JP6791817B2 - Circuit board and electronic circuit equipment - Google Patents

Circuit board and electronic circuit equipment Download PDF

Info

Publication number
JP6791817B2
JP6791817B2 JP2017145595A JP2017145595A JP6791817B2 JP 6791817 B2 JP6791817 B2 JP 6791817B2 JP 2017145595 A JP2017145595 A JP 2017145595A JP 2017145595 A JP2017145595 A JP 2017145595A JP 6791817 B2 JP6791817 B2 JP 6791817B2
Authority
JP
Japan
Prior art keywords
pedestal
substrate
metal particles
metal
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017145595A
Other languages
Japanese (ja)
Other versions
JP2019029439A (en
Inventor
有平 松本
有平 松本
山元 泉太郎
泉太郎 山元
東 登志文
登志文 東
岡本 和弘
和弘 岡本
亜紀 北林
亜紀 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017145595A priority Critical patent/JP6791817B2/en
Publication of JP2019029439A publication Critical patent/JP2019029439A/en
Application granted granted Critical
Publication of JP6791817B2 publication Critical patent/JP6791817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本開示は、回路基板およびそれを備えた電子回路装置に関する。 The present disclosure relates to a circuit board and an electronic circuit device including the circuit board.

従来、三次元の立体的形状に成形した基材の表面における必要箇所に導電回路が設けられた回路基板が提案されている(例えば、特許文献1を参照)。 Conventionally, a circuit board in which a conductive circuit is provided at a required position on the surface of a base material molded into a three-dimensional three-dimensional shape has been proposed (see, for example, Patent Document 1).

特開2017−85012号公報JP-A-2017-85012

本開示の回路基板は、平板状の基板と、該基板のおもて面から突出した台座と、前記基板の表面から前記台座の表面にかけて配置された金属塗膜と、を有し、前記基板および前記台座は有機樹脂を母材とし、前記金属塗膜は針状または扁平状の金属粒子と樹脂成分とを含んでおり、前記金属塗膜のうち、前記基板および前記台座の表面が平坦な部位に配置された部分を平坦部膜としたときに、前記平坦部膜を構成する前記金属粒子は前記基板および前記台座の表面に沿う方向に配向しており、前記金属塗膜のうち、前記基板および前記台座のそれぞれの角部、ならびに前記基板から前記台座に移る移行部に配置された部分を屈曲部膜としたときに、該屈曲部膜中には、前記金属粒子が、前記基板および前記台座
の表面に沿う方向に配向している第1金属粒子、前記角部または前記移行部に対して法線方向に向いている第2金属粒子、および前記法線方向に対して前記第1金属粒子と前記第2金属粒子との間の範囲の角度を成すように向いている第3金属粒子として存在している。
The circuit board of the present disclosure includes a flat plate-shaped substrate, a pedestal protruding from the front surface of the substrate, and a metal coating film arranged from the surface of the substrate to the surface of the pedestal. The pedestal is made of an organic resin as a base material, and the metal coating material contains needle-like or flat metal particles and a resin component. Among the metal coating materials, the surface of the substrate and the pedestal is flat. When the portion arranged at the portion is a flat portion film, the metal particles constituting the flat portion film are oriented in a direction along the surfaces of the substrate and the pedestal, and among the metal coating films, the said When the corners of the substrate and the pedestal, and the portion arranged at the transition portion from the substrate to the pedestal are used as a bent portion film, the metal particles are contained in the substrate and the bent portion film. The pedestal
First metal particles oriented along the surface of the surface, second metal particles oriented in the normal direction with respect to the corner portion or the transition portion, and the first metal particle oriented in the normal direction. It exists as a third metal particle oriented so as to form an angle in the range between the second metal particle and the second metal particle .

本開示の電子回路装置は、上記の回路基板と、該回路基板の表面に形成された金属塗膜上に実装された電子部品とを備える。 The electronic circuit device of the present disclosure includes the above-mentioned circuit board and electronic components mounted on a metal coating film formed on the surface of the circuit board.

(a)は、本実施形態の回路基板を模式的に示す斜視図であり、(b)は、(a)のX−X線断面図であり、(c)は、(a)のY−Y線断面図である。(A) is a perspective view schematically showing a circuit board of this embodiment, (b) is a sectional view taken along line XX of (a), and (c) is a Y- of (a). It is a cross-sectional view of Y line. (a)は、図1(b)におけるC部を拡大して示した断面模式図であり、(b)は、(a)における3A部を拡大した断面模式図であり、(c)は、(a)における3BS部を拡大した断面模式図である。(A) is a schematic cross-sectional view showing an enlarged portion C in FIG. 1 (b), (b) is an enlarged schematic cross-sectional view of a portion 3A in (a), and (c) is a schematic cross-sectional view. It is a cross-sectional schematic view which enlarged 3BS part in (a). (a)は、図1(b)におけるS部を拡大して示した断面模式図であり、(b)は、(a)における3A部を拡大した断面模式図であり、(c)は、(a)における3BS部を拡大した断面模式図である。(A) is a schematic cross-sectional view showing an enlarged portion S in FIG. 1 (b), (b) is an enlarged schematic cross-sectional view of a portion 3A in (a), and (c) is a schematic cross-sectional view. It is a cross-sectional schematic view which enlarged 3BS part in (a). 屈曲部膜内において金属粒子が互いに直行した配列を成す構造の断面模式図である。(a)は、回路基板の全体の断面図、(b)は、基板から台座に移る移行部の拡大図、(c)は、台座の角部の拡大図である。It is sectional drawing of the structure in which metal particles form an array orthogonal to each other in a bent part membrane. (A) is an overall cross-sectional view of the circuit board, (b) is an enlarged view of a transition portion moving from the substrate to the pedestal, and (c) is an enlarged view of a corner portion of the pedestal. (a)は、本実施形態の回路基板の他の態様を示すものであり、(b)は(a)における3A部を拡大した断面模式図である。(A) shows another aspect of the circuit board of this embodiment, and (b) is a schematic cross-sectional view which enlarged part 3A in (a). 本実施形態の電子回路装置を模式的に示す斜視図である。It is a perspective view which shows typically the electronic circuit apparatus of this embodiment. 本実施形態の回路基板の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the circuit board of this embodiment.

