JP6793033B2 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP6793033B2
JP6793033B2 JP2016250993A JP2016250993A JP6793033B2 JP 6793033 B2 JP6793033 B2 JP 6793033B2 JP 2016250993 A JP2016250993 A JP 2016250993A JP 2016250993 A JP2016250993 A JP 2016250993A JP 6793033 B2 JP6793033 B2 JP 6793033B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
measurement
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016250993A
Other languages
English (en)
Other versions
JP2018105685A (ja
Inventor
正俊 藤本
正俊 藤本
真広 山田
真広 山田
大輔 草苅
大輔 草苅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2016250993A priority Critical patent/JP6793033B2/ja
Publication of JP2018105685A publication Critical patent/JP2018105685A/ja
Application granted granted Critical
Publication of JP6793033B2 publication Critical patent/JP6793033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測距装置に関する。
現在、レーザ光などの測定光を対象物に向けて投光した後、対象物からの戻り光を検出し、対象物への投光から戻り光の検出までの時間に基づいて対象物までの距離を計測するTOF(Time of Flight)方式の測距装置の開発が進められている。従来の測距装置として、例えば特許文献1に記載の伝播測定時間装置がある。この従来の測距装置では、広波長帯域を有するパルス光を測定光として波長毎に分光して対象物に照射する。この場合、対象物からの戻り光の戻り位置が波長によって異なる位置となるように装置を構成することが可能である。したがって、それぞれの位置の戻り光を光検出器で検出し、測定光の出射時刻から戻り光の検出時刻までの時間を光検出器の画素毎に算出することで、対象物までの距離を二次元的に計測することができる。
特許第5230858号公報
上述した従来の測距装置は、走査ミラーのように高速で駆動させる駆動部を持たないため、振動などの影響を受けにくいという利点がある。しかしながら、上述した従来の測距装置では、光源からの測定光を波長毎に分光しているため、対象物からの波長毎の戻り光が微弱となり、測定の精度及び感度が十分に得られなくなるおそれがある。この場合、単に測定光の強度を上げてしまうと、光学系を構成する光学素子が測定光によって損傷してしまうという問題が生じ得る。
本発明は、上記課題の解決のためになされたものであり、高速な駆動部を必要とせずに高速で高精度かつ高感度な測定を実施できる測距装置を提供することを目的とする。
本発明の一側面に係る測距装置は、対象物までの距離を計測する測距装置であって、時間と共に波長が変化する光を測定光として発生させる波長掃引光源と、対象物に向かう測定光の光軸を波長に応じて変位させる測定光変位素子と、対象物からの戻り光を波長毎に異なる位置で検出する光検出器と、を備える。
この測距装置では、時間と共に波長が変化する光を測定光として発生させる波長掃引光源を備えている。波長掃引光源で発生した測定光の光軸は、測定光変位素子によって波長に応じて変位する。波長掃引光源からの測定光は、各瞬間においては単色光であるため、従来のように、パルス光源からの測定光を波長毎に分光する場合とは異なり、測定光変位素子によって測定光の光軸が変位する際に光量の低下は生じない。このため、対象物からの波長毎の戻り光を十分な光量で検出することが可能となる。したがって、この測距装置では、高速な駆動部を必要とせず、測定感度を十分に確保することができ、光量に応じて測定精度も十分に確保することができる。また、この測距装置では、戻り光の検出位置を波長に対応付けることが可能となるため、測定光が発生してから戻り光が検出されるまでの間に異なる波長を有する次の測定光を発生させることができる。したがって、測定速度の高速化も図られる。
