JP6790723B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP6790723B2
JP6790723B2 JP2016209892A JP2016209892A JP6790723B2 JP 6790723 B2 JP6790723 B2 JP 6790723B2 JP 2016209892 A JP2016209892 A JP 2016209892A JP 2016209892 A JP2016209892 A JP 2016209892A JP 6790723 B2 JP6790723 B2 JP 6790723B2
Authority
JP
Japan
Prior art keywords
cooling water
water
temperature side
flow path
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016209892A
Other languages
Japanese (ja)
Other versions
JP2018071392A (en
Inventor
伸匡 大橋
伸匡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016209892A priority Critical patent/JP6790723B2/en
Publication of JP2018071392A publication Critical patent/JP2018071392A/en
Application granted granted Critical
Publication of JP6790723B2 publication Critical patent/JP6790723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、内燃機関に関する。 The present invention relates to an internal combustion engine.

エンジン冷却水が流通する高温側冷却水路にメインラジエータと高温側冷却水用のポンプを備えるとともに、水冷インタークーラを冷却した後の冷却水が流通する低温側冷却水路にサブラジエータと低温側冷却水用のポンプとを備えて構成される内燃機関の冷却装置が提案されている(例えば、特許文献1参照)。 A main radiator and a pump for high-temperature side cooling water are provided in the high-temperature side cooling water channel through which engine cooling water flows, and a sub-radiator and low-temperature side cooling water are provided in the low-temperature side cooling water channel through which cooling water flows after cooling the water-cooled intercooler. A cooling device for an internal combustion engine configured to include a pump for the purpose has been proposed (see, for example, Patent Document 1).

特開2012−189063号公報Japanese Unexamined Patent Publication No. 2012-189063

ところで、車両の燃費性能及び排ガス性能の良化の観点から、排気通路から吸気通路に還流される排気ガス(EGRガス)の低温化が検討されている。しかしながら、従来のように、EGRガスを冷却するEGRクーラの冷却媒体として、内燃機関の冷却により比較的高温となるエンジン冷却水を使用していたのでは、EGRガスの更なる低温化を達成するのは困難であった。 By the way, from the viewpoint of improving the fuel efficiency and exhaust gas performance of the vehicle, lowering the temperature of the exhaust gas (EGR gas) returned from the exhaust passage to the intake passage is being studied. However, if engine cooling water, which becomes relatively high temperature due to the cooling of the internal combustion engine, is used as the cooling medium of the EGR cooler for cooling the EGR gas as in the conventional case, the EGR gas can be further lowered in temperature. Was difficult.

本発明の目的は、EGRガスの更なる低温化を達成して、車両の燃費性能及び排ガス性能を良化させることができる内燃機関を提供することにある。 An object of the present invention is to provide an internal combustion engine capable of achieving further temperature reduction of EGR gas and improving fuel efficiency and exhaust gas performance of a vehicle.

上記の目的を達成するための本発明の内燃機関は、内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと低水温用送水装置を備えて構成される内燃機関において、前記低温側冷却水用流路の前記低水温用ラジエータよりも下流側に配置されて前記吸気通路を通過する吸気ガスの冷却を前記低温側冷却水にて行うインタークーラと、このインタークーラよりも下流側に配置されて前記内燃機関の排気通路から前記吸気通路に還流されるEGRガスの冷却を行うEGRクーラを備えるとともに、前記インタークーラと前記EGRクーラの間の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記インタークーラを通過した低温側冷却水と前記分岐流路を通過した高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるように構成される。 The internal combustion engine of the present invention for achieving the above object is provided with a radiator for high water temperature and a water supply device for high water temperature in the flow path for cooling water on the high temperature side through which the cooling water on the high temperature side for cooling the internal combustion engine flows. In an internal combustion engine configured by providing a radiator for low water temperature and a water supply device for low water temperature in a flow path for cooling water on the low temperature side through which cooling water on the low temperature side for cooling the intake gas passing through the intake passage of the internal combustion engine flows. An internal combustion engine arranged downstream of the low water temperature radiator of the low temperature side cooling water flow path and cooling the intake gas passing through the intake passage with the low temperature side cooling water, and an internal combustion engine. An EGR cooler that is arranged on the downstream side and cools the EGR gas that is returned from the exhaust passage of the internal combustion engine to the intake passage is provided, and the flow for the low temperature side cooling water between the intercooler and the EGR cooler. A branch flow path branched from the high temperature side cooling water flow path is connected to the path, and mixed cooling is a mixture of low temperature side cooling water that has passed through the intercooler and high temperature side cooling water that has passed through the branch flow path. It is configured to allow water to flow through the EGR cooler.

