JP6790480B2 - Manufacturing method of spunbonded non-woven fabric and molded body using it - Google Patents

Manufacturing method of spunbonded non-woven fabric and molded body using it Download PDF

Info

Publication number
JP6790480B2
JP6790480B2 JP2016119140A JP2016119140A JP6790480B2 JP 6790480 B2 JP6790480 B2 JP 6790480B2 JP 2016119140 A JP2016119140 A JP 2016119140A JP 2016119140 A JP2016119140 A JP 2016119140A JP 6790480 B2 JP6790480 B2 JP 6790480B2
Authority
JP
Japan
Prior art keywords
woven fabric
elongation
thermoforming
less
spunbonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016119140A
Other languages
Japanese (ja)
Other versions
JP2017222951A (en
Inventor
吉田 英夫
英夫 吉田
浩康 坂口
浩康 坂口
慎一 峯村
慎一 峯村
稲富 伸一郎
伸一郎 稲富
小田 勝二
勝二 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016119140A priority Critical patent/JP6790480B2/en
Publication of JP2017222951A publication Critical patent/JP2017222951A/en
Application granted granted Critical
Publication of JP6790480B2 publication Critical patent/JP6790480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、熱成型用途に適したスパンボンド不織布およびそれを用いた成型体の製造方法に関する。 The present invention relates to a spunbonded nonwoven fabric suitable for thermoforming applications and a method for producing a molded product using the same.

ポリエチレンテレフタレート(PET)スパンボンド不織布は、力学的物性が良好で、通気性、通水性もあり、多くの用途で使用されている。このようなスパンボンド不織布を成型体の素材として用いる場合、広い温度域で凹凸等の型に追従することができ、様々な形状に成型できる特性等が求められている。 Polyethylene terephthalate (PET) spunbonded non-woven fabric has good mechanical properties, breathability, and water permeability, and is used in many applications. When such a spunbonded non-woven fabric is used as a material for a molded body, it is required to have characteristics such as being able to follow a mold such as unevenness in a wide temperature range and being able to be molded into various shapes.

そこで、スパンボンド不織布の成型性を向上させるための技術が種々提案されている。 Therefore, various techniques for improving the moldability of the spunbonded non-woven fabric have been proposed.

例えば、スパンボンド不織布の熱成型性を向上したものとして、特許文献1には、ポリエチレンテレフタレートにスチレン系共重合体を少量添加して、紡糸して得られたウェブをエンボス加工する技術が開示されている。この技術によれば、成型性と意匠性に優れた熱圧着長繊維不織布が得られることが示されている。 For example, as an improved thermoformability of a spunbonded non-woven fabric, Patent Document 1 discloses a technique of adding a small amount of a styrene-based copolymer to polyethylene terephthalate to emboss a web obtained by spinning. ing. According to this technique, it has been shown that a thermocompression-bonded long-fiber non-woven fabric having excellent moldability and design can be obtained.

特許文献2には、ポリスチレン系ポリマー等を複合成分とした複合繊維からなるスパンボンドウェブを、ニードルパンチ処理やウォータージェット処理等の機械交絡処理することにより、伸度を向上させる技術が開示されている。この技術によれば、伸長性と生産性に優れた不織布が得られることが示されている。 Patent Document 2 discloses a technique for improving elongation by subjecting a spunbond web made of a composite fiber containing a polystyrene-based polymer or the like as a composite component to a mechanical entanglement treatment such as a needle punch treatment or a water jet treatment. There is. According to this technique, it has been shown that a non-woven fabric having excellent extensibility and productivity can be obtained.

特開2014−91875号公報Japanese Unexamined Patent Publication No. 2014-91875 特開平11−302959号公報Japanese Unexamined Patent Publication No. 11-302959

上述の通り、これまでにもスパンボンド不織布の成型性を向上させる技術は種々提案されている。しかし、熱成型に用いる不織布には、上記特性の他にも様々な特性が求められている。例えば、PET等を主成分とするスパンボンド不織布は、熱成型後に収縮するため、成型体の形状によっては所望の形状が得られ難い場合があり、また、所望の形状を得るために収縮率を考慮して熱成型を行うと手間や誤差の問題がある。そのために熱成型後の収縮の抑制が求められているが、熱成型後に収縮し難いスパンボンド不織布は未だ提供されていない。 As described above, various techniques for improving the moldability of the spunbonded non-woven fabric have been proposed so far. However, the non-woven fabric used for thermoforming is required to have various properties in addition to the above properties. For example, since a spunbonded non-woven fabric containing PET or the like as a main component shrinks after thermoforming, it may be difficult to obtain a desired shape depending on the shape of the molded body, and the shrinkage rate is adjusted in order to obtain a desired shape. If thermoforming is performed in consideration of this, there is a problem of labor and error. Therefore, it is required to suppress shrinkage after thermoforming, but a spunbonded non-woven fabric that is hard to shrink after thermoforming has not yet been provided.

本発明は上記事情に鑑みてなされたものであり、その目的は、熱成型後に収縮し難いスパンボンド不織布、およびそのスパンボンド不織布を用いて得られる成型体の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spunbonded nonwoven fabric that does not easily shrink after thermoforming, and a method for producing a molded product obtained by using the spunbonded nonwoven fabric.

本発明に係るスパンボンド不織布は、130℃雰囲気下で150%伸長時の伸長方向長さに対する、上記伸長後、20℃雰囲気下で30分放置後の伸長方向長さの収縮率が5%以下であることを特徴とする。該構成により、熱成型後に収縮し難いスパンボンド不織布を得ることができる。 The spunbonded non-woven fabric according to the present invention has a shrinkage ratio of 5% or less in the elongation direction after being left for 30 minutes in an atmosphere of 20 ° C. It is characterized by being. With this configuration, it is possible to obtain a spunbonded non-woven fabric that does not easily shrink after thermoforming.

本発明の上記スパンボンド不織布は、ポリエチレンテレフタレートを含有することが好ましい。 The spunbonded nonwoven fabric of the present invention preferably contains polyethylene terephthalate.

本発明の上記スパンボンド不織布は、ガラス転移点温度が100〜160℃である熱可塑性ポリスチレン系共重合体を含有することが好ましい。 The spunbonded nonwoven fabric of the present invention preferably contains a thermoplastic polystyrene-based copolymer having a glass transition temperature of 100 to 160 ° C.

本発明の上記スパンボンド不織布は、上記熱可塑性ポリスチレン系共重合体の含有量が0.02〜8質量%であることが好ましい。 The spunbonded nonwoven fabric of the present invention preferably has a content of the thermoplastic polystyrene-based copolymer of 0.02 to 8% by mass.

本発明の上記スパンボンド不織布は、130℃で1分加熱後の破断伸度が250%以上であることが好ましい。 The spunbonded nonwoven fabric of the present invention preferably has a breaking elongation of 250% or more after heating at 130 ° C. for 1 minute.

本発明の上記スパンボンド不織布は、上記不織布の少なくとも片面が、耐磨耗等級が3級以上であることが好ましい。 In the spunbonded non-woven fabric of the present invention, it is preferable that at least one side of the non-woven fabric has an abrasion resistance grade of 3 or higher.

本発明の上記スパンボンド不織布は、上記不織布の少なくとも片面が、平滑であることが好ましい。 In the spunbonded nonwoven fabric of the present invention, it is preferable that at least one side of the nonwoven fabric is smooth.

本発明には、上記スパンボンド不織布を熱成型する成型体の製造方法も包含される。 The present invention also includes a method for producing a molded body by thermoforming the spunbonded non-woven fabric.

本発明によれば、上記構成により、熱成型後に収縮し難いスパンボンド不織布が得られる。更に、上記スパンボンド不織布を用いて熱成型することにより成型体を安定して製造することができる。 According to the present invention, a spunbonded nonwoven fabric that does not easily shrink after thermoforming can be obtained by the above configuration. Further, the molded product can be stably produced by thermoforming using the spunbonded non-woven fabric.

本発明者らは、熱成型後に収縮し難いスパンボンド不織布を得るために、鋭意検討した。その結果、130℃雰囲気下で150%(2.5倍)伸長時の伸長方向長さに対する、伸長後、20℃雰囲気下で30分放置後の伸長方向長さの収縮率が5%以下のスパンボンド不織布であれば所期の目的が達性できることを見出した。更に、上記スパンボンド不織布を用いて熱成型することにより、安定して成型体が得られることを見出し、本発明を完成した。 The present inventors have diligently studied to obtain a spunbonded non-woven fabric that does not easily shrink after thermoforming. As a result, the contraction rate of the length in the elongation direction after stretching for 30 minutes in an atmosphere of 20 ° C. is 5% or less with respect to the length in the elongation direction at the time of stretching 150% (2.5 times) in an atmosphere of 130 ° C. It was found that the intended purpose can be achieved if the spunbonded non-woven fabric is used. Furthermore, they have found that a stable molded body can be obtained by thermoforming using the above-mentioned spunbonded non-woven fabric, and completed the present invention.

本発明の構成要件を説明する前に、まず本発明に到達した経緯を説明する。 Before explaining the constituent elements of the present invention, first, the background to the present invention will be described.

本発明者らは、熱成型および熱成型後の意匠性に優れた熱圧着不織布として、高紡糸速度で得られた配向度の高い繊維を用いて得られた不織布を先に出願している(特許文献1)。一般に、高紡糸速度で紡糸した繊維は配向度が高くなり、伸長時応力が高くなる問題がある。特許文献1では、ポリエチレンテレフタレートよりもガラス転移点温度が高いスチレン系共重合体を添加することで、溶融紡糸の冷却の際に、スチレン系共重合体が先に固化して、配向を阻害し結晶性を乱すことによって上記問題を解決している。 The present inventors have previously applied for a non-woven fabric obtained by using fibers having a high degree of orientation obtained at a high spinning speed as a thermocompression-bonded non-woven fabric having excellent design after thermoforming and thermoforming (). Patent Document 1). In general, fibers spun at a high spinning speed have a problem that the degree of orientation is high and the stress during elongation is high. In Patent Document 1, by adding a styrene-based copolymer having a glass transition point temperature higher than that of polyethylene terephthalate, the styrene-based copolymer is first solidified when the melt-spun is cooled, thereby inhibiting the orientation. The above problem is solved by disturbing the crystallinity.