また、波長掃引光源は、共振器内に配置された電気光学素子と、時間と共に変化する電圧を電気光学素子に印加する電圧掃引電源とを含んで構成されていてもよい。この場合、測定光の波長掃引を電気的に実行することが可能となる。したがって、測距装置の構成に機械的な駆動部が増加することを回避できる。
また、測距装置は、波長掃引光源で発生した測定光を対象物に向けて出力する光ファイバを更に備えていてもよい。この場合、波長掃引光源の配置自由度を向上できる。
また、測距装置は、光検出器に向かう戻り光の光軸を波長に応じて変位させる戻り光変位素子を更に備えていてもよい。この場合、光検出器において、戻り光を波長毎に異なる位置でより確実に検出できる。
また、測距装置は、戻り光を光検出器に向けて導光する光ファイバを更に備えていてもよい。この場合、戻り光を導光することが可能となり、測定感度及び測定精度を一層十分に確保することができる。また、光検出器の配置自由度を向上できる。
また、測距装置は、戻り光の強度を増幅する光増幅器を更に備えていてもよい。この場合、戻り光の強度を増幅することで、測定感度及び測定精度を一層十分に確保することができる。
また、測距装置は、測定光の光軸を測定光変位素子による変位方向と直交する方向に走査する光走査部を更に備えていてもよい。この場合、対象物において測定光が照射される範囲を拡張することができる。光走査部による測定光の走査は、波長掃引光源による波長掃引の周期に基づいて実行すればよく、高速な駆動は不要である。
本発明によれば、高速な駆動部を必要とせずに高速で高精度かつ高感度な測定を実施できる。
第1実施形態に係る測距装置の構成を示す概略図である。 波長掃引光源から出力される測定光の状態を示す図である。 波長掃引光源の構成の一例を示す概略図である。 第2実施形態に係る測距装置の構成を示す概略図である。 第3実施形態に係る測距装置の構成を示す概略図である。
以下、図面を参照しながら、本発明の一側面に係る測距装置の好適な実施形態について詳細に説明する。
[第1実施形態]
図1は、第1実施形態に係る測距装置の構成を示す概略図である。図1に示す測距装置1は、TOF(Time of Flight)方式の測距装置である。測距装置1は、レーザ光である測定光L1を対象物Sに向けて照射した後、対象物Sからの戻り光L2を検出し、測定光L1の出射から戻り光L2の検出までの時間に基づいて対象物Sまでの距離を計測する。対象物Sは、車載用の用途であれば、他車両、壁、歩行者などの障害物であり、測量用の用途であれば、道路、橋、建物などの構造物である。
測距装置1は、図1に示すように、測定光L1を発生させる波長掃引光源2と、測定光L1を導光する測定光導光部3と、測定光L1の光軸を変位させる測定光変位素子4と、対象物Sからの戻り光L2を導光する戻り光導光部5と、戻り光L2の光軸を変位させる戻り光変位素子6と、戻り光L2を検出する光検出器7と、解析部8とを含んで構成されている。
波長掃引光源2は、時間と共に波長が変化する光を測定光L1として発生させる光源である。波長掃引光源2で発生する測定光L1の波長は、例えば図2(a)に示すように、時間と共に一定の周期で正弦波状に変化する。したがって、測定光L1の各波長成分に着目すると、短時間の発光が周期的に生じることとなる。また、波長掃引光源2で発生する測定光L1の強度は、例えば図2(b)に示すように、多少の波長依存性によって僅かながら周期的に変動する場合もあるが、CW光と同様に、時間の経過に対してほぼ一定である。このため、測定光L1の平均的な強度は、主に熱的・電気的な要因で制限を受ける程度のレベルにまで大きくすることが可能となっている。
測定光L1の波長帯域は、例えば1.0μm〜1.1μm、或いは1.27μm〜1.37μmとなっている。1.0μm〜1.1μmの波長帯域は、湿度の影響を受けにくい点で好適である。また、赤外波長は、アイセーフティの観点から好適である。例えば1.3μm帯では、1μ帯の光と比較して10倍程度の光強度が許容される。また、レイリー散乱による散乱確率は、波長の4乗に反比例する。このため、測定光L1が長波長である程、粉塵などが多い環境下での距離計測に適する。例えば1.3μm帯では、水に対する吸収も比較的小さく、1μ帯の光と比較して散乱確率を35%程度に低減することができる。太陽光が外乱光として影響する場合、940μm近傍の波長の測定光L1を用いることが好適である。
