JP6787736B2 - Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material - Google Patents

Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material Download PDF

Info

Publication number
JP6787736B2
JP6787736B2 JP2016193049A JP2016193049A JP6787736B2 JP 6787736 B2 JP6787736 B2 JP 6787736B2 JP 2016193049 A JP2016193049 A JP 2016193049A JP 2016193049 A JP2016193049 A JP 2016193049A JP 6787736 B2 JP6787736 B2 JP 6787736B2
Authority
JP
Japan
Prior art keywords
fiber
resin
molded product
thermoplastic resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016193049A
Other languages
Japanese (ja)
Other versions
JP2018052037A (en
Inventor
光永 正樹
正樹 光永
横溝 穂高
穂高 横溝
秀治 小池
秀治 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2016193049A priority Critical patent/JP6787736B2/en
Publication of JP2018052037A publication Critical patent/JP2018052037A/en
Application granted granted Critical
Publication of JP6787736B2 publication Critical patent/JP6787736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、表面改善用面状体と繊維強化樹脂材との一体成形品の製造方法に関わるものである。さらに詳しくは、繊維強化樹脂材の表面の改善に関するものであり、外装部品の生産に好適に使用される。 The present invention relates to a method for producing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material. More specifically, it relates to the improvement of the surface of the fiber reinforced resin material, and is suitably used for the production of exterior parts.

近年、機械分野において、マトリクス樹脂と炭素繊維などの強化繊維を含む、いわゆる繊維強化樹脂材が注目されている。これら繊維強化樹脂材はマトリクス樹脂内で強化繊維が分散されているため、耐衝撃性などの機械強度に優れており、自動車等の構造部材などに検討されている。特にマトリクス樹脂として熱可塑性樹脂を用いた繊維強化樹脂材は、射出成形、圧縮成形等など様々な成形法を用いて、所望の形状を得るのに優れているため、様々に検討されている。
これら繊維強化樹脂材は樹脂内で強化繊維が分散されているため、表面に繊維模様が見える事が多い。故に繊維模様がデザインとしてそのまま利用できる。他方、繊維模様をデザインとして活用する際は、強化繊維が表面近くにある必要があり、表面近傍の強化繊維が繊維強化樹脂材の表面から露出し、逆に外観の劣化などに繋がる懸念がある。
In recent years, in the mechanical field, so-called fiber-reinforced resin materials containing reinforcing fibers such as matrix resin and carbon fiber have been attracting attention. Since the reinforcing fibers are dispersed in the matrix resin, these fiber-reinforced resin materials have excellent mechanical strength such as impact resistance, and are being studied for structural members of automobiles and the like. In particular, a fiber-reinforced resin material using a thermoplastic resin as a matrix resin has been studied in various ways because it is excellent in obtaining a desired shape by using various molding methods such as injection molding and compression molding.
Since the reinforcing fibers are dispersed in the resin of these fiber-reinforced resin materials, the fiber pattern is often visible on the surface. Therefore, the fiber pattern can be used as it is as a design. On the other hand, when the fiber pattern is used as a design, the reinforcing fibers must be close to the surface, and the reinforcing fibers near the surface may be exposed from the surface of the fiber reinforced resin material, which may lead to deterioration of the appearance. ..

繊維強化樹脂材の表面に熱硬化性樹脂もしくは熱可塑性樹脂の層を加飾層として設ける手法が提案されている(例えば、特許文献1参照)。特許文献1に記載の手法は、繊維強化樹脂材の表面から強化繊維の露出を抑制する事が可能であり、繊維強化樹脂成形品の表面保護に寄与できる。しかし、繊維強化樹脂材の繊維模様をデザインとして残す事を両立するには、必ずしも最適な手法とは言えない。また、繊維強化樹脂材の表面に樹脂フィルムを積層する事で表面性を改善する手法が提案されている(例えば、特許文献2参照)。しかし、この手法も繊維強化樹脂材の繊維模様が隠蔽されてしまい、繊維模様をデザインとして残す事を両立するには、適した手法とは言い難い。またこれらの手法は耐候性が十分ではなく、継続的に日光、風雨に暴露された後は、表面に形成された層の劣化が著しいと言う問題があった。
そのため、繊維強化樹脂材のデザイン性を維持しつつ、繊維強化樹脂成形品の表面保護を両立させ、耐候性にも優れる技術の向上が望まれていた。
A method of providing a layer of a thermosetting resin or a thermoplastic resin as a decorative layer on the surface of a fiber-reinforced resin material has been proposed (see, for example, Patent Document 1). The method described in Patent Document 1 can suppress the exposure of the reinforcing fibers from the surface of the fiber reinforced resin material, and can contribute to the surface protection of the fiber reinforced resin molded product. However, it is not always the optimum method to keep the fiber pattern of the fiber reinforced resin material as a design. Further, a method of improving the surface property by laminating a resin film on the surface of the fiber-reinforced resin material has been proposed (see, for example, Patent Document 2). However, this method also hides the fiber pattern of the fiber reinforced resin material, and it is hard to say that it is a suitable method in order to keep the fiber pattern as a design. In addition, these methods have a problem that the weather resistance is not sufficient, and the layer formed on the surface is significantly deteriorated after being continuously exposed to sunlight and wind and rain.
Therefore, it has been desired to improve the technique of maintaining the design of the fiber-reinforced resin material, achieving both surface protection of the fiber-reinforced resin molded product, and having excellent weather resistance.

特許第5767415号公報Japanese Patent No. 5767415 特開2016−083875号公報Japanese Unexamined Patent Publication No. 2016-083875

本発明の目的は、優れた意匠性を有しつつ、表面性に優れ、これらの特性の耐候性も良好な一体成形品である繊維強化樹脂成形品の製造方法を提供することである。 An object of the present invention is to provide a method for producing a fiber-reinforced resin molded product, which is an integrally molded product having excellent designability, excellent surface properties, and good weather resistance of these characteristics.

本発明者は、強化繊維と熱可塑性樹脂とからなる繊維強化樹脂成形品の製造方法において、意匠性及び表面性を向上すべく鋭意検討を重ねた結果、繊維強化樹脂材を圧縮成形して繊維強化樹脂成形品を得る際に用いる表面加飾用面状体の性状を制御することで、目的とする一体成形品となる繊維強化樹脂成形品を得ることが可能であることを見出し、本発明に到達した。 As a result of diligent studies to improve the design and surface properties in the method for producing a fiber-reinforced resin molded product composed of a reinforcing fiber and a thermoplastic resin, the present inventor has made a fiber-reinforced resin material by compression molding. We have found that it is possible to obtain a fiber-reinforced resin molded product which is a target integrally molded product by controlling the properties of the surface-decorating planar body used when obtaining the reinforced resin molded product. Reached.

本発明は、熱可塑性樹脂(P1)を含む表面加飾用面状体と、強化繊維および熱可塑性樹脂(P2)を含む繊維強化樹脂材との一体成形品であって、表面加飾用面状体は面内を上下方向に貫通する空孔を有し、その空孔が5〜100mmの間隔で面内に配置されており、表面加飾用面状体の全光線透過率が10%以上、厚みが1〜500μm、熱収縮率が0.1〜4.6%であり、かつ熱可塑性樹脂(P1)の軟化温度が熱可塑性樹脂(P2)の軟化温度に対して−40℃以上+40℃未満であり、以下工程を含む表面加飾用面状体と繊維強化樹脂材との一体成形品の製造方法である。ただし、表面加飾用面状体の熱収縮率は、200mm×200mmにカットした表面加飾用面状体の中央を中心とし、表面加飾用面状体の四辺に並行な100mmの線を互いに直角になるように十字線状に2本書き、この十字線を書いた表面加飾用面状体を無張力下、フッ素樹脂含浸ガラスクロスの上にのせ、工程10において加熱される時の温度にしたホットプレートの上で10分間加熱したあとでホットプレートから表面加飾用面状体を降ろして常温まで冷却し、十字線の長さを、定規を用いて測定し、加熱戦後の十字線の長さの比率から算出した値である。
工程10:強化繊維と熱可塑性樹脂(P2)を含む繊維強化樹脂材の表面の少なくとも一部に、熱可塑性樹脂(P1)を含む表面加飾用面状体を配置し、熱可塑性樹脂(P2)の軟化温度以上に加熱する工程、
工程20:前記軟化温度以上に加熱した表面加飾用面状体を配置した繊維強化樹脂材を、上型および下型から構成される圧縮成形用金型内に搬送する工程、
工程30:コールドプレス成形法にて表面加飾用面状体を配置した繊維強化樹脂材に対してプレス成形を行い、圧縮成形用金型内の成形品温度が熱可塑性樹脂(P2)の軟化温度未満になった状態で圧縮成形用金型から取出し、一体成形品を得る工程
The present invention is an integrally molded product of a surface decoration surface body containing a thermoplastic resin (P1) and a fiber reinforced resin material containing a reinforcing fiber and a thermoplastic resin (P2), and is a surface decoration surface. The shape has holes that penetrate in the plane in the vertical direction, and the holes are arranged in the plane at intervals of 5 to 100 mm, and the total light transmittance of the surface decoration surface is 10%. As described above, the thickness is 1 to 500 μm , the thermal shrinkage is 0.1 to 4.6%, and the softening temperature of the thermoplastic resin (P1) is −40 ° C. with respect to the softening temperature of the thermoplastic resin (P2). This is a method for producing an integrally molded product of a surface-decorating planar body and a fiber-reinforced resin material, which is above + 40 ° C. and includes the following steps. However, the heat shrinkage rate of the surface decoration surface is centered on the center of the surface decoration surface cut to 200 mm × 200 mm, and 100 mm lines parallel to the four sides of the surface decoration surface are drawn. Two cross-shaped lines are drawn so as to be perpendicular to each other, and the surface decoration surface body on which the cross-shaped lines are drawn is placed on a fluororesin-impregnated glass cloth under no tension, and is heated in step 10. After heating for 10 minutes on a hot plate that has been heated to a temperature, the surface decoration surface is lowered from the hot plate and cooled to room temperature, the length of the cross line is measured using a ruler, and the cross after the heating war It is a value calculated from the ratio of line lengths.
Step 10: A surface decoration surface body containing the thermoplastic resin (P1) is arranged on at least a part of the surface of the fiber-reinforced resin material containing the reinforcing fiber and the thermoplastic resin (P2), and the thermoplastic resin (P2) is arranged. ) The process of heating above the softening temperature,
Step 20: A step of transporting a fiber-reinforced resin material on which a surface-decorating planar body heated to a temperature equal to or higher than the softening temperature is arranged into a compression molding die composed of an upper die and a lower die.
Step 30: Press molding is performed on the fiber-reinforced resin material on which the surface decoration surface is arranged by the cold press molding method, and the temperature of the molded product in the compression molding die softens the thermoplastic resin (P2). A process of taking out from a compression molding die when the temperature is lower than the temperature and obtaining an integrally molded product.