一方、低紡糸速度で紡糸すると繊維の配向度が低くなり、伸長時応力を低減できるが、配向度の低い繊維に対して、スパンボンド不織布の製造時に通常行われるエンボス加工を行うと以下の問題が生じる。例えば、ガラス転移点温度以下でエンボス加工した場合、繊維同士の固定が弱くなり、低応力でシートが破断する。また、ガラス転移点温度と結晶化温度との間で加工した場合は、加工熱による収縮によって皺が発生する問題がある。また、結晶化温度以上でエンボス加工した場合、加工温度による結晶化促進で、皺のない繊維同士の接着が強固なシートが得られるが、熱成型時の破断伸度は低くなる。これは、エンボス加工の際に接点に応力が集中し、破断し易くなることが原因と推測される。このように低紡糸速度で紡糸した繊維を用いて、熱成型に好適なスパンボンド不織布を得ることは困難であった。 On the other hand, when spinning at a low spinning speed, the degree of orientation of the fibers becomes low and the stress during elongation can be reduced. However, when the fibers having a low degree of orientation are embossed, which is usually performed during the production of spunbonded non-woven fabric, the following problems occur. Occurs. For example, when embossing is performed at a temperature equal to or lower than the glass transition point temperature, the fibers are weakly fixed to each other and the sheet breaks with low stress. Further, when processing is performed between the glass transition temperature and the crystallization temperature, there is a problem that wrinkles are generated due to shrinkage due to processing heat. Further, when embossing is performed at a temperature higher than the crystallization temperature, a sheet having strong adhesion between fibers without wrinkles can be obtained by promoting crystallization at the processing temperature, but the elongation at break during thermoforming becomes low. It is presumed that this is because stress is concentrated on the contacts during embossing and the fracture is likely to occur. It has been difficult to obtain a spunbonded non-woven fabric suitable for thermoforming using fibers spun at such a low spinning speed.

また、低紡糸速度で紡糸する場合、配向度の低い繊維が得られるため、伸長時応力を低減するために配向を阻害する必要はなく、不必要に配向阻害剤を添加すると、ポリエチレンテレフタレートと阻害剤との延伸性の違いにより、繊維が破断するおそれがあった。そのために従来、低紡糸速度で紡糸する場合は、配向阻害剤を積極的に添加することは無かった。しかし、本発明者らが鋭意検討した結果、配向を阻害する熱可塑性スチレン系共重合体をPETに添加し、低紡糸速度で紡糸して、得られた繊維ウェブに対して仮圧着を行った後に、面拘束しながら本圧着すれば、驚くべきことに、熱成型後に収縮し難いスパンボンド不織布が得られることを見出した。 In addition, when spinning at a low spinning speed, fibers with a low degree of orientation can be obtained, so it is not necessary to inhibit the orientation in order to reduce the stress during elongation, and if an orientation inhibitor is added unnecessarily, it inhibits polyethylene terephthalate. There was a risk that the fibers would break due to the difference in stretchability with the agent. Therefore, conventionally, when spinning at a low spinning speed, an orientation inhibitor has not been positively added. However, as a result of diligent studies by the present inventors, a thermoplastic styrene-based copolymer that inhibits orientation was added to PET, spun at a low spinning speed, and temporary pressure bonding was performed on the obtained fiber web. Later, it was found that, surprisingly, a spunbonded non-woven fabric that does not easily shrink after thermoforming can be obtained by main crimping while restraining the surface.

以下、本発明のスパンボンド不織布について詳細に説明する。 Hereinafter, the spunbonded nonwoven fabric of the present invention will be described in detail.

本発明のスパンボンド不織布は、130℃雰囲気下で150%伸長時の伸長方向長さに対する、伸長後、20℃雰囲気下で30分放置後の伸長方向長さの収縮率が5%以下である。ここで、伸長方向長さとは、後記する実施例に記載の方法で測定される測定線の長さを意味する。なお、150%伸長時とは、伸長前の測定線の長さが2.5倍になった時を意味する。また、伸長方向長さの収縮率とは、下記式で求められる収縮率を意味する。
収縮率(%)=100×(150%伸長時の測定線の長さ−伸長終了後、20℃雰囲気下で30分放置後の測定線の長さ)/(150%伸長時の測定線の長さ)
The spunbonded non-woven fabric of the present invention has a shrinkage ratio of 5% or less in the elongation direction after stretching for 30 minutes in an atmosphere of 20 ° C. with respect to the length in the elongation direction when stretched 150% in an atmosphere of 130 ° C. .. Here, the length in the extension direction means the length of the measurement line measured by the method described in Examples described later. The time of 150% extension means the time when the length of the measurement line before extension is 2.5 times longer. Further, the contraction rate of the length in the extension direction means the contraction rate obtained by the following formula.
Shrinkage rate (%) = 100 × (length of measurement line at 150% elongation-length of measurement line after leaving for 30 minutes in an atmosphere of 20 ° C. after completion of elongation) / (measurement line at 150% elongation) length)

伸長方向長さの収縮率は、好ましくは4%以下、より好ましくは3%以下、更に好ましくは2%以下、更により好ましくは1%以下である。一方、伸長方向長さの収縮率の下限は、成型後の歪みを抑制するため、好ましくは0.4%である。 The contraction rate of the length in the elongation direction is preferably 4% or less, more preferably 3% or less, still more preferably 2% or less, still more preferably 1% or less. On the other hand, the lower limit of the shrinkage rate of the length in the elongation direction is preferably 0.4% in order to suppress strain after molding.

本発明のスパンボンド不織布を構成する繊維は、ポリエチレンテレフタレートを主原料とする樹脂であることが好ましい。 The fiber constituting the spunbonded nonwoven fabric of the present invention is preferably a resin containing polyethylene terephthalate as a main raw material.

ポリエチレンテレフタレートは、ポリエチレンやポリプロピレン等の樹脂より機械的強度、耐熱性、保型性等に優れている。このような効果を有効に発揮させるために、ポリエチレンテレフタレートの含有量は、不織布全体を100質量%としたとき、好ましくは90質量%以上、より好ましくは93質量%以上、更に好ましくは94質量%以上である。一方、ポリエチレンテレフタレートの含有量は、熱可塑性ポリスチレン系共重合体の含有量を考慮すると、好ましくは99.8質量%以下、より好ましくは99.5質量%以下、更に好ましくは98質量%以下である。なお、不織布全体を100質量%としたとき、10質量%以下であれば、ポリエチレンテレフタレート以外のポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルがブレンドされていてもよい。 Polyethylene terephthalate is superior to resins such as polyethylene and polypropylene in mechanical strength, heat resistance, shape retention, and the like. In order to effectively exert such an effect, the content of polyethylene terephthalate is preferably 90% by mass or more, more preferably 93% by mass or more, still more preferably 94% by mass, when the whole non-woven fabric is 100% by mass. That is all. On the other hand, the content of polyethylene terephthalate is preferably 99.8% by mass or less, more preferably 99.5% by mass or less, still more preferably 98% by mass or less, considering the content of the thermoplastic polystyrene-based copolymer. is there. When the total amount of the non-woven fabric is 100% by mass, polyesters such as polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate other than polyethylene terephthalate may be blended as long as it is 10% by mass or less.

ポリエチレンテレフタレートの固有粘度は、好ましくは0.3〜0.7dl/gである。ポリエチレンテレフタレートの固有粘度を0.3dl/g以上とすることにより、樹脂が熱劣化しにくくなり、スパンボンド不織布の耐久性を向上することができる。そのためにポリエチレンテレフタレートの固有粘度は0.3dl/g以上であることが好ましく、より好ましくは0.4dl/g以上である。一方、ポリエチレンテレフタレートの固有粘度を0.7dl/g以下とすることにより、熱成型後に収縮し難くなる。また、固有粘度が0.7dl/gを超えると、スパンボンド不織布の熱成型時の応力が高くなり、更に耐磨耗性が低下し易くなる。そのためにポリエチレンテレフタレートの固有粘度は0.7dl/g以下であることが好ましく、より好ましくは0.65dl/g以下、更に好ましくは0.6dl/g以下である。 The intrinsic viscosity of polyethylene terephthalate is preferably 0.3 to 0.7 dl / g. By setting the intrinsic viscosity of polyethylene terephthalate to 0.3 dl / g or more, the resin is less likely to deteriorate due to heat, and the durability of the spunbonded non-woven fabric can be improved. Therefore, the intrinsic viscosity of polyethylene terephthalate is preferably 0.3 dl / g or more, and more preferably 0.4 dl / g or more. On the other hand, by setting the intrinsic viscosity of polyethylene terephthalate to 0.7 dl / g or less, it becomes difficult to shrink after thermoforming. Further, when the intrinsic viscosity exceeds 0.7 dl / g, the stress during thermoforming of the spunbonded non-woven fabric becomes high, and the abrasion resistance tends to be further lowered. Therefore, the intrinsic viscosity of polyethylene terephthalate is preferably 0.7 dl / g or less, more preferably 0.65 dl / g or less, and further preferably 0.6 dl / g or less.

本発明のスパンボンド不織布を構成する繊維は、ガラス転移点温度が100〜160℃である熱可塑性ポリスチレン系共重合体を含有することが好ましい。更に熱可塑性ポリスチレン系共重合体は、ポリエチレンテレフタレートに非相溶であることが好ましい。このような熱可塑性ポリスチレン系共重合体を添加することにより、熱成型後の収縮を抑制し易くすることができる。また、上述のとおりPETよりガラス転移点温度が高いことにより、配向を阻害し、結晶性を乱すことによって、熱成型時の破断伸度が高く、伸長時応力が低い繊維が得られる。そのために熱可塑性ポリスチレン系共重合体のガラス転移点温度は、好ましくは100℃以上である。より好ましくは110℃以上、更に好ましくは120℃以上である。一方、ガラス転移点温度は、紡糸生産性を考慮すると好ましくは160℃以下である。より好ましくは150℃以下である。ガラス転移点温度は、JIS K7122(1987)に従って、20℃/分の昇温速度で測定して求められる値である。 The fibers constituting the spunbonded nonwoven fabric of the present invention preferably contain a thermoplastic polystyrene-based copolymer having a glass transition temperature of 100 to 160 ° C. Further, the thermoplastic polystyrene-based copolymer is preferably incompatible with polyethylene terephthalate. By adding such a thermoplastic polystyrene-based copolymer, it is possible to easily suppress shrinkage after thermoforming. Further, as described above, since the glass transition point temperature is higher than that of PET, the orientation is inhibited and the crystallinity is disturbed, so that a fiber having a high elongation at break during thermoforming and a low stress during elongation can be obtained. Therefore, the glass transition temperature of the thermoplastic polystyrene-based copolymer is preferably 100 ° C. or higher. It is more preferably 110 ° C. or higher, and even more preferably 120 ° C. or higher. On the other hand, the glass transition temperature is preferably 160 ° C. or lower in consideration of spinning productivity. More preferably, it is 150 ° C. or lower. The glass transition point temperature is a value obtained by measuring at a heating rate of 20 ° C./min according to JIS K7122 (1987).