また、測定光L1の波長掃引の周期は、数10kHz〜数100kHzとなっている。例えば測定光L1の波長掃引の周期を200kHzとすると、ある波長の光が発生してから再び同じ波長の光が発生するまでの時間間隔は、5μsとなる。この間に測定光L1は、約1.5km進行するため、光の往復を考慮すると、測距装置1の作動距離(対象物Sまでの距離)は、最大で約750mと見積もられる。また、測定光L1の波長掃引幅が100nmであり、瞬間的な波長純度(半値全幅)が0.1nmである場合、5μsの間に1000点の計測を実施できる。
図3は、波長掃引光源2の構成の一例を示す図である。同図に示すように、本実施形態では、波長掃引光源2は、外部共振器を備えた半導体レーザ(ECLD:External Cavity Laser Diode)11によって構成されている。半導体レーザ11は、例えば出力カプラ13を備えた半導体光増幅器12と、出力カプラ13との間で共振器14を構成するミラー15とを備えている。また、共振器14内には、電気光学素子16、λ/2波長板17、透過型回折格子18、コリメータレンズ19が配置されている。電気光学素子16には、時間と共に変化する電圧を電気光学素子16に印加する電圧掃引電源20が電気的に接続されている。
電気光学素子16は、例えばKTN(タンタル酸ニオブ酸カリウム)結晶である。KTN結晶は、非線形光学結晶の一種であり、電圧掃引電源20から印加される電圧の値に応じた電気光学効果によって、入射光の光軸に対する出射光の光軸の角度を変化させる。これにより、波長掃引光源2では、機械的な駆動部に依らずに共振波長を変化させることが可能となり、時間と共に波長が変化する光を測定光L1として発生させることができる。なお、電気光学素子16は、通過する光に対して凸レンズのように作用するため、当該作用をキャンセルする凹レンズ21を電気光学素子16を挟むように配置することが好適である。
測定光導光部3は、対象物Sに向けて測定光L1を導光する光学系であり、光ファイバ22と、コリメータレンズ23とによって構成されている。光ファイバ22は、例えば偏波保持ファイバであり、波長掃引光源2の出力端に接続されている。光ファイバ22を伝搬した測定光L1は、光コネクタ24から出射し、コリメータレンズ23によって平行光化される。平行光化された測定光L1は、測定光変位素子4に向けて導光される。
測定光変位素子4は、対象物Sに向かう測定光L1の光軸を波長に応じて変位させる素子である。測定光変位素子4により、測定光L1の光軸が波長に応じて変位することで、対象物Sにおける測定光L1の照射位置と波長とを対応付けることができる。測定光変位素子4としては、例えばプリズム、回折格子が挙げられる。プリズムを用いる場合、測定光L1の光軸が変位する角度範囲が回折格子に比べて狭くなるが、測定光L1の損失を抑えることができる。回折格子を用いる場合、測定光L1の光軸が変位する角度範囲を広げることができる。
また、測定光変位素子4としてエシェル回折格子を用い、当該エシェル回折光子を用いた2次元変位光学系が構成されていてもよい。この場合、例えばスリットを通過させた測定光L1を凹面鏡で折り返してエシェル回折格子に入射させる。そして、エシェル回折光子によって波長に応じて一軸方向に測定光L1の光軸を変位させると共に、エシェル回折光子の後段に配置したプリズム若しくは回折格子によって別の一軸方向に測定光L1の光軸を変位させる。これにより、対象物Sに向かう測定光L1の光軸を波長に応じて二次元的に変位させることができる。
戻り光導光部5は、例えばミラー31と、光ファイバ32と、光増幅器33とによって構成されている。本実施形態では、測定光変位素子4に向かう測定光L1の光軸と略同軸になるように戻り光L2が集束する。ただし、戻り光L2は、対象物Sからの反射光若しくは散乱光によって構成されているため、集束光のビーム径は大きなものとなる。したがって、ミラー31は、測定光L1の通過を妨げない配置である一方、対象物Sからの戻り光L2のうちの多くの成分を直角に反射させる必要がある。このようなミラー31の構成として、例えば図1に示すように、戻り光L2のビーム径に対応した径のミラーに対して測定光L1の通過領域に穴が設けられた穴開きミラーを利用すると、装置の光利用効率を高めることが可能となる。なお、ミラー31は、穴開きミラーに限られず、測定光L1の少なくとも一部が傍を通過するように測定光L1の光軸中心に対して通常のミラーをずらして配置したものであってもよい。また、光ファイバ32は、例えばマルチモードファイバである。ミラー31で反射した戻り光L2は、光コネクタ34から光ファイバ32に入射し、光増幅器33に導光される。