本発明の内燃機関によれば、エンジン冷却水(高温側冷却水)と吸気ガス冷却用の低温側冷却水を混合して、エンジン冷却水より低温の混合冷却水を冷却媒体としてEGRクーラに流通させるので、エンジン冷却水を冷却媒体とする従来技術と比較して、EGRガスを更に低温化することができる。その結果、気筒内に流入される吸気とEGRガスの混合気を低体積化して車両の燃費性能を良化させることができるとともに、混合気を低温化して排ガス性能を良化させることができる。 According to the internal combustion engine of the present invention, engine cooling water (high temperature side cooling water) and low temperature side cooling water for cooling intake gas are mixed and distributed to an EGR cooler using the mixed cooling water lower than the engine cooling water as a cooling medium. Therefore, the temperature of the EGR gas can be further lowered as compared with the conventional technique in which the engine cooling water is used as the cooling medium. As a result, the volume of the air-fuel mixture flowing into the cylinder and the EGR gas can be reduced to improve the fuel efficiency of the vehicle, and the temperature of the air-fuel mixture can be lowered to improve the exhaust gas performance.

また、EGRクーラの冷却媒体として低温側冷却水を用いることなく、低温側冷却水より高温の混合冷却水を用いるので、EGRガスに含まれる水蒸気の凝縮化による凝縮水(腐食水)の生成を抑制することができる。その結果、凝縮水による各種配管及びバルブ等の腐食や劣化を抑制することができる。 Further, since the mixed cooling water having a higher temperature than the low temperature side cooling water is used as the cooling medium of the EGR cooler, the condensed water (corrosive water) is generated by condensing the water vapor contained in the EGR gas. It can be suppressed. As a result, corrosion and deterioration of various pipes and valves due to condensed water can be suppressed.

本発明の内燃機関の構成を模式的に示す図である。It is a figure which shows typically the structure of the internal combustion engine of this invention. 第1逆止弁及び第2逆止弁を備えた場合における、図1のA点及びB点の水温及び水量の推移等を示す図である。It is a figure which shows the transition of the water temperature and the amount of water of the point A and the point B of FIG. 1 in the case where the 1st check valve and the 2nd check valve are provided. 高温側冷却水が低温側冷却水用流路に流入した場合における、図1のA点及びB点の水温及び水量の推移等を示す図である。It is a figure which shows the transition of the water temperature and the amount of water of points A and B of FIG. 1 when the high temperature side cooling water flows into the low temperature side cooling water flow path. 低温側冷却水が高温側冷却水用流路に流入した場合における、図1のA点及びB点の水温及び水量の推移等を示す図である。It is a figure which shows the transition of the water temperature and the amount of water of points A and B of FIG. 1 when the low temperature side cooling water flows into the high temperature side cooling water flow path.

以下、本発明に係る実施の形態の内燃機関について、図面を参照しながら説明する。図1に示すように、本発明の内燃機関には高温側冷却水用流路(太線)と低温側冷却水用流路(細線)が備わる。 Hereinafter, the internal combustion engine of the embodiment according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the internal combustion engine of the present invention is provided with a high temperature side cooling water flow path (thick line) and a low temperature side cooling water flow path (thin line).