熱可塑性ポリスチレン共重合体は、例えば、ポリスチレン、スチレン・共役ジエンブロック共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、スチレン・アクリル酸エステル共重合体、またはスチレン・メタクリル酸エステル共重合体が好ましい。このうち、スチレン・アクリル酸エステル共重合体、またはスチレン・メタクリル酸エステル共重合体がより好ましく、スチレン・メタクリル酸エステル共重合体が更に好ましい。スチレン・メタクリル酸エステル共重合体として、例えばスチレン・メタクリル酸メチル・無水マレイン酸共重合体が挙げられる。これらは単独でまたは組み合わせて含有しても良い。市販品では、Rohm GmbH&Co.KGのPLEXIGLAS HW55が挙げられ、少量の添加量で優れた効果を発揮するため特に好ましい。 The thermoplastic polystyrene copolymer is, for example, polystyrene, styrene / conjugated diene block copolymer, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, styrene / acrylic acid ester copolymer, or styrene / methacryl. Acid ester copolymers are preferred. Of these, a styrene / acrylate ester copolymer or a styrene / methacrylate copolymer is more preferable, and a styrene / methacrylate copolymer is further preferable. Examples of the styrene / methacrylate copolymer include a styrene / methyl methacrylate / maleic anhydride copolymer. These may be contained alone or in combination. Commercially available products include ROHM GmbH & Co. KG's PLEXIGLAS HW55 can be mentioned, which is particularly preferable because it exerts an excellent effect with a small amount of addition.

熱可塑性ポリスチレン系共重合体の含有量は、不織布全体を100質量%としたとき、好ましくは0.02〜8質量%である。0.02質量%以上とすることにより、上記添加の効果が得られる。そのために熱可塑性ポリスチレン系共重合体の含有量は好ましくは0.02質量%以上である。より好ましくは0.05質量%以上、更に好ましくは0.2質量%以上、更により好ましくは2質量%以上、最も好ましくは4質量%以上である。一方、熱可塑性ポリスチレン系共重合体の含有量が8質量%を超えるとポリエチレンテレフタレートと熱可塑性ポリスチレン系共重合体との延伸性の違いにより、繊維が破断し、操業性が悪化する。そのために、熱可塑性ポリスチレン系共重合体の含有量は好ましくは8質量%以下である。より好ましくは7質量%以下、更に好ましくは6質量%以下である。 The content of the thermoplastic polystyrene-based copolymer is preferably 0.02 to 8% by mass when the entire non-woven fabric is 100% by mass. When the content is 0.02% by mass or more, the effect of the above addition can be obtained. Therefore, the content of the thermoplastic polystyrene-based copolymer is preferably 0.02% by mass or more. It is more preferably 0.05% by mass or more, still more preferably 0.2% by mass or more, even more preferably 2% by mass or more, and most preferably 4% by mass or more. On the other hand, when the content of the thermoplastic polystyrene-based copolymer exceeds 8% by mass, the fibers are broken due to the difference in stretchability between the polyethylene terephthalate and the thermoplastic polystyrene-based copolymer, and the operability is deteriorated. Therefore, the content of the thermoplastic polystyrene-based copolymer is preferably 8% by mass or less. It is more preferably 7% by mass or less, still more preferably 6% by mass or less.

本発明のスパンボンド不織布を構成する繊維の繊維径は、好ましくは5〜80μmである。スパンボンド不織布の熱成型時には繊維径が細くなるが、繊維径を5μm以上とすることにより、熱成型後に収縮し難くなる。更に、繊維径を5μm以上とすることにより、成型体が外力で変化しにくく、成型体の形状が加熱等によって収縮変形しない性質、すなわち成型後の保型性を向上することができる。そのために繊維径は、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは12μm以上、更により好ましくは20μm以上、最も好ましくは40μm以上である。一方、繊維径を80μm以下とすることにより、スパンボンド不織布の繊維間隔が大きくなり過ぎず、通気性、通液性を好適にすることができるため、様々な用途に用いることができる。そのために繊維径は、好ましくは80μm以下、より好ましくは70μm以下、更に好ましくは60μm以下である。 The fiber diameter of the fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 5 to 80 μm. The fiber diameter becomes smaller during thermoforming of the spunbonded non-woven fabric, but by setting the fiber diameter to 5 μm or more, it becomes difficult to shrink after thermoforming. Further, by setting the fiber diameter to 5 μm or more, it is possible to improve the property that the molded body does not easily change due to an external force and the shape of the molded body does not shrink and deform due to heating or the like, that is, the shape retention after molding. Therefore, the fiber diameter is preferably 5 μm or more, more preferably 7 μm or more, still more preferably 12 μm or more, still more preferably 20 μm or more, and most preferably 40 μm or more. On the other hand, when the fiber diameter is 80 μm or less, the fiber spacing of the spunbonded non-woven fabric does not become too large, and the air permeability and liquid permeability can be made suitable, so that the spunbonded nonwoven fabric can be used for various purposes. Therefore, the fiber diameter is preferably 80 μm or less, more preferably 70 μm or less, and further preferably 60 μm or less.

本発明のスパンボンド不織布を構成する繊維は、好ましくは機械的交絡処理が施されていない長繊維である。不織布が短繊維で構成されると、各繊維同士のすべりにより、局所的な変型となり、熱成型後の保型性が劣化するが、長繊維で構成されると、熱成型時の変型が不織布全体に影響することにより、熱成型後の保型性を向上することができる。 The fibers constituting the spunbonded nonwoven fabric of the present invention are preferably long fibers that have not been subjected to mechanical entanglement treatment. When the non-woven fabric is composed of short fibers, slipping between the fibers causes local deformation and deterioration of the shape retention after thermoforming, but when it is composed of long fibers, the deformation during thermoforming is the non-woven fabric. By affecting the whole, the shape retention after thermoforming can be improved.

本発明のスパンボンド不織布を構成する繊維の複屈折率(Δn)は、好ましくは0.10以下である。複屈折率(Δn)が低いほど、配向結晶化度が低くなり、熱成型時の伸長時応力が低減し、破断伸度が高くなるため、熱成型性が向上する。そのために、複屈折率(Δn)は、好ましくは0.10以下、より好ましくは0.07以下、更に好ましくは0.05以下である。一方、複屈折率(Δn)は、繊維分散性を向上する観点より、好ましくは0.003以上である。 The birefringence (Δn) of the fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 0.10 or less. The lower the birefringence (Δn), the lower the degree of orientation crystallinity, the lower the stress during elongation during thermoforming, and the higher the elongation at break, thus improving the thermoforming property. Therefore, the birefringence index (Δn) is preferably 0.10 or less, more preferably 0.07 or less, and further preferably 0.05 or less. On the other hand, the birefringence index (Δn) is preferably 0.003 or more from the viewpoint of improving the fiber dispersibility.

本発明のスパンボンド不織布を構成する繊維の熱圧着前の複屈折率(Δn)は、好ましくは0.02以下である。熱圧着前の複屈折率(Δn)が、0.02を超えると、熱圧着工程での一体化が弱く、不織布が低応力で破断し易くなり、熱成型時の破断伸度が低くなる。そのために、熱圧着前の複屈折率(Δn)は、好ましくは0.02以下、より好ましくは0.015以下である。一方、熱圧着前の複屈折率(Δn)は、低温で熱圧着し易くする観点より、好ましくは0.003以上である。 The birefringence (Δn) of the fibers constituting the spunbonded nonwoven fabric of the present invention before thermocompression bonding is preferably 0.02 or less. If the birefringence (Δn) before thermocompression bonding exceeds 0.02, the unification in the thermocompression bonding process is weak, the non-woven fabric is easily broken with low stress, and the elongation at break during thermoforming becomes low. Therefore, the birefringence (Δn) before thermocompression bonding is preferably 0.02 or less, more preferably 0.015 or less. On the other hand, the birefringence (Δn) before thermocompression bonding is preferably 0.003 or more from the viewpoint of facilitating thermocompression bonding at a low temperature.

本発明のスパンボンド不織布の熱成型後の保型性、および熱成型性を向上させるためには、熱成型時の伸長時応力を低く、破断伸度を高くすることが好ましい。具体的には、130℃で1分加熱後の破断伸度が250%(3.5倍)以上であり、加熱後の20%(1.2倍)伸張時応力が目付:200g/m換算で40N/5cm以下であることが好ましい。 In order to improve the shape retention after thermoforming and the thermoforming property of the spunbonded nonwoven fabric of the present invention, it is preferable to reduce the stress during elongation during thermoforming and increase the elongation at break. Specifically, the elongation at break after heating at 130 ° C. for 1 minute is 250% (3.5 times) or more, and the stress during stretching by 20% (1.2 times) after heating is the basis weight: 200 g / m 2. It is preferably 40 N / 5 cm or less in terms of conversion.

130℃で1分加熱後の破断伸度が250%未満である場合、深絞り成型や複雑な成型加工に追従できない場合がある。更に、熱成型後の保型性が低下する。そのために、上記破断伸度は、好ましくは250%以上である。上記破断伸度は、より好ましくは260%以上、更に好ましくは280%以上、更により好ましくは300%以上である。一方、上記破断伸度は、深絞り成型での追従を考慮すると、好ましくは500%以下、より好ましくは450%以下である。 If the elongation at break after heating at 130 ° C. for 1 minute is less than 250%, it may not be possible to follow deep drawing or complicated molding. Further, the shape retention after thermoforming is lowered. Therefore, the elongation at break is preferably 250% or more. The elongation at break is more preferably 260% or more, further preferably 280% or more, and even more preferably 300% or more. On the other hand, the elongation at break is preferably 500% or less, more preferably 450% or less, considering the follow-up in deep drawing.