光増幅器33は、戻り光L2の強度を増幅させる部分である。戻り光L2は、波長掃引光源2から生成された測定光L1の反射光もしくは散乱光から構成されているため、測定光L1と同じ波長帯域を有している。したがって、光増幅器33の光増幅帯域は、波長掃引光源2における光生成帯域をすべて網羅することが好適である。このため、例えば波長掃引光源2が図3に示したような構成をとる場合、半導体光増幅器12と同一の機能を持つものを内部に有する光増幅器33を用いることが好適である。
これ以外の構成であっても波長掃引光源2から生成された測定光L1の波長帯域を網羅できる場合には、光増幅器33として、例えばNdなどの希土類元素を添加したガラス、或いはNdなどの希土類元素を添加したYAGを利得媒質として有する固体増幅器を用いることができる。光増幅器33は、多段の固体増幅器を備えて構成されていてもよく、一段の固体増幅器とループ光学系とを組み合わせて多重回増幅を行うものであってもよい。また、光増幅器33は、例えば光ファイバのコアの少なくとも一部にYb(イッテルビウム)などの希土類元素を利得媒質として添加した光ファイバ増幅器であってもよい。光増幅器33によって増幅された戻り光L2は、戻り光変位素子6に入射する。
このような光増幅器33の利用は、1.1μm以上の波長を有する測定光L1を用いる場合に特に有効である。この波長帯域の光の検出に用いられるInGaAs系等の化合物半導体光検出器では、シリコン系光検出器を用いる場合と比較して検出器内での大幅な信号の増幅が困難であるためである。また、この波長帯域では、光電子増倍管などの真空型光検出器の感度が十分でないためである。
戻り光変位素子6は、光検出器7に向かう戻り光L2の光軸を波長に応じて変位させる素子である。戻り光変位素子6により、戻り光L2の光軸が波長に応じて変位することで、光検出器7の検出面における戻り光L2の入射位置と波長とを対応付けることができる。戻り光変位素子6としては、例えばプリズム、回折格子が挙げられる。プリズムを用いる場合、戻り光L2の光軸が変位する角度範囲が回折格子に比べて狭くなるが、戻り光L2の損失を抑えることができる。回折格子を用いる場合、戻り光L2の光軸が変位する角度範囲を広げることができる。
光検出器7は、対象物Sからの戻り光L2を波長毎に異なる位置で検出する部分である。光検出器7としては、例えばMPPC(Multi-Pixel Photon Counter)、アバランシェフォトダイオードアレイなどを用いることができる。MPPCは、シリコン系光検出器であり、測定光L1の波長が1.1μm未満である場合に用いられる。MPPCは、増幅手段を有する半導体リニアセンサであり、対象物Sとの距離が遠く、戻り光の光量が微弱である場合に有効である。MPPCを用いる場合、光増幅器33の配置を省略してもよい。また、アバランシェフォトダイオードアレイは、測定光L1の波長が1.1μm以上である場合に用いられる。光検出器7は、検出面における戻り光L2の強度と入射位置とを関連付けた検出結果情報を生成し、解析部8に出力する。
解析部8は、光検出器7から出力される検出結果情報に基づいて、対象物Sまでの距離を解析する部分である。解析部8は、TOF(Time of Flight)法に基づいて、対象物Sまでの距離を解析する。すなわち、解析部8では、波長掃引光源2で測定光L1が発生した時刻と、光検出器7で戻り光L2を検出した時刻との差分(遅延時間)に基づいて、対象物Sまでの距離を解析する。なお、戻り光L2の各波長成分の強度時間波形は、波長掃引光源2で発生する測定光L1の各波長成分の強度時間波形との間で一定の相関を有する。したがって、解析部8において、戻り光L2の各波長成分の強度時間波形を測定光L1の各波長成分の強度時間波形に対してフィッティングすることで、遅延時間の解析をより精度良く実行することができる。
解析部8は、物理的には、RAM、ROM等のメモリ、及びCPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部、ディスプレイ等の表示部を備えて構成されたコンピュータである。かかるコンピュータとしては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。コンピュータは、メモリに格納されたプログラムをCPUで実行することにより、対象物Sまでの距離を解析する機能を実行する。
