330及び位相調整回路350について詳細に説明する。
すでに説明したように、物理量検出装置では、外乱信号として直交バイアスとステップ応答が生じる。ステップ応答は、第2のアクチュエータ(捕捉及び解放機構)420から可動体211を解放した直後に生じるものである。直交バイアスは、可動体211の振動に含まれるx方向の振動成分である。ステップ応答を除去するためには、y方向の変位に基づく信号成分を検出系にフィードバックすることが有効である。しかしながら、フィードバック制御によって位相遅れが生じるため、直交バイアス成分を効果的に除去できなくなる。一方、直交バイアス成分を除去するためには、オープンループ制御を行うことが有効である。オープンループ制御を行うことで、位相遅れをほぼゼロにすることが可能である。しかしながら、オープンループ制御では、フィードバックループが存在しないため、ステップ応答成分を効果的に除去できなくなる。
そこで、本実施形態では、フィードバック制御とオープンループ制御とを組み合わせることで、ステップ応答及び直交バイアスの両外乱信号成分を低減するようにしている。ただし、本実施形態では、単純にフィードバック制御からオープンループ制御に切り替えるわけではなく、両制御の比率を時間的に徐々に変化させながら切り替えを行うようにしている。上述したように、ステップ応答は、第2のアクチュエータ420で可動体211を解放した直後に生じるものであるため、解放直後にはフィードバック制御の比率を相対的に大きくし、時間の経過とともにオープンループ制御の比率を増加させてゆく。すなわち、第1の振り分け信号に対する第2の振り分け信号の比率を、第1の可動体が振動を開始した後に時間の経過とともに減少させてゆく。このような制御により、ステップ応答及び直交バイアスの両外乱信号成分を効果的に低減することが可能である。
すでに述べたように、第1の振り分け信号は乗算回路340に入力し、第2の振り分け信号は位相調整回路350に入力する。位相調整回路350で位相調整された信号は第1のアクチュエータ410に入力する。第1のアクチュエータ410では、位相調整回路350で調整された信号に基づいて可動体221の振動を調整する。すなわち、第1のアクチュエータ410では、ステップ応答が低減されるように、可動体221の振動を調整する。
次に、上述した角速度検出装置(物理量検出装置)の動作を、図3に示したタイミング図を参照して説明する。
図3において、(a)は捕捉及び解放指示信号を示し、(b)は可動体211の振動状態を示し、(c)は可動体221のステップ応答を示し、(d)は振り分け制御回路330の制御信号(第2の振り分け信号の比率に対応)を示している。
図3からわかるように、捕捉及び解放動作は繰り返し行われ、解放期間に可動体211がx方向に自由振動する。可動体221のステップ応答は、解放期間が開始した時点から徐々に減少する。振り分け制御回路330では、解放期間のステップ応答が生じている期間では第2の振り分け信号の比率を大きくし(例えば、100%)、その後、第2の振り分け信号の比率を徐々に減少させている。最終的には、第1の振り分け信号に対する第2の振り分け信号の比率はゼロになり、この状態で測定が行われる。
以上のように、本実施形態によれば、ステップ応答及び直交バイアスの両者を効果的に低減することができ、外乱信号を効果的に除去することが可能となる。
図4は、図2に示した角速度検出装置(物理量検出装置)の一部について第1の構成例を示した電気回路図である。
第2のトランスデューサ520は可変キャパシタ521を含んでおり、第2のトランスデューサ520からは可動体211の振動に応じた(可動体211の変位位置に応じた)キャパシタンス変化が信号として第2の増幅回路320に出力される。
第2の増幅回路320は、電圧電流変換回路321、可変抵抗322、可変抵抗323、スイッチ324、キャパシタ325及び抵抗326を含んでいる。キャパシタ325を介して入力された電圧信号は、電圧電流変換回路321によって電流信号に変換される。電圧電流変換回路321から出力された電流信号は、振り分け制御回路330からの制御信号によって、第1の振り分け信号及び第2の振り分け信号に振り分けられる。すなわち、可変抵抗322を通る第1の振り分け信号は乗算回路340に入力し、可変抵抗323を通る第2の振り分け信号は位相調整回路350に入力する。可変抵抗322及び可変抵抗323にはトランジスタの3極管領域を用い、振り分け制御回路330はこの3極管領域で用いられるトランジスタを制御する。
乗算回路340は、乗算器341、演算増幅器342及びインピーダンス素子343を含んでいる。乗算回路340では、電流入力がスイッチングされ、帰還回路に復調された電流が入力することで同期検波が行われ、物理量が検出される。
位相調整回路350は、演算増幅器351、インピーダンス素子352、演算増幅器353及び抵抗354を含んでいる。インピーダンス素子352のインピーダンスを変化させることで、位相調整を行うことができる。検出系の伝達関数は2次系であるため、位相遅れは最大180度である。そのため、位相が180度遅れた信号を負帰還すると発振する。そこで、微分回路のような位相調整機能を有する演算増幅器を通して、信号がアクチュエータに入力するようにしている。一般的には、微分された信号をアクチュエータに入力させることで、全周波数の範囲において、−90度〜+90度となり、発振を防止することができる。