130℃で1分加熱後の20%伸張時応力は目付:200g/m換算で40N/5cm以下であることが好ましい。上記伸張時応力を目付:200g/m換算で、好ましくは40N/5cm以下とすることにより、熱成型時の型追従性を向上することができる。また、不織布は熱成型後、再加熱されたときに、熱成型時の応力履歴が収縮力として発現するため、熱成型時の応力が高い不織布は、熱成型後の保型性が低下し易くなる。上記伸張時応力を目付:200g/m換算で40N/5cm以下とすることにより、応力履歴が少なくなり、熱成型後の保型性を向上することができる。また、熱成型加工時の圧力や温度を低く設定することができ、省エネルギーに貢献できる。更に、熱成型加工時の温度を低くすることにより、成型後の冷却時間を短縮することができ、成型サイクルタイムを短縮することができ、生産性を向上することができる。上記20%伸張時応力は、目付:200g/m換算で、より好ましくは39N/5cm以下、更に好ましくは38N/5cm以下、更により好ましくは37N/5cm以下、最も好ましくは36N/5cm以下である。一方、上記20%伸張時応力の下限は特に限定されないが、成型後の皺の発生を抑制し易くする観点より、目付:200g/m換算で、好ましくは20N/5cmである。 The stress at 20% elongation after heating at 130 ° C. for 1 minute is preferably 40 N / 5 cm or less in terms of basis weight: 200 g / m 2 . By setting the stress during elongation to be preferably 40 N / 5 cm or less in terms of basis weight: 200 g / m 2 , the mold followability during thermoforming can be improved. Further, when the non-woven fabric is reheated after thermoforming, the stress history at the time of thermoforming appears as a contraction force, so that the non-woven fabric having a high stress at the time of thermoforming tends to deteriorate the shape retention after thermoforming. Become. By setting the stress during elongation to 40 N / 5 cm or less in terms of basis weight: 200 g / m 2 , the stress history can be reduced and the shape retention after thermoforming can be improved. In addition, the pressure and temperature during thermoforming can be set low, which can contribute to energy saving. Further, by lowering the temperature during thermoforming, the cooling time after molding can be shortened, the molding cycle time can be shortened, and the productivity can be improved. The stress at 20% elongation is more preferably 39 N / 5 cm or less, further preferably 38 N / 5 cm or less, still more preferably 37 N / 5 cm or less, and most preferably 36 N / 5 cm or less in terms of basis weight: 200 g / m 2. is there. On the other hand, the lower limit of the stress at 20% elongation is not particularly limited, but from the viewpoint of facilitating the occurrence of wrinkles after molding, the basis weight: 200 g / m 2 is preferably 20 N / 5 cm.

本発明のスパンボンド不織布は、少なくとも片面は、平滑で耐磨耗等級が好ましくは3級以上である。耐磨耗等級が3級未満の場合、工程通過時に毛羽立ちして工程通過性を阻害し、更に、製品取り扱い時に毛羽立ちして印刷特性を低下させて品位を低下させる。そのために、耐磨耗等級は、好ましくは3級以上、より好ましくは4級以上であり、最も好ましくは5級である。 The spunbonded non-woven fabric of the present invention is smooth on at least one side and preferably has an abrasion resistance grade of 3 or higher. When the abrasion resistance grade is less than the third grade, it fluffs when passing through the process and hinders the process passingability, and further, when the product is handled, it fluffs and deteriorates the printing characteristics to deteriorate the quality. Therefore, the wear resistance grade is preferably 3rd grade or higher, more preferably 4th grade or higher, and most preferably 5th grade or higher.

本発明のスパンボンド不織布の目付は、20〜500g/mであることが好ましい。目付けが20g/m以上であると繊維分散し易くなる。そのために、目付けは、好ましくは20g/m以上、より好ましくは80g/m以上、更に好ましくは150g/m以上である。一方、目付けが500g/m以下であると成型加工し易くなる。そのために、目付けは、好ましくは500g/m以下、より好ましくは400g/m以下、更に好ましくは300g/m以下である。 The basis weight of the spunbonded nonwoven fabric of the present invention is preferably 20 to 500 g / m 2 . When the basis weight is 20 g / m 2 or more, the fibers are easily dispersed. Therefore, the basis weight is preferably 20 g / m 2 or more, more preferably 80 g / m 2 or more, and further preferably 150 g / m 2 or more. On the other hand, when the basis weight is 500 g / m 2 or less, the molding process becomes easy. Therefore, the basis weight is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less, and further preferably 300 g / m 2 or less.

本発明のスパンボンド不織布を構成する樹脂は、ポリエチレンテレフタレートと熱可塑性ポリスチレン系共重合体からなるものであっても良いが、物性を低下させない範囲で、必要に応じて、抗酸化剤、耐光剤、着色剤、抗菌剤、難燃剤などの改質剤を添加しても良い。 The resin constituting the spunbonded nonwoven fabric of the present invention may be composed of polyethylene terephthalate and a thermoplastic polystyrene-based copolymer, but as long as it does not deteriorate the physical properties, an antioxidant and a light retardant are required. , Colorants, antibacterial agents, flame retardants and other modifiers may be added.

本発明のスパンボンド不織布は、好ましくは面拘束スパンボンド不織布である。面拘束とは、繊維ウェブを厚さ方向に面状に挟んで、面状に圧力をかけることである。面拘束は、例えば、フラットロールと、フェルトベルト、ゴムベルト、スチールベルト等のシート状体によって、繊維ウェブのシート全面をプレス処理することにより行うことができる。そして、本発明では、仮圧着後の繊維ウェブを、面拘束しながら本圧着(熱セット)を行うが、これは、フラットロールと彫刻ロール、又は彫刻ロール同士で圧着を行う部分圧着や、フラットロール同士で線的(線状)に圧着を行う面圧着(いわゆるカレンダー加工)とは異なる。部分圧着の場合は、繊維は部分的に固定されており、圧着部分に変型時の応力が集中して、高い破断伸度が得られにくくなる。更に、部分圧着は、部分的に熱成型圧着部分が存在するので表面が平滑でなく、印刷特性が低下する。また、面圧着の場合は、全体が過剰に圧着されているため、不織布の変形が困難であり、破断伸度が低下する。一方、面拘束しながら圧着を行えば、繊維ウェブの面内方向の熱収縮を抑制することができる。その結果、得られた面拘束スパンボンド不織布は、シート全面で繊維が互いに固定化されており、熱成型後の収縮を抑制し易くすることができる。更に、熱成型時の応力が部分的に集中しにくく、全体に伝播されて、不織布の変形が全面に影響するため、破断伸度に優れる。更に、面拘束スパンボンド不織布は、ニードルパンチ加工や水流交絡加工等の機械的交絡加工が施された不織布よりも、表面の毛羽立ちが少なく、耐磨耗性に優れる。そして、フェルトカレンダー、ゴムベルトカレンダー、スチールベルトカレンダー等を用いて面拘束しながら圧着することにより、特にフラットロールと接する面は、平滑で、耐磨耗性、印刷特性に優れたものになる。 The spunbonded non-woven fabric of the present invention is preferably a surface-constrained spunbonded non-woven fabric. The surface restraint is to sandwich the fiber web in a plane shape in the thickness direction and apply pressure in a plane shape. The surface restraint can be performed by pressing the entire surface of the fiber web sheet with, for example, a flat roll and a sheet-like body such as a felt belt, a rubber belt, or a steel belt. Then, in the present invention, the fiber web after temporary crimping is subjected to main crimping (thermocompression setting) while being surface-constrained. This includes partial crimping in which the flat roll and the engraving roll are crimped, or flat It is different from surface crimping (so-called calendar processing) in which rolls are crimped linearly (linearly). In the case of partial crimping, the fibers are partially fixed, and stress at the time of deformation is concentrated on the crimped portion, making it difficult to obtain high elongation at break. Further, in the partial crimping, since the thermoformed crimping portion is partially present, the surface is not smooth and the printing characteristics are deteriorated. Further, in the case of surface pressure bonding, since the entire surface is pressure-bonded excessively, it is difficult to deform the non-woven fabric, and the elongation at break decreases. On the other hand, if crimping is performed while restraining the surface, heat shrinkage of the fiber web in the in-plane direction can be suppressed. As a result, in the obtained surface-constrained spunbonded non-woven fabric, the fibers are fixed to each other on the entire surface of the sheet, and it is possible to easily suppress shrinkage after thermoforming. Further, the stress at the time of thermoforming is not easily concentrated partially and is propagated to the whole, and the deformation of the non-woven fabric affects the entire surface, so that the elongation at break is excellent. Further, the surface-constrained spunbonded non-woven fabric has less surface fluffing and is excellent in abrasion resistance as compared with a non-woven fabric subjected to mechanical entanglement processing such as needle punching processing and water flow entanglement processing. Then, by crimping while restraining the surface using a felt calendar, a rubber belt calendar, a steel belt calendar, or the like, the surface in contact with the flat roll becomes smooth, and has excellent wear resistance and printing characteristics.

次に、本発明のスパンボンド不織布の製造方法について説明する。 Next, the method for producing the spunbonded nonwoven fabric of the present invention will be described.

本発明のスパンボンド不織布の製造方法は、紡糸速度1900m/分以下で紡糸する工程、および紡糸後に得られた繊維ウェブを仮圧着した後に、面拘束しながら本圧着する工程を含むものである。 The method for producing a spunbonded nonwoven fabric of the present invention includes a step of spinning at a spinning speed of 1900 m / min or less, and a step of temporarily crimping a fiber web obtained after spinning and then main crimping while restraining the surface.

以下、本発明のスパンボンド不織布の製造方法について具体的に説明する。 Hereinafter, the method for producing the spunbonded nonwoven fabric of the present invention will be specifically described.

まず、常法に従って所定量のポリエチレンテレフタレートとポリスチレン系共重合体をブレンド乾燥した後に、溶融紡糸機にて低紡糸速度で紡糸を行う。 First, a predetermined amount of polyethylene terephthalate and a polystyrene-based copolymer are blended and dried according to a conventional method, and then spinning is performed at a low spinning speed with a melt spinning machine.

本発明では、紡糸速度を1900m/分以下に低減することが重要である。紡糸速度が1900m/分を超えると、得られた不織布は熱成型後に収縮し易くなる。更に、配向結晶化度が高くなって、熱成型時の伸長時応力が高くなり、破断伸度が低くなる。そのために、紡糸速度は、1900m/分以下、好ましくは1800m/分以下、より好ましくは1700m/分以下、更に好ましくは1500m/分以下である。紡糸速度の下限は、特に限定されないが生産性などを考慮すると好ましくは500m/分である。 In the present invention, it is important to reduce the spinning speed to 1900 m / min or less. When the spinning speed exceeds 1900 m / min, the obtained non-woven fabric tends to shrink after thermoforming. Further, the degree of orientation crystallinity is increased, the stress during elongation during thermoforming is increased, and the elongation at break is decreased. Therefore, the spinning speed is 1900 m / min or less, preferably 1800 m / min or less, more preferably 1700 m / min or less, still more preferably 1500 m / min or less. The lower limit of the spinning speed is not particularly limited, but is preferably 500 m / min in consideration of productivity and the like.