本発明の表面加飾用面状体と繊維強化樹脂材との一体成形品の製造方法によれば、繊維強化樹脂材を圧縮成形して繊維強化樹脂成形品を得る際に用いる表面加飾用面状体の性状を制御することで、表面加飾用面状体と繊維強化樹脂材の一体成形品である繊維強化樹脂成形品の意匠性、表面性を向上させ、意匠性、表面性の耐候性も良好な一体成形品を得ることができる。 According to the method for producing an integrally molded product of a surface-decorating planar body and a fiber-reinforced resin material of the present invention, for surface decoration used when the fiber-reinforced resin material is compression-molded to obtain a fiber-reinforced resin molded product. By controlling the properties of the surface-shaped body, the design and surface properties of the fiber-reinforced resin molded product, which is an integrally molded product of the surface-shaped body for surface decoration and the fiber-reinforced resin material, are improved, and the design and surface properties are improved. An integrally molded product having good weather resistance can be obtained.

面状体の面積収縮率を測定評価する際に用いた試料を表す図である。It is a figure which shows the sample used when measuring and evaluating the area shrinkage ratio of a planar body. 熱可塑性樹脂(P1)と熱可塑性樹脂(P2)の溶着強度を測定評価する際に用いた試料の正面図および平面図である。It is a front view and the plan view of the sample used at the time of measuring and evaluating the welding strength of a thermoplastic resin (P1) and a thermoplastic resin (P2). 本発明の実施例1等で用いた平板金型に付されている皮革状模様を表したシボの模様である。It is a grain pattern showing a leather-like pattern attached to the flat plate mold used in Example 1 of the present invention. 本発明において、平面状の面状体と平面状の繊維強化樹脂材から一体成形品を製造するにあたり、超音波接合により面状体と繊維強化樹脂材に固定する場合において、超音波接合する場所の一例を表した図面(正面図および平面図)である。In the present invention, when an integrally molded product is manufactured from a flat planar body and a flat fiber reinforced resin material, the place where ultrasonic bonding is performed when the planar body and the fiber reinforced resin material are fixed by ultrasonic bonding. It is a drawing (front view and plan view) showing an example.

以下に、本発明の実施の形態について順次説明する。本発明に関して、簡便の為、「繊維強化樹脂材」を「樹脂材」と、「表面加飾用面状体」を「面状体」と、「表面加飾用面状体と繊維強化樹脂材との一体成形品」を「成形品」と、「コールドプレス成形」を「プレス成形」とそれぞれ略称している場合がある。また表面改善用の目的の面状体を「表面加飾用面状体」と称している場合がある。更に、便宜上、質量を重量と表記している場合がある。図面における各箇所の寸法の数値は特に記載が無い限りmm単位の値である。 Hereinafter, embodiments of the present invention will be sequentially described. Regarding the present invention, for the sake of simplicity, the "fiber reinforced resin material" is referred to as "resin material", the "surface decoration surface body" is referred to as "plane body", and the "surface decoration surface body and fiber reinforced resin" are used. In some cases, "integrally molded product with material" is abbreviated as "molded product" and "cold press molding" is abbreviated as "press molding". Further, the surface-shaped body for the purpose of improving the surface may be referred to as a "surface-shaped body for surface decoration". Further, for convenience, the mass may be expressed as weight. Numerical values of the dimensions of each part in the drawings are values in mm unless otherwise specified.

本発明の表面加飾用面状体と繊維強化樹脂材との一体成形品の製造方法は、熱可塑性樹脂(P1)を含む表面加飾用面状体と、強化繊維および熱可塑性樹脂(P2)を含む繊維強化樹脂材との一体成形品であって、表面加飾用面状体の全光線透過率が10%以上、厚みが1〜500μm以上、熱収縮率が0.1〜4.6%であり、かつ熱可塑性樹脂(P1)の軟化温度が熱可塑性樹脂(P2)の軟化温度に対して−40℃以上+40℃未満であり、以下工程を含む表面加飾用面状体と繊維強化樹脂材との一体成形品の製造方法である。
工程10:強化繊維と熱可塑性樹脂(P2)を含む繊維強化樹脂材の表面の少なくとも一部に、熱可塑性樹脂(P1)を含む表面加飾用面状体を配置し、熱可塑性樹脂(P2)の軟化温度以上に加熱する工程、
工程20:前記軟化温度以上に加熱した表面加飾用面状体を配置した繊維強化樹脂材を、上型および下型から構成される圧縮成形用金型内に搬送する工程、
工程30:コールドプレス成形法にて表面加飾用面状体を配置した繊維強化樹脂材に対してプレス成形を行い、圧縮成形用金型内の成形品温度が熱可塑性樹脂(P2)の軟化温度未満になった状態で圧縮成形用金型から取出し、一体成形品を得る工程
The method for producing an integrally molded product of the surface decoration surface body and the fiber reinforced resin material of the present invention is a surface decoration surface body containing a thermoplastic resin (P1), a reinforcing fiber and a thermoplastic resin (P2). ) Is an integrally molded product with a fiber reinforced resin material, and the surface decoration surface has a total light transmittance of 10% or more, a thickness of 1 to 500 μm or more, and a heat shrinkage rate of 0.1 to 4. 6%, and the softening temperature of the thermoplastic resin (P1) is −40 ° C. or higher and less than + 40 ° C. with respect to the softening temperature of the thermoplastic resin (P2), and the surface decoration surface including the following steps This is a method for manufacturing an integrally molded product with a fiber reinforced resin material.
Step 10: A surface decoration surface body containing the thermoplastic resin (P1) is arranged on at least a part of the surface of the fiber-reinforced resin material containing the reinforcing fiber and the thermoplastic resin (P2), and the thermoplastic resin (P2) is arranged. ) The process of heating above the softening temperature,
Step 20: A step of transporting a fiber-reinforced resin material on which a surface-decorating planar body heated to a temperature equal to or higher than the softening temperature is arranged into a compression molding die composed of an upper die and a lower die.
Step 30: Press molding is performed on the fiber-reinforced resin material on which the surface decoration surface is arranged by the cold press molding method, and the temperature of the molded product in the compression molding die softens the thermoplastic resin (P2). A process of taking out from a compression molding die when the temperature is lower than the temperature and obtaining an integrally molded product.

