JP2016108706A - Thermal molding spunbond nonwoven fabric - Google Patents

Thermal molding spunbond nonwoven fabric Download PDF

Info

Publication number
JP2016108706A
JP2016108706A JP2014249649A JP2014249649A JP2016108706A JP 2016108706 A JP2016108706 A JP 2016108706A JP 2014249649 A JP2014249649 A JP 2014249649A JP 2014249649 A JP2014249649 A JP 2014249649A JP 2016108706 A JP2016108706 A JP 2016108706A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
spunbond nonwoven
polyethylene terephthalate
thermoforming
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014249649A
Other languages
Japanese (ja)
Inventor
坂本 浩之
Hiroyuki Sakamoto
浩之 坂本
吉田 英夫
Hideo Yoshida
英夫 吉田
慎一 峯村
Shinichi Minemura
慎一 峯村
浩康 坂口
Hiroyasu Sakaguchi
浩康 坂口
貴史 恋田
Takashi Koida
貴史 恋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2014249649A priority Critical patent/JP2016108706A/en
Publication of JP2016108706A publication Critical patent/JP2016108706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spunbond nonwoven fabric, which has high elongation rate when heated and low modulus when deformed by heating and is suitable for thermal molding.SOLUTION: A spunbond nonwoven fabric is made from polyester-based resin, which is mainly composed of polyethylene terephthalate with an inherent viscosity of 0.5 to 0.7. and no mechanical interlacing treatment is applied to the spunbond nonwoven fabric. In the spunbond nonwoven fabric for thermal molding: a fiber diameter is 12 to 25 μm; elongation rate is 250% or higher when broken after being heated at 160°C for one minute; and 200% elongation stress after being heated at 160°C for one minute is 120 N/5 cm or less when converted into 200 g/m.SELECTED DRAWING: None

Description

本発明は、熱成型性に優れたスパンボンド不織布に関するもので、低モジュラスで高伸度を有する熱成型用スパンボンド不織布に関するものである。   The present invention relates to a spunbonded nonwoven fabric excellent in thermoformability, and relates to a spunbonded nonwoven fabric for thermoforming having a low modulus and high elongation.

ポリエチレンテレフタレートスパンボンド不織布は、力学的物性が良好で、通気性・通水性もあり、多くの用途で使用されている。不織布を熱成型用途に使用する場合には、広範囲の温度範囲において深い凹凸に成型(型に追従)できること、また成型後の保型性が優れていることが求められる。ここで保型性とは成型品が外力で変型しにくいこと、形状が加熱などによって収縮・変型しないことを言う。   Polyethylene terephthalate spunbonded nonwoven fabric has good mechanical properties, air permeability and water permeability, and is used in many applications. When a nonwoven fabric is used for thermoforming, it is required that it can be molded into deep irregularities (following the mold) in a wide temperature range and that the shape retention after molding is excellent. Here, the mold retaining property means that the molded product is not easily deformed by an external force, and the shape is not contracted or deformed by heating or the like.

熱圧着タイプのスパンボンド不織布の熱成型性を向上したものとして、特許文献1にスチレン系共重合体を少量添加し、圧着条件を弱めた技術が開示されている。本技術では、熱成型時のモジュラスが低下することで型追従性が良好になるが、加熱時の伸び率は向上せず、深絞り成型には対応できないものであった。   Patent Document 1 discloses a technique in which a small amount of a styrene-based copolymer is added to weaken the pressure bonding condition as an improvement in the thermoforming property of a thermocompression bonding type spunbond nonwoven fabric. In this technique, the mold following property is improved by lowering the modulus at the time of thermoforming, but the elongation at the time of heating is not improved, and it cannot be applied to deep drawing.

特許文献2には、ニードルパンチによって不織布を構成する長繊維の一部を切断して成型性の向上させた長繊維不織布に関する技術が開示されている。しかし、構成繊維の一部を切断するため、深絞り成型や複雑な成型で変型の不均一を生じやすいという問題があった。また成型品は保型性が乏しいという問題もあった。   Patent Document 2 discloses a technique related to a long-fiber nonwoven fabric in which a part of the long fibers constituting the nonwoven fabric is cut by needle punching to improve moldability. However, since a part of the constituent fibers is cut, there is a problem in that nonuniform deformation tends to occur in deep drawing molding or complicated molding. There is also a problem that the molded product has poor shape retention.

特許文献3には、高伸度のスパンボンド不織布を得るために、ポリスチレン系ポリマー等を複合成分とした複合繊維からなるスパンボンドウェブをニードルパンチ処理やウォータージェット処理等の機械交絡処理する技術が開示されている。機械交絡した不織布は不織布表面は毛羽立ちしやすく、また不織布自身が柔軟であるために保型性に乏しいものであった。   Patent Document 3 discloses a technique for mechanically entanglement processing such as needle punch processing and water jet processing on a spunbond web composed of a composite fiber having a polystyrene-based polymer or the like as a composite component in order to obtain a highly stretched spunbond nonwoven fabric. It is disclosed. The mechanically entangled nonwoven fabric has a poor surface retention because the nonwoven fabric surface is easily fuzzed and the nonwoven fabric itself is flexible.