高温側冷却水用流路は、エンジン(内燃機関)10の冷却を行う高温側冷却水(エンジン冷却水)HWが流通する流路で、上流側より順に、エンジン10、サーモスタット13、高水温用ラジエータ11、高水温用ウォーターポンプ(高水温用送水装置)12が備わる。高水温用ラジエータ11は、エンジン10を通過後の高温側冷却水HWを車両の内部に流入する空気により冷却する装置である。高水温用ウォーターポンプ12は、高温側冷却水用流路を循環させるためのエネルギーを高温側冷却水HWに供給する装置である。この高水温用ウォーターポンプ12の駆動源は、エンジン10の動力でもよいし、車両の内部にバッテリ(図示しない)を備えて、このバッテリの電力でもよい。サーモスタット13は、エンジン10を通過後の高温側冷却水HWの温度に応じて、高温側冷却水HWを高水温用ラジエータ11で冷却するか否かを設定することで、高温側冷却水HWの温度を調整する開閉弁装置である。より詳細には、サーモスタット13を通過する高温側冷却水HWの温度が予め設定された設定温度未満のときには、サーモスタット13は閉弁状態となって、エンジン10を通過後の高温側冷却水HWが高水温用ラジエータ11を経由することなくバイパス通路(図示しない)を経由して再びエンジン10に流入するようにして、エンジン10の暖機を促進する。一方、高温側冷却水HWの温度が設定温度以上のときには、サーモスタット13は開弁状態となって、エンジン10を通過後の高温側冷却水HWが高水温用ラジエータ11を経由して再びエンジン10に流入するようにして、高温側冷却水HWの温度を一定の範囲内に維持しながら、エンジン10を冷却する。なお、サーモスタット13の開弁度は、通常、サーモスタット13の温度と設定温度の差(=サーモスタット13の温度−設定温度)が大きくなるにつれて、大きくなるように設定する。 The high-temperature side cooling water flow path is a flow path through which the high-temperature side cooling water (engine cooling water) HW that cools the engine (internal combustion engine) 10 flows, and the engine 10, thermostat 13, and high water temperature are used in this order from the upstream side. A radiator 11 and a high water temperature water pump (high water temperature water supply device) 12 are provided. The high water temperature radiator 11 is a device that cools the high temperature side cooling water HW after passing through the engine 10 by the air flowing into the inside of the vehicle. The high water temperature water pump 12 is a device that supplies energy for circulating the high temperature side cooling water flow path to the high temperature side cooling water HW. The drive source of the high water temperature water pump 12 may be the power of the engine 10 or the electric power of a battery (not shown) provided inside the vehicle. The thermostat 13 sets whether or not the high temperature side cooling water HW is cooled by the high water temperature radiator 11 according to the temperature of the high temperature side cooling water HW after passing through the engine 10. It is an on-off valve device that regulates the temperature. More specifically, when the temperature of the high temperature side cooling water HW passing through the thermostat 13 is lower than the preset set temperature, the thermostat 13 is closed and the high temperature side cooling water HW after passing through the engine 10 is released. The engine 10 is warmed up by allowing the engine 10 to flow into the engine 10 again via a bypass passage (not shown) without passing through the high water temperature radiator 11. On the other hand, when the temperature of the high temperature side cooling water HW is equal to or higher than the set temperature, the thermostat 13 is opened, and the high temperature side cooling water HW after passing through the engine 10 passes through the high water temperature radiator 11 again to the engine 10. The engine 10 is cooled while maintaining the temperature of the high-temperature side cooling water HW within a certain range. The valve opening degree of the thermostat 13 is usually set to increase as the difference between the temperature of the thermostat 13 and the set temperature (= temperature of the thermostat 13-set temperature) increases.