第1のアクチュエータ410は可変キャパシタ411を含んでおり、第1のアクチュエータ410では、位相調整回路350の出力に基づき、ステップ応答を低減するように可動体221の振動が調整される。
図5は、図2に示した角速度検出装置(物理量検出装置)の一部について第2の構成例を示した電気回路図である。
第2のトランスデューサ520は可変キャパシタ521を含んでおり、第2のトランスデューサ520からは可動体211の振動に応じた(可動体211の変位位置に応じた)キャパシタンス変化が信号として、第2の増幅回路320に出力される。
第2の増幅回路320は、スイッチ324、キャパシタ325、演算増幅器327及び抵抗328を含んでいる。キャパシタ325を介して入力された電圧信号は、演算増幅器327によって増幅される。
第2の増幅回路320から出力された信号は、振り分け制御回路330からの制御信号によって、第1の振り分け信号及び第2の振り分け信号に振り分けられる。すなわち、第1の振り分け信号は乗算回路340に入力し、第2の振り分け信号は位相調整回路350に入力する。具体的には、位相調整回路350に含まれる可変抵抗356及び可変抵抗357を振り分け制御回路330からの制御信号によって制御することで、位相調整回路350のゲインが調整され、第1の振り分け信号と第2の振り分け信号との比率が調整される。
乗算回路340は、乗算器341、演算増幅器342、インピーダンス素子344及びインピーダンス素子345を含んでいる。乗算回路340では、電圧がスイッチングされ、電圧増幅回路に復調された電圧が入力することで同期検波が行われ、物理量が検出される。なお、この回路では、差動構成で信号を処理することも可能である。
位相調整回路350は、演算増幅器355、可変抵抗356及び可変抵抗357を含んでいる。可変キャパシタンス素子を用いた場合、可変キャパシタンス素子に対して一定電圧制御をすることで、検出するべき信号を微分電流として取り出すことができる。そのため、位相調整回路に位相を90度早める微分機能を内包させることが可能であり、回路面積を低減することが可能である。先に述べたように、180度遅れた信号を負帰還すると発振するが、図5の構成では、第2の増幅回路320には微分機能が内包されているため、位相調整回路は単なる増幅回路で構成可能である。微分信号が出力できる原理は、以下の通りである。可変キャパシタに一定電圧を加えると、可変キャパシタに電荷(Q=CV)の電荷が与えられる。可変キャパシタのキャパシタンスが微小変化すると、ΔQ=ΔC×Vとなるため、時間微分することで、I=ΔQ/Δt=ΔC/Δt×V、として容量変化の微分値が電流として出力される。
第1のアクチュエータ410は可変キャパシタ411を含んでおり、第1のアクチュエータ410では、位相調整回路350の出力に基づき、ステップ応答を低減するように可動体221の振動が調整される。
図6は、切り替え制御回路330の詳細な構成を示した電気回路図である。切り替え制御回路330は、演算増幅器A1及びA2、トランジスタM1〜M5、トランジスタMDSW1及びMDSW2、電流源I1〜I5、キャパシタCint及びスイッチRSTによって構成されている。図6の回路を用いることにより、電圧の比率が徐々に変化し、Cont1及びCont2で制御されるトランジスタMDSW1及びトランジスタMDSW2に流れる電流の和が一定になるように、2つの出力信号が振り分け制御回路から出力される。
なお、上述した実施形態において、第2のアクチュエータ420によって可動体211が捕捉されている最中は、第1の増幅回路310、第2の増幅回路320、振り分け制御回路330、乗算回路340及び位相調整回路350の動作が停止するようにしてもよい。このようにすることで、消費電力を低減することが可能である。
また、上述した実施形態において、第1の振り分け信号に対する第2の振り分け信号の比率が最終的にゼロになった後に、振り分け制御回路330の動作を停止するようにしてもよい。このようにすることで、消費電力を低減することが可能である。
また、上述した実施形態ではトランスデューサ素子として可変キャパシタ素子を用いたが、可変キャパシタの代わりに可変抵抗素子や圧電素子を用いてもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…駆動系 12…検出系
13…駆動系トランスデューサ 14…検出系トランスデューサ
100…駆動回路 110…捕捉及び解放制御部 120…発振回路
200…機械式センサ 210…駆動系 211…可動体
212…固定端 213…バネ 214…ダンパー
220…検出系 221…可動体 222…固定端
223…バネ 224…ダンパー
230…バネ
300…検出回路 310…第1の増幅回路 320…第2の増幅回路
321…電圧電流変換回路 322…可変抵抗 323…可変抵抗
324…スイッチ 325…キャパシタ 326…抵抗
327…演算増幅器 328…抵抗
330…振り分け制御回路 340…乗算回路
341…乗算器 342…演算増幅器
343、344、345…インピーダンス素子
350…位相調整回路 351…演算増幅器
352…インピーダンス素子 353…演算増幅器
354…抵抗 355…演算増幅器
356、357…可変抵抗
410、420.430…アクチュエータ 411…可変キャパシタ
510、520…トランスデューサ 521…可変キャパシタ