以上説明したように、測距装置1では、時間と共に波長が変化する光を測定光L1として発生させる波長掃引光源2を備えている。波長掃引光源2で発生した測定光L1の光軸は、測定光変位素子4によって波長に応じて変位する。この測距装置1では、波長掃引光源2からの測定光が各瞬間において単色光であるため、従来のように、パルス光源からの測定光を波長毎に分光する場合とは異なり、測定光変位素子4によって測定光L1の光軸が変位する際に光量の低下は生じない。このため、対象物Sからの波長毎の戻り光L2を十分な光量で検出することが可能となる。したがって、測距装置1では、高速な駆動部を必要とせず、測定感度を十分に確保することができ、光量に応じて測定精度も十分に確保することができる。また、測距装置1では、戻り光L2の検出位置を波長に対応付けることが可能となるため、測定光L1が発生してから戻り光L2が検出されるまでの間に異なる波長を有する次の測定光L1を発生させることができる。したがって、測定速度の高速化も図られる。
また、本実施形態では、共振器14内に配置された電気光学素子16と、時間と共に変化する電圧を電気光学素子16に印加する電圧掃引電源20とを含んで波長掃引光源2が構成されている。このような構成により、波長掃引光源2において、測定光L1の波長掃引を電気光学的に実行することが可能となる。したがって、測距装置1の構成に機械的な駆動部が増加することを回避できる。
また、本実施形態では、測距装置1が波長掃引光源2で発生した測定光L1を対象物Sに向けて出力する光ファイバ22を備えている。これにより、波長掃引光源2の配置自由度を向上できる。
また、本実施形態では、測距装置1が光検出器7に向かう戻り光L2の光軸を波長に応じて変位させる戻り光変位素子6を備えている。これにより、光検出器7において、戻り光L2を波長毎に異なる位置でより確実に検出できる。
また、本実施形態では、測距装置1が戻り光L2を光検出器7に向けて導光する光ファイバ32を備えている。これにより、戻り光L2を効率良く導光することが可能となり、測定感度及び測定精度を一層十分に確保することができる。また、光検出器7の配置自由度を向上できる。
また、本実施形態では、測距装置1が戻り光L2の強度を増幅する光増幅器33を備えている。この場合、戻り光L2の強度を増幅することで、測定感度及び測定精度を一層十分に確保することができる。この構成は、内部に増幅手段を輸しない光検出器7を用いる場合に特に有用である。
[第2実施形態]
図4は、第2実施形態に係る測距装置の構成を示す概略図である。同図に示すように、第2実施形態に係る測距装置41は、測定光変位素子4の前段側に光走査部42を備えている点で、第1実施形態と異なっている。
光走査部42は、測定光L1の光軸を少なくとも測定光変位素子4による変位方向(ここではX軸方向と称す)と直交する方向に走査する部分である。光走査部42は、例えばMEMSミラー、ポリゴンミラー等によって構成され、一軸又は二軸に測定光L1を走査する。光走査部42が一軸の走査部である場合、測定光L1がY軸方向に周期的に走査されるように光走査部42を配置する。これにより、測定光変位素子4によってX方向に光軸が変位する測定光L1が、光走査部42によってY軸方向に走査されることとなり、対象物Sに対して一定の立体角を持った範囲の距離測定を一度に行うことが可能となる。
また、光走査部42が二軸の走査部である場合、測定光L1がX軸方向及びY軸方向に周期的に走査されるように光走査部42を配置する。つまり、光走査部42の一方の走査軸は、測定光変位素子4による測定光L1の光軸の変位方向と同方向となり、光走査部42の一方の走査軸は、測定光変位素子4による測定光L1の光軸の変位方向と直交する方向となる。X軸方向への1回の走査は、例えば測定光変位素子4による測定光L1の光軸の変位範囲と同程度に設定され、光走査部42は、X軸方向への走査とY軸方向への走査とを離散的に実行する。この場合、例えば波長掃引光源2による測定光L1の波長掃引の周期の数周期分をY軸方向への走査の一周期と同期させ、Y軸方向への走査の数周期分をX軸方向への走査の一周期と同期させればよい。これにより、より広範な立体角を持った範囲の距離測定を実行できる。
[変形例]
本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、電気光学素子16を用いた電気光学的な手段による波長掃引光源2を例示したが、例えばファブリペロー共振器の共振器長を機械的な手段で変動させるような波長掃引光源を用いてもよい。また、上記実施形態では、ミラー31と、光ファイバ32と、光増幅器33とによって戻り光導光部5が構成されているが、このような構成に代えて、例えば図5に示す測距装置51のように、戻り光変位素子6の前段側に大径のレンズ52を配置し、当該レンズ52で集束した戻り光L2を戻り光変位素子6に入射させるようにしてもよい。測距装置51の構成においては、戻り光L2が大径のレンズ52によって波長毎に異なる位置に集光されるため、戻り光変位素子6を省略することも可能となる。このように、図5に示す測距装置51では、装置構成の一層の簡単化が図られる。