従来例として挙げた上記の回路基板は、導体回路にめっき膜が用いられている。ところが、めっき膜は、導電性が高いものの、回路基板を構成する基材が有機樹脂によって形成されたものである場合には、両者の材料の違いから基材に対する導体回路の接着強度が低く、剥がれやすいという問題がある。 In the above circuit board given as a conventional example, a plating film is used for the conductor circuit. However, although the plating film has high conductivity, when the base material constituting the circuit board is formed of an organic resin, the adhesive strength of the conductor circuit to the base material is low due to the difference between the two materials. There is a problem that it is easy to peel off.

本実施形態の回路基板Aは、下記の構成を成す基材1の表面1aに金属塗膜3を有する。基材1は平板状の基板5と、該基板5のおもて面から突出した台座7とで構成されてい
る。基板5および台座7の表面5a、7aのうち平坦な部位をそれぞれ平坦部5af、7afとする。また、基板1から台座3に移る部位を移行部9とする。図1(a)(b)において符号11を付した部位は角部である。
The circuit board A of the present embodiment has a metal coating film 3 on the surface 1a of the base material 1 having the following configuration. The base material 1 is composed of a flat plate-shaped substrate 5 and a pedestal 7 protruding from the front surface of the substrate 5. Of the surfaces 5a and 7a of the substrate 5 and the pedestal 7, the flat portions are referred to as flat portions 5af and 7af, respectively. Further, the portion that moves from the substrate 1 to the pedestal 3 is designated as the transition portion 9. The portions marked with reference numerals 11 in FIGS. 1 (a) and 1 (b) are corners.

基材1は有機樹脂によって形成されている。金属塗膜3は針状または扁平状の金属粒子3aと樹脂成分3bとを含んでいる。 The base material 1 is made of an organic resin. The metal coating film 3 contains needle-shaped or flat-shaped metal particles 3a and a resin component 3b.

ここで、金属塗膜3については、基板5および台座7の表面5a、7aのうち平坦な部位(平坦部5af、7af)に形成された部分を平坦部膜3Aとする。基板1から台座3に移る移行部9を覆うように形成された部分、ならびに基板1および台座3のそれぞれの角部11を覆うように形成された部分を屈曲部膜3B(3BS、3BC)とする。 Here, with respect to the metal coating film 3, the portion formed on the flat portion (flat portion 5af, 7af) of the surfaces 5a and 7a of the substrate 5 and the pedestal 7 is referred to as the flat portion film 3A. The portion formed so as to cover the transition portion 9 moving from the substrate 1 to the pedestal 3 and the portion formed so as to cover the respective corner portions 11 of the substrate 1 and the pedestal 3 are referred to as a bent portion membrane 3B (3BS, 3BC). To do.

本実施形態の回路基板Aでは、平坦部膜3Aを構成する金属粒子3aが基板5および台座7の表面5a、7aに沿う方向に配向している。 In the circuit board A of the present embodiment, the metal particles 3a constituting the flat portion film 3A are oriented in the directions along the surfaces 5a and 7a of the substrate 5 and the pedestal 7.

本実施形態の回路基板Aによれば、有機樹脂によって形成された基材1(基板5および台座7)上に形成されている金属塗膜3が針状または扁平状の金属粒子3aと樹脂成分3bとの複合材料によって形成されたものであるため、基材1と金属塗膜3とが有機材料同士で接着することになり、高い接着強度を実現できる。 According to the circuit board A of the present embodiment, the metal coating film 3 formed on the base material 1 (the substrate 5 and the pedestal 7) formed of the organic resin has needle-like or flat metal particles 3a and a resin component. Since it is formed of a composite material with 3b, the base material 1 and the metal coating film 3 are bonded to each other, and high adhesive strength can be realized.

また、この金属塗膜3のうち、基板5および台座7の表面5a、7aに位置する平坦部膜3Aは、これら基材1の表面1a(基板5の表面5a、台座7の表面7a)に沿う方向に配向しているため、金属粒子5aと基材1との接着面積が大きくなり、これによっても両者間で高い接着強度を得ることができる。 Further, among the metal coating films 3, the flat portion films 3A located on the surfaces 5a and 7a of the substrate 5 and the pedestal 7 are formed on the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7). Since the metal particles 5a are oriented in the direction along the line, the adhesive area between the metal particles 5a and the base material 1 becomes large, which also makes it possible to obtain high adhesive strength between the two.

この場合、金属塗膜3の一部は、基材1(基板5、台座7)に埋設されているのが良い。また、金属塗膜3は、その表面が基材1の表面1a(基板5の表面5a、台座7の表面7a)と同一高さとなり面一となるように埋設されているのが良い。金属塗膜3が基材1(基板5、台座7)に埋設され、しかもその表面が基材1の表面1a(基板5の表面5a、台座7の表面7a)と面一となる構造であると、金属塗膜3の基材1(基板5、台座7)に対する接着強度をさらに高めることが可能になる。 In this case, a part of the metal coating film 3 is preferably embedded in the base material 1 (the substrate 5, the pedestal 7). Further, the metal coating film 3 is preferably embedded so that its surface is flush with the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7). The metal coating film 3 is embedded in the base material 1 (the substrate 5, the pedestal 7), and the surface thereof is flush with the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7). This makes it possible to further increase the adhesive strength of the metal coating film 3 to the base material 1 (board 5, pedestal 7).

さらに、金属塗膜3のうち、基板5および台座7の平坦な表面5a、7aに位置する平坦部膜3Aでは、金属粒子3aが基板5および台座7のそれぞれの表面5a、7aに配向した構造となっていることから、基板5および台座7の表面5a、7aに沿う方向に配列している金属粒子3aの個数を少なくすることができる。これにより、単位長さにおいて、金属粒子3a間に存在する樹脂成分3bの割合を少なくすることができる。また、金属粒子3a同士、特に、金属粒子3aの長手方向に対して垂直な短手方向における接触面積を大きくすることができるため、金属塗膜3A中に樹脂成分3bが含まれていても導電率の高い平坦部膜3A(金属塗膜3)を得ることができる。 Further, in the flat portion film 3A located on the flat surfaces 5a and 7a of the substrate 5 and the pedestal 7 of the metal coating film 3, the metal particles 3a are oriented toward the surfaces 5a and 7a of the substrate 5 and the pedestal 7, respectively. Therefore, the number of metal particles 3a arranged in the direction along the surfaces 5a and 7a of the substrate 5 and the pedestal 7 can be reduced. Thereby, the ratio of the resin component 3b existing between the metal particles 3a can be reduced in the unit length. Further, since the contact area between the metal particles 3a, particularly in the lateral direction perpendicular to the longitudinal direction of the metal particles 3a, can be increased, the metal coating film 3A is conductive even if the resin component 3b is contained. A flat portion film 3A (metal coating film 3) having a high rate can be obtained.