(一体成形品の意匠性と表面性)
本発明において意匠性とは繊維強化樹脂材中の強化繊維の形状、模様、色彩、向きもしくは流れ方向、またはこれらが結合した構成要素が一体成形品表面の模様として成形品の外観を構成している事であり、意匠性の悪化とは該強化繊維のこれらの構成要素の一部もしくは全部が確認できないこと、または強化繊維が成形体表面に露出することを意味する。本発明において表面性の悪化とは、耐候試験後における、面状体および繊維強化樹脂材の熱可塑性樹脂(P1およびP2)からなる表面樹脂層の消失が著しいことや熱可塑性樹脂の粗面化による表面の悪化が著しいことを意味する。特に高温高湿条件下や紫外線照射条件下に成形品が暴露された時、繊維強化樹脂材の熱可塑性樹脂(P2)の劣化に伴う白化やクラック等によって意匠性は顕著に悪化し、繊維強化樹脂材の熱可塑性樹脂(P2)の劣化に伴う揮散により表面性の悪化は顕著になる傾向にある。更に、表面性の悪化に伴う強化繊維の成形体表面への露出は成形体から強化繊維の脱落を招くことがあり、脱落した強化繊維による周囲環境への汚染や電子電気部品への悪影響が懸念される。よって、意匠性と表面性を良好に保つことは、製品の外観を維持するだけでなく周辺環境の維持や電子電気部品の性能維持のためにも必要である。
(Design and surface properties of integrally molded products)
In the present invention, the design property means the shape, pattern, color, direction or flow direction of the reinforcing fibers in the fiber reinforced resin material, or the constituent elements in which these are combined to form the appearance of the molded product as a pattern on the surface of the integrally molded product. That is, the deterioration of the design property means that some or all of these components of the reinforcing fiber cannot be confirmed, or the reinforcing fiber is exposed on the surface of the molded product. In the present invention, the deterioration of the surface property means that the surface resin layer made of the thermoplastic resin (P1 and P2) of the planar body and the fiber reinforced resin material disappears remarkably after the weather resistance test, and the surface of the thermoplastic resin becomes rough. It means that the surface deterioration due to the resin is remarkable. In particular, when the molded product is exposed under high temperature and high humidity conditions or ultraviolet irradiation conditions, the design is remarkably deteriorated due to whitening and cracks due to deterioration of the thermoplastic resin (P2) of the fiber reinforced resin material, and the fiber is reinforced. Deterioration of surface properties tends to be remarkable due to volatilization accompanying deterioration of the thermoplastic resin (P2) of the resin material. Furthermore, exposure of the reinforcing fibers to the surface of the molded body due to deterioration of the surface property may cause the reinforcing fibers to fall off from the molded body, and there is concern that the dropped reinforcing fibers may contaminate the surrounding environment or adversely affect electronic and electrical parts. Will be done. Therefore, it is necessary to maintain good design and surface properties not only to maintain the appearance of the product but also to maintain the surrounding environment and the performance of electronic and electrical parts.

(表面加飾用面状体)
本発明では、一体成形品である繊維強化樹脂成形品の表面性を向上させる目的で熱可塑性樹脂(P1)からなる面状体と熱可塑性樹脂(P2)からなる樹脂材を一体化させ、かつ樹脂材の強化繊維模様が該一体成形品においても維持されていることを特徴とする。このため、本発明における面状体の全光線透過率は10%以上、厚みが1〜500μmかつ熱収縮率が0.1〜4.6%である。
(Surface decoration surface)
In the present invention, for the purpose of improving the surface property of the fiber-reinforced resin molded product which is an integrally molded product, a planar body made of a thermoplastic resin (P1) and a resin material made of a thermoplastic resin (P2) are integrated and integrated. It is characterized in that the reinforcing fiber pattern of the resin material is maintained even in the integrally molded product. Therefore, the total light transmittance of the planar body in the present invention is 10% or more, the thickness is 1 to 500 μm, and the heat shrinkage rate is 0.1 to 4.6%.

面状体の全光線透過率が10%未満であると繊維強化樹脂材中における意匠性の構成要素の一部または全部が一体成形品では見えなくなるため意匠性に劣るようになる。面状体の全光線透過率は好ましくは11%以上100%以下、より好ましくは40%以上95%以下、更により好ましくは50%以上90%以下、最も好ましくは60%以上85%以下であることである。面状体の厚みが1μm未満であると面状体による表面性向上効果が低くなり、厚みが500μmを超えると面状体を配置した繊維強化樹脂材を成形直前に熱可塑性樹脂(P2)の軟化温度以上に加熱して可塑化し圧縮成形用金型へ導入する際、手動搬送もしくは機械搬送時に軍手等の保護具や、挟み、掴み、もしくは針といった保持具に軟化した面状体の熱可塑性樹脂(P1)が付着し、樹脂材表面に配置された面状体の厚みが不均一となるため、一体成形品の表面樹脂層厚みが不均一となり意匠性や表面性が悪化する。面状体の厚みは好ましくは10〜400μm、より好ましくは30〜300μm、更により好ましくは50〜250μm、最も好ましくは80〜150μmである。面状体の熱収縮率が0.1%未満であると、面状体を製造するときの応力をほぼゼロにするような高価な設備を使用が必要となり産業上好ましくない。熱収縮率が4.6%を超えると、樹脂材の表面の少なくとも一部に面状体を配置し樹脂材の熱可塑性樹脂(P2)の軟化温度以上に加熱する工程で面状体が不均一に収縮するようになり、一体成形品の表面樹脂層厚みが不均一となり意匠性や表面性が悪化する。なお、熱収縮率の測定温度は後述するプレス成形直前に加熱される時の温度であり、熱可塑性樹脂(P2)の軟化温度+30℃以上、熱可塑性樹脂(P2)の分解温度以下、好ましくは熱可塑性樹脂(P2)の軟化温度+15℃以上、熱可塑性樹脂(P2)の分解温度−30℃以下の温度である。 If the total light transmittance of the planar body is less than 10%, some or all of the components of the design property in the fiber reinforced resin material cannot be seen in the integrally molded product, so that the design property is inferior. The total light transmittance of the planar body is preferably 11% or more and 100% or less, more preferably 40% or more and 95% or less, even more preferably 50% or more and 90% or less, and most preferably 60% or more and 85% or less. That is. If the thickness of the planar body is less than 1 μm, the effect of improving the surface property of the planar body is reduced, and if the thickness exceeds 500 μm, the fiber-reinforced resin material on which the planar body is arranged is formed of the thermoplastic resin (P2) immediately before molding. Thermoplasticity of a planar body softened to a protective device such as a military hand or a holder such as a pinch, a grip, or a needle during manual transfer or machine transfer when plasticized by heating to a temperature higher than the softening temperature and introduced into a compression molding die. Since the resin (P1) adheres and the thickness of the planar body arranged on the surface of the resin material becomes non-uniform, the thickness of the surface resin layer of the integrally molded product becomes non-uniform, and the design and surface properties deteriorate. The thickness of the planar body is preferably 10 to 400 μm, more preferably 30 to 300 μm, even more preferably 50 to 250 μm, and most preferably 80 to 150 μm. If the heat shrinkage rate of the planar body is less than 0.1%, it is industrially unfavorable because it is necessary to use expensive equipment that makes the stress when manufacturing the planar body almost zero. When the heat shrinkage rate exceeds 4.6%, the planar body is not formed in the step of arranging the planar body on at least a part of the surface of the resin material and heating it above the softening temperature of the thermoplastic resin (P2) of the resin material. It shrinks uniformly, the thickness of the surface resin layer of the integrally molded product becomes non-uniform, and the design and surface properties deteriorate. The temperature at which the thermal shrinkage is measured is the temperature at which the thermoplastic resin (P2) is heated immediately before press molding, which is preferably the softening temperature of the thermoplastic resin (P2) + 30 ° C. or higher and the decomposition temperature of the thermoplastic resin (P2) or lower, preferably. The softening temperature of the thermoplastic resin (P2) is + 15 ° C. or higher, and the decomposition temperature of the thermoplastic resin (P2) is −30 ° C. or lower.

本発明における面収縮率の測定法は後述のように、200mm×200mmにカットした面状体の中央を中心とし、面状体の四辺に並行な100mmの線を互いに直角になるように十字線状に2本書き、この十字線を書いた面状体を無張力下、フッ素樹脂含浸ガラスクロスの上にのせ、各実施例・比較例に示した加熱温度にしたホットプレートの上で10分間加熱したあとでホットプレートから面状体を降ろして常温まで冷却し、十字線の長さを、定規を用いて測定し、加熱戦後の十字線の長さの比率から算出した値である。面状体の収縮率は好ましくは0.5〜4.0%、より好ましくは1.0〜3.5%、更により好ましくは1.3〜3.0%、最も好ましくは1.5〜2.0%である。 As will be described later, the method for measuring the surface shrinkage rate in the present invention is centered on the center of a planar body cut into 200 mm × 200 mm, and a cross line is formed so that 100 mm lines parallel to the four sides of the planar body are perpendicular to each other. Write two lines in a shape, place the planar body with this cross line on a fluororesin-impregnated glass cloth under no tension, and place it on a hot plate at the heating temperature shown in each example / comparative example for 10 minutes. After heating, the planar body is removed from the hot plate and cooled to room temperature, the length of the cross wire is measured using a ruler, and the value is calculated from the ratio of the length of the cross wire after the heating war. The shrinkage of the planar body is preferably 0.5 to 4.0%, more preferably 1.0 to 3.5%, even more preferably 1.3 to 3.0%, and most preferably 1.5 to. It is 2.0%.