低温側冷却水用流路は、エンジン10の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水LWが流通する流路で、上流側より順に、低水温用ラジエータ21、低水温用ウォーターポンプ(低水温用送水装置)22、インタークーラ(チャージエアクーラ)23が備わる。低水温用ラジエータ21は、インタークーラ23を通過後の低温側冷却水LWを車両の内部に流入する空気により冷却する装置である。低水温用ウォーターポンプ22は、低温側冷却水用流路を循環させるためのエネルギーを低温側冷却水LWに供給する装置である。この低水温用ウォーターポンプ22の駆動源は、エンジン10の動力でもよいし、車両の内部にバッテリ(図示しない)を備えて、このバッテリの電力でもよい。インタークーラ23は、吸気通路に備わり、吸気通路を通過する吸気ガスの冷却を低温側冷却水用流路を通過する低温側冷却水LWを冷却媒体として行う装置である。なお、上記した各装置11、12、13、21、22、23、24に対する冷却水の流入出口にはホースが接続され、このホースに例えば鋼製の配管を接続して、冷却水回路を構成している。図1では、一例として、低水温用ラジエータ21の流出口に接続されるホース21aのみを図示し、その他のホースは省略している。 The low-temperature side cooling water flow path is a flow path through which the low-temperature side cooling water LW that cools the intake gas passing through the intake passage of the engine 10 flows, and the low water temperature radiator 21 and the low water temperature water flow in this order from the upstream side. It is equipped with a pump (water supply device for low water temperature) 22 and an intercooler (charge air cooler) 23. The low water temperature radiator 21 is a device that cools the low temperature side cooling water LW after passing through the intercooler 23 by the air flowing into the inside of the vehicle. The low water temperature water pump 22 is a device that supplies energy for circulating the low temperature side cooling water flow path to the low temperature side cooling water LW. The drive source of the low water temperature water pump 22 may be the power of the engine 10 or the electric power of a battery (not shown) provided inside the vehicle. The intercooler 23 is a device provided in the intake passage and cools the intake gas passing through the intake passage by using the low temperature side cooling water LW passing through the low temperature side cooling water flow path as a cooling medium. A hose is connected to the inflow / outlet of the cooling water for each of the above-mentioned devices 11, 12, 13, 21, 22, 23, 24, and a steel pipe is connected to this hose to form a cooling water circuit. doing. In FIG. 1, as an example, only the hose 21a connected to the outlet of the low water temperature radiator 21 is illustrated, and the other hoses are omitted.

また、本発明の内燃機関には、制御装置40が備わる。制御装置40は、サーモスタット13による温度の検出値に応じて、高水温用ウォーターポンプ12を制御したり、エンジン回転数や気筒内への燃料噴射量等のエンジン運転状態を表すパラメータの検出値または推定値に応じて、低水温用ウォーターポンプ22を制御したりする装置である。 Further, the internal combustion engine of the present invention is provided with a control device 40. The control device 40 controls the water pump 12 for high water temperature according to the temperature detection value by the thermostat 13, or is a detection value of a parameter representing an engine operating state such as an engine speed or a fuel injection amount into a cylinder. It is a device that controls the low water temperature water pump 22 according to the estimated value.