1,41,51…測距装置、2…波長掃引光源、4…測定光変位素子、6…戻り光変位素子、7…光検出器、14…共振器、16…電気光学素子、20…電圧掃引電源、22…光ファイバ、32…光ファイバ、33…光増幅器、42…光走査部、L1…測定光、L2…戻り光、S…対象物。

Claims (7)

  1. 対象物までの距離を計測する測距装置であって、
    時間と共に波長が変化する連続発振光を測定光として発生させる波長掃引光源と、
    前記対象物に向かう前記測定光の光軸を波長に応じて変位させる測定光変位素子と、
    前記対象物からの戻り光を波長毎に異なる位置で検出する光検出器と、を備え
    前記波長掃引光源は、共振器の共振波長を変化させる手段を含んで構成されている測距装置。
  2. 前記手段は、前記共振器内に配置された電気光学素子と、時間と共に変化する電圧を前記電気光学素子に印加する電圧掃引電源とを含んで構成されている請求項1記載の測距装置。
  3. 前記波長掃引光源で発生した前記測定光を前記対象物に向けて出力する光ファイバを更に備える請求項1又は2記載の測距装置。
  4. 前記光検出器に向かう前記戻り光の光軸を波長に応じて変位させる戻り光変位素子を更に備える請求項1〜3のいずれか一項記載の測距装置。
  5. 前記戻り光を前記光検出器に向けて導光する光ファイバを更に備える請求項1〜4のいずれか一項記載の測距装置。
  6. 前記戻り光の強度を増幅する光増幅器を更に備える請求項1〜5のいずれか一項記載の測距装置。
  7. 前記測定光の光軸を少なくとも前記測定光変位素子による変位方向と直交する方向に走査する光走査部を更に備える請求項1〜6のいずれか一項記載の測距装置。
JP2016250993A 2016-12-26 2016-12-26 測距装置 Active JP6793033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016250993A JP6793033B2 (ja) 2016-12-26 2016-12-26 測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250993A JP6793033B2 (ja) 2016-12-26 2016-12-26 測距装置

Publications (2)

Publication Number Publication Date
JP2018105685A JP2018105685A (ja) 2018-07-05
JP6793033B2 true JP6793033B2 (ja) 2020-12-02

Family

ID=62787827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250993A Active JP6793033B2 (ja) 2016-12-26 2016-12-26 測距装置

Country Status (1)

Country Link
JP (1) JP6793033B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017244A1 (ja) * 2017-07-18 2020-04-09 パイオニア株式会社 光学装置
WO2019017245A1 (ja) * 2017-07-18 2019-01-24 パイオニア株式会社 光学装置
DE102019203640A1 (de) * 2019-03-18 2020-09-24 Robert Bosch Gmbh Lidar-System mit holografischer Abbildungsoptik
EP4019947A4 (en) * 2019-11-06 2023-09-27 Sony Group Corporation OPTICAL MEASURING DEVICE AND INFORMATION PROCESSING SYSTEM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113549B2 (ja) * 1988-03-09 1995-12-06 松下電器産業株式会社 三次元光距離センサ