特許文献4には、成型性の良好なポリエステル系長繊維不織布として、固有粘度0.75のポリエチレンテレフタレートを用い、低紡糸速度のウェブをフェルトカレンダーした不織布が例示されている。この不織布は熱変型時の破断伸度は高いものの、変型時の応力が高く、フィルムと積層して真空成型する場合には十分な型追従性が得られていない問題もあった。また深絞り成型後の保型性に問題があった。   Patent Document 4 exemplifies a nonwoven fabric in which polyethylene terephthalate having an intrinsic viscosity of 0.75 is used, and a web having a low spinning speed is felt calendered as a polyester long fiber nonwoven fabric having good moldability. Although this nonwoven fabric has a high elongation at break during thermal deformation, there is also a problem that stress during deformation is high and sufficient mold followability is not obtained when it is laminated with a film and vacuum formed. There was also a problem in mold retention after deep drawing.

特開2014−91875号公報JP 2014-91875 A 特開昭51−40475号公報Japanese Patent Laid-Open No. 51-40475 特開平11−302959号公報Japanese Patent Laid-Open No. 11-302959 特開昭63−120154号公報Japanese Unexamined Patent Publication No. Sho 63-120154

本発明は上記従来技術の課題を背景になされたもので、加熱時の伸び率が高く、加熱変型時のモジュラスが低い、熱成型用に好適なスパンボンド不織布を得ることを課題とするものである。   The present invention has been made against the background of the above-described prior art, and it is an object of the present invention to obtain a spunbonded nonwoven fabric suitable for thermoforming that has a high elongation rate during heating and a low modulus during heating deformation. is there.

本発明者らは上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに至った。すなわち本発明は以下の通りである。
1.主たる組成が固有粘度0.5〜0.7のポリエチレンテレフタレートであるポリエステル系樹脂からなる機械的交絡処理が施されていないスパンボンド不織布であって、繊維径が12〜25μm、160℃1分加熱後の破断時の伸び率が250%以上、160℃1分加熱後の200%伸張時応力が200g/m換算で120N/5cm以下である熱成型用スパンボンド不織布。
2.ポリエステル系樹脂が、前記ポリエチレンテレフタレートに、軟化点が100〜160℃のポリエチレンテレフタレートに非相溶な熱可塑性ポリスチレン系共重合体を0.05〜5重量%混合した樹脂である上記1に記載の熱成型用スパンボンド不織布。
3.スパンボンド不織布の少なくとも片面が平滑で、耐磨耗等級が3級以上である上記1または2に記載の熱成型用スパンボンド不織布。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A spunbonded non-woven fabric made of a polyester-based resin whose main composition is polyethylene terephthalate having an intrinsic viscosity of 0.5 to 0.7, which has not been mechanically entangled, and has a fiber diameter of 12 to 25 μm and heated at 160 ° C. for 1 minute A spunbonded nonwoven fabric for thermoforming having an elongation at break of 250% or more and a stress at 200% elongation after heating at 160 ° C. for 1 minute of 120 N / 5 cm or less in terms of 200 g / m 2 .
2. 2. The polyester resin as described in 1 above, wherein the polyethylene terephthalate is a resin obtained by mixing 0.05 to 5% by weight of a thermoplastic polystyrene copolymer incompatible with polyethylene terephthalate having a softening point of 100 to 160 ° C. Spunbond nonwoven fabric for thermoforming.
3. 3. The spunbond nonwoven fabric for thermoforming as described in 1 or 2 above, wherein at least one side of the spunbond nonwoven fabric is smooth and the abrasion resistance grade is 3 or more.

本発明は、(1)加熱時の伸び率が高く、深絞り成型や複雑な成型に対応できる、(2)全面を熱圧着しているため、耐磨耗性が高く、平滑で印刷特性に優れる、(3)機械交絡処理した長繊維不織布や短繊維不織布と比較し、保型性にも優れる、(4)加熱変型時のモジュラスが低いために、熱変型後に再加熱しても保型性に優れる、(5)加熱変型時のモジュラスが低いために、成型圧力や成型温度を低く設定でき、省エネルギーにも貢献できる、(6)成型温度を低く設定することで、成型後の冷却時間が短時間化でき、成型サイクル時間を短縮化させ、生産性にも寄与できる、等の効果を有した熱成型用途に適したスパンボンド不織布を得ることが可能となるものである。   The present invention (1) has a high elongation rate when heated, and can cope with deep drawing molding and complicated molding. (2) Since the entire surface is thermocompression bonded, it has high wear resistance, smoothness and printing characteristics. Excellent, (3) Excellent shape retention compared to mechanically entangled long fiber nonwoven fabrics and short fiber nonwoven fabrics, (4) Low modulus at the time of heat deformation, so it can retain shape even after reheating after heat deformation (5) Since the modulus during heating deformation is low, the molding pressure and molding temperature can be set low, contributing to energy saving. (6) Cooling time after molding by setting the molding temperature low Therefore, it is possible to obtain a spunbonded nonwoven fabric suitable for thermoforming applications having effects such as shortening the molding time, shortening the molding cycle time, and contributing to productivity.