紡糸速度V(m/分)は、単繊維の繊度T(dtex)と設定の単孔吐出量Q(g/分)から下記式に基づき求めることができる。
V=(10000×Q)/T
The spinning speed V (m / min) can be obtained from the fineness T (dtex) of the single fiber and the set single-hole discharge amount Q (g / min) based on the following formula.
V = (10000 x Q) / T

単孔吐出量Qは、好ましくは0.2〜5g/分である。単孔吐出量Qを上記範囲に制御することにより、紡糸速度を所望の範囲に制御し易くなる。より好ましくは0.5〜4g/分である。 The single-hole discharge amount Q is preferably 0.2 to 5 g / min. By controlling the single-hole discharge amount Q within the above range, it becomes easy to control the spinning speed within a desired range. More preferably, it is 0.5 to 4 g / min.

その他の紡糸条件は、特に限定されないが、例えば、オリフィス径0.1〜0.5mmの紡糸口金より紡出し、エジェクタに0.3〜1.5kg/cmの圧力(ジェット圧)で乾燥エアを供給し、延伸することが好ましい。オリフィス径を上記範囲に制御することにより、所望の繊維径が得られ易くなる。また、乾燥エアの供給圧力を上記範囲に制御することにより、紡糸速度を所望の範囲に制御し易くなると共に、適度に乾燥させることができる。 Other spinning conditions are not particularly limited, but are, for example, spun from a spinneret having an orifice diameter of 0.1 to 0.5 mm and dried air in an ejector at a pressure (jet pressure) of 0.3 to 1.5 kg / cm 2. Is preferably supplied and stretched. By controlling the orifice diameter within the above range, it becomes easy to obtain a desired fiber diameter. Further, by controlling the supply pressure of the drying air within the above range, the spinning speed can be easily controlled within a desired range, and the drying can be performed appropriately.

次いで、吐出糸条を冷却し、下方のコンベア上へ繊維を開繊させつつ捕集して、繊維ウェブ(長繊維フリース)を得れば良い。 Next, the discharged yarn may be cooled, and the fibers may be collected while being opened on the lower conveyor to obtain a fiber web (long fiber fleece).

得られた繊維ウェブに対して、通常のスパンボンド不織布の製造方法では、フラットロールと彫刻ロールや、彫刻ロール同士の部分圧着を行うエンボス加工等が施される。しかし、本発明のように低紡糸速度で紡糸して得られた繊維ウェブは、低配向であり収縮しやすいため、エンボス加工等を施すと幅入りや皺などの問題が生じる。そのため、本発明では、以下の通り、仮圧着を行って、その後に面拘束しながら本圧着を行うことにより、幅入りや皺等の発生を抑制し易くすることができる。更に、熱成型後の収縮を低減することができる。 In the usual method for producing a spunbonded non-woven fabric, the obtained fiber web is embossed with a flat roll and an engraving roll, or a partial crimp between the engraving rolls. However, since the fiber web obtained by spinning at a low spinning speed as in the present invention has a low orientation and easily shrinks, problems such as width formation and wrinkles occur when embossing or the like is performed. Therefore, in the present invention, by performing temporary crimping as described below and then performing main crimping while restraining the surface, it is possible to easily suppress the occurrence of width formation and wrinkles. Furthermore, shrinkage after thermoforming can be reduced.

仮圧着は、繊維ウェブを、厚さ方向に圧力をかけて圧着することである。仮圧着は、本圧着における面拘束を行い易くするために行うものであり、例えば、2つのフラットロールからなる1対の仮熱圧着ロールを用い、それぞれの表面温度を60〜140℃とし、押し圧を5〜30kN/mとして熱圧着加工を行うことが好ましい。フラットロールの表面温度と押し圧を上記範囲に制御することにより、適度に仮圧着することができ、仮圧着後に行われる面拘束を行い易くなる。フラットロールの表面温度は、より好ましくは70〜120℃である。押し圧は、より好ましくは7〜20kN/mである。 Temporary crimping is the crimping of a fiber web by applying pressure in the thickness direction. Temporary crimping is performed to facilitate surface restraint in main crimping. For example, a pair of temporary thermocompression bonding rolls composed of two flat rolls is used, and the surface temperature of each is set to 60 to 140 ° C. and pressed. It is preferable to perform thermocompression bonding at a pressure of 5 to 30 kN / m. By controlling the surface temperature and pressing pressure of the flat roll within the above ranges, temporary crimping can be performed appropriately, and surface restraint performed after temporary crimping can be easily performed. The surface temperature of the flat roll is more preferably 70 to 120 ° C. The pressing force is more preferably 7 to 20 kN / m.

更に、本圧着し易くする目的で、仮圧着後の繊維ウェブに対して、含水率が1〜30質量%となるように水をスプレーにより吹き付ける含水加工を実施してもよい。 Further, for the purpose of facilitating the main crimping, the fiber web after the temporary crimping may be subjected to a water content treatment by spraying water so that the water content is 1 to 30% by mass.

次に本圧着を行う。本圧着は、仮圧着後の繊維ウェブを、面拘束しながら、熱セットを行って圧着することである。面拘束は、上述の通り、フラットロールと、フェルトベルト、ゴムベルト、スチールベルト等のシート状体を用いて行うことが好ましい。このうち、フェルトベルトは、表面が繊維状であり繊維ウェブを面内方向に拘束し易いため、特に好ましい。繊維ウェブがシート状体に拘束されていることにより、幅入りや皺などの問題が解決される。更に、面拘束しながら本圧着を行えば、各繊維がシート全面で固定化されるため、熱成型後の収縮を抑制し易くなると共に、破断伸度も向上して、不織布の表面が平滑になり、高い耐磨耗性や印刷特性を有するものになる。 Next, the main crimping is performed. This crimping is to heat-set and crimp the fiber web after temporary crimping while restraining the surface. As described above, the surface restraint is preferably performed by using a flat roll and a sheet-like body such as a felt belt, a rubber belt, or a steel belt. Of these, the felt belt is particularly preferable because the surface is fibrous and the fiber web is easily restrained in the in-plane direction. By restraining the fiber web to the sheet-like body, problems such as width and wrinkles are solved. Furthermore, if the main crimping is performed while restraining the surface, each fiber is fixed on the entire surface of the sheet, so that it becomes easier to suppress shrinkage after thermoforming, the elongation at break is improved, and the surface of the non-woven fabric becomes smooth. Therefore, it has high abrasion resistance and printing characteristics.

熱セット、および面拘束は、ロールの表面温度を120〜180℃として、押し圧:0.1〜4kgf/cm、加工時間:3〜30秒、加工速度:1〜30m/分の条件で行うことが好ましい。 For heat setting and surface restraint, the surface temperature of the roll is 120 to 180 ° C., pressing pressure: 0.1 to 4 kgf / cm 2 , processing time: 3 to 30 seconds, processing speed: 1 to 30 m / min. It is preferable to do so.

ロールの表面温度を好ましくは120℃以上とすることにより、圧着し易くなる。より好ましくは130℃以上である。一方、ロールの表面温度を好ましくは180℃以下とすることにより、過剰に圧着しにくくなる。より好ましくは160℃以下である。 By setting the surface temperature of the roll to 120 ° C. or higher, crimping becomes easy. More preferably, it is 130 ° C. or higher. On the other hand, by setting the surface temperature of the roll to 180 ° C. or lower, it becomes difficult to excessively crimp. More preferably, it is 160 ° C. or lower.

押し圧を好ましくは0.1kgf/cm以上とすることにより、面拘束し易くなる。より好ましくは0.3kgf/cm以上、更に好ましくは0.5kgf/cm以上、更により好ましくは1.0kgf/cm以上、最も好ましくは2.0kgf/cm以上である。一方、押し圧を好ましくは4kgf/cm以下とすることにより、過剰に圧着しにくくなる。より好ましくは3.5kgf/cm以下、更に好ましくは3kgf/cm以下である。 By setting the pressing pressure to preferably 0.1 kgf / cm 2 or more, surface restraint becomes easy. More preferably 0.3 kgf / cm 2 or more, more preferably 0.5 kgf / cm 2 or more, even more preferably 1.0 kgf / cm 2 or more, most preferably 2.0 kgf / cm 2 or more. On the other hand, by setting the pressing pressure to preferably 4 kgf / cm 2 or less, it becomes difficult to excessively crimp. More preferably 3.5 kgf / cm 2 or less, more preferably 3 kgf / cm 2 or less.

加工時間を好ましくは3秒以上とすることにより、圧着し易くなる。より好ましくは5秒以上である。一方、加工時間を好ましくは20秒以下とすることにより、過剰に圧着しにくくなる。より好ましくは15秒以下である。 By setting the processing time to preferably 3 seconds or more, crimping becomes easy. More preferably, it is 5 seconds or longer. On the other hand, by setting the processing time to preferably 20 seconds or less, it becomes difficult to excessively crimp. More preferably, it is 15 seconds or less.

加工速度を好ましくは1m/分以上とすることにより、過剰に圧着しにくくなる。より好ましくは5m/分以上である。一方、加工速度を好ましくは30m/分以下とすることにより、圧着し易くなる。より好ましくは20m/分以下である。 By setting the processing speed to preferably 1 m / min or more, it becomes difficult to excessively crimp. More preferably, it is 5 m / min or more. On the other hand, when the processing speed is preferably 30 m / min or less, crimping becomes easy. More preferably, it is 20 m / min or less.

このようにして得られた本発明のスパンボンド不織布を熱成型することにより、薬剤用保護材、コーヒーフィルター材等の成型体が得られる。 By thermoforming the spunbonded nonwoven fabric of the present invention thus obtained, a molded body such as a protective material for chemicals and a coffee filter material can be obtained.

本発明の成型体の製造方法は、上記スパンボンド不織布を熱成型して成型体を製造するものである。上記スパンボンド不織布を用いることにより、熱成型後の収縮が抑制されるため、安定して成型体を得ることができる。熱成型は、例えば上記スパンボンド不織布を100〜180℃に加熱して、深絞り成型等を行えば良い。 The method for producing a molded product of the present invention is to thermoform the spunbonded non-woven fabric to produce a molded product. By using the spunbonded non-woven fabric, shrinkage after thermoforming is suppressed, so that a molded product can be stably obtained. For thermoforming, for example, the spunbonded non-woven fabric may be heated to 100 to 180 ° C. and deep drawing may be performed.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and it is possible to carry out the present invention with modifications to the extent that it can be adapted to the gist of the above and the following. Yes, they are all within the technical scope of the invention.

〈固有粘度〉
ポリエチレンテレフタレート樹脂0.1gを秤量し、25mlのフェノール/テトラクロルエタン(60/40(重量比))の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で3回測定し、その平均値を求めた。
<Intrinsic viscosity>
0.1 g of polyethylene terephthalate resin was weighed, dissolved in a mixed solvent of 25 ml of phenol / tetrachloroethane (60/40 (weight ratio)), measured three times at 30 ° C. using an Ostwald viscometer, and the average value thereof. Asked.