本発明の内燃機関では、排気通路から吸気通路に還流される排気ガス(EGRガス)を冷却するEGRクーラ24をEGR通路(図示しない)に備えて、このEGRクーラ24を低温側冷却水用流路が通過するように構成するとともに、EGRクーラ24より上流側の低温側冷却水用流路に、高温側冷却水用流路より分岐した分岐流路30を接続する。そして、低温側冷却水用流路と分岐流路30の接続点CPとEGRクーラ24との間の流路を通過する冷却水を、低温側冷却水用流路を通過する低温側冷却水LWと分岐流路30を通過する高温側冷却水HWが混合された混合冷却水MWとして、この混合冷却水MWがEGRクーラ24に流通するように構成する。図1では、混合冷却水MWが流通する混合冷却水用流路を極太線で示している。なお、EGRクーラ24を通過後の混合冷却水MWは、高温側冷却水用流路と低温側冷却水用流路の各々を通過する冷却水量を維持するために、低水温用ラジエータ21と、高水温用ラジエータ11と高水温用ウォーターポンプ12の間の高温側冷却水用流路の両方に還流する。また、高温側冷却水HWの温度は約80℃〜100℃、混合冷却水MWの温度は約50℃〜70℃、低温側冷却水LWの温度は約30℃〜40℃である。 In the internal combustion engine of the present invention, an EGR cooler 24 for cooling the exhaust gas (EGR gas) recirculated from the exhaust passage to the intake passage is provided in the EGR passage (not shown), and the EGR cooler 24 is used as a flow for cooling water on the low temperature side. A branch flow path 30 branched from the high temperature side cooling water flow path is connected to the low temperature side cooling water flow path on the upstream side of the EGR cooler 24 while being configured so that the path passes through. Then, the cooling water that passes through the flow path between the connection point CP of the low temperature side cooling water flow path and the branch flow path 30 and the EGR cooler 24 is passed through the low temperature side cooling water flow path, and the low temperature side cooling water LW. As a mixed cooling water MW in which the high temperature side cooling water HW passing through the branch flow path 30 is mixed, the mixed cooling water MW is configured to flow to the EGR cooler 24. In FIG. 1, the flow path for the mixed cooling water through which the mixed cooling water MW flows is shown by an extra-thick line. The mixed cooling water MW after passing through the EGR cooler 24 includes the radiator 21 for low water temperature and the radiator 21 for low water temperature in order to maintain the amount of cooling water passing through each of the high temperature side cooling water flow path and the low temperature side cooling water flow path. It circulates to both the high-temperature side cooling water flow path between the high-water temperature radiator 11 and the high-water temperature water pump 12. The temperature of the high temperature side cooling water HW is about 80 ° C. to 100 ° C., the temperature of the mixed cooling water MW is about 50 ° C. to 70 ° C., and the temperature of the low temperature side cooling water LW is about 30 ° C. to 40 ° C.

本発明の内燃機関によれば、エンジン冷却水(高温側冷却水)HWと吸気ガス冷却用の低温側冷却水LWを混合して、エンジン冷却水HWより低温の混合冷却水MWを冷却媒体としてEGRクーラ24に流通させるので、エンジン冷却水HWを冷却媒体とする従来技術と比較して、EGRガスを更に低温化することができる。その結果、気筒内に流入される吸気とEGRガスの混合気を低体積化して車両の燃費性能を良化させることができるとともに、混合気を低温化して排ガス性能を良化させることができる。 According to the internal combustion engine of the present invention, the engine cooling water (high temperature side cooling water) HW and the low temperature side cooling water LW for cooling the intake gas are mixed, and the mixed cooling water MW lower than the engine cooling water HW is used as the cooling medium. Since it is circulated to the EGR cooler 24, the temperature of the EGR gas can be further lowered as compared with the conventional technique using the engine cooling water HW as the cooling medium. As a result, the volume of the air-fuel mixture flowing into the cylinder and the EGR gas can be reduced to improve the fuel efficiency of the vehicle, and the temperature of the air-fuel mixture can be lowered to improve the exhaust gas performance.

また、EGRクーラ24の冷却媒体として低温側冷却水LWを用いることなく、低温側冷却水LWより高温の混合冷却水MWを用いるので、EGRガスに含まれる水蒸気の凝縮化による凝縮水(腐食水)の生成を抑制することができる。その結果、凝縮水による各種配管及びバルブ等の腐食や劣化を抑制することができる。 Further, since the mixed cooling water MW having a temperature higher than that of the low temperature side cooling water LW is used as the cooling medium of the EGR cooler 24 without using the low temperature side cooling water LW, the condensed water (corrosive water) due to the condensation of the water vapor contained in the EGR gas. ) Can be suppressed. As a result, corrosion and deterioration of various pipes and valves due to condensed water can be suppressed.