以下、本発明を詳細に説明する。
本発明のスパンボンド長繊維不織布は、機械的交絡処理がされていない全面圧着スパンボンド不織布である。不織布が長繊維で構成されることにより、熱変型時に各繊維の変型が不織布全体に影響する。不織布が短繊維で構成される場合、各繊維同士のすべりにより、局所的な変型となり、成型後の保型性が得られない。
機械的交絡処理されたスパンボンド不織布の場合は、不織布表面が毛羽立つため耐磨耗性に乏しく、表面が平滑でなく印刷特性に劣る。さらに不織布が柔軟であり熱成型後の保型性に劣る。
ここで言う全面圧着とは、サクションネットで捕集したウェブを加熱ロールとシート状体で圧力をかけてシート全面をプレス処理するものであって、フラットロールと彫刻ロールや彫刻ロール同士による部分圧着とは異なる概念である。全面圧着する方法としては、フェルトカレンダー、ゴムベルトカレンダー、スチールベルトカレンダーなどが利用できる。全面圧着の場合、各繊維はシート全面で固定化されており、熱変型時の応力が全面に伝達され、不織布の変型が全面に影響する。部分圧着の場合、繊維は部分的に固定化されており、圧着部分に変型時の応力が集中して、高い伸び率が得られない。また部分的に熱圧着部分が存在するので表面が平滑ではなく、印刷特性に劣る。さらに本発明では、構成する繊維が低配向であり、収縮しやすいため、エンボス加工や一対のフラットロールからなるカレンダー加工では、幅入りや皺などの問題が生じる。前述したフェルトカレンダー、ゴムベルトカレンダー、スチールベルトカレンダーは金属ロールと他部材が面として接しており、ウェブを拘束した状態で熱処理するため、前記問題が解決される。また、片側が金属ロールと接しているために、熱処理後の不織布の片面は平滑であり、高い耐磨耗性や印刷特性を有するものとなる。
Hereinafter, the present invention will be described in detail.
The spunbond long fiber nonwoven fabric of the present invention is a full-surface pressure-bonded spunbond nonwoven fabric that is not mechanically entangled. When the nonwoven fabric is composed of long fibers, the deformation of each fiber affects the entire nonwoven fabric during thermal deformation. When a nonwoven fabric is comprised with a short fiber, it becomes a local deformation | transformation by sliding of each fiber, and the shape-retaining property after shaping | molding cannot be obtained.
In the case of a spunbond nonwoven fabric that has been mechanically entangled, the surface of the nonwoven fabric is fluffy, so that the abrasion resistance is poor, the surface is not smooth, and the printing properties are poor. Furthermore, the nonwoven fabric is flexible and inferior in shape retention after thermoforming.
Here, full-surface crimping refers to pressing the entire surface of a sheet by applying pressure to the web collected by a suction net with a heating roll and a sheet-like body. Partial crimping between a flat roll and an engraving roll or engraving rolls It is a different concept. Felt calenders, rubber belt calenders, steel belt calenders, etc. can be used as a method for crimping the entire surface. In the case of full-surface pressure bonding, each fiber is fixed on the entire surface of the sheet, the stress at the time of thermal deformation is transmitted to the entire surface, and the deformation of the nonwoven fabric affects the entire surface. In the case of partial crimping, the fibers are partially fixed, and stress at the time of deformation is concentrated on the crimped portion, so that high elongation cannot be obtained. Moreover, since the thermocompression bonding part is partially present, the surface is not smooth and the printing characteristics are poor. Furthermore, in the present invention, since the constituent fibers are low-oriented and easily contract, problems such as embedding and wrinkles arise in the embossing and calendering consisting of a pair of flat rolls. In the above-described felt calender, rubber belt calender, and steel belt calender, the metal roll and other members are in contact with each other as a surface, and the heat treatment is performed with the web constrained. Further, since one side is in contact with the metal roll, one side of the nonwoven fabric after the heat treatment is smooth, and has high wear resistance and printing characteristics.

本発明のスパンボンド不織布を構成する繊維の素材としては、ポリエチレンテレフタレートを主原料としたポリエステル系樹脂である。ポリエチレンやポリプロピレンなどポリオレフィン系樹脂は、ポリエステル系樹脂に比べ耐熱性、保型性に乏しい。ポリエチレンテレフタレートの固有粘度は、0.50〜0.70であり、0.55〜0.65が好ましい。固有粘度が0.50未満の場合、樹脂が熱劣化しやすくスパンボンド不織布の耐久性が悪くなる。固有粘度が0.70を超えると、スパンボンド不織布の熱変型時の応力が高くなり、熱成型特性に劣る。   The material of the fibers constituting the spunbonded nonwoven fabric of the present invention is a polyester resin mainly composed of polyethylene terephthalate. Polyolefin resins such as polyethylene and polypropylene have poor heat resistance and shape retention compared to polyester resins. The intrinsic viscosity of polyethylene terephthalate is 0.50 to 0.70, preferably 0.55 to 0.65. When the intrinsic viscosity is less than 0.50, the resin is easily deteriorated by heat, and the durability of the spunbonded nonwoven fabric is deteriorated. When the intrinsic viscosity exceeds 0.70, the stress at the time of thermal deformation of the spunbonded nonwoven fabric becomes high and the thermoforming properties are inferior.

本発明のポリエステル系樹脂としては、前記ポリエチレンテレフタレートに対して、軟化点が100〜160℃のポリエチレンテレフタレートに非相溶な熱可塑性ポリスチレン系共重合体を0.05〜5%重量混合した樹脂を使用することも好ましい。熱可塑性ポリスチレン系共重合体としては、スチレン・マレイン酸共重合体やスチレン・メタクリル酸メチル・無水マレイン酸共重合体が好ましい。ポリエチレンテレフタレートに非相溶で、軟化点が100〜160℃であることから、ポリエチレンテレフタレートが紡糸時に冷却する際、熱可塑性ポリスチレン系共重合体が固化することでポリエチレンテレフタレート分子鎖の配向結晶化を抑制し、複屈折率の低い繊維が得られる。得られた繊維は低温での圧着が可能となり、不織布製造時の搬送性が向上する。熱可塑性ポリスチレン系共重合体の添加率が0.05重量%未満の場合、添加の効果が得られない。添加率が5重量%を超えると、ポリエチレンテレフタレートとの樹脂の延伸性の違いにより、繊維が破断し、操業性を悪化させる。   As the polyester resin of the present invention, a resin in which 0.05 to 5% by weight of a thermoplastic polystyrene copolymer incompatible with polyethylene terephthalate having a softening point of 100 to 160 ° C. is mixed with the polyethylene terephthalate. It is also preferable to use it. As the thermoplastic polystyrene copolymer, styrene / maleic acid copolymer and styrene / methyl methacrylate / maleic anhydride copolymer are preferable. Since it is incompatible with polyethylene terephthalate and has a softening point of 100 to 160 ° C., when the polyethylene terephthalate cools during spinning, the thermoplastic polystyrene copolymer is solidified to cause oriented crystallization of polyethylene terephthalate molecular chains. Suppression and low birefringence fiber are obtained. The obtained fiber can be pressure-bonded at a low temperature, and the transportability during the production of the nonwoven fabric is improved. When the addition ratio of the thermoplastic polystyrene copolymer is less than 0.05% by weight, the effect of addition cannot be obtained. When the addition ratio exceeds 5% by weight, the fiber breaks due to the difference in stretchability of the resin from polyethylene terephthalate, and the operability is deteriorated.