本発明においては、これらの面状体の特性である、全光線透過率、厚み、収縮率および後述する熱可塑性樹脂(P1)と熱可塑性樹脂(P1)の軟化温度値の関係をすべて満たすような面状体、繊維強化樹脂材の構成を採用することにより、本発明の効果を奏する。
面状体の形状として特に限定は無いが、フィルム、シート、不織布、織布等の形状が表面性や意匠性を優れたものとするためには好ましく挙げられる。中でも、フィルム形状またはシート形状の場合、熱可塑性樹脂(P1)からなる層が均一な厚みとなるため、一体成形品の表面性や意匠性をより優れたものにする事ができるので、より好ましい形状である。
In the present invention, the relationship between the total light transmittance, the thickness, the shrinkage rate, and the softening temperature value of the thermoplastic resin (P1) and the thermoplastic resin (P1), which will be described later, which are the characteristics of these planar bodies, are all satisfied. The effect of the present invention is obtained by adopting a structure of a flat surface and a fiber-reinforced resin material.
The shape of the planar body is not particularly limited, but the shapes of films, sheets, non-woven fabrics, woven fabrics, and the like are preferably mentioned in order to have excellent surface properties and design properties. Above all, in the case of a film shape or a sheet shape, the layer made of the thermoplastic resin (P1) has a uniform thickness, so that the surface property and design of the integrally molded product can be made more excellent, which is more preferable. The shape.

(熱可塑性樹脂(P1))
面状体に含まれている熱可塑性樹脂(P1)の軟化温度は樹脂材に用いる熱可塑性樹脂(P2)の軟化温度に対し−40℃以上+40℃未満である。ここでいう軟化温度とは、熱可塑性樹脂が結晶性樹脂の場合は融点であり、非晶性樹脂の場合はガラス転移温度+100℃である。このような場合、熱可塑性樹脂(P1)と熱可塑性樹脂(P2)の溶着性が良好となり、優れた一体成形品の意匠性および表面性を示すようになる。熱可塑性樹脂(P1)の軟化温度は熱可塑性樹脂(P2)の軟化温度に対し、好ましくは−35℃以上+38℃以下、より好ましくは−30℃以上+35℃以下、更により好ましくは0℃以上+20℃以下である。
(Thermoplastic resin (P1))
The softening temperature of the thermoplastic resin (P1) contained in the planar body is −40 ° C. or higher and less than + 40 ° C. with respect to the softening temperature of the thermoplastic resin (P2) used for the resin material. The softening temperature referred to here is the melting point when the thermoplastic resin is a crystalline resin, and the glass transition temperature + 100 ° C. when the thermoplastic resin is an amorphous resin. In such a case, the weldability of the thermoplastic resin (P1) and the thermoplastic resin (P2) becomes good, and the integrally molded product exhibits excellent design and surface properties. The softening temperature of the thermoplastic resin (P1) is preferably −35 ° C. or higher and + 38 ° C. or lower, more preferably -30 ° C. or higher and + 35 ° C. or lower, and even more preferably 0 ° C. or higher with respect to the softening temperature of the thermoplastic resin (P2). It is + 20 ° C or lower.

また、熱可塑性樹脂(P1)と熱可塑性樹脂(P2)は一部またはそのすべてが同種であることが更に好ましい。ここで言う同種とは、両者が結晶性樹脂であることもしくは両者が非晶性樹脂であること、両者の溶解度パラメーターが±2.0以内であること、両者の熱可塑性樹脂のカテゴリーが同一であること、両者の熱可塑性樹脂を表す化学式(組成式)が同一であること、または両者の可塑性樹脂を表す化学構造式が同一であること等の中から少なくとも1つの事項が挙げられ、これらの少なくとも1つの事項あるいはすべての事項を満たしていてもよい。ここで、熱可塑性樹脂のカテゴリーが同一であることとは、両者の熱可塑性樹脂が共に、ポリ脂肪族オレフィン樹脂((メタ)アクリル樹脂を除く。)、ポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂(ポリエーテルケトン樹脂を除く。)、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、またはポリベンゾイミダゾール樹脂の中から選ばれる同一名称の熱可塑性樹脂に該当することを表す。このような同種の熱可塑性樹脂を用いることで面状体と樹脂材の接着性が良好で、面状体と樹脂材が一体化した一体成形品を得ることができ、意匠性、表面性に優れた一体成形品を得ることができる。 Further, it is more preferable that a part or all of the thermoplastic resin (P1) and the thermoplastic resin (P2) are of the same type. The same type here means that both are crystalline resins or both are amorphous resins, the solubility parameters of both are within ± 2.0, and the categories of both thermoplastic resins are the same. At least one item is mentioned from the fact that the chemical formulas (composition formulas) representing both thermoplastic resins are the same, or the chemical structural formulas representing both thermoplastic resins are the same. At least one item or all items may be satisfied. Here, the fact that the categories of thermoplastic resins are the same means that both thermoplastic resins are polyaliphatic olefin resin (excluding (meth) acrylic resin), polystyrene resin, polyamide resin, polyester resin, and polyacetal. Resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, polyether nitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin (polyetherketone resin) ), Polyether ketone resin, thermoplastic urethane resin, fluororesin, or polybenzoimidazole resin, which has the same name. By using such a thermoplastic resin of the same type, the adhesiveness between the planar body and the resin material is good, and an integrally molded product in which the planar body and the resin material are integrated can be obtained, resulting in design and surface properties. An excellent integrally molded product can be obtained.

特に熱可塑性樹脂(P1)と熱可塑性樹脂(P2)が共に結晶性樹脂である場合、熱可塑性樹脂(P1)の降温結晶化温度は、熱可塑性樹脂(P2)の降温結晶化温度に対して、好ましくは−35〜60℃であることが好ましく、−33〜55℃であることがより好ましく、−31〜50℃であることが更により好ましく、−30〜20℃の範囲であることが更に望ましい。両者の降温結晶化温度がこの範囲であると一体成形品の意匠性および表面性が特に優れるようになる。なお、面状体は熱可塑性樹脂(P1)を主成分とする範囲において、好ましくは1〜40重量%、より好ましくは5〜30重量%、更により好ましくは8〜20重量%の範囲で熱硬化性樹脂を併用してもよい。熱硬化性樹脂を併用することにより、一体成形品の使用用途に応じて一体成形品の表面に幅広い種類の加飾の方法を採用することができる。 In particular, when both the thermoplastic resin (P1) and the thermoplastic resin (P2) are crystalline resins, the temperature-decreasing crystallization temperature of the thermoplastic resin (P1) is relative to the temperature-decreasing crystallization temperature of the thermoplastic resin (P2). It is preferably 35 to 60 ° C., more preferably −33 to 55 ° C., even more preferably -13 to 50 ° C., and preferably in the range of -30 to 20 ° C. More desirable. When the temperature lowering crystallization temperature of both is in this range, the design and surface properties of the integrally molded product become particularly excellent. The planar body is preferably heated in the range of 1 to 40% by weight, more preferably 5 to 30% by weight, and even more preferably 8 to 20% by weight in the range containing the thermoplastic resin (P1) as the main component. A curable resin may be used in combination. By using the thermosetting resin in combination, a wide variety of decoration methods can be adopted on the surface of the integrally molded product according to the intended use of the integrally molded product.

上記熱可塑性樹脂(P1)としては、ポリ脂肪族オレフィン樹脂((メタ)アクリル樹脂を除く。)、ポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂(ポリエーテルケトン樹脂を除く。)、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、およびポリベンゾイミダゾール樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。 Examples of the thermoplastic resin (P1) include polyaliphatic olefin resin (excluding (meth) acrylic resin), polystyrene resin, polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, and (meth). Acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, polyether nitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin (excluding polyetherketone resin), polyetherketone resin, thermoplastic urethane resin , Fluorine-based resin, polybenzoimidazole resin, and the like, and one or more kinds of resins selected from the group can be mentioned.

上記ポリ脂肪族オレフィン樹脂((メタ)アクリル樹脂を除く。)としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、およびポリビニルアルコール樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、およびアクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the polyaliphatic olefin resin (excluding (meth) acrylic resin) include polyethylene resin, polypropylene resin, polybutadiene resin, polymethylpentene resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol. One or more kinds of resins selected from the group consisting of resins and the like can be mentioned.
Examples of the polystyrene resin include one or more kinds of resins selected from the group consisting of polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin) and the like.

上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、およびポリアミド610樹脂(ナイロン610)等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリトリメチレンテレフタレート樹脂、ポリトリメチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、ポリ乳酸樹脂、および液晶ポリエステル等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the polyamide resin include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide. One or more kinds of resins selected from the group consisting of 610 resin (nylon 610) and the like can be mentioned.
Examples of the polyester resin include polyethylene terephthalate resin, polyethylene naphthalate resin, bolitrimethylene terephthalate resin, polytrimethylene naphthalate resin, polybutylene terephthalate resin, polybutylene naphthalate resin, polylactic acid resin, and liquid crystal polyester. One or more kinds of resins selected from the above group can be mentioned.