ここで、針状または扁平状の金属粒子3aとは、回路基板を断面視して金属粒子3aを観察したときに、金属粒子3aの長手方向の長さLが短手方向Lよりも長いものを言い、その比(L/L)が1.5以上であるものを言う。L/L比の最大値としては、量産可能な金属粒子3aの形状として5を例示できる。 Here, the needle-like or flat metal particles 3a, when observed metal particles 3a and sectional view of the circuit board, the longitudinal length L L of the metal particles 3a than the lateral direction L S refers to long, the ratio (L L / L S) says what is equal to or greater than 1.5. As the maximum value of the L L / L S ratio, 5 can be exemplified as the shape of the metal particles 3a that can be mass-produced.

平坦部膜3Aを構成する金属粒子3aが基板5および台座7の表面5a、7aに配向している状態とは、回路基板Aの断面を観察したときに、金属粒子3aの長手方向が基板5および台座7の表面5a、7aに沿う方向に向いている個数割合が60%以上となっている状態のことを言う。この場合、金属粒子3aは、例えば、図2(b)に示すように、基
板5および台座7の表面5a、7aに沿う方向の長さLxとし、表面5a、7aに垂直な方向の長さをLyとしたときに、Lxとして10μmの幅を選択し、Lyを金属塗膜3の全厚みとしたときの面積内のものを計測すればよい。
The state in which the metal particles 3a constituting the flat portion film 3A are oriented toward the surfaces 5a and 7a of the substrate 5 and the pedestal 7 means that the longitudinal direction of the metal particles 3a is the substrate 5 when the cross section of the circuit board A is observed. In addition, it means a state in which the number ratio of the pedestals 7 facing in the direction along the surfaces 5a and 7a is 60% or more. In this case, as shown in FIG. 2B, for example, the metal particles 3a have a length Lx in the direction along the surfaces 5a and 7a of the substrate 5 and the pedestal 7, and the length in the direction perpendicular to the surfaces 5a and 7a. When L is, a width of 10 μm is selected as Lx, and the area within the area when Ly is the total thickness of the metal coating film 3 may be measured.

金属粒子3aの長手方向が基板5および台座7の表面5a、7aに沿う方向に向いている状態というのは、図2(c)に示すように、例えば、基板5の表面5aに沿って基準線Lstを引いたときに、その基準線Lstに対して、金属粒子3aの長手方向の向きの角度θが±10°以内に入っているものを言う。 As shown in FIG. 2C, the state in which the longitudinal direction of the metal particles 3a is oriented along the surfaces 5a and 7a of the substrate 5 and the pedestal 7 is, for example, a reference along the surface 5a of the substrate 5. When the line Lst is drawn, the angle θ in the longitudinal direction of the metal particles 3a is within ± 10 ° with respect to the reference line Lst.

基材1を構成する有機材料としては、種々の有機材料を適用できるが、加熱等によって変形しやすい有機材料が良い。例えば、エポキシ系樹脂、ポリエチレン系樹脂、ポリフェニレン系樹脂、アクリル系樹脂およびポリカーボネート系樹脂などを例として挙げることができる。この中で、溶剤を含まない場合でも粘度を変化させることが可能となる有機材料としてエポキシ系樹脂がより好適なものとなる。なお、基材1は有機材料と無機フィラーとを混合した複合材により形成しても良い。 As the organic material constituting the base material 1, various organic materials can be applied, but an organic material that is easily deformed by heating or the like is preferable. For example, epoxy resin, polyethylene resin, polyphenylene resin, acrylic resin, polycarbonate resin and the like can be mentioned as examples. Among these, epoxy resins are more suitable as organic materials whose viscosities can be changed even when they do not contain a solvent. The base material 1 may be formed of a composite material in which an organic material and an inorganic filler are mixed.

金属塗膜3は、上述したように、金属粒子3aと樹脂成分3bとを含んでいるものであるが、ここで用いる樹脂成分3bとしては、基材1に適用される有機材料との相溶性の高いものが良い。例えば、金属塗膜3に含ませる樹脂成分3bと基材1を構成する有機材料とが同じ高分子材料を主成分とするものが良い。金属塗膜3を基材1の表面に形成する場合に、金属塗膜3に含ませる樹脂成分3bと基材1を構成する有機材料とを未硬化の状態で接着させて硬化させると、さらに高い接着強度を得ることができる。 As described above, the metal coating film 3 contains the metal particles 3a and the resin component 3b, but the resin component 3b used here is compatible with the organic material applied to the base material 1. Higher ones are better. For example, it is preferable that the resin component 3b contained in the metal coating film 3 and the organic material constituting the base material 1 contain the same polymer material as the main component. When the metal coating film 3 is formed on the surface of the base material 1, if the resin component 3b contained in the metal coating film 3 and the organic material constituting the base material 1 are adhered and cured in an uncured state, further High adhesive strength can be obtained.

金属粒子3aを構成する金属材料としては、金、銀、白金、パラジウムなどの貴金属材料の他、ニッケルおよび銅などの卑金属材料を適用することができる。この場合、金属粒子3aの形状として、種々のサイズで針状または扁平状のものを得やすいという点から銀が好適なものとなる。 As the metal material constituting the metal particles 3a, a noble metal material such as gold, silver, platinum and palladium, and a base metal material such as nickel and copper can be applied. In this case, silver is suitable as the shape of the metal particles 3a because it is easy to obtain needle-shaped or flat-shaped metal particles of various sizes.