本発明のポリエステル系樹脂には、物性の低下に影響を及ぼさない程度に、必要に応じて、抗酸化剤、耐光剤、着色剤、抗菌剤、難燃剤などの改質剤を添加できる。   If necessary, modifiers such as antioxidants, light proofing agents, colorants, antibacterial agents, and flame retardants can be added to the polyester-based resin of the present invention to such an extent that the deterioration of physical properties is not affected.

本発明のスパンボンド不織布を構成する長繊維の繊維径は、12〜25μmであり、好ましくは14〜20μmである。繊維径が12μm未満の場合、スパンボンド不織布の変型時に繊維径が細くなり、保型性が乏しくなる。繊維径が25μmを超える場合、スパンボンド不織布の繊維間隙が大きくなるため通気性・通液性が高くなりすぎて用途範囲が制限される。   The fiber diameter of the long fibers constituting the spunbonded nonwoven fabric of the present invention is 12 to 25 μm, preferably 14 to 20 μm. When the fiber diameter is less than 12 μm, the fiber diameter becomes thin when the spunbonded nonwoven fabric is deformed, resulting in poor shape retention. When the fiber diameter exceeds 25 μm, the fiber gap of the spunbonded nonwoven fabric becomes large, so that the air permeability and liquid permeability become too high and the application range is limited.

本発明のスパンボンド不織布は、熱処理前の複屈折率が0.02以下の長繊維を熱圧着工程で一体化された不織布である。熱処理前の長繊維の複屈折率が0.02を超える場合、熱圧着工程での一体化が弱く、低応力で破断し、熱成型時の伸び率が低くなってしまう。複屈折率の低い繊維を得る方法としては、繊維の素材であるポリエチレンテレフタレートに熱可塑性ポリスチレン系共重合体を添加する方法やスパンボンド不織布製造時の牽引エアー速度を低下させる方法等がある。熱処理工程を経た長繊維の複屈折率は0.10以下が好ましく、0.07以下がより好ましい。熱処理工程を経た長繊維の複屈折率が0.10を超えると熱時成型性に劣るものとなる。   The spunbonded nonwoven fabric of the present invention is a nonwoven fabric in which long fibers having a birefringence index of 0.02 or less before heat treatment are integrated in a thermocompression bonding process. When the birefringence of the long fiber before heat treatment exceeds 0.02, the integration in the thermocompression bonding process is weak, it breaks at a low stress, and the elongation at the time of thermoforming becomes low. As a method for obtaining a fiber having a low birefringence, there are a method of adding a thermoplastic polystyrene copolymer to polyethylene terephthalate which is a fiber material, a method of reducing a traction air speed at the time of producing a spunbonded nonwoven fabric, and the like. The birefringence of the long fiber that has undergone the heat treatment step is preferably 0.10 or less, and more preferably 0.07 or less. If the birefringence of the long fiber that has undergone the heat treatment step exceeds 0.10, the hot moldability is poor.

本発明のスパンボンド不織布の少なくとも片面は平滑であり、その平滑面は耐磨耗を有していることが必要である。耐磨耗性については、大栄科学精器製作所製「学振型染色物摩擦堅牢度試験機」を用いて、不織布を試料とし、摩擦布は金巾3号を使用して、荷重500gfを使用、摩擦回数100往復にて摩擦させ、不織布表面の毛羽立ち、磨耗状態を目視判定で等級評価した。耐磨耗性は3級以上が好ましく、4級以上がより好ましい。耐磨耗性が3級未満の場合、工程通過時や製品取り扱い時に毛羽立ちし、工程通過性を阻害したり、印刷特性を低下させたり、品位の低下につながる。   At least one surface of the spunbonded nonwoven fabric of the present invention is smooth, and the smooth surface needs to have wear resistance. As for the wear resistance, a non-woven fabric was used as a sample using a “Gakushin dyeing friction fastness tester” manufactured by Daiei Kagaku Seiki Seisakusho. The friction fabric used was a gold width No. 3 and a load of 500 gf was used. Friction was performed at 100 reciprocations, and the fluffing and abrasion state of the nonwoven fabric surface was rated by visual judgment. Abrasion resistance is preferably 3 or higher, more preferably 4 or higher. When the abrasion resistance is less than the third grade, fluffing occurs when passing through the process or handling the product, thereby impairing the process passability, reducing the printing characteristics, or lowering the quality.