JPH06139500A (ja) * 1992-10-29 1994-05-20 Tomihiko Okayama 車間距離制御装置
US7944548B2 (en) * 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses
JP5417723B2 (ja) * 2008-03-18 2014-02-19 株式会社豊田中央研究所 方位測定方法及び方位測定装置
JP5637669B2 (ja) * 2009-09-01 2014-12-10 浜松ホトニクス株式会社 パルス幅変換装置および光増幅システム
US8159680B2 (en) * 2010-02-16 2012-04-17 Massachusetts Institute Of Technology Single-transducer, three-dimensional laser imaging system and method
JP6193773B2 (ja) * 2014-01-30 2017-09-06 日本電信電話株式会社 波長掃引光源

Also Published As

Publication number Publication date
JP2018105685A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6793033B2 (ja) 測距装置
US20180189977A1 (en) Light detector calibrating a time-of-flight optical system
EP2522969A2 (en) Nonlinear raman spectroscopic apparatus comprising single mode fiber for generating Stokes beam
US9404856B2 (en) Optical refractive index measuring system based on speckle correlation
JP6238058B2 (ja) テラヘルツ分光システム
JP6605603B2 (ja) 遠赤外分光装置
JPH0364812B2 (ja)
EP2414863A1 (en) Generation and detection of frequency entangled photons
JP2009222616A (ja) 方位測定方法及び方位測定装置
JP6877713B2 (ja) 周波数シフトテラヘルツ波発生装置及び発生方法、周波数シフトテラヘルツ波計測装置及び計測方法、断層状態検出装置及び検出方法、サンプル特性計測装置、計測方法
CN115698834A (zh) 双光频梳发生装置及计测装置
JP4662831B2 (ja) 試料分析装置
JP5600374B2 (ja) テラヘルツ分光装置
JP2008134076A (ja) ガス分析装置
JP2020159972A (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
KR101540541B1 (ko) 펨토초 레이저 발생장치 및 그와 연동하는 도막두께 측정장치
EP2948781B1 (en) Rf signal detection system
JP2018072097A (ja) 測定装置および測定方法
JP6756999B2 (ja) ガス測定装置
JP6144881B2 (ja) 濃度測定装置及び濃度測定方法
US20150357786A1 (en) Light source apparatus and information acquisition apparatus using the same
Jin et al. A concept of multi-mode high spectral resolution lidar using Mach-Zehnder interferometer
JP7493772B2 (ja) 距離測定装置及び距離測定方法
JP2019023593A (ja) レーザ変位計と、それを用いたレーザ超音波検査装置
Hindrikus et al. Laser doppler device for air pollution detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6793033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150