また、本実施形態の回路基板Aは、上述のように、基板1から台座3に移る移行部9または台座3の角部11に屈曲部膜3B(3BC、3BS)を有する。この場合、屈曲部膜3Bは、図2(c)および図3(c)に示すように、基板5および台座7の表面に沿う方向に配向している第1金属粒子3a1と、移行部9または角部11に対して法線方向(図2(c)および図3(c)において符号Lnstを付した線分)に向いている第2金属粒子3a2と、法線方向に対して、第1金属粒子3a1と第2金属粒子3a2との間の角度を有するように向いている第3金属粒子3a3とを含むのが良い。ここで、図2(c)および図3(c)に示す線分Lnstは、台座7の表面7aと側面7bとが交わる部分の成す角度の1/2の角度の位置であり、円弧状を成す角部11のほぼ中央から伸びている。 Further, as described above, the circuit board A of the present embodiment has a bent portion film 3B (3BC, 3BS) at the transition portion 9 that moves from the substrate 1 to the pedestal 3 or the corner portion 11 of the pedestal 3. In this case, as shown in FIGS. 2 (c) and 3 (c), the bent portion film 3B includes the first metal particles 3a1 oriented in the direction along the surfaces of the substrate 5 and the pedestal 7, and the transition portion 9. Alternatively, the second metal particles 3a2 facing the corner 11 in the normal direction (the line segment having the symbol Lnst in FIGS. 2 (c) and 3 (c)) and the second metal particle 3a2 in the normal direction. It is preferable to include a third metal particle 3a3 that is oriented so as to have an angle between the 1 metal particle 3a1 and the second metal particle 3a2. Here, the line segment Lnst shown in FIGS. 2 (c) and 3 (c) is a position at an angle of 1/2 of the angle formed by the intersection of the surface 7a and the side surface 7b of the pedestal 7, and has an arc shape. It extends from approximately the center of the corner portion 11 formed.

回路基板Aにおいて、基板1から台座3に移る移行部9および台座3の角部11に形成された屈曲部膜3Bは、図2(c)および図3(c)に示すように、基板1と台座3との成す角度、あるいは台座7の表面7aと側面7bとの成す角度が直角もしくはそれに近い角度に依存して折れ曲がった形状となっている。 In the circuit board A, the transition portion 9 that moves from the substrate 1 to the pedestal 3 and the bent portion film 3B formed at the corner portion 11 of the pedestal 3 are formed on the substrate 1 as shown in FIGS. 2 (c) and 3 (c). The angle formed by the pedestal 3 and the pedestal 3 or the angle formed by the surface 7a and the side surface 7b of the pedestal 7 is a bent shape depending on a right angle or an angle close to the right angle.

台座7の角部9に形成された屈曲部膜3BCが、例えば、図4に示すように、基板5の表面5aまたは台座7の表面7aにそれぞれ平行な方向に配向した金属粒子3a(第1金属粒子3a1)だけで形成されるような組織の場合には、金属粒子3a同士が接触する部分が金属粒子3aの先端部3ap付近に限られることになる。金属粒子3a同士がこのような配列構造を成している場合には、金属粒子3a同士の接触面積が小さくなることから、屈曲部膜3BCにおける導電率が低くなる。 As shown in FIG. 4, for example, the bent portion film 3BC formed on the corner portion 9 of the pedestal 7 is a metal particle 3a (first) oriented in a direction parallel to the surface 5a of the substrate 5 or the surface 7a of the pedestal 7. In the case of a structure formed only of the metal particles 3a1), the portion where the metal particles 3a come into contact with each other is limited to the vicinity of the tip portion 3ap of the metal particles 3a. When the metal particles 3a have such an arrangement structure, the contact area between the metal particles 3a becomes small, so that the conductivity of the bent portion film 3BC becomes low.

これに対し、本実施形態における屈曲部膜3B(3BC、3BS)は、図2(c)および図3(c)に示すように、基板5および台座7の表面5a、7aに沿う方向に配向している第1金属粒子3a1の他に、移行部9または角部11に対して法線方向(図2(c)および図3(c)において符号Lnstを付した線分)に向いている第2金属粒子3a2とともに、その法線方向に対して、第1金属粒子3a1と第2金属粒子3a2との間の角度を有するように向いている第3金属粒子3a3とを含む組織構造を取っている。このような場合には、金属粒子3a同士が、例えば、第1金属粒子3a1と第3金属粒子3a3、第3金属粒子3a3と第2金属粒子3a2と言った組み合わせのように、接触する角度が少しずつ異なる金属粒子3a同士で接触しているため、金属粒子3a同士の接触面積を大きくすることができる。これにより高い導電率を有する屈曲部膜3B(3BC、3BS)を形成することができる。 On the other hand, the bent portion film 3B (3BC, 3BS) in the present embodiment is oriented in the direction along the surfaces 5a and 7a of the substrate 5 and the pedestal 7 as shown in FIGS. 2 (c) and 3 (c). In addition to the first metal particles 3a1, the metal particles 3a1 are oriented in the normal direction (the line segment having the symbol Lnst in FIGS. 2 (c) and 3 (c)) with respect to the transition portion 9 or the corner portion 11. A structure including the second metal particles 3a2 and the third metal particles 3a3 that are oriented so as to have an angle between the first metal particles 3a1 and the second metal particles 3a2 with respect to the normal direction thereof is taken. ing. In such a case, the angles at which the metal particles 3a come into contact with each other are different, for example, in a combination of the first metal particles 3a1 and the third metal particles 3a3, and the third metal particles 3a3 and the second metal particles 3a2. Since the metal particles 3a that are slightly different from each other are in contact with each other, the contact area between the metal particles 3a can be increased. This makes it possible to form a bent portion film 3B (3BC, 3BS) having high conductivity.