不織布の熱成型特性として、160℃、1分加熱後の破断時の伸び率が250%以上あり、160℃、1分加熱時後の200%伸張時応力が200g/m2換算で120N/5cm以下であることが必要である。160℃、1分加熱時後の破断時の伸び率が250%未満の場合、深絞り成型や複雑な成型加工に追従できない場合が生じる。160℃、1分加熱後の200%伸張時応力が200g/m2換算で120N/5cmを超える場合、成型加工に必要とする圧力や温度を高く設定する必要があり、加工サイクルタイムが長くなり、省エネに反する。また、熱変型時の応力履歴が再加熱されたときに収縮力として発現するため、熱変型時応力が高いものは保型性に劣るものとなる。 As the thermoforming characteristics of the nonwoven fabric, the elongation at break after heating at 160 ° C. for 1 minute is 250% or more, and the stress at 200% elongation after heating at 160 ° C. for 1 minute is 120 N / 5 cm in terms of 200 g / m 2. It is necessary that: If the elongation at break after heating at 160 ° C. for 1 minute is less than 250%, it may not be possible to follow deep drawing or complicated molding. When the stress at 200% elongation after heating at 160 ° C for 1 minute exceeds 120 N / 5 cm in terms of 200 g / m 2 , it is necessary to set the pressure and temperature required for the molding process high, and the processing cycle time becomes long. Contrary to energy saving. Moreover, since the stress history at the time of thermal deformation is expressed as a contraction force when reheated, those having a high thermal deformation stress are inferior in shape retention.

以下に本発明の実施例を示す。本発明は実施例に限定されるものではない。
次に実施例および比較例を用いて、本発明を具体的に説明するが実施例および比較例中の物性値は以下の方法で測定した。
Examples of the present invention are shown below. The present invention is not limited to the examples.
Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but physical property values in Examples and Comparative Examples were measured by the following methods.

<固有粘度>
ポリエチレンテレフタレート樹脂0.1gを秤量し、25mlのフェノール/テトラクロロエタン=60/40(質量比)の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で3回測定し、その平均値を求めた。
<Intrinsic viscosity>
0.1 g of polyethylene terephthalate resin is weighed and dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane = 60/40 (mass ratio), measured three times at 30 ° C. using an Ostwald viscometer, and the average value is obtained. It was.

<目付>
JIS L1913 単位面積当たりの質量に準じて測定した。
<Unit weight>
Measured according to JIS L1913 mass per unit area.

<繊維径>
試料の任意の場所5点を選び、光学顕微鏡を用いて単繊維の径をn=20で測定し、平均値を求めた。
<Fiber diameter>
Five arbitrary points of the sample were selected, the diameter of the single fiber was measured at n = 20 using an optical microscope, and the average value was obtained.

<複屈折率>
試料の任意の場所20点を選択し、不織布から単繊維を取り出し、ニコン偏光顕微鏡OPTIPHOT−POL型を用いて、繊維径とレターゼーションを読み取り、複屈折率を求めた。
<Birefractive index>
20 arbitrary locations of the sample were selected, single fibers were taken out from the nonwoven fabric, and the fiber diameter and the retardation were read using a Nikon polarizing microscope OPTIPHOT-POL type to obtain the birefringence.

<160℃1分加熱後の破断時の伸び率および200%伸長時応力>
試料幅5cm、試料長20cmの試料片をたて方向および横方向に5枚切り出し、チャック間距離5cmで試料片をセットし、160℃に加熱した炉に投入、1分経過後に、加熱炉内にて引張り速度10cm/minで変型に対する歪−応力曲線を得た。破断時の伸び率および200%伸長時の応力を読み取った。各5点の平均値を測定値とした。
<Elongation at break after heating at 160 ° C. for 1 minute and stress at 200% elongation>
5 pieces of sample pieces with a sample width of 5 cm and a sample length of 20 cm are cut out vertically and laterally, set with a distance of 5 cm between the chucks, put into a furnace heated to 160 ° C., and after 1 minute has passed, The strain-stress curve for the deformation was obtained at a tension rate of 10 cm / min. The elongation at break and the stress at 200% elongation were read. The average value of each 5 points was taken as the measured value.

<耐磨耗等級>
大栄科学精器製作所製「学振型染色物摩擦堅牢度試験機」を用いて、不織布を試料とし、摩擦布は金巾3号を使用して、荷重500gfを使用、摩擦回数100往復にて摩擦させ、不織布表面の毛羽立ち、磨耗状態を下記の基準で目視判定で評価した(n=5の平均値)。
0級:損傷大、1級:損傷中、2級:損傷小、3級:損傷なし、毛羽発生あり小、4級:損傷なし、毛羽発生微小、5級:損傷なし、毛羽なし
<Wear resistance class>
Using “Gakushin dyeing friction fastness tester” manufactured by Daiei Kagaku Seiki Seisakusho, using non-woven fabric as a sample, friction cloth using gold width No. 3, using a load of 500 gf, and friction with 100 reciprocations Then, the surface of the nonwoven fabric was evaluated for fluffing and abrasion by the following criteria (average value of n = 5).
Grade 0: Large damage, Grade 1: Damaged, Grade 2: Small damage, Grade 3: No damage, small fluff generation, Grade 4: No damage, fine fluff generation, Grade 5: No damage, no fluff

<成型性評価1>
先端が半丸形状の直径25mmの円柱状成型体および不織布を160℃、1分間加熱し、変型速度20mm/minの条件で15mm変型させる。変型時に不織布の破れがあったものを×、破れなかったものを○と判断した。
<Moldability evaluation 1>
A cylindrical molded body having a semicircular tip shape of 25 mm in diameter and a non-woven fabric are heated at 160 ° C. for 1 minute and deformed by 15 mm under the condition of a deformation speed of 20 mm / min. The case where the nonwoven fabric was torn at the time of deformation was judged as x, and the case where it was not torn was judged as ○.