上記(メタ)アクリル樹脂としては、例えば、ポリアクリル樹脂、ポリメタクリル樹脂、ポリメチルアクリレート樹脂、およびポリメチルメタクリレート樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリフェニレンエーテル樹脂としては、例えば、ポリフェニレンエーテル樹脂、および変性ポリフェニレンエーテル樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリイミド樹脂としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、およびポリエステルイミド樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the (meth) acrylic resin include one or more kinds of resins selected from the group consisting of polyacrylic resin, polymethacrylic resin, polymethylacrylate resin, polymethylmethacrylate resin and the like.
Examples of the polyphenylene ether resin include one or more types of resins selected from the group consisting of polyphenylene ether resins, modified polyphenylene ether resins, and the like.
Examples of the polyimide resin include one or more types of resins selected from the group consisting of polyimide resins, polyamide-imide resins, polyetherimide resins, polyesterimide resins and the like.

上記ポリスルホン樹脂としては、例えば、ポリスルホン樹脂、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルフェニレンスルホン樹脂、およびポリエーテルケトンスルホン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、およびポリエーテルケトンケトン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記フッ素系樹脂としては、例えば、ポリモノフルオロエチレン樹脂、ポリビスフルオロエチレン樹脂、ポリトリフルオロエチレン樹脂、およびポリテトラフルオロエチレン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the polysulfone resin include one or more types of resins selected from the group consisting of polysulfone resins, modified polysulfone resins, polyethersulfone resins, polyetherphenylene sulfone resins, polyether ketone sulfone resins, and the like.
Examples of the polyetherketone resin include one or more types of resins selected from the group consisting of polyetherketone resins, polyetheretherketone resins, and polyetherketoneketone resins.
Examples of the fluororesin include one or more kinds of resins selected from the group consisting of polymonofluoroethylene resin, polybisfluoroethylene resin, polytrifluoroethylene resin, polytetrafluoroethylene resin and the like. ..

本発明に用いられる熱可塑性樹脂(P1)は、これらの熱可塑性樹脂の中から化学構造式、化学組成式、熱可塑性樹脂の名称の異なる熱可塑性樹脂の共重合体やブレンド体を熱可塑性樹脂(P1)として用いても良い。また、本発明に用いられる熱可塑性樹脂(P1)は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化温度が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。 The thermoplastic resin (P1) used in the present invention is a thermoplastic resin obtained from a copolymer or blend of thermoplastic resins having different chemical structural formulas, chemical composition formulas, and thermoplastic resin names from among these thermoplastic resins. It may be used as (P1). Further, the thermoplastic resin (P1) used in the present invention may be of only one type or of two or more types. Examples of the mode in which two or more types of thermoplastic resins are used in combination include a mode in which thermoplastic resins having different softening temperatures are used in combination, a mode in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.

(銅化合物およびハロゲン化カリウム)
本発明においては、熱可塑性樹脂(P1)がポリアミド樹脂の場合には、熱可塑性樹脂(P1)中に、以下に示すような銅化合物とハロゲン化カリウムを含み、(α)銅化合物はポリアミド樹脂と銅化合物の合計100質量部に対して、0.01質量部以上含むことが好ましい。また、(β)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下であることが好ましい。
(Copper compound and potassium halide)
In the present invention, when the thermoplastic resin (P1) is a polyamide resin, the thermoplastic resin (P1) contains a copper compound and potassium halide as shown below, and the (α) copper compound is a polyamide resin. It is preferable that 0.01 part by mass or more is contained with respect to 100 parts by mass of the total of the copper compound and Further, the mass ratio of the (β) potassium halide / copper compound is preferably more than 0 and 3.0 or less.

<銅化合物>
銅化合物の具体的な例としては、
無機銅化合物、銅元素を含有する有機カルボン酸塩を挙げることができ、より具体的な例としては、弗化第二銅、塩化第一銅、塩化第二銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、または安息香酸第二銅を挙げることができる。この中でも、好ましい銅化合物としては、ヨウ化第一銅、ヨウ化第二銅、臭化第一銅、臭化第二銅、塩化第一銅などのハロゲン化銅、酢酸銅を挙げることができ、ヨウ化第一銅、ヨウ化第二銅が最も好ましい。
<Copper compound>
Specific examples of copper compounds include
Examples include an inorganic copper compound and an organic carboxylate containing a copper element, and more specific examples thereof include cupric fluoride, cuprous chloride, cupric chloride, cupric bromide, and iodine. Copper bronze, cupric iodide, cupric sulfate, cupric nitrate, copper phosphate, cuprous acetate, cupric acetate, cupric salicylate, cupric stearate, or benzoate. Two coppers can be mentioned. Among these, preferable copper compounds include cuprous iodide, cupric iodide, cuprous bromide, cupric bromide, copper halide such as cuprous chloride, and copper acetate. , Copper iodide, cupric iodide are most preferred.

(α)ポリアミド樹脂と銅化合物の合計100質量部に対して銅化合物は、0.01質量部以上である。より好ましくは0.03質量部以上であり、更により好ましくは0.05質量部以上である。銅化合物の添加量が0.01質量部以上では、繊維強化樹脂材が加熱された際の分子量低下の問題(熱劣化の問題)を解決することができ、その結果、一体成形品の表面性の向上を達成することができる。一方、銅化合物の含有量の上限は、ポリアミド樹脂と銅化合物の合計100質量部に対して0.5質量部以下が好ましく、0.3質量部以下がより好ましく、0.1質量部以下の範囲が更に好ましい。0.5質量部以下であれば、銅化合物の添加効果が小さくならず、効果的な添加量となる。そのため、一体成形品の表面性の向上のレベルを維持することができる。 The copper compound is 0.01 part by mass or more with respect to 100 parts by mass in total of the (α) polyamide resin and the copper compound. It is more preferably 0.03 parts by mass or more, and even more preferably 0.05 parts by mass or more. When the amount of the copper compound added is 0.01 parts by mass or more, the problem of decrease in molecular weight (problem of thermal deterioration) when the fiber reinforced resin material is heated can be solved, and as a result, the surface property of the integrally molded product can be solved. Improvements can be achieved. On the other hand, the upper limit of the content of the copper compound is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and 0.1 parts by mass or less with respect to 100 parts by mass of the total of the polyamide resin and the copper compound. The range is more preferred. When it is 0.5 parts by mass or less, the effect of adding the copper compound is not reduced, and the amount added is effective. Therefore, the level of improvement in the surface property of the integrally molded product can be maintained.

<ハロゲン化カリウム>
ハロゲン化カリウムとしては、ヨウ化カリウム、臭化カリウム、塩化カリウムなどを挙げることができ、ヨウ化カリウムが好ましい。
<Potassium halide>
Examples of potassium halide include potassium iodide, potassium bromide, potassium chloride and the like, and potassium iodide is preferable.

<ハロゲン化カリウム/銅化合物の質量比>
本発明において、(β)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下であるとより好ましく、上限は2.0以下が更に好ましく、1.0以下がより更に好ましく、1.0未満であるとより一層好ましい。この範囲であると、コールドプレス前の予熱工程において生じるポリアミド樹脂の分子量低下を抑制でき、数平均分子量の低下をより効率的に抑制できる。その結果、一体成形品の表面性の向上を達成することができる。
<Mass ratio of potassium halide / copper compound>
In the present invention, the mass ratio of the (β) potassium halide / copper compound is more preferably more than 0 and 3.0 or less, the upper limit is more preferably 2.0 or less, and even more preferably 1.0 or less. It is even more preferable that it is less than 1.0. Within this range, the decrease in the molecular weight of the polyamide resin that occurs in the preheating step before cold pressing can be suppressed, and the decrease in the number average molecular weight can be suppressed more efficiently. As a result, it is possible to improve the surface property of the integrally molded product.

銅化合物中は、ポリアミド樹脂のアミド基と錯体を形成し、ポリアミド樹脂の分解を抑制するものである。ハロゲン化カリウムは、銅化合物による分解抑制を補助し、上記ハロゲン化カリウム/銅化合物の質量比の範囲であれば、ハロゲン化カリウムと銅化合物が好適であることを見出した。ハロゲン化カリウム/銅化合物の質量比は3.0以下であることにより、過剰なハロゲン化カリウムによるポリアミド樹脂の分解を抑制できる。一方、ハロゲン化カリウム/銅化合物の質量比は0を超えることで、前述のように銅化合物における分解抑制を補助できる。また、成形体外観も良好になる。 In the copper compound, a complex is formed with the amide group of the polyamide resin to suppress the decomposition of the polyamide resin. It has been found that potassium halide assists the suppression of decomposition by the copper compound, and potassium halide and the copper compound are suitable as long as the mass ratio of the potassium halide / copper compound is within the range. When the mass ratio of the potassium halide / copper compound is 3.0 or less, the decomposition of the polyamide resin due to excess potassium halide can be suppressed. On the other hand, when the mass ratio of the potassium halide / copper compound exceeds 0, it is possible to assist the suppression of decomposition in the copper compound as described above. In addition, the appearance of the molded product is also improved.