また、本実施形態の回路基板Aでは、基板5および台座7の表面5a、7aが凹凸状を成す表面構造であっても良い。基板5および台座7の表面5a、7aが凹凸状を成す場合には、図5(b)に示すように、その凹凸状の表面5a、7aに沿って金属粒子3aが接着するようになるため、基材1の表面1a(基板5の表面5a、台座7の表面7a)と金属塗膜3との間にアンカーとなる凹凸が形成される。これにより基材1(基板5、台座7)と金属塗膜3との間の接着強度を高めることができる。この場合、基材1の表面1a付近(基板5の表面5a付近および/または台座7の表面7a表面付近)では、金属粒子3aが基準線Lstの方向からわずかに角度の付いた状態(基準線Lstから金属塗膜3の厚み方向に向いている)であるため、金属塗膜3の中で金属粒子3a同士が絡み合った状態となる。これにより金属粒子3a同士の接着強度をさらに高めることができる。 Further, the circuit board A of the present embodiment may have a surface structure in which the surfaces 5a and 7a of the substrate 5 and the pedestal 7 have an uneven shape. When the surfaces 5a and 7a of the substrate 5 and the pedestal 7 have an uneven shape, as shown in FIG. 5B, the metal particles 3a adhere to the uneven surfaces 5a and 7a. An unevenness serving as an anchor is formed between the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7) and the metal coating film 3. As a result, the adhesive strength between the base material 1 (the substrate 5, the pedestal 7) and the metal coating film 3 can be increased. In this case, in the vicinity of the surface 1a of the base material 1 (near the surface 5a of the substrate 5 and / or near the surface 7a of the pedestal 7), the metal particles 3a are slightly angled from the direction of the reference line Lst (reference line). Since it is oriented in the thickness direction of the metal coating film 3 from Lst), the metal particles 3a are in an entangled state in the metal coating film 3. As a result, the adhesive strength between the metal particles 3a can be further increased.

この場合、基材1の表面1a(基板5の表面5a、台座7の表面7a)の表面粗さ(Ra)は0.2〜0.5μmであるのが良い。 In this case, the surface roughness (Ra) of the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7) is preferably 0.2 to 0.5 μm.

また、その基準線Lstに対して、金属粒子3aの長手方向の向いている角度が10°以上である金属粒子3aが配列した厚みの割合は、金属塗膜3の全体の厚みを1としたときに、その厚みの1/3以下であるのが良い。 Further, the ratio of the thickness of the metal particles 3a in which the metal particles 3a are oriented at an angle of 10 ° or more in the longitudinal direction with respect to the reference line Lst is set to 1 for the entire thickness of the metal coating film 3. Sometimes it is better to be less than 1/3 of its thickness.

基材1の表面1a(基板5の表面5a、台座7の表面7a)の表面粗さ(Ra)が0.5μm以下であり、かつ金属粒子3aの長手方向の向く角度が10°以上である金属粒子3aの配列した厚みの割合が、金属塗膜3の全体の厚みの1/3以下である場合には、金属塗膜3の界面抵抗を小さくできる。これにより高周波において導電率の高い回路基板Aを得ることができる。 The surface roughness (Ra) of the surface 1a of the base material 1 (the surface 5a of the substrate 5 and the surface 7a of the pedestal 7) is 0.5 μm or less, and the angle of the metal particles 3a in the longitudinal direction is 10 ° or more. When the ratio of the arranged thicknesses of the metal particles 3a is 1/3 or less of the total thickness of the metal coating film 3, the interfacial resistance of the metal coating film 3 can be reduced. As a result, a circuit board A having high conductivity at high frequencies can be obtained.

本実施形態の電子回路装置Bは、上記回路基板Aと、該回路基板Aの金属塗膜3上に実装された電子部品13とを備えるものである。 The electronic circuit device B of the present embodiment includes the circuit board A and an electronic component 13 mounted on the metal coating film 3 of the circuit board A.

電子回路装置Bは、これを構成する回路基板Aが、上述のように、基材1と金属塗膜3との接着強度が高いことから、電子部品13の実装時および長期使用において、高い実装信頼性の高い電子回路装置Bを得ることができる。また、金属塗膜3自体の導電率が高いことから、金属塗膜3のサイズ(配線幅および厚み)を小さくすることができるため、回路基板Aの小型化および電子回路装置Bの小型化を図ることができる。 In the electronic circuit device B, since the circuit board A constituting the electronic circuit device B has a high adhesive strength between the base material 1 and the metal coating film 3 as described above, the electronic circuit device B has a high mounting strength during mounting and long-term use of the electronic component 13. A highly reliable electronic circuit device B can be obtained. Further, since the metal coating film 3 itself has high conductivity, the size (wiring width and thickness) of the metal coating film 3 can be reduced, so that the circuit board A can be downsized and the electronic circuit device B can be downsized. Can be planned.

回路基板Aとなる試料(表1の試料1)を図7(a)(b)(c)に示す手順によって作製した。まず、(a)工程として示しているように、基材1となる樹脂シート21aを作製した。樹脂シート21aは、エポキシ樹脂とシリカ粒子とを配合したスラリをPETフィルム22上に塗布しシート状に成形して作製した。スラリはエポキシ樹脂を20質量
%、シリカ粒子を80質量%の割合とし、エポキシ樹脂とシリカ粒子との混合体100質量部に対し、硬化剤を1質量部添加した組成とした。樹脂シート21aの厚みは400μmに調整した。
A sample to be the circuit board A (Sample 1 in Table 1) was prepared by the procedure shown in FIGS. 7 (a), (b), and (c). First, as shown in step (a), a resin sheet 21a to be a base material 1 was produced. The resin sheet 21a was produced by applying a slurry containing an epoxy resin and silica particles onto a PET film 22 and molding it into a sheet. The slurry was composed of 20% by mass of epoxy resin and 80% by mass of silica particles, and 1 part by mass of a curing agent was added to 100 parts by mass of a mixture of epoxy resin and silica particles. The thickness of the resin sheet 21a was adjusted to 400 μm.

金属塗膜3となる導体パターン21bには、銀粒子を含む導体ペーストを用いた。導体ペーストは、アスペクト比が平均で3の扁平状をした銀粒子をエポキシ樹脂中に分散させて調製した。 A conductor paste containing silver particles was used for the conductor pattern 21b to be the metal coating film 3. The conductor paste was prepared by dispersing flat silver particles having an average aspect ratio of 3 in an epoxy resin.