〈ガラス転移点温度〉
JIS K7122(1987)に従って、20℃/分の昇温速度で、熱可塑性ポリスチレン系共重合体のガラス転移点温度を求めた。
<Glass transition temperature>
According to JIS K7122 (1987), the glass transition temperature of the thermoplastic polystyrene-based copolymer was determined at a heating rate of 20 ° C./min.

〈目付〉
JIS L1913 (2000)5.2に従って、不織布の単位面積当たりの質量を測定した。
<Metsuke>
The mass per unit area of the non-woven fabric was measured according to JIS L1913 (2000) 5.2.

〈繊維径〉
試料(仮圧着前の長繊維フリース)の任意の場所5点を選び、光学顕微鏡を用いて単繊維の径をn=20で測定し、平均値を求めた。
<Fiber diameter>
Five points of the sample (long fiber fleece before temporary crimping) were selected, and the diameter of the single fiber was measured at n = 20 using an optical microscope, and the average value was calculated.

〈複屈折率(Δn)〉
試料(仮圧着前の長繊維フリース)の任意の場所20点を選択し、単繊維をとりだし、ニコン偏向顕微鏡OPTIPHOT−POL型を用いて、繊維径とレターゼーションを読み取り、複屈折率(Δn)を求めた。
<Birerefringence (Δn)>
Select 20 points of the sample (long fiber fleece before temporary crimping), take out the single fiber, read the fiber diameter and letteration using the Nikon deflection microscope OPTIPHOT-POL type, and read the birefringence index (Δn). Asked.

〈繊度(dtex)〉
試料(仮圧着前の長繊維フリース)の任意の場所5点を選び、光学顕微鏡を用いて単繊維径をn=20で測定して、平均単繊維径を求めた。同じ場所5点の繊維を取り出し、密度勾配管を用いて繊維の比重をn=5で測定し、平均比重を求めた。ついで、平均単繊維径より求めた単繊維断面積と平均比重から10000mあたりの繊維重量である繊度[dtex]を求めた。
<Fineness (dtex)>
Five points of the sample (long fiber fleece before temporary crimping) were selected and the single fiber diameter was measured at n = 20 using an optical microscope to obtain the average single fiber diameter. Five fibers at the same location were taken out, and the specific gravity of the fibers was measured at n = 5 using a density gradient tube to determine the average specific gravity. Then, the fineness [dtex], which is the fiber weight per 10,000 m, was obtained from the single fiber cross-sectional area obtained from the average single fiber diameter and the average specific gravity.

〈紡糸速度(m/分)〉
紡糸速度V(m/分)は、上記繊度T(dtex)と設定の単孔吐出量Q(g/分)から下記式に基づいて求めた。
V=(10000×Q)/T
<Spinning speed (m / min)>
The spinning speed V (m / min) was determined from the fineness T (dtex) and the set single-hole discharge amount Q (g / min) based on the following formula.
V = (10000 x Q) / T

〈130℃雰囲気下における150%伸長時の伸長方向長さに対する、伸長終了後、20℃雰囲気下で30分放置後の伸長方向長さの収縮率〉
試料幅50mm、長さ150mmの試料片を不織布から切り出し、試料片の中心に、伸長方向(長さ方向)に50mmの測定線を記入した。測定線がチャック間の中心に位置するようにチャック間距離を50mmとして引張試験機(株式会社オリエンテック製、「テンシロン万能材料試験機」)にセットした。次いで、130℃雰囲気下で1分間予熱して、引張速度100mm/分で伸長し、チャック間距離が125mmの長さになった時、すなわち150%伸長完了時に伸長を停止して、速やかに炉を開放して、固定されたまま1分間冷却後、伸長を終了し、サンプル採取をして、20℃の部屋に放置して、30分±1分経過後、測定線をノギスにて観察して測定線の長さを測定した。1回/1枚の測定で、下記式に基づき収縮率(%)を算出し、計5回の平均値を測定値とした。
収縮率(%)=100×(150%伸長時の測定線の長さ(125mm)−伸長終了後、20℃雰囲気下で30分放置後の測定線の長さ)/(150%伸長時の測定線の長さ(125mm))
<The contraction rate of the length in the elongation direction when stretched at 150% in an atmosphere of 130 ° C. and after being left in an atmosphere of 20 ° C. for 30 minutes after the completion of stretching>
A sample piece having a sample width of 50 mm and a length of 150 mm was cut out from the non-woven fabric, and a measurement line of 50 mm was drawn in the extension direction (length direction) at the center of the sample piece. The distance between the chucks was set to 50 mm so that the measurement line was located at the center between the chucks, and the test line was set in a tensile tester (“Tencilon Universal Material Tester” manufactured by Orientec Co., Ltd.). Then, it was preheated for 1 minute in an atmosphere of 130 ° C. and expanded at a tensile speed of 100 mm / min, and when the distance between chucks reached a length of 125 mm, that is, when 150% expansion was completed, the expansion was stopped and the furnace was swiftly expanded. After opening and cooling for 1 minute while it is fixed, complete the elongation, take a sample, leave it in a room at 20 ° C, and after 30 minutes ± 1 minute, observe the measurement line with a caliper. The length of the measurement line was measured. The shrinkage rate (%) was calculated based on the following formula in one measurement per sheet, and the average value of a total of five measurements was taken as the measured value.
Shrinkage rate (%) = 100 × (length of measurement line at 150% elongation (125 mm) − length of measurement line after leaving for 30 minutes in an atmosphere of 20 ° C. after completion of elongation) / (at 150% elongation) Measurement line length (125 mm))

〈130℃で1分加熱後の破断伸度、および20%伸張時応力〉
試料幅5cm、長さ20cmの試料片を縦方向および横方向にそれぞれ不織布から5枚ずつ切り出し、チャック間距離5cmで試料をセットし、130℃に加熱した炉に投入して1分経過後に、加熱炉内にてオリエンテック性万能引張試験機を用い、引張速度10cm/分で変型させて歪−応力曲線を得た。破断時の伸度および20%伸張時の応力を読み取り、縦方向と横方向の各5点の平均値を測定値とした。
<Elongation at break after heating at 130 ° C for 1 minute and stress during 20% elongation>
Five sample pieces with a sample width of 5 cm and a length of 20 cm were cut out from the non-woven fabric in each of the vertical and horizontal directions, the samples were set at a distance between chucks of 5 cm, and the samples were placed in a furnace heated to 130 ° C., and after 1 minute had passed. A strain-strain curve was obtained by transforming in a heating furnace using an Orientec universal tensile tester at a tensile speed of 10 cm / min. The elongation at break and the stress at 20% elongation were read, and the average value of each of the five points in the vertical direction and the horizontal direction was used as the measured value.

〈耐磨耗性〉
耐磨耗性は、大栄科学精器製作所製「学振型染色物磨耗堅牢度試験機」を用いて、不織布を試料とし、磨耗布は金巾3号を使用して、加重500gf、磨耗回数100往復で磨耗させて、不織布表面の毛羽立ち、磨耗状態を目視で等級評価した。n=5の平均値を測定値とした。
0級:損傷大、1級:損傷中、2級:損傷小、3級:損傷なし、毛羽発生あり、4級:損傷なし、毛羽発生微小、5級:損傷なし、毛羽なし
<Abrasion resistance>
Abrasion resistance is determined by using a "Gakushin-type dyed product wear fastness tester" manufactured by Daiei Kagaku Seiki Seisakusho, using a non-woven fabric as a sample, and using a gold width No. 3 as the wear cloth, with a load of 500 gf and a wear count of 100. It was abraded in a reciprocating manner, and the fluffing and abraded state of the non-woven fabric surface were visually graded. The average value of n = 5 was taken as the measured value.
Grade 0: Large damage, Grade 1: Medium damage, Grade 2: Small damage, Grade 3: No damage, fluffing, Grade 4: No damage, fluffing minute, Grade 5: No damage, no fluff

〈成型性評価1〉
先端が半丸形状の直径25mmの金属製の円柱状成型体および不織布を130℃、1分間加熱し、変型速度20mm/分の条件で25mm変型させた。変型時に不織布の破れがあったものを×、破れがなかったものを○と判断した。
<Evaluation of moldability 1>
A metal columnar molded body having a half-round tip and a diameter of 25 mm and a non-woven fabric were heated at 130 ° C. for 1 minute and transformed by 25 mm under the condition of a transformation rate of 20 mm / min. Those with tears in the non-woven fabric at the time of transformation were judged as x, and those without tears were judged as ○.

〈成型性評価2〉
500℃に加熱した赤外線ヒーターで不織布を10秒加熱し、常温の金型で真空成型を行った。金型の形状はカップ型で、開口部は直径50mm、底面部は40mmで、深さが50mmであり、全てのコーナーは直径0.5mmの湾曲をつけたものを用いた。成型体に破れがなく、角の湾曲半径が1mm以下のものを〇、成型体に破れがなく、角の湾曲半径が1mmを超えるものを△、成型体に破れがあるものを×と判断した。
<Evaluation of moldability 2>
The non-woven fabric was heated for 10 seconds with an infrared heater heated to 500 ° C., and vacuum formed with a mold at room temperature. The shape of the mold was a cup shape, the opening was 50 mm in diameter, the bottom surface was 40 mm, the depth was 50 mm, and all the corners were curved with a diameter of 0.5 mm. If the molded body is not torn and the radius of curvature of the corner is 1 mm or less, it is judged as 〇, if the molded body is not torn and the radius of curvature of the corner is more than 1 mm, it is judged as Δ, and if the molded body is torn, it is judged as ×. ..

成型性評価1の評価が〇であり、且つ成型性評価2の評価が〇または△であるものを熱成型性に優れていると判断した。 A product having a moldability evaluation of ◯ and a moldability evaluation of 2 of 〇 or Δ was judged to be excellent in thermoformability.

〈保型性〉
成型性評価1で得られた成型体に95℃の熱湯をかけたときに、形状を保持できたものを〇、形状を保持できなかったものを×とした。
<Retainability>
When the molded body obtained in the moldability evaluation 1 was poured with boiling water at 95 ° C., the one that could retain the shape was evaluated as ◯, and the one that could not retain the shape was evaluated as x.