(光安定剤、光遮蔽剤)
また本発明においては、熱可塑性樹脂(P1)中に、以下に示すような光安定剤、または光遮蔽剤(UV吸収剤)を含有していることも好ましい一態様である。光安定剤の含有量は熱可塑性樹脂(P1)と光安定剤の合計100質量部に対して0.001〜1質量部であることが好ましい。光安定剤の含有量はより好ましくは0.005〜0.5質量部であり、更により好ましくは0.05〜0.3質量部である。光遮蔽剤の含有量は熱可塑性樹脂と光遮蔽剤の合計100質量部に対して0.0001〜0.1質量部であることが好ましい。光遮蔽剤の含有量はより好ましくは0.0005〜0.05質量部であり、更により好ましくは0.005〜0.03質量部である。光安定剤の含有量が100質量部に対して0.001質量部未満であると耐光性の効果が十分に発現しないことがあり、100質量部に対して1質量部を超えると面状体の機械物性が低下したり、全光線透過率が小さい場合と同様に一体成形品の意匠性が低下することがあり好ましくない。また、光遮蔽剤の含有量が100質量部に対して0.0001質量部未満であると光遮蔽の効果が十分に発現しないことがあり、100質量部に対して0.1質量部を超えると、を超えると面状体の機械物性が低下したり、全光線透過率が小さい場合と同様に一体成形品の意匠性が低下することがあり好ましくない。
(Light stabilizer, light shield)
Further, in the present invention, it is also a preferable aspect that the thermoplastic resin (P1) contains a light stabilizer or a light shielding agent (UV absorber) as shown below. The content of the light stabilizer is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the total of the thermoplastic resin (P1) and the light stabilizer. The content of the light stabilizer is more preferably 0.005 to 0.5 parts by mass, and even more preferably 0.05 to 0.3 parts by mass. The content of the light shielding agent is preferably 0.0001 to 0.1 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin and the light shielding agent. The content of the light shielding agent is more preferably 0.0005 to 0.05 parts by mass, and even more preferably 0.005 to 0.03 parts by mass. If the content of the light stabilizer is less than 0.001 part by mass with respect to 100 parts by mass, the effect of light resistance may not be sufficiently exhibited, and if it exceeds 1 part by mass with respect to 100 parts by mass, the planar body It is not preferable because the mechanical properties of the integrally molded product may be deteriorated or the design property of the integrally molded product may be deteriorated as in the case where the total light transmittance is small. Further, if the content of the light shielding agent is less than 0.0001 parts by mass with respect to 100 parts by mass, the effect of light shielding may not be sufficiently exhibited, and exceeds 0.1 parts by mass with respect to 100 parts by mass. If it exceeds, the mechanical properties of the planar body may be deteriorated, or the design property of the integrally molded product may be deteriorated as in the case where the total light transmittance is small, which is not preferable.

光安定剤の具体例としてはヒンダードアミン基を有する化合物、ベンゾトリアゾール基を有する化合物、ベンゾフェノン基を有する化合物、トリアジン基を有する化合物を挙げることができ、これらの官能基は分子内に1または2以上含まれる化合物であることが好ましく、分子量が低分子量領域では200〜500、高分子量領域では2000〜4000であることが好ましい。更により好ましい分子量の領域は、低分子領域では250〜450、高分子領域では2600〜3400である。融点は95〜150℃であることが好ましく、100〜145℃であることがより好ましい。 Specific examples of the light stabilizer include a compound having a hindered amine group, a compound having a benzotriazole group, a compound having a benzophenone group, and a compound having a triazine group, and these functional groups are one or more in the molecule. The compound is preferably contained, and the molecular weight is preferably 200 to 500 in the low molecular weight region and 2000 to 4000 in the high molecular weight region. Even more preferable molecular weight regions are 250 to 450 in the low molecular weight region and 2600 to 3400 in the high molecular weight region. The melting point is preferably 95 to 150 ° C, more preferably 100 to 145 ° C.

光遮蔽剤の具体例としては、有彩色顔料または黒色顔料であれば特に制限はなく、例えば文献「顔料便覧」の第2章に示されているものが使用できる。例えば、有彩色顔料ではチタン黄、黄色酸化鉄(ベンガラ)、赤色酸化鉄、群青、紺青、コバルトブルー、コバルト紫、アルミニウム粉、銅粉、銀粉、金粉、亜鉛末、ナフトールエロー、ハンザエロー、ピグメントエロー、ベンジジネロー、パーマネントエロー、バルカンファーストエロー、タートラジンレーキ、アンスラピリミジンエロー、バルカンファーストオレンジ、インダンスレンブリイリアントオレンジ、ペリノノレンジ、パーマネントレッド、パラレッド、ファーストスカーレッド、レソールレッド、ボルドー、アリザリンレーキ、パーマネントレッド、ファーストバイオレット、銅フタロシアニンブルー、無金属フタロシアニンブルー、インダンスレンブルー、フタロシアニングリーン、ポリクロル銅フタロシアニン、硫化カルシウム、硫化ストロンチウム、昼光蛍光顔料、ブロンズ粉、アルミニウム粉などが、また黒色顔料としてはカーボンブラック、黒鉛、鉄黒などが例示される。 Specific examples of the light shielding agent are not particularly limited as long as they are chromatic pigments or black pigments, and for example, those shown in Chapter 2 of the document "Pigment Handbook" can be used. For example, for chromatic pigments, titanium yellow, yellow iron oxide (Bengala), red iron oxide, ultramarine, dark blue, cobalt blue, cobalt purple, aluminum powder, copper powder, silver powder, gold powder, zinc powder, naphthol yellow, Hansa yellow, pigment yellow , Benji Nero, Permanent Yellow, Balkan First Yellow, Turtra Jin Lake, Anthrapirimidine Yellow, Balkan First Orange, Indanthrone Brilliant Orange, Perino Norange, Permanent Red, Para Red, First Scar Red, Resole Red, Bordeaux Permanent red, first violet, copper phthalocyanine blue, metal-free phthalocyanine blue, indanthrone blue, phthalocyanine green, polychloro copper phthalocyanine, calcium sulfide, strontium sulfide, daylight fluorescent pigment, bronze powder, aluminum powder, etc. are also black pigments. Examples include carbon black, graphite, and iron black.

有機の顔料・染料としては、有機の多芳香族環系染料、有機溶剤可溶性色素、例えば油溶性染料又は顔料を挙げることができ、より詳細な有機色素としては、キノリン系化合物、アントラキノン系化合物、ペリノン系化合物が色素としての耐熱性が良好であり好ましい。これらの化合物から、青色系整色色素、黄色系整色色素、紫色系整色色素、赤色系整色色素、橙色系整色色素から選ばれる1種または2種以上の色素を用いることができる。
上述した、化合物の種類、分子量、融点範囲にすることにより、熱可塑性樹脂(P1)との混練性が十分となり、耐光性または光遮蔽性を十分に発現できることができる。
なお、熱可塑性樹脂(P1)はその特性を損なわない範囲で、上述した添加剤以外の各種の他の樹脂、各種フィラー、難燃剤、熱安定剤、耐UV剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤などを加えても構わない。
Examples of organic pigments / dyes include organic polyaromatic ring dyes, organic solvent-soluble dyes, for example, oil-soluble dyes or pigments, and more detailed organic dyes include quinoline compounds and anthraquinone compounds. Perinone-based compounds are preferable because they have good heat resistance as a dye. From these compounds, one or more dyes selected from blue color dyes, yellow color color dyes, purple color color dyes, red color color dyes, and orange color color dyes can be used. ..
By setting the type, molecular weight, and melting point range of the compound as described above, the kneading property with the thermoplastic resin (P1) becomes sufficient, and light resistance or light shielding property can be sufficiently exhibited.
The thermoplastic resin (P1) has various other resins other than the above-mentioned additives, various fillers, flame retardants, heat stabilizers, UV resistant agents, mold release agents, pigments, and softenings, as long as the characteristics are not impaired. Additives such as agents, plasticizers and surfactants may be added.