Claims (11)

  1. 第1の方向に振動可能な第1の可動体を含む第1の振動機構と、
    前記第1の可動体の前記第1の方向の振動に伴って前記第1の方向に振動するとともに、前記第1の方向に対して垂直な第2の方向に振動可能な第2の可動体を含む第2の振動機構と、
    前記第1の可動体の振動に基づく前記第1の可動体の位置に関する第1の信号を生成する第1のトランスデューサと、
    前記第2の可動体の振動に基づく前記第2の可動体の位置に関する第2の信号を生成する第2のトランスデューサと、
    前記第1の信号を増幅する第1の増幅回路と、
    前記第2の信号を増幅する第2の増幅回路と、
    前記第2の増幅回路で増幅された信号を第1の振り分け信号及び第2の振り分け信号に振り分けるための振り分け制御回路と、
    前記第1の増幅回路の出力と前記第1の振り分け信号とを乗算する乗算回路と、
    前記第2の振り分け信号の位相を調整する位相調整回路と、
    前記位相調整回路で調整された信号に基づいて前記第2の可動体の振動を調整する第1のアクチュエータと、
    を備え、
    前記第1の振り分け信号に対する前記第2の振り分け信号の比率は、前記第1の可動体が振動を開始した後に時間の経過とともに減少する
    ことを特徴とする物理量検出装置。
  2. 前記第1の方向に振動している前記第1の可動体を捕捉し、捕捉された第1の可能体を解放して前記第1の方向へ振動させる第2のアクチュエータをさらに含む
    ことを特徴とする請求項1に記載の物理量検出装置。
  3. 前記第2のアクチュエータによって前記第1の可動体が捕捉されている最中は、前記第1の増幅回路、前記第2の増幅回路、前記振り分け制御回路、前記乗算回路及び前記位相調整回路の動作は停止している
    ことを特徴とする請求項2に記載の物理量検出装置。
  4. 前記第1の可動体を前記第1の方向に強制的に振動させる第3のアクチュエータをさらに含む
    ことを特徴とする請求項2に記載の物理量検出装置。
  5. 前記第1の振り分け信号に対する前記第2の振り分け信号の比率は、最終的にゼロになる
    ことを特徴とする請求項1に記載の物理量検出装置。
  6. 前記第1の振り分け信号に対する前記第2の振り分け信号の比率が最終的にゼロになった後は、前記振り分け制御回路の動作は停止する
    ことを特徴とする請求項5に記載の物理量検出装置。
  7. 前記第1の振動機構、前記第2の振動機構、前記第1のトランスデューサ、前記第2のトランスデューサ、前記第1のアクチュエータ、前記第2のアクチュエータ及び前記第3のアクチュエータは、同一基板上に設けられている
    ことを特徴とする請求項4に記載の物理量検出装置。
  8. 前記第1の振動機構、前記第2の振動機構、前記第1のトランスデューサ、前記第2のトランスデューサ、前記第1のアクチュエータ、前記第2のアクチュエータ及び前記第3のアクチュエータは、MEMS技術によって形成されている
    ことを特徴とする請求項4に記載の物理量検出装置。
  9. 前記第2の可動体は、前記第1の可動体の前記第1の方向の振動に伴って前記第2の可動体が前記第1の方向に振動している最中に前記第2の可動体に回転運動が働くことで、前記第2の方向に振動する
    ことを特徴とする請求項1に記載の物理量検出装置。
  10. 第2のトランスデューサは可変キャパシタを含み、前記第2の信号は前記可変キャパシタのキャパシタンスに基づいて生成される
    ことを特徴とする請求項1に記載の物理量検出装置。
  11. 前記乗算回路からは、前記第2の可動体の角速度に基づく信号が出力される
    ことを特徴とする請求項1に記載の物理量検出装置。
JP2018011926A 2018-01-26 2018-01-26 物理量検出装置 Active JP6805189B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011926A JP6805189B2 (ja) 2018-01-26 2018-01-26 物理量検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011926A JP6805189B2 (ja) 2018-01-26 2018-01-26 物理量検出装置