(実施例1)
スパンボンド紡糸設備を用い、固有粘度0.63dl/gのポリエチレンテレフタレート(以下、「PET」という)に、ガラス転移点温度が122℃のスチレン・メタクリル酸メチル・無水マレイン酸共重合体(Rohm GmbH&Co.KGのPLEXIGLAS HW55(以下、「HW55」という)を0.40質量%添加した樹脂を、オリフィス径0.23mmの紡糸口金より単孔吐出量0.75g/分で紡出した。更に、エジェクタに0.6kg/cmの圧力(ジェット圧)で乾燥エアを供給し、1段階で延伸して、下方のコンベア上へ繊維を開繊させつつ捕集し長繊維フリースを得た。得られた長繊維フリースの繊維径は22.0μm、複屈折率は0.0120、換算紡糸速度は1430m/分であった。
(Example 1)
Using a spunbond spinning facility, polyethylene terephthalate (hereinafter referred to as "PET") having an intrinsic viscosity of 0.63 dl / g and a styrene / methyl methacrylate / maleic anhydride copolymer (Rohm GmbH & Co) having a glass transition temperature of 122 ° C. A resin containing 0.40% by mass of KG's PLEXIGLAS HW55 (hereinafter referred to as “HW55”) was spun from a spinneret having an orifice diameter of 0.23 mm at a single-hole discharge rate of 0.75 g / min. Dry air was supplied at a pressure (jet pressure) of 0.6 kg / cm 2 and stretched in one step, and the fibers were collected while being opened on the lower conveyor to obtain a long fiber fleece. The fiber diameter of the long fiber fleece was 22.0 μm, the double refractive index was 0.0120, and the converted spinning speed was 1430 m / min.

得られた長繊維フリースを、2つのフラットロールからなる1対の仮熱圧着ロールを用い、それぞれの表面温度を80℃とし、押し圧を8kN/mとして仮圧着した後、ロールの表面温度:145℃で、押し圧:3.0kgf/cm、加工時間:9.3秒、加工速度:8.4m/分の条件でフェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。 The obtained long fiber fleece was temporarily crimped using a pair of temporary thermocompression bonding rolls composed of two flat rolls at a surface temperature of 80 ° C. and a pressing pressure of 8 kN / m, and then the surface temperature of the rolls: At 145 ° C., pressing pressure: 3.0 kgf / cm 2 , processing time: 9.3 seconds, processing speed: 8.4 m / min, this pressure bonding was performed while surface-constraining with a felt calendar to obtain a spunbonded non-woven fabric. It was.

(実施例2)
エジェクタに0.75kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同じ条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0147、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 2)
A long fiber fleece was obtained under the same conditions as in Example 1 except that dry air was supplied to the ejector at a pressure (jet pressure) of 0.75 kg / cm 2 . The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0147, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例3)
HW55の含有量を0.05質量%としたこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0153、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 3)
A long fiber fleece was obtained under the same conditions as in Example 2 except that the content of HW55 was 0.05% by mass. The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0153, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例4)
HW55の含有量を3.00質量%としたこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0130、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 4)
A long fiber fleece was obtained under the same conditions as in Example 2 except that the content of HW55 was 3.00% by mass. The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0130, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例5)
HW55の含有量を5.00質量%としたこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0110、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 5)
A long fiber fleece was obtained under the same conditions as in Example 2 except that the content of HW55 was 5.00% by mass. The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0110, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例6)
固有粘度0.50dl/gのPETを使用したこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0147、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 6)
A long fiber fleece was obtained under the same conditions as in Example 2 except that PET having an intrinsic viscosity of 0.50 dl / g was used. The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0147, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例7)
固有粘度0.70dl/gのPETを使用したこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.0147、換算紡糸速度は1632m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 7)
A long fiber fleece was obtained under the same conditions as in Example 2 except that PET having an intrinsic viscosity of 0.70 dl / g was used. The fiber diameter of the obtained long fiber fleece was 20.6 μm, the birefringence was 0.0147, and the converted spinning speed was 1632 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例8)
実施例2と同様の条件で得られた長繊維フリースを、表面温度を80℃とし、押し圧を8kN/mとして仮圧着した後、含水率が3質量%となるように水をスプレーにより吹き付ける含水加工を実施し、実施例1と同様にフェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 8)
The long fiber fleece obtained under the same conditions as in Example 2 is temporarily pressure-bonded at a surface temperature of 80 ° C. and a pressing pressure of 8 kN / m, and then sprayed with water so that the water content is 3% by mass. A water-containing treatment was carried out, and the main crimping was performed while surface-constraining with a felt calendar in the same manner as in Example 1 to obtain a spunbonded non-woven fabric.

(実施例9)
オリフィス径0.23mmの紡糸口金より単孔吐出量0.26g/分で紡出したこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は12.0μm、複屈折率は0.0160、換算紡糸速度は1667m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 9)
A long fiber fleece was obtained under the same conditions as in Example 2 except that the fleece was spun from a spinneret having an orifice diameter of 0.23 mm at a single hole discharge rate of 0.26 g / min. The fiber diameter of the obtained long fiber fleece was 12.0 μm, the birefringence was 0.0160, and the converted spinning speed was 1667 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例10)
オリフィス径0.23mmの紡糸口金より単孔吐出量1.13g/分で紡出したこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は25.0μm、複屈折率は0.0140、換算紡糸速度は1669m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 10)
A long fiber fleece was obtained under the same conditions as in Example 2 except that a single-hole discharge rate of 1.13 g / min was spun from a spinneret having an orifice diameter of 0.23 mm. The fiber diameter of the obtained long fiber fleece was 25.0 μm, the birefringence was 0.0140, and the converted spinning speed was 1669 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(実施例11)
オリフィス径0.45mmの紡糸口金より単孔吐出量3.5g/分で紡出し、エジェクタに0.5kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は50.0μm、複屈折率は0.0040、換算紡糸速度は1288m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Example 11)
Same as in Example 1 except that a single-hole discharge rate of 3.5 g / min was spun from a spinneret having an orifice diameter of 0.45 mm and dry air was supplied to the ejector at a pressure (jet pressure) of 0.5 kg / cm 2. A long fiber fleece was obtained under the conditions of. The fiber diameter of the obtained long fiber fleece was 50.0 μm, the birefringence was 0.0040, and the converted spinning speed was 1288 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(比較例1)
HW55を添加せずに、エジェクタに1.0kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は19.0μm、複屈折率は0.0182、換算紡糸速度は1918m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Comparative Example 1)
A long fiber fleece was obtained under the same conditions as in Example 1 except that dry air was supplied to the ejector at a pressure (jet pressure) of 1.0 kg / cm 2 without adding HW55. The fiber diameter of the obtained long fiber fleece was 19.0 μm, the birefringence was 0.0182, and the converted spinning speed was 1918 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(比較例2)
HW55を添加せずに、固有粘度0.75dl/gのPETを使用し、エジェクタに1.0kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は19.0μm、複屈折率は0.0186、換算紡糸速度は1918m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、含水率が3質量%となるように水をスプレーにより吹き付ける含水加工を実施し、実施例1と同様にフェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Comparative Example 2)
Conditions similar to those of Example 1 except that PET having an intrinsic viscosity of 0.75 dl / g was used without adding HW55 and dry air was supplied to the ejector at a pressure (jet pressure) of 1.0 kg / cm 2. Obtained a long fiber fleece. The fiber diameter of the obtained long fiber fleece was 19.0 μm, the birefringence was 0.0186, and the converted spinning speed was 1918 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then subjected to a water content treatment by spraying water so that the water content was 3% by mass, and surface restraint was performed by a felt calendar as in Example 1. While this pressure was applied, a spunbonded non-woven fabric was obtained.

(比較例3)
固有粘度0.75dl/gのPETを使用し、エジェクタに1.0kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は19.0μm、複屈折率は0.0183、換算紡糸速度は1918m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、フェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Comparative Example 3)
A long fiber fleece was obtained under the same conditions as in Example 1 except that a PET having an intrinsic viscosity of 0.75 dl / g was used and dry air was supplied to the ejector at a pressure (jet pressure) of 1.0 kg / cm 2 . .. The fiber diameter of the obtained long fiber fleece was 19.0 μm, the birefringence was 0.0183, and the converted spinning speed was 1918 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then main crimped while being surface-restrained by a felt calendar to obtain a spunbonded non-woven fabric.

(比較例4)
固有粘度0.75dl/gのPETを使用し、エジェクタに1.0kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例1と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は19.0μm、複屈折率は0.0183、換算紡糸速度は1918m/分であった。得られた長繊維フリースを実施例1と同様に仮圧着した後、含水率が3質量%となるように水をスプレーにより吹き付ける含水加工を実施し、実施例1と同様にフェルトカレンダーにより面拘束しながら本圧着を行い、スパンボンド不織布を得た。
(Comparative Example 4)
A long fiber fleece was obtained under the same conditions as in Example 1 except that dry air was supplied to the ejector at a pressure (jet pressure) of 1.0 kg / cm 2 using PET having an intrinsic viscosity of 0.75 dl / g. .. The fiber diameter of the obtained long fiber fleece was 19.0 μm, the birefringence was 0.0183, and the converted spinning speed was 1918 m / min. The obtained long fiber fleece was temporarily crimped in the same manner as in Example 1, and then subjected to a water content treatment by spraying water so that the water content was 3% by mass, and surface restraint was performed by a felt calendar as in Example 1. While this pressure was applied, a spunbonded non-woven fabric was obtained.

(比較例5)
エジェクタに3.5kg/cmの圧力(ジェット圧)で乾燥エアを供給したこと以外は実施例2と同様の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は12.3μm、複屈折率は0.0820、換算紡糸速度は4578m/分であった。得られた長繊維フリースを、2つのフラットロールからなる1対の仮熱圧着ロールを用い、それぞれの表面温度を120℃とし、押し圧を8kN/mとして仮圧着した後、彫刻ロールの表面温度:170℃、フラットロールの表面温度:145℃で、線圧:50kgf/cm、加工速度:10.0m/分の条件でエンボス加工を実施し、スパンボンド不織布を得た。
(Comparative Example 5)
A long fiber fleece was obtained under the same conditions as in Example 2 except that dry air was supplied to the ejector at a pressure (jet pressure) of 3.5 kg / cm 2 . The fiber diameter of the obtained long fiber fleece was 12.3 μm, the birefringence was 0.0820, and the converted spinning speed was 4578 m / min. The obtained long fiber fleece was temporarily crimped using a pair of temporary thermocompression bonding rolls composed of two flat rolls at a surface temperature of 120 ° C. and a pressing pressure of 8 kN / m, and then the surface temperature of the engraving roll. Embossing was carried out at 170 ° C., a flat roll surface temperature of 145 ° C., a linear pressure of 50 kgf / cm, and a processing speed of 10.0 m / min to obtain a spunbonded nonwoven fabric.

以上のようにして得られたスパンボンド不織布の物性を表1、2に示す。各種評価結果も併せて表1、2に示す。 Tables 1 and 2 show the physical properties of the spunbonded nonwoven fabric obtained as described above. The results of various evaluations are also shown in Tables 1 and 2.