また、図1に示すように、インタークーラ23とEGRクーラ24の間の低温側冷却水用流路に接続点CPを配置して、インタークーラ23の下流側で混合冷却水MWを生成するように構成すると、インタークーラ23の上流側の低温側冷却水より下流側の低温側冷却水の方が水温が高いので、インタークーラ23の上流側で混合冷却水MWを生成する場合よりも、EGRクーラ24に流入する混合冷却水MWの温度範囲をより高温とすることができる。その結果、凝縮水の生成をより確実に抑制することができる。 Further, as shown in FIG. 1, a connection point CP is arranged in the low temperature side cooling water flow path between the intercooler 23 and the EGR cooler 24 so that the mixed cooling water MW is generated on the downstream side of the intercooler 23. Since the water temperature of the low-temperature side cooling water on the downstream side is higher than that of the low-temperature side cooling water on the upstream side of the intercooler 23, the EGR is higher than the case where the mixed cooling water MW is generated on the upstream side of the intercooler 23. The temperature range of the mixed cooling water MW flowing into the cooler 24 can be made higher. As a result, the generation of condensed water can be suppressed more reliably.

また、図1に示すように、接続点CPより上流側の分岐流路30及び低温側冷却水用流路のそれぞれに、第1逆止弁31A、第2逆止弁31Bを備えて構成すると、高温側冷却水HWが接続点CPを経由してインタークーラ23に流入したり、あるいは、混合冷却水MW及び低温側冷却水LWが接続点CP及び分岐流路30を経由して高温側冷却水用流路に流入したりするのを防止することができる。その結果、各冷却水用流路に適正な温度の冷却水が確実に流れるので、エンジン10の過剰冷却やインタークーラ23の冷却性能低下等の不具合を防止することができる。 Further, as shown in FIG. 1, a first check valve 31A and a second check valve 31B are provided in each of the branch flow path 30 on the upstream side of the connection point CP and the cooling water flow path on the low temperature side. , The high temperature side cooling water HW flows into the intercooler 23 via the connection point CP, or the mixed cooling water MW and the low temperature side cooling water LW are cooled on the high temperature side via the connection point CP and the branch flow path 30. It is possible to prevent it from flowing into the water flow path. As a result, the cooling water having an appropriate temperature flows reliably through each cooling water flow path, so that problems such as excessive cooling of the engine 10 and deterioration of the cooling performance of the intercooler 23 can be prevented.

また、各冷却水用流路を構成する配管またはホースを通過する冷却水に、この冷却水と温度差のある別の冷却水が瞬間的に大量に流入するのを防止することができるので、各冷却水用流路を構成する配管またはホースの急膨張または急収縮の発生を防止することができる。なお、接続点(混合部)CPの極力近くに逆止弁31A、31Bを配置すると、接続点(混合部)CPより上流側かつ逆止弁31A、31Bの下流での配管またはホースの急膨張または急収縮の発生を防止することができるので、好ましい。 Further, since it is possible to prevent a large amount of cooling water having a temperature difference from that of the cooling water from momentarily flowing into the cooling water passing through the pipes or hoses constituting each cooling water flow path. It is possible to prevent the occurrence of sudden expansion or contraction of the pipes or hoses constituting each cooling water flow path. If the check valves 31A and 31B are placed as close as possible to the connection point (mixing section) CP, the piping or hose rapidly expands on the upstream side of the connection point (mixing section) CP and downstream of the check valves 31A and 31B. Alternatively, it is preferable because it can prevent the occurrence of sudden contraction.