(繊維強化樹脂材)
本発明で使用する繊維強化樹脂材は、強化繊維とマトリクスとしての熱可塑性樹脂(P2)とを含む材料である。
繊維強化樹脂材中における熱可塑性樹脂(P2)の存在量は、熱可塑性樹脂(P2)の種類や強化繊維の種類等に応じて適宜決定することができるものであり、特に限定されるものではないが、通常、強化繊維100重量部に対して熱可塑性樹脂が3〜1000重量部の範囲内が好ましい。繊維樹脂強化材における強化繊維100重量部あたりの熱可塑性樹脂の量は、より好ましくは30〜500重量部、更に好ましくは30〜300重量部である。熱可塑性樹脂(P2)が強化繊維100重量部に対し3重量部未満では含浸が不十分なドライの強化繊維が増加してしまう傾向にある。また1000重量部を超えると強化繊維が少なすぎて構造材料として不適切となることが多い。
繊維強化樹脂材における強化繊維の配向状態としては、例えば、強化繊維の長軸方向が一方向に配列した一方向配列や、上記長軸方向が繊維強化樹脂材の面内方向においてランダムに配列した2次元ランダム配列を挙げることができる。
(Fiber reinforced plastic material)
The fiber-reinforced resin material used in the present invention is a material containing reinforcing fibers and a thermoplastic resin (P2) as a matrix.
The abundance of the thermoplastic resin (P2) in the fiber-reinforced resin material can be appropriately determined according to the type of the thermoplastic resin (P2), the type of the reinforcing fiber, and the like, and is not particularly limited. However, it is usually preferable that the amount of the thermoplastic resin is in the range of 3 to 1000 parts by weight with respect to 100 parts by weight of the reinforcing fiber. The amount of the thermoplastic resin per 100 parts by weight of the reinforcing fiber in the fiber resin reinforcing material is more preferably 30 to 500 parts by weight, still more preferably 30 to 300 parts by weight. If the amount of the thermoplastic resin (P2) is less than 3 parts by weight with respect to 100 parts by weight of the reinforcing fibers, the number of dry reinforcing fibers that are insufficiently impregnated tends to increase. Further, if it exceeds 1000 parts by weight, the amount of reinforcing fibers is too small and it is often inappropriate as a structural material.
As the orientation state of the reinforcing fibers in the fiber reinforced resin material, for example, a unidirectional arrangement in which the major axis directions of the reinforcing fibers are arranged in one direction, or the above-mentioned major axis directions are randomly arranged in the in-plane direction of the fiber reinforced resin material. A two-dimensional random array can be mentioned.

本発明における強化繊維の配向状態は、上記一方向配向または2次元ランダム配向のいずれであってもよい。また、上記一方向配向と2次元ランダム配向の中間の無規則配向(強化繊維の長軸方向が完全に一方向に配列しておらず、かつ完全にランダムでない配列状態)であってもよい。さらに、強化繊維の繊維長によっては、強化繊維の長軸方向が繊維強化樹脂材の面内方向に対して角度を有するように配列していてもよく、繊維が綿状に絡み合うように配列していてもよく、さらには繊維が平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙等のように配列していてもよい。 The orientation state of the reinforcing fibers in the present invention may be either the above-mentioned one-way orientation or two-dimensional random orientation. Further, the irregular orientation between the unidirectional orientation and the two-dimensional random orientation (the arrangement state in which the major axis directions of the reinforcing fibers are not completely unidirectionally arranged and is not completely random) may be used. Further, depending on the fiber length of the reinforcing fibers, the reinforcing fibers may be arranged so that the longitudinal direction of the reinforcing fibers has an angle with respect to the in-plane direction of the fiber-reinforced resin material, and the fibers are arranged so as to be entangled in a cotton-like manner. Further, the fibers may be arranged in a bidirectional woven fabric such as a plain weave or a twill weave, a multi-axis woven fabric, a non-woven fabric, a mat, a knit, a braid, or a paper on which reinforcing fibers are made.

本発明に用いられる繊維強化樹脂材においては、1枚の繊維強化樹脂材中に、異なる配列状態の強化繊維が含まれていてもよい。
1枚の繊維強化樹脂材中に異なる配列状態の強化繊維が含まれる態様としては、例えば、(i)繊維強化樹脂材の面内方向に配列状態が異なる強化繊維が配置されている態様、(ii)繊維強化樹脂材の厚み方向に配列状態が異なる強化繊維が配置されている態様を挙げることができる。また、繊維強化樹脂材が複数の層からなる積層構造を有する場合には、(iii)各層に含まれる強化繊維の配列状態が異なる態様を挙げることができる。さらに、上記(i)〜(iii)の各態様を複合した態様も挙げることができる。
In the fiber-reinforced resin material used in the present invention, one fiber-reinforced resin material may contain reinforcing fibers in different arrangement states.
Examples of the embodiment in which the reinforcing fibers having different arrangement states are included in one fiber-reinforced resin material include (i) the embodiment in which the reinforcing fibers having different arrangement states are arranged in the in-plane direction of the fiber-reinforced resin material. ii) Examples thereof include an embodiment in which reinforcing fibers having different arrangement states are arranged in the thickness direction of the fiber reinforced resin material. Further, when the fiber-reinforced resin material has a laminated structure composed of a plurality of layers, (iii) an embodiment in which the arrangement state of the reinforcing fibers contained in each layer is different can be mentioned. Further, a mode in which each of the above modes (i) to (iii) is combined can also be mentioned.

なお、繊維強化樹脂材内における強化繊維の配向態様は、例えば、繊維強化樹脂材の任意の方向、およびこれと直行する方向を基準とする引張試験を行い、引張弾性率を測定した後、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)を測定することで確認できる。弾性率の比が1.0に近いほど、強化繊維が等方的に配列していると評価できる。直交する2方向の弾性率の値のうち大きいものを小さいもので割った比が2.0を超えないときに等方性であるとされ、この比が1.3を超えないときは等方性に優れていると評価される。 The orientation of the reinforcing fibers in the fiber-reinforced resin material is measured after performing a tensile test based on, for example, an arbitrary direction of the fiber-reinforced resin material and a direction perpendicular to the direction, and measuring the tensile elastic modulus. It can be confirmed by measuring the ratio (Eδ) obtained by dividing the large value of the tensile elastic modulus by the small value. The closer the elastic modulus ratio is to 1.0, the more it can be evaluated that the reinforcing fibers are isotropically arranged. It is said to be isotropic when the ratio of the elastic modulus values in the two orthogonal directions divided by the smaller one does not exceed 2.0, and isotropic when this ratio does not exceed 1.3. It is evaluated as having excellent sex.

繊維強化樹脂材における強化繊維の目付量は、特に限定されるものではないが、通常、25g/m〜10000g/m以下とされる。より好ましくは50g/m〜8000g/mである。強化繊維強化樹脂材における強化繊維の目付量が上記の範囲にある時、仮に薄肉な成形品であっても目付量当たりの曲げ強度が高い等、十分な機械的強度を有することができ、好ましい態様である。本発明に用いられる繊維強化樹脂材の厚みは特に限定されるものではないが、通常、0.01mm〜100mmの範囲が好ましく、より好ましくは0.02mm〜10mmの範囲である。 The basis weight of the reinforcing fibers in the fiber-reinforced resin material is not particularly limited, but is usually 25 g / m 2 to 10000 g / m 2 or less. More preferably from 50g / m 2 ~8000g / m 2 . When the basis weight of the reinforcing fibers in the reinforcing fiber reinforced resin material is within the above range, even a thin molded product can have sufficient mechanical strength such as high bending strength per basis weight, which is preferable. It is an aspect. The thickness of the fiber-reinforced resin material used in the present invention is not particularly limited, but is usually preferably in the range of 0.01 mm to 100 mm, more preferably in the range of 0.02 mm to 10 mm.

強化繊維の目付と後述する熱可塑性樹脂(P2)の目付の比率(強化繊維目付/熱可塑性樹脂(P2)目付)が0.60〜1.30であることが好ましい。目付の比率がこの数値範囲にあると、一体成形品になった際に、目視による強化繊維の可視性を一体成形品の全面で確保することができ、優れた意匠性を達成することができる。この目付の比率は、0.70〜1.20であることがより好ましく、0.80〜1.10であることが更により好ましい。 The ratio of the basis weight of the reinforcing fibers to the basis weight of the thermoplastic resin (P2) described later (the basis weight of the reinforcing fibers / the basis weight of the thermoplastic resin (P2)) is preferably 0.60 to 1.30. When the basis weight ratio is within this numerical range, visual visibility of the reinforcing fibers can be ensured on the entire surface of the integrally molded product when the integrally molded product is formed, and excellent designability can be achieved. .. The basis weight ratio is more preferably 0.70 to 1.20, and even more preferably 0.80 to 1.10.

本発明に用いられる繊維強化樹脂材は、単一の層からなる単層構造を有するものであってもよく、または複数層が積層された積層構造を有するものであってもよい。なお、本発明に用いられる繊維強化樹脂材が複数の層が積層された構成を有する場合、上記厚みは各層の厚みを指すのではなく、各層の厚みを合計した繊維強化樹脂材全体の厚みを指すものとする。繊維強化樹脂材が上記積層構造を有する態様としては、同一の組成を有する複数の層が積層された態様であってもよく、または互いに異なる組成を有する複数の層が積層された態様であってもよい。 The fiber-reinforced resin material used in the present invention may have a single-layer structure composed of a single layer, or may have a laminated structure in which a plurality of layers are laminated. When the fiber-reinforced resin material used in the present invention has a structure in which a plurality of layers are laminated, the thickness does not mean the thickness of each layer, but the total thickness of the fiber-reinforced resin material, which is the total thickness of each layer. It shall point. The mode in which the fiber-reinforced resin material has the above-mentioned laminated structure may be a mode in which a plurality of layers having the same composition are laminated, or a mode in which a plurality of layers having different compositions are laminated. May be good.