<成型性評価2>
500℃に加熱した赤外線ヒーターで不織布を10秒加熱し、常温の金型で真空成型を行った。金型形状はカップ型で、開口部は直径50mm、底面部は40mmで、深さが50mmであり、すべてのコーナーは直径0.5mmの湾曲をつけたものを用いた。成型品に破れがなく、角の湾曲半径が1mm以下のものを○、成型品に破れがなく、角の湾曲半径が1mmを越えるものを△、成型品に破れがあるものを×と判断した。
<Formability evaluation 2>
The nonwoven fabric was heated for 10 seconds with an infrared heater heated to 500 ° C., and vacuum molded with a normal temperature mold. The mold was cup-shaped, the opening was 50 mm in diameter, the bottom was 40 mm, the depth was 50 mm, and all corners were curved with a diameter of 0.5 mm. The case where the molded product was not torn and the corner radius of curvature was 1 mm or less was evaluated as ◯, the shape of the molded product was not torn and the corner radius of curvature exceeded 1 mm was evaluated as △, and the shape of the molded product was evaluated as ×. .

<保型性>
成型性評価1で得られた成型品に熱湯をかけたときに、形状を保持したものを○、形状を保持しなかったものを×と判断した。
<Shape retention>
When hot water was applied to the molded product obtained in the moldability evaluation 1, it was judged that the shape was retained and that the shape was not retained was evaluated as x.

(実施例1)
スパンボンド紡糸設備を用い、固有粘度0.63のポリエチレンテレフタレート(以下、「PET」という)を、オリフィス径0.23mmの紡糸口金より単孔吐出量0.9g/minで紡出し、エジェクタに1.0kg/cmの圧力で乾燥エアを供給し、1段階で延伸させ、下方のコンベア上へ繊維を開繊させつつ捕集し長繊維フリースを得た。得られた長繊維フリースの繊維径は19.4μm、複屈折率は0.019、換算した紡糸速度は2217m/minであった。
その後、温度80℃で仮圧着し、145℃×8.4m/minの条件でフェルトカレンダー加工を実施した。得られたスパンボンド不織布の物性を表1に示す。
Example 1
Using a spunbond spinning facility, polyethylene terephthalate (hereinafter referred to as “PET”) having an intrinsic viscosity of 0.63 is spun from a spinneret having an orifice diameter of 0.23 mm at a single hole discharge rate of 0.9 g / min. Dry air was supplied at a pressure of 0.0 kg / cm 2 , drawn in one stage, and collected while opening the fibers on the lower conveyor to obtain a long fiber fleece. The resulting long fiber fleece had a fiber diameter of 19.4 μm, a birefringence of 0.019, and a converted spinning speed of 2217 m / min.
Then, it was temporarily press-bonded at a temperature of 80 ° C., and felt calendering was performed under the condition of 145 ° C. × 8.4 m / min. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(実施例2)
添加剤としてスチレン・メタクリル酸メチル・無水マレイン酸共重合体(Rohm GmbH&Co.KGのPLEXIGLAS HW55(以下、「HW55」という))を0.4%添加したPETを用いること以外は実施例1に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は19.3μm、複屈折率は0.019、換算した紡糸速度は2234m/minであった。
その後の加工条件は実施例1記載の条件で実施した。得られたスパンボンド不織布の物性を表1に示す。
(Example 2)
As described in Example 1, except that 0.4% of styrene / methyl methacrylate / maleic anhydride copolymer (Plexiglas HW55 (hereinafter referred to as “HW55”) of Rohm GmbH & Co. KG) is used as an additive. A long fiber fleece was obtained under the following conditions. The resulting long fiber fleece had a fiber diameter of 19.3 μm, a birefringence of 0.019, and a converted spinning speed of 2234 m / min.
The subsequent processing conditions were the same as those described in Example 1. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(実施例3)
エジェクター圧0.6kg/cm2、その他の条件は実施例2に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は22.3μm、複屈折率は0.011、換算した紡糸速度は1700m/minであった。
その後の加工条件は実施例1記載の条件で実施した。得られたスパンボンド不織布の物性を表1に示す。
(Example 3)
An ejector pressure of 0.6 kg / cm 2 and other conditions were as described in Example 2 to obtain a long fiber fleece. The resulting long fiber fleece had a fiber diameter of 22.3 μm, a birefringence of 0.011, and a converted spinning speed of 1700 m / min.
The subsequent processing conditions were the same as those described in Example 1. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(比較例1)
エジェクター圧1.5kg/cm2、その他の条件は実施例1に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は16.9μm、複屈折率は0.029、換算した紡糸速度は3415m/minであった。
その後の加工条件は実施例1記載の条件で実施した。得られたスパンボンド不織布の物性を表1に示す。
(Comparative Example 1)
An ejector pressure of 1.5 kg / cm 2 and other conditions were as described in Example 1 to obtain a long fiber fleece. The resulting long fiber fleece had a fiber diameter of 16.9 μm, a birefringence of 0.029, and a converted spinning speed of 3415 m / min.
The subsequent processing conditions were the same as those described in Example 1. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(比較例2)
単孔吐出量1.2g/min、エジェクター圧1.5kg/cm2、その他の条件は実施例2に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は18.0μm、複屈折率は0.033、換算した紡糸速度は3400m/minであった。
その後の加工条件は実施例1記載の条件で実施した。得られたスパンボンド不織布の物性を表1に示す。
(Comparative Example 2)
A single fiber discharge rate of 1.2 g / min, an ejector pressure of 1.5 kg / cm 2 , and other conditions were obtained under the conditions described in Example 2 to obtain a long fiber fleece. The resulting long fiber fleece had a fiber diameter of 18.0 μm, a birefringence of 0.033, and a converted spinning speed of 3400 m / min.
The subsequent processing conditions were the same as those described in Example 1. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(比較例3)
固有粘度0.75のPETを使用し、その他の条件は実施例1に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は20.6μm、複屈折率は0.018、換算した紡糸速度は2000m/minであった。
その後の加工条件は実施例1記載の条件で実施した。得られたスパンボンド不織布の物性を表1に示す。
(Comparative Example 3)
A long fiber fleece was obtained under the conditions described in Example 1 using PET having an intrinsic viscosity of 0.75. The long fiber fleece obtained had a fiber diameter of 20.6 μm, a birefringence of 0.018, and a converted spinning speed of 2000 m / min.
The subsequent processing conditions were the same as those described in Example 1. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