次に、作製した樹脂シート21aのPETフィルム22と反対側の表面に導体ペーストを印刷して導体パターン21bを形成した。こうして、幅が300μm導体パターン21bを有するパターンシート21を得た。導体パターン21bの厚みは50μmとなるように調整した。作製した樹脂シート21aのPETフィルム22と反対側の表面の表面粗さ(Ra)は0.5μmであった。 Next, a conductor paste was printed on the surface of the produced resin sheet 21a opposite to the PET film 22 to form a conductor pattern 21b. In this way, a pattern sheet 21 having a conductor pattern 21b having a width of 300 μm was obtained. The thickness of the conductor pattern 21b was adjusted to be 50 μm. The surface roughness (Ra) of the surface of the produced resin sheet 21a opposite to that of the PET film 22 was 0.5 μm.

次に、(b)(c)工程に示しているように、作製したパターンシート21に対してモールド用金型(23、25、符号23aは空間)を用いて加圧加熱を行い、図1(a)に示すような回路基板Aの予備硬化体を作製した。加圧加熱処理の条件としては、大気中にて、最高温度を75℃とし、圧力を15MPaに設定し、50秒保持する条件を採用した。モールド用金型(23、25)には、基板の面積が1mm×1mm、基板の厚みが0.15mm、台座の面積が0.3mm×0.3mm、台座の高さが0.15mmとなるものを使用した。 Next, as shown in steps (b) and (c), the produced pattern sheet 21 is pressurized and heated using a molding die (23, 25, reference numerals 23a are spaces), and FIG. A pre-cured body of the circuit board A as shown in (a) was produced. As the conditions for the pressure heat treatment, a condition was adopted in which the maximum temperature was set to 75 ° C., the pressure was set to 15 MPa, and the pressure was held for 50 seconds in the atmosphere. For the molds (23, 25), the area of the substrate is 1 mm × 1 mm, the thickness of the substrate is 0.15 mm, the area of the pedestal is 0.3 mm × 0.3 mm, and the height of the pedestal is 0.15 mm. I used the one.

作製した回路基板Aは、モールド用金型(23、25)による加圧加熱によって、基材1とともに金属塗膜3が可塑変形し、基材1に形成された金属塗膜3の中で、平坦部膜3Aは金属粒子(銀粒子)3aが基材1の表面1aに配向していた。一方、角部11および移行部9の覆う屈曲部膜3Bは、基板5および台座7の表面5a、7aに沿う方向に配向している第1金属粒子3a1と、角部11または移行部9に対して法線方向に向いている第2金属粒子3a2と、法線方向に対して、第1金属粒子3a1と第2金属粒子3a2との間の範囲の角度を成すように向いている第3金属粒子3a3とが混在している状態となっていた。 In the produced circuit board A, the metal coating film 3 is plastically deformed together with the base material 1 by pressure heating by the molding dies (23, 25), and the metal coating film 3 formed on the base material 1 is contained in the metal coating film 3. In the flat portion film 3A, metal particles (silver particles) 3a were oriented toward the surface 1a of the base material 1. On the other hand, the bent portion film 3B covering the corner portion 11 and the transition portion 9 is formed on the first metal particles 3a1 oriented along the surfaces 5a and 7a of the substrate 5 and the pedestal 7 and the corner portion 11 or the transition portion 9. On the other hand, the second metal particles 3a2 facing the normal direction and the third metal particles 3a2 facing the normal direction form an angle in the range between the first metal particles 3a1 and the second metal particles 3a2. It was in a state where the metal particles 3a3 were mixed.

また、作製した回路基板Aに形成された金属塗膜3は基材1(基板5および台座7)の表面5a、7aに面一になるように埋設された状態であった。金属塗膜3の厚みは平均で30μmであった。次に、作製した予備硬化体を、大気中にて、最高温度200℃、無加圧下にて、保持時間6時間の条件で硬化させて回路基板Aとなる試料を作製した。 Further, the metal coating film 3 formed on the produced circuit board A was in a state of being embedded so as to be flush with the surfaces 5a and 7a of the base material 1 (the substrate 5 and the pedestal 7). The thickness of the metal coating film 3 was 30 μm on average. Next, the prepared pre-cured product was cured in the air at a maximum temperature of 200 ° C. under no pressure under the condition of a holding time of 6 hours to prepare a sample to be a circuit board A.

次に、作製した試料を研磨して、図1(b)(c)に示すような断面が露出する試料を作製した。この試料を用いて基材1の表面粗さ(Ra)と金属塗膜3の金属粒子3aの配列状態を観察した。観察には走査型電子顕微鏡を用いた。 Next, the prepared sample was polished to prepare a sample having an exposed cross section as shown in FIGS. 1 (b) and 1 (c). Using this sample, the surface roughness (Ra) of the base material 1 and the arrangement state of the metal particles 3a of the metal coating film 3 were observed. A scanning electron microscope was used for observation.

次に、作製した回路基板Aの金属塗膜3の表面に銅箔(厚みが0.2mm)を半田付けし、リードプル試験用の試料を作製した。リードプル試験は引き上げ速度を10mm/秒の条件で行った。試料数は各試料10個とした。 Next, a copper foil (thickness: 0.2 mm) was soldered to the surface of the metal coating film 3 of the prepared circuit board A to prepare a sample for a lead-pull test. The lead-pull test was carried out under the condition of a pulling speed of 10 mm / sec. The number of samples was 10 for each sample.

次に、金属塗膜3の導電性を評価した。金属塗膜3の導電性は、回路基板Aの試料に温度サイクル試験を行って、前後の抵抗変化率を測定して評価した。表1に示す抵抗変化率(Rv)は、温度サイクル試験前の抵抗値をR0、温度サイクル試験後の抵抗値をR1としたときに、(R1−R0)/R0(%)で表される。温度サイクル試験の条件はJEDEC規格を適用した。その条件は、温度範囲が−55〜125℃、昇降温の回数が1000回である。試料数は各試料20個とした。 Next, the conductivity of the metal coating film 3 was evaluated. The conductivity of the metal coating film 3 was evaluated by performing a temperature cycle test on the sample of the circuit board A and measuring the resistance change rate before and after. The resistance change rate (Rv) shown in Table 1 is represented by (R1-R0) / R0 (%) when the resistance value before the temperature cycle test is R0 and the resistance value after the temperature cycle test is R1. .. The JEDEC standard was applied as the conditions for the temperature cycle test. The conditions are a temperature range of −55 to 125 ° C. and an ascending / descending temperature of 1000 times. The number of samples was 20 for each sample.