より詳細には、第1逆止弁31A及び第2逆止弁31Bを備える場合では、図2に示すように、イグニッションキーのオフ時(エンジン10の停止時)等で、各ウォーターポンプ12、22が停止して回転速度がゼロとなるが、慣性により各冷却水が瞬時に停止しないときでも、各冷却水用流路における冷却水の温度を維持することができる。例えば、分岐流路30のA点を通過する冷却水量(A点水量)やインタークーラ23より下流側の低温側冷却水用流路のB点を通過する冷却水量(B点水量)が瞬時に低下しないときでも、A点における高温側冷却水HWの温度(A点水温)を高温に、B点における低温側冷却水LWの温度(B点水温)を低温に維持することができる。 More specifically, in the case where the first check valve 31A and the second check valve 31B are provided, as shown in FIG. 2, when the ignition key is turned off (when the engine 10 is stopped) or the like, each water pump 12 Although 22 stops and the rotation speed becomes zero, the temperature of the cooling water in each cooling water flow path can be maintained even when each cooling water does not stop instantaneously due to inertia. For example, the amount of cooling water passing through point A of the branch flow path 30 (point A water amount) and the amount of cooling water passing through point B of the low temperature side cooling water flow path downstream of the intercooler 23 (point B water amount) are instantaneous. Even when the temperature does not decrease, the temperature of the high temperature side cooling water HW at the point A (point A water temperature) can be maintained at a high temperature, and the temperature of the low temperature side cooling water LW at the point B (point B water temperature) can be maintained at a low temperature.

これに対して、第1逆止弁31A及び第2逆止弁31Bを備えない場合では、図3に示すように、A点を通過する高温側冷却水HWがB点まで逆流して、B点を通過する低温側冷却水LWの温度が高温側冷却水HWの温度に近い値まで上昇したり、あるいは、図4に示すように、B点を通過する低温側冷却水LWがA点まで逆流して、A点を通過する高温側冷却水HWの温度が低温側冷却水LWの温度に近い値まで下降したりする虞がある。なお、図2〜図4では、高水温用ウォーターポンプ12の回転速度の推移は図示せず、低水温用ウォーターポンプ22の回転速度の推移のみを図示している。 On the other hand, when the first check valve 31A and the second check valve 31B are not provided, as shown in FIG. 3, the high temperature side cooling water HW passing through the point A flows back to the point B, and the B The temperature of the low-temperature side cooling water LW passing through the point rises to a value close to the temperature of the high-temperature side cooling water HW, or as shown in FIG. 4, the low-temperature side cooling water LW passing through the point B reaches the point A. There is a possibility that the temperature of the high-temperature side cooling water HW passing through the point A may drop to a value close to the temperature of the low-temperature side cooling water LW due to the backflow. Note that, in FIGS. 2 to 4, the transition of the rotation speed of the high water temperature water pump 12 is not shown, and only the transition of the rotation speed of the low water temperature water pump 22 is shown.

10 エンジン(内燃機関)
11 高水温用ラジエータ
12 高水温用ウォーターポンプ(高水温用送水装置)
21 低水温用ラジエータ
22 低水温用ウォーターポンプ(低水温用送水装置)
23 インタークーラ
24 EGRクーラ
30 分岐流路
31A 第1逆止弁
31B 第2逆止弁
CP 接続点
HW 高温側冷却水(エンジン冷却水)
MW 混合冷却水
LW 低温側冷却水
10 engine (internal combustion engine)
11 Radiator for high water temperature 12 Water pump for high water temperature (water supply device for high water temperature)
21 Radiator for low water temperature 22 Water pump for low water temperature (water supply device for low water temperature)
23 Intercooler 24 EGR cooler 30 Branch flow path 31A 1st check valve 31B 2nd check valve CP connection point HW High temperature side cooling water (engine cooling water)
MW mixed cooling water LW low temperature side cooling water

Claims (2)