Publications (2)

Publication Number Publication Date
JP2019128327A JP2019128327A (ja) 2019-08-01
JP6805189B2 true JP6805189B2 (ja) 2020-12-23

Family

ID=67472152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011926A Active JP6805189B2 (ja) 2018-01-26 2018-01-26 物理量検出装置

Country Status (1)

Country Link
JP (1) JP6805189B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327943A (ja) * 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
US9013233B2 (en) * 2010-09-14 2015-04-21 Si-Ware Systems Interface for MEMS inertial sensors
US10365104B2 (en) * 2016-05-11 2019-07-30 Murata Manufacturing Co., Ltd. Digital controller for a MEMS gyroscope
JP6562878B2 (ja) * 2016-06-30 2019-08-21 株式会社東芝 角速度取得装置

Also Published As

Publication number Publication date
JP2019128327A (ja) 2019-08-01

Similar Documents

Publication Publication Date Title
JP5627582B2 (ja) 角速度センサ
JP6785795B2 (ja) ジャイロスコープの位相に基づく測定及び制御
JP5458462B2 (ja) 振動型慣性力検知センサ
CN102753936B (zh) 振动型惯性力传感器
JP2010505102A (ja) 振動センサを用いてヨーレートを測定するための装置
JP6759255B2 (ja) ジャイロセンサシステム
TW201330339A (zh) 具有使用時域轉換器所降低的加速度靈敏度及相位雜訊之共振器
JP4576441B2 (ja) 角速度センサ
JP2009042221A (ja) 開ループ読み出し装置を有するマイクロエレクトロメカニカルジャイロスコープ及びその制御方法
JP2015528108A (ja) 改良された共振器
JP2008286597A (ja) 検出装置、検出方法及び電子機器
US10055975B2 (en) Circuit device, physical quantity detection device, electronic apparatus, and moving object
Liu et al. A mechatronic power boosting design for piezoelectric generators
US10928198B2 (en) Detection device for detecting dynamic quantity exerted on mechanical system including first and second mechanical oscillators
JP6805189B2 (ja) 物理量検出装置
JP6805188B2 (ja) 検出器
He et al. Closed loop driving and detect circuit of piezoelectric solid-state micro gyroscope
JP6571065B2 (ja) 振動装置
Torteman et al. Electro-thermal excitation of parametric resonances in double-clamped micro beams
JP6759259B2 (ja) 振動装置
JPH04297874A (ja) 角速度センサ駆動装置
Litvinov et al. Piezoresistive snap-through detection for bifurcation-based MEMS sensors
Veryeri et al. Adjusting the vibratory response of a micro mirror via position and velocity feedback
JP4524824B2 (ja) 粉体供給装置
JP6206113B2 (ja) 振動子駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R151 Written notification of patent or utility model registration

Ref document number: 6805189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151