(比較例4)
単孔吐出量を1.12g/min、エジェクター圧力を3.5kg/cm、その他の条件は実施例2に記載の条件で長繊維フリースを得た。得られた長繊維フリースの繊維径は15.3μm、複屈折率は0.090、換算した紡糸速度は4500m/minであった。
その後、1対の金属フラットロールと圧着面積率12%の横楕円エンボスローラーにて、加熱温度として240℃にて、線圧120kN/mにてエンボス加工して、目付200g/m2の不織布を得た。得られたスパンボンド不織布の物性を表1に示す。
(Comparative Example 4)
A single fiber discharge rate was 1.12 g / min, an ejector pressure was 3.5 kg / cm 2 , and other conditions were as described in Example 2 to obtain a long fiber fleece. The resulting long fiber fleece had a fiber diameter of 15.3 μm, a birefringence of 0.090, and a converted spinning speed of 4500 m / min.
After that, embossing with a pair of metal flat rolls and a horizontal elliptical embossing roller with a crimp area ratio of 12% at a heating temperature of 240 ° C. and a linear pressure of 120 kN / m, a nonwoven fabric with a basis weight of 200 g / m 2 was obtained. Obtained. Table 1 shows the physical properties of the obtained spunbonded nonwoven fabric.

本発明によると、(1)加熱時の伸び率が高く、深絞り成型や複雑な成型に対応できる、(2)全面を熱圧着しているため、耐磨耗性が高く、平滑で印刷特性に優れる、(3)機械交絡処理した長繊維不織布や短繊維不織布と比較し、保型性にも優れる、(4)加熱変型時のモジュラスが低いために、熱変型後に再加熱しても保型性に優れる、(5)加熱変型時のモジュラスが低いために、成型圧力や成型温度を低く設定でき、省エネルギーにも貢献できる、(6)成型温度を低く設定することで、成型後の冷却時間が短時間化でき、成型サイクル時間を短縮化させ、生産性にも寄与できる、等の効果を有した熱成型用途に適したスパンボンド不織布を得ることが可能となり、産業界への寄与大である。   According to the present invention, (1) high elongation rate when heated, which can cope with deep drawing molding and complicated molding, (2) since the entire surface is thermocompression bonded, the wear resistance is high, smooth and printing characteristics (3) Excellent shape retention compared to mechanically entangled long fiber nonwoven fabrics and short fiber nonwoven fabrics. (4) Because of low modulus at the time of heat deformation, it is retained even after reheating after heat deformation. Excellent moldability, (5) Low modulus during heating deformation, so molding pressure and molding temperature can be set low, contributing to energy saving. (6) Cooling after molding by setting the molding temperature low It is possible to obtain a spunbond nonwoven fabric suitable for thermoforming applications that can shorten the time, shorten the molding cycle time, contribute to productivity, etc., and contribute greatly to the industry It is.

Claims (3)

主たる組成が固有粘度0.5〜0.7のポリエチレンテレフタレートであるポリエステル系樹脂からなる機械的交絡処理が施されていないスパンボンド不織布であって、繊維径が12〜25μm、160℃1分加熱後の破断時の伸び率が250%以上、160℃1分加熱後の200%伸張時応力が200g/m換算で120N/5cm以下である熱成型用スパンボンド不織布。 A spunbonded non-woven fabric made of a polyester-based resin whose main composition is polyethylene terephthalate having an intrinsic viscosity of 0.5 to 0.7, which has not been mechanically entangled, and has a fiber diameter of 12 to 25 μm and heated at 160 ° C. for 1 minute A spunbonded nonwoven fabric for thermoforming having an elongation at break of 250% or more and a stress at 200% elongation after heating at 160 ° C. for 1 minute of 120 N / 5 cm or less in terms of 200 g / m 2 . ポリエステル系樹脂が、前記ポリエチレンテレフタレートに、軟化点が100〜160℃のポリエチレンテレフタレートに非相溶な熱可塑性ポリスチレン系共重合体を0.05〜5重量%混合した樹脂である請求項1に記載の熱成型用スパンボンド不織布。   2. The resin according to claim 1, wherein the polyester resin is a resin obtained by mixing 0.05 to 5 wt% of a thermoplastic polystyrene copolymer incompatible with polyethylene terephthalate having a softening point of 100 to 160 ° C. into the polyethylene terephthalate. Spunbond nonwoven fabric for thermoforming. スパンボンド不織布の少なくとも片面が平滑で、耐磨耗等級が3級以上である請求項1または2に記載の熱成型用スパンボンド不織布。   The spunbond nonwoven fabric for thermoforming according to claim 1 or 2, wherein at least one side of the spunbond nonwoven fabric is smooth and the wear resistance grade is 3 or more.
JP2014249649A 2014-12-10 2014-12-10 Thermal molding spunbond nonwoven fabric Pending JP2016108706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249649A JP2016108706A (en) 2014-12-10 2014-12-10 Thermal molding spunbond nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249649A JP2016108706A (en) 2014-12-10 2014-12-10 Thermal molding spunbond nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2016108706A true JP2016108706A (en) 2016-06-20