また、試料1よりも基材1の表面粗さ(Ra)の小さい試料を試料2として作製した。試料2は、樹脂シートのPETフィルム側の表面に導体パターンを形成したパターンシートを用いて作製した。基材1の表面粗さ(Ra)は0.1μmであった。 Further, a sample having a smaller surface roughness (Ra) of the base material 1 than that of the sample 1 was prepared as the sample 2. Sample 2 was prepared using a pattern sheet in which a conductor pattern was formed on the surface of the resin sheet on the PET film side. The surface roughness (Ra) of the base material 1 was 0.1 μm.

また、基板5の移行部9および台座7の角部11付近に存在する金属粒子3aが互いに直行する構造の屈曲部膜3Bを有する回路基板Aを試料3として作製し、同様の評価を行った。まず、導体パターン21bを形成していない樹脂シート21a(厚みは400μm)を準備し、この樹脂シート21aに対してモールド用金型を用いて加圧加熱を行い、図7(c)に示した符号1の部分である無垢の成形体を作製した。このときの加圧加熱の条件は、最初に、最高温度を75℃とし、圧力を15MPaに設定し、50秒保持する条件を採用した。この後、この成形体の表面に上記と同様に導体パターン21bを印刷によって形成し、最後にラバープレスを行って試料を作製した。ラバープレスは最高温度が200℃、保持時間を6時間とした。 Further, a circuit board A having a bent portion film 3B having a structure in which the metal particles 3a existing in the vicinity of the transition portion 9 of the substrate 5 and the corner portion 11 of the pedestal 7 are orthogonal to each other was prepared as a sample 3, and the same evaluation was performed. .. First, a resin sheet 21a (thickness: 400 μm) on which the conductor pattern 21b is not formed was prepared, and the resin sheet 21a was pressurized and heated using a molding die, and is shown in FIG. 7 (c). A solid molded product, which is a part of reference numeral 1, was produced. As the conditions for pressurization and heating at this time, first, the maximum temperature was set to 75 ° C., the pressure was set to 15 MPa, and the condition was adopted for holding for 50 seconds. After that, a conductor pattern 21b was formed on the surface of this molded product by printing in the same manner as described above, and finally a rubber press was performed to prepare a sample. The rubber press had a maximum temperature of 200 ° C. and a holding time of 6 hours.

比較例(試料4)として、導体パターンを形成していない樹脂シート(厚みは400μm)を準備し、この樹脂シートに対してモールド用金型を用いて加圧加熱を行い、図7(c)に示した符号27の部分である無垢の成形体を作製した。このときの加圧加熱の条件は、最高温度を75℃とし、圧力を15MPaに設定し、50秒保持する条件を採用した。次いで、最高温度を200℃、保持時間を6時間として熱処理を行った。この後、この成形体の表面に、図1(a)の構造となるように銀のめっき膜を銀鏡反応によって形成した。 As a comparative example (Sample 4), a resin sheet (thickness: 400 μm) on which a conductor pattern was not formed was prepared, and the resin sheet was pressurized and heated using a molding die, and FIG. 7 (c) was shown. A solid molded body, which is a part of reference numeral 27 shown in the above, was produced. As the conditions for pressurization and heating at this time, the maximum temperature was set to 75 ° C., the pressure was set to 15 MPa, and the condition was adopted for holding for 50 seconds. Next, heat treatment was performed with a maximum temperature of 200 ° C. and a holding time of 6 hours. After that, a silver plating film was formed on the surface of the molded product by a silver mirror reaction so as to have the structure shown in FIG. 1 (a).

Figure 0006791817
Figure 0006791817

表1に結果から明らかなように、金属塗膜として銀のめっき膜を形成した試料(試料4)は、抵抗変化率は最も小さかったが、接着強度が0.1kg/mmと低かった。 As is clear from the results in Table 1, the sample (Sample 4) in which the silver plating film was formed as the metal coating film had the smallest resistance change rate, but the adhesive strength was as low as 0.1 kg / mm 2 .

これに対し、金属塗膜を銀粒子の導体ペーストを用いて作製した試料(試料1〜3)は、抵抗変化率が5〜15%、接着強度が0.3〜0.5Kg/mmであった。 On the other hand, the samples (Samples 1 to 3) prepared by preparing the metal coating film using the conductor paste of silver particles had a resistance change rate of 5 to 15% and an adhesive strength of 0.3 to 0.5 kg / mm 2 . there were.

この中で、基材の表面粗さ(Ra)を0.5μmに調整した試料(試料1)は、接着強度が基材の表面粗さ(Ra)を0.1μmの試料(試料2)よりも高い値を示した。 Among these, the sample (Sample 1) in which the surface roughness (Ra) of the base material was adjusted to 0.5 μm is higher than the sample (Sample 2) having an adhesive strength of 0.1 μm in the surface roughness (Ra) of the base material. Also showed a high value.

A・・・・・・・回路基板
B・・・・・・・電子回路装置
1・・・・・・・基材
1a・・・・・・(基材の)表面
3・・・・・・・金属塗膜
3a・・・・・・金属粒子
3a1・・・・・第1金属粒子
3a2・・・・・第2金属粒子
3a3・・・・・第3金属粒子
3b・・・・・・樹脂成分
3A・・・・・・平坦部膜
3B・・・・・・屈曲部膜
5・・・・・・・基板
5a・・・・・・(基板の)表面
7・・・・・・・台座
7a・・・・・・(台座の)表面
9・・・・・・・移行部
11・・・・・・角部
13・・・・・・電子部品
21a・・・・・樹脂シート
21b・・・・・導体パターン
22・・・・・・PETフィルム
23、25・・・モールド用金型
A ... Circuit board B ... Electronic circuit device 1 ... Base material 1a ... Surface 3 (of the base material)・ ・ Metal coating film 3a ・ ・ ・ ・ ・ ・ Metal particles 3a1 ・ ・ ・ ・ ・ First metal particles 3a2 ・ ・ ・ ・ ・ Second metal particles 3a3 ・ ・ ・ ・ ・ Third metal particles 3b ・ ・ ・ ・ ・・ Resin component 3A ・ ・ ・ ・ ・ ・ Flat part film 3B ・ ・ ・ ・ ・ ・ Bent part film 5 ・ ・ ・ ・ ・ ・ Substrate 5a ・ ・ ・ ・ ・ ・ ・ ・ Surface 7 (of the substrate)・ ・ Pedestal 7a ・ ・ ・ ・ ・ ・ Surface 9 ・ ・ ・ ・ ・ ・ Transition part 11 ・ ・ ・ ・ ・ ・ Corner part 13 ・ ・ ・ ・ ・ ・ Electronic parts 21a ・ ・ ・ ・ ・ Resin Sheet 21b ・ ・ ・ ・ ・ Conductor pattern 22 ・ ・ ・ ・ ・ ・ PET film 23, 25 ・ ・ ・ Mold for molding