Figure 0006790480
Figure 0006790480

Figure 0006790480
Figure 0006790480

表1に示すように、熱可塑性スチレン系共重合体(HW55)を添加し、低紡糸速度で紡糸して、更に面拘束しながら本圧着した実施例1〜11は、150%伸長後の収縮率が低く、熱成型後に収縮し難いことがわかる。更に、実施例1〜11は、耐磨耗性、保型性、熱成型性にも優れていた。 As shown in Table 1, Examples 1 to 11 in which a thermoplastic styrene-based copolymer (HW55) was added, spun at a low spinning speed, and further pressure-bonded while restraining the surface, were contracted after 150% elongation. It can be seen that the rate is low and it is difficult to shrink after thermoforming. Further, Examples 1 to 11 were also excellent in abrasion resistance, shape retention, and thermoforming property.

これに対して、表2の比較例1〜5は、150%伸長後の収縮率が高く、熱成型後に収縮し易くなっていた。更に、比較例1〜5は、耐磨耗性、保型性、熱成型性のいずれかが劣っていた。 On the other hand, in Comparative Examples 1 to 5 in Table 2, the shrinkage rate after 150% elongation was high, and it was easy to shrink after thermoforming. Further, Comparative Examples 1 to 5 were inferior in any of wear resistance, shape retention, and thermoforming property.

比較例1は、紡糸速度が速く、HW55を添加しなかったため、熱成型後の収縮率が高くなった。更に、破断伸度が低くなり、伸長時応力が高くなって、熱成型性、保型性が低下した。 In Comparative Example 1, since the spinning speed was high and HW55 was not added, the shrinkage rate after thermoforming was high. Further, the elongation at break became low, the stress at the time of elongation became high, and the thermoformability and the mold retention were lowered.

比較例2は、紡糸速度が速く、ポリエチレンテレフタレートの固有粘度が高く、HW55を添加しなかったため、熱成型後の収縮率が高くなった。更に、伸長時応力が高くなり、熱成型性、保型性が低下した。 In Comparative Example 2, the spinning speed was high, the intrinsic viscosity of polyethylene terephthalate was high, and HW55 was not added, so that the shrinkage rate after thermoforming was high. Further, the stress at the time of elongation became high, and the thermoforming property and the shape retention property decreased.

比較例3は、紡糸速度が速く、ポリエチレンテレフタレートの固有粘度が高かったため、熱成型後の収縮率が高くなった。更に、伸長時応力が高くなり、熱成型性、保型性、耐磨耗性が低下した。 In Comparative Example 3, the spinning speed was high and the intrinsic viscosity of polyethylene terephthalate was high, so that the shrinkage rate after thermoforming was high. Further, the stress during elongation became high, and the thermoforming property, the shape retention property, and the abrasion resistance decreased.

比較例4は、紡糸速度が速く、ポリエチレンテレフタレートの固有粘度が高かったため、熱成型後の収縮率が高くなった。更に、伸長時応力が高くなり、熱成型性、保型性、耐磨耗性が低下した。 In Comparative Example 4, the spinning speed was high and the intrinsic viscosity of polyethylene terephthalate was high, so that the shrinkage rate after thermoforming was high. Further, the stress during elongation became high, and the thermoforming property, the shape retention property, and the abrasion resistance decreased.

比較例5は、紡糸速度が速く、面拘束による本圧着の代わりに、熱エンボス加工を行ったため、150%伸長前に不織布が破断した。また、伸長時応力が高く、伸度不足となった結果、熱成型性、保型性が低下した。更に、部分的に熱成型圧着部分が存在するため、耐磨耗性が低下した。 In Comparative Example 5, the spinning speed was high, and heat embossing was performed instead of the main crimping by surface restraint, so that the non-woven fabric broke before 150% elongation. In addition, the stress during elongation was high, and as a result of insufficient elongation, thermoformability and mold retention were deteriorated. Further, since the thermoformed crimping portion is partially present, the abrasion resistance is lowered.

なお、上記実施例において、繊維径は、仮圧着前の長繊維フリースについて測定したが、仮圧着および本圧着後もほぼ同じ値を示すことを確認している。 In the above embodiment, the fiber diameter was measured for the long fiber fleece before the temporary crimping, and it was confirmed that the fiber diameter showed almost the same value after the temporary crimping and the main crimping.

Claims (4)

130℃雰囲気下で150%伸長時の伸長方向長さに対する、前記伸長後、20℃雰囲気下で30分放置後の伸長方向長さの収縮率が5%以下であり、
固有粘度が0.3〜0.7dl/gであるポリエチレンテレフタレートを90質量%以上の含量で含み、且つ前記ポリエチレンテレフタレートよりもガラス転移点温度が高い配向阻害剤であり、ガラス転移点温度が100〜160℃の熱可塑性ポリスチレン系共重合体を0.02〜8質量%の含量で含むことを特徴とするスパンボンド不織布。
The contraction rate of the length in the elongation direction after being left for 30 minutes in the atmosphere of 20 ° C. after the elongation is 5% or less with respect to the length in the elongation direction at the time of 150% elongation in an atmosphere of 130 ° C.
It is an orientation inhibitor containing polyethylene terephthalate having an intrinsic viscosity of 0.3 to 0.7 dl / g in a content of 90% by mass or more and having a higher glass transition temperature than the polyethylene terephthalate , and has a glass transition temperature of 100. A spunbonded non-woven fabric containing a thermoplastic polystyrene-based copolymer at ~ 160 ° C. in a content of 0.02 to 8% by mass.
130℃で1分加熱後の破断伸度が250%以上である請求項1に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1, wherein the elongation at break after heating at 130 ° C. for 1 minute is 250% or more. 前記不織布の少なくとも片面は、耐磨耗等級が3級以上である請求項1または2に記載のスパンボンド不織布。 The spunbonded non-woven fabric according to claim 1 or 2 , wherein at least one side of the non-woven fabric has an abrasion resistance grade of 3 or higher. 請求項1〜のいずれかに記載のスパンボンド不織布を熱成型することを特徴とする成型体の製造方法。 A method for producing a molded body, which comprises thermoforming the spunbonded nonwoven fabric according to any one of claims 1 to 3 .
JP2016119140A 2016-06-15 2016-06-15 Manufacturing method of spunbonded non-woven fabric and molded body using it Active JP6790480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119140A JP6790480B2 (en) 2016-06-15 2016-06-15 Manufacturing method of spunbonded non-woven fabric and molded body using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119140A JP6790480B2 (en) 2016-06-15 2016-06-15 Manufacturing method of spunbonded non-woven fabric and molded body using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020142279A Division JP6992860B2 (en) 2020-08-26 2020-08-26 Manufacturing method of spunbonded non-woven fabric and molded body using it

Publications (2)

Publication Number Publication Date
JP2017222951A JP2017222951A (en) 2017-12-21
JP6790480B2 true JP6790480B2 (en) 2020-11-25

Family

ID=60687835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119140A Active JP6790480B2 (en) 2016-06-15 2016-06-15 Manufacturing method of spunbonded non-woven fabric and molded body using it

Country Status (1)

Country Link
JP (1) JP6790480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190072A (en) * 2020-08-26 2020-11-26 東洋紡株式会社 Spun-bonded nonwoven fabric and method for producing molded body using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210008477A1 (en) * 2018-03-23 2021-01-14 Toyobo Co., Ltd. Long-fiber nonwoven fabric and filter reinforcement material using the same
CN113966273A (en) 2019-06-17 2022-01-21 东洋纺株式会社 Molding sheet and molded article
JPWO2022097532A1 (en) * 2020-11-05 2022-05-12

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701365A (en) * 1986-05-28 1987-10-20 Asahi Kasei Kogyo Kabushiki Kaisha Formable nonwoven sheet
JP3773006B2 (en) * 1996-12-09 2006-05-10 東洋紡績株式会社 Formable nonwoven fabric and method for producing the same
JP2009256815A (en) * 2008-04-14 2009-11-05 Asahi Kasei Fibers Corp Anti-static filament nonwoven fabric
JP2011001650A (en) * 2009-06-18 2011-01-06 Toyobo Co Ltd Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP5609334B2 (en) * 2010-07-06 2014-10-22 東洋紡株式会社 Spunbond nonwoven fabric and filter using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190072A (en) * 2020-08-26 2020-11-26 東洋紡株式会社 Spun-bonded nonwoven fabric and method for producing molded body using the same
JP6992860B2 (en) 2020-08-26 2022-01-13 東洋紡株式会社 Manufacturing method of spunbonded non-woven fabric and molded body using it

Also Published As

Publication number Publication date
JP2017222951A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6790480B2 (en) Manufacturing method of spunbonded non-woven fabric and molded body using it
KR102194579B1 (en) Biodegradable nonwoven
KR100436992B1 (en) One-way stretchable nonwoven fabric and its manufacturing method
JPH0819614B2 (en) Formable non-woven sheet and method for producing the same
KR101194359B1 (en) Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
JP5603575B2 (en) Laminated nonwoven fabric
JP6668965B2 (en) Spunbonded nonwoven fabric, method for producing the same, and method for producing molded article using the same
JP6992860B2 (en) Manufacturing method of spunbonded non-woven fabric and molded body using it
JP6011253B2 (en) Thermocompression long-fiber nonwoven fabric with excellent moldability
JP4390302B2 (en) Non-woven fabric for molding having biodegradability, method for producing the same, and container-shaped product using the nonwoven fabric
US11519102B2 (en) Thermo-fusible conjugated fibers and nonwoven fabric using same
JP2000136479A (en) Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2011001650A (en) Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP2016108706A (en) Thermal molding spunbond nonwoven fabric
US11225738B2 (en) Long-fiber nonwoven fabric and filter reinforcement material using the same
TWI835071B (en) Method for manufacturing biodegradable nonwoven fabrics and molded articles
WO2023032763A1 (en) Biodegradable nonwoven fabric and use of same
JP2018204168A (en) Biodegradable long fiber non-woven fabric
JP2010018928A (en) Nonwoven fabric for heat molding and heat molding method using the same
JP7287385B2 (en) Long fiber nonwoven fabric and filter reinforcing material using the same
JP7019409B2 (en) Polyester-based long-fiber non-woven fabric, composite sound-absorbing material using this as a skin material
JP2023151063A (en) Filament nonwoven fabric and manufacturing method thereof
JPWO2020116569A1 (en) Long-fiber non-woven fabric and filter reinforcement using it
JP2019071962A (en) Biodegradable beverage-extraction container
JPS6269874A (en) Nonwoven sheet for molding process and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350