Family

ID=56123462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249649A Pending JP2016108706A (en) 2014-12-10 2014-12-10 Thermal molding spunbond nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2016108706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097532A1 (en) * 2020-11-05 2022-05-12 東洋紡株式会社 Filter and method for forming filter
US20220250303A1 (en) * 2019-06-17 2022-08-11 Toyobo Co., Ltd. Sheet for molding and molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701365A (en) * 1986-05-28 1987-10-20 Asahi Kasei Kogyo Kabushiki Kaisha Formable nonwoven sheet
JPH10226952A (en) * 1996-12-09 1998-08-25 Toyobo Co Ltd Forming nonwoven fabric and its production
JP2000160431A (en) * 1998-12-01 2000-06-13 Teijin Ltd High elongation polyester filament yarn
JP2008214766A (en) * 2007-02-21 2008-09-18 Asahi Kasei Fibers Corp High elongation nonwoven fabric and surface material using the same
JP2011001650A (en) * 2009-06-18 2011-01-06 Toyobo Co Ltd Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP2011231446A (en) * 2010-04-09 2011-11-17 Toyobo Co Ltd Filament nonwoven fabric with excellent flexibility,abrasion resistance and heat sealability
JP2012017529A (en) * 2010-07-06 2012-01-26 Toyobo Co Ltd Spun-bonded nonwoven fabric and filter using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701365A (en) * 1986-05-28 1987-10-20 Asahi Kasei Kogyo Kabushiki Kaisha Formable nonwoven sheet
JPH08291457A (en) * 1986-05-28 1996-11-05 Asahi Chem Ind Co Ltd Moldable nonwoven sheet and its production
JPH10226952A (en) * 1996-12-09 1998-08-25 Toyobo Co Ltd Forming nonwoven fabric and its production
JP2000160431A (en) * 1998-12-01 2000-06-13 Teijin Ltd High elongation polyester filament yarn
JP2008214766A (en) * 2007-02-21 2008-09-18 Asahi Kasei Fibers Corp High elongation nonwoven fabric and surface material using the same
JP2011001650A (en) * 2009-06-18 2011-01-06 Toyobo Co Ltd Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP2011231446A (en) * 2010-04-09 2011-11-17 Toyobo Co Ltd Filament nonwoven fabric with excellent flexibility,abrasion resistance and heat sealability
JP2012017529A (en) * 2010-07-06 2012-01-26 Toyobo Co Ltd Spun-bonded nonwoven fabric and filter using the same
CN102985608A (en) * 2010-07-06 2013-03-20 东洋纺株式会社 Spunbonded nonwoven fabric and filter using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250303A1 (en) * 2019-06-17 2022-08-11 Toyobo Co., Ltd. Sheet for molding and molded article
EP3984737A4 (en) * 2019-06-17 2023-06-28 Toyobo Co., Ltd. Sheet for molding and molded article
WO2022097532A1 (en) * 2020-11-05 2022-05-12 東洋紡株式会社 Filter and method for forming filter

Similar Documents

Publication Publication Date Title
KR102302375B1 (en) Melt-blown nonwoven fabric and method for manufacturing same
JP5867400B2 (en) Polyphenylene sulfide fiber and nonwoven fabric
JP6790480B2 (en) Manufacturing method of spunbonded non-woven fabric and molded body using it
WO2011070999A1 (en) Method for producing long fiber nonwoven fabric
KR102395895B1 (en) Biodegradable composite fiber and non-woven fabric including the same
JP6668965B2 (en) Spunbonded nonwoven fabric, method for producing the same, and method for producing molded article using the same
JP2016108706A (en) Thermal molding spunbond nonwoven fabric
CN111655919A (en) Spun-bonded non-woven fabric
JP6992860B2 (en) Manufacturing method of spunbonded non-woven fabric and molded body using it
US11519102B2 (en) Thermo-fusible conjugated fibers and nonwoven fabric using same
JP5486331B2 (en) Biodegradable non-woven fabric
JPWO2018225671A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using the same
JP2010018928A (en) Nonwoven fabric for heat molding and heat molding method using the same
JP2007297723A (en) Formable filament nonwoven fabric
JP2018204168A (en) Biodegradable long fiber non-woven fabric
JP2023151063A (en) Filament nonwoven fabric and manufacturing method thereof
JP7019409B2 (en) Polyester-based long-fiber non-woven fabric, composite sound-absorbing material using this as a skin material
JP2023136326A (en) Spun-bonded nonwoven fabric and interfacing fusible made thereof
KR100823112B1 (en) Spunbonded non-woven fabric for dryer sheet and preparation thereof
JP2023097053A (en) Spun-bonded nonwoven fabric, sheet for skin material, and skin material
JP2023144934A (en) Long fiber nonwoven fabric, and production method of long fiber nonwoven fabric
JPH02154053A (en) Production of continuous filament nonwoven fabric for sanitary purpose
KR20140042364A (en) Spunbond nonwoven fabric and method for manufacturing the same
JP2023554424A (en) Non-woven fabrics, carpets and their manufacturing methods
KR20160080563A (en) manufacturing method of nonwoven for carpet backing with improved forming property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190423