内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと低水温用送水装置を備えて構成される内燃機関において、
前記低温側冷却水用流路の前記低水温用ラジエータよりも下流側に配置されて前記吸気通路を通過する吸気ガスの冷却を前記低温側冷却水にて行うインタークーラと、このインタークーラよりも下流側に配置されて前記内燃機関の排気通路から前記吸気通路に還流されるEGRガスの冷却を行うEGRクーラを備えるとともに、前記インタークーラと前記EGRクーラの間の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記インタークーラを通過した低温側冷却水と前記分岐流路を通過した高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるように構成される内燃機関。
A radiator for high water temperature and a water supply device for high water temperature are provided in the flow path for cooling water on the high temperature side through which the cooling water on the high temperature side for cooling the internal combustion engine flows, and the intake gas passing through the intake passage of the internal combustion engine is cooled. In an internal combustion engine composed of a radiator for low water temperature and a water supply device for low water temperature in the flow path for cooling water on the low temperature side through which the cooling water on the low temperature side flows.
An intercooler arranged on the downstream side of the low water temperature radiator of the low temperature side cooling water flow path and cooling the intake gas passing through the intake passage with the low temperature side cooling water, and an intercooler. An EGR cooler that is arranged on the downstream side and cools the EGR gas that is returned from the exhaust passage of the internal combustion engine to the intake passage is provided, and the flow for the low temperature side cooling water between the intercooler and the EGR cooler. A branch flow path branched from the high temperature side cooling water flow path is connected to the path, and mixed cooling is a mixture of low temperature side cooling water that has passed through the intercooler and high temperature side cooling water that has passed through the branch flow path. An internal combustion engine configured to circulate water through the EGR cooler.
前記低温側冷却水用流路と前記分岐流路の接続点より上流側の前記分岐流路及び前記低温側冷却水用流路のそれぞれに、第1逆止弁、第2逆止弁を備えて構成される請求項に記載の内燃機関。 A first check valve and a second check valve are provided in the branch flow path on the upstream side of the connection point between the low temperature side cooling water flow path and the branch flow path and the low temperature side cooling water flow path, respectively. The internal combustion engine according to claim 1 .
JP2016209892A 2016-10-26 2016-10-26 Internal combustion engine Active JP6790723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209892A JP6790723B2 (en) 2016-10-26 2016-10-26 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209892A JP6790723B2 (en) 2016-10-26 2016-10-26 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018071392A JP2018071392A (en) 2018-05-10
JP6790723B2 true JP6790723B2 (en) 2020-11-25

Family

ID=62111544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209892A Active JP6790723B2 (en) 2016-10-26 2016-10-26 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6790723B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113182A (en) * 2011-11-28 2013-06-10 Calsonic Kansei Corp Cooling apparatus for engine and cooling method thereof
JP2016050545A (en) * 2014-09-01 2016-04-11 いすゞ自動車株式会社 Cooling system for vehicle
JP2016133077A (en) * 2015-01-20 2016-07-25 トヨタ自動車株式会社 Cooling device of internal combustion engine

Also Published As

Publication number Publication date
JP2018071392A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP5993759B2 (en) Engine intake cooling system
WO2015064301A1 (en) Engine cooling system
EP1772612A1 (en) EGR cooler system
JP2015197078A (en) Internal combustion engine egr system
JP2016217249A (en) Intake device for supercharged engine
US10487722B2 (en) Compressor housing
JP2014148957A (en) Egr gas cooling device
WO2014132755A1 (en) Cooling device and cooling method for exhaust recirculation device
JP6197459B2 (en) Engine cooling system
JP6790723B2 (en) Internal combustion engine
JP2016050545A (en) Cooling system for vehicle
JP5333679B2 (en) Cooling system
JP6131937B2 (en) Cooling device for rotary piston engine
JP6111983B2 (en) Intake control device
JP2013068137A (en) Waste heat utilization device
KR20180134577A (en) Generating apparatus
JP5918474B2 (en) EGR device
JP2016109081A (en) Temperature control device for intercooler
JP6582848B2 (en) Engine cooling system
WO2017090548A1 (en) Engine cooling device
JP5983453B2 (en) Intake air cooling system
US11506098B1 (en) Systems and methods for turbocharger
JP7347138B2 (en) vehicle cooling water system
JP2017223168A (en) Cooling device
JP2017008751A (en) Intercooler temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150