Claims (3)

平板状の基板と、該基板のおもて面から突出した台座と、
前記基板の表面から前記台座の表面にかけて配置された金属塗膜と、を有し、
前記基板および前記台座は有機樹脂を母材とし、
前記金属塗膜は針状または扁平状の金属粒子と樹脂成分とを含んでおり、
前記金属塗膜のうち、前記基板および前記台座の表面が平坦な部位に配置された部分を平坦部膜としたときに、前記平坦部膜を構成する前記金属粒子は前記基板および前記台座の表面に沿う方向に配向しており、
前記金属塗膜のうち、前記基板および前記台座のそれぞれの角部、ならびに前記基板から前記台座に移る移行部に配置された部分を屈曲部膜としたときに、該屈曲部膜中には、前記金属粒子が、前記基板および前記台座の表面に沿う方向に配向している第1金属粒子、前記角部または前記移行部に対して法線方向に向いている第2金属粒子、および前記法線方向に対して前記第1金属粒子と前記第2金属粒子との間の範囲の角度を成すように向いている第3金属粒子として存在している、回路基板。
A flat substrate and a pedestal protruding from the front surface of the substrate,
It has a metal coating film arranged from the surface of the substrate to the surface of the pedestal.
The substrate and the pedestal are made of an organic resin as a base material.
The metal coating film contains needle-like or flat metal particles and a resin component.
When a portion of the metal coating film in which the surfaces of the substrate and the pedestal are arranged on a flat portion is used as a flat portion film, the metal particles constituting the flat portion film are the surfaces of the substrate and the pedestal. It is oriented in a direction along the,
When the corners of the substrate and the pedestal and the portion arranged at the transition portion from the substrate to the pedestal of the metal coating film are used as the bent portion film, the bent portion film contains the bent portion film. The first metal particles in which the metal particles are oriented along the surfaces of the substrate and the pedestal, the second metal particles in the normal direction with respect to the corner portion or the transition portion, and the method. A circuit board that exists as a third metal particle that is oriented so as to form an angle in the range between the first metal particle and the second metal particle with respect to the linear direction .
前記基板および前記台座の表面が凹凸状を成している、請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the surface of the substrate and the pedestal is uneven. 請求項1または2に記載の回路基板と、該回路基板の表面の金属塗膜上に実装された電子部品とを備える、電子回路装置。 An electronic circuit device comprising the circuit board according to claim 1 or 2 and an electronic component mounted on a metal coating film on the surface of the circuit board.
JP2017145595A 2017-07-27 2017-07-27 Circuit board and electronic circuit equipment Active JP6791817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017145595A JP6791817B2 (en) 2017-07-27 2017-07-27 Circuit board and electronic circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017145595A JP6791817B2 (en) 2017-07-27 2017-07-27 Circuit board and electronic circuit equipment

Publications (2)

Publication Number Publication Date
JP2019029439A JP2019029439A (en) 2019-02-21
JP6791817B2 true JP6791817B2 (en) 2020-11-25

Family

ID=65476501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017145595A Active JP6791817B2 (en) 2017-07-27 2017-07-27 Circuit board and electronic circuit equipment

Country Status (1)

Country Link
JP (1) JP6791817B2 (en)

Also Published As

Publication number Publication date
JP2019029439A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
KR100404562B1 (en) Thermoconductive substrate and semiconductor module using the same
JPH03136290A (en) Resin circuit board and manufacture thereof
EP3726570A1 (en) Manufacturing method of mounting structure, and sheet used therein
CN105829450A (en) Curable thermally conductive grease, heat dissipation structure, and method for producing heat dissipation structure
US4946733A (en) Electric carrier devices and methods of manufacture
CN108538791A (en) A kind of embedded microfine circuit flexible encapsulating substrate and preparation method thereof
KR20100111605A (en) Ambient-curable anisotropic conductive adhesive
JP6791817B2 (en) Circuit board and electronic circuit equipment
CN109300578B (en) Conductive leather material and preparation method thereof
TW200940188A (en) Thick-film coating apparatuses and methods for coating patterned thick film using the same
JP7336894B2 (en) Framed anisotropically conductive sheet, method for producing same, and method for using same
US7462943B2 (en) Semiconductor assembly for improved device warpage and solder ball coplanarity
CN110536551B (en) Preparation method of circuit board
JP2000158589A (en) Manufacture of metal foil clad laminated sheet
JP7425348B2 (en) Multilayer board and component mounting board
CN104282609B (en) For the method for wiring harness carrier
CN1268038C (en) Batch electrically connecting sheet
Votzke et al. Stenciled liquid metal paste for robust stretchable electrical interconnects
JP4900396B2 (en) Conductive sheet material and electrical connection structure
JP3177064B2 (en) Interconnectors and wiring boards
JP7473761B2 (en) Molded film and its manufacturing method, molded body and its manufacturing method
JP5082296B2 (en) Adhesive with wiring and circuit connection structure
JP3833938B2 (en) Lead frame, manufacturing method thereof, and manufacturing method of thermally conductive substrate
CN114424679A (en) Method and apparatus for interconnection using microchannels
CN111565520A (en) Resistor, preparation method of in-mold electronic film, resistor and in-mold electronic film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6791817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150