また、繊維強化樹脂材が上記積層構造を有する態様としては、相互に強化繊維の配列状態が異なる層が積層された態様であってもよい。このような態様としては、例えば、強化繊維が一方向配列している層と、2次元ランダム配列している層を積層する態様を挙げることができる。3層以上が積層される場合には、任意のコア層と、当該コア層の表裏面上に積層されたスキン層とからなるサンドイッチ構造としてもよい。
また、本発明で用いる繊維強化樹脂材中には、本発明の目的を損なわない範囲で、強化繊維以外の有機繊維または無機繊維等の各種繊維状または非繊維状のフィラー、難燃剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の各種の添加剤を含んでいてもよい。
Further, as a mode in which the fiber-reinforced resin material has the above-mentioned laminated structure, a mode in which layers having different arrangement states of the reinforcing fibers are laminated may be used. As such an embodiment, for example, a mode in which a layer in which reinforcing fibers are unidirectionally arranged and a layer in which two-dimensional random arrangements are arranged are laminated can be mentioned. When three or more layers are laminated, a sandwich structure may be formed in which an arbitrary core layer and a skin layer laminated on the front and back surfaces of the core layer are formed.
Further, in the fiber-reinforced resin material used in the present invention, various fibrous or non-fibrous fillers such as organic fibers or inorganic fibers other than the reinforcing fibers, flame retardants, and stabilizers are contained within the range not impairing the object of the present invention. , Various additives such as a mold release agent, a pigment, a softening agent, a plasticizer, and a surfactant may be contained.

(強化繊維)
本発明の樹脂材に用いられる強化繊維の種類は、熱可塑性樹脂(P2)の種類や繊維強化樹脂材の用途等に応じて適宜選択することができるものであり、特に限定されるものではない。このため、本発明に用いられる強化繊維としては、無機繊維または有機繊維のいずれであっても好適に用いることができる。
上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、および金属繊維等を挙げることができる。
(Reinforcing fiber)
The type of reinforcing fiber used in the resin material of the present invention can be appropriately selected depending on the type of the thermoplastic resin (P2), the use of the fiber-reinforced resin material, and the like, and is not particularly limited. .. Therefore, as the reinforcing fiber used in the present invention, either an inorganic fiber or an organic fiber can be preferably used.
Examples of the inorganic fiber include carbon fiber, activated carbon fiber, graphite fiber, glass fiber, tungsten carbide fiber, silicon carbide fiber (silicon carbide fiber), ceramic fiber, alumina fiber, natural fiber, mineral fiber such as genbuiwa, and boron fiber. , Boron nitride fiber, boron carbide fiber, metal fiber and the like.

上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
上記ガラス繊維としては、Eガラス、Cガラス、Sガラス、Dガラス、Tガラス、石英ガラス繊維、ホウケイ酸ガラス繊維等からなるものを挙げることができる。
上記有機繊維としては、例えば、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる繊維を挙げることができる。
Examples of the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless fiber, and steel fiber.
Examples of the glass fiber include those made of E glass, C glass, S glass, D glass, T glass, quartz glass fiber, borosilicate glass fiber and the like.
Examples of the organic fiber include fibers made of resin materials such as aramid, PBO (polyparaphenylene benzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, and polyarylate.

本発明の繊維強化樹脂材に含まれる強化繊維としては、好ましくは炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維からなる群より選ばれる1種以上の強化繊維を用いることが好ましく、後述する重量平均繊維長の範囲にある強化繊維であると更に好ましい。本発明においては、2種類以上の強化繊維を併用してもよい。この場合、複数種の無機繊維を併用してもよく、複数種の有機繊維を併用してもよく、無機繊維と有機繊維とを併用してもよい。
複数種の無機繊維を併用する態様としては、例えば、炭素繊維と金属繊維とを併用する態様、炭素繊維とガラス繊維を併用する態様等を挙げることができる。一方、複数種の有機繊維を併用する態様としては、例えば、アラミド繊維と他の有機材料からなる繊維とを併用する態様等を挙げることができる。さらに、無機繊維と有機繊維を併用する態様としては、例えば、炭素繊維とアラミド繊維とを併用する態様を挙げることができる。
As the reinforcing fiber contained in the fiber reinforced resin material of the present invention, it is preferable to use one or more kinds of reinforcing fibers selected from the group consisting of carbon fiber, glass fiber, aramid fiber, boron fiber and metal fiber, which will be described later. It is more preferable that the reinforcing fibers are in the range of the weight average fiber length. In the present invention, two or more types of reinforcing fibers may be used in combination. In this case, a plurality of types of inorganic fibers may be used in combination, a plurality of types of organic fibers may be used in combination, and the inorganic fibers and organic fibers may be used in combination.
Examples of the mode in which the plurality of types of inorganic fibers are used in combination include a mode in which carbon fibers and metal fibers are used in combination, a mode in which carbon fibers and glass fibers are used in combination, and the like. On the other hand, as an embodiment in which a plurality of types of organic fibers are used in combination, for example, an embodiment in which an aramid fiber and a fiber made of another organic material are used in combination can be mentioned. Further, as a mode in which the inorganic fiber and the organic fiber are used in combination, for example, a mode in which the carbon fiber and the aramid fiber are used in combination can be mentioned.

本発明の一体成形品において強化繊維として炭素繊維を含んでいる場合には、繊維強化樹脂材の強化繊維体積割合(Vf)が10〜80%であることが好ましい。より好ましくは20〜65%、更により好ましくは25〜55%である。繊維強化樹脂材の強化繊維体積割合が、この範囲にある時、強化繊維と熱可塑性樹脂のバランスが良く、一体成形品になった際に、目視による強化繊維の可視性を一体成形品の全面で確保することができ、優れた意匠性を達成することができる。
本発明においては、上記強化繊維として炭素繊維を用いることが好ましい。炭素繊維は、軽量でありながら強度に優れた繊維強化樹脂材を得ることができるからである。
When the integrally molded product of the present invention contains carbon fibers as reinforcing fibers, the reinforcing fiber volume ratio (Vf) of the fiber reinforced resin material is preferably 10 to 80%. It is more preferably 20 to 65%, and even more preferably 25 to 55%. When the volume ratio of the reinforcing fibers of the fiber-reinforced resin material is within this range, the balance between the reinforcing fibers and the thermoplastic resin is good, and when the integrally molded product is formed, the visual visibility of the reinforcing fibers is visually increased on the entire surface of the integrally molded product. It can be secured with, and excellent design can be achieved.
In the present invention, it is preferable to use carbon fiber as the reinforcing fiber. This is because it is possible to obtain a fiber-reinforced resin material having excellent strength while being lightweight.

上記炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
中でも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。強化繊維としてPAN系炭素繊維を用いる場合、その引張弾性率は100〜600GPaの範囲内であることが好ましく、200〜500GPaの範囲内であることがより好ましく、230〜450GPaの範囲内であることがさらに好ましい。また、引張強度は2000〜10000MPaの範囲内であることが好ましく、3000〜8000MPaの範囲内であることがより好ましい。
The carbon fibers generally include polyacrylonitrile (PAN) -based carbon fibers, petroleum / coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, and vapor-phase growth systems. Carbon fibers and the like are known, but in the present invention, any of these carbon fibers can be preferably used.
Above all, in the present invention, it is preferable to use polyacrylonitrile (PAN) -based carbon fiber because of its excellent tensile strength. When a PAN-based carbon fiber is used as the reinforcing fiber, its tensile elastic modulus is preferably in the range of 100 to 600 GPa, more preferably in the range of 200 to 500 GPa, and in the range of 230 to 450 GPa. Is even more preferable. Further, the tensile strength is preferably in the range of 2000 to 10000 MPa, and more preferably in the range of 3000 to 8000 MPa.

本発明に用いられる強化繊維は、強化繊維への熱可塑性樹脂(P2)の含浸性を向上させるため、表面にサイズ剤が付着しているものであってもよい。サイズ剤が付着している強化繊維を用いる場合、当該サイズ剤の種類は、強化繊維および熱可塑性樹脂(P2)の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
強化繊維とマトリクスである熱可塑性樹脂(P2)との密着強度は、ストランド引張せん断試験における強度が5MPa以上であることが望ましい。この強度は、熱可塑性樹脂(P2)の選択に加え、強化繊維が炭素繊維である場合、炭素繊維の表面酸素濃度比(O/C)を変更する方法や、炭素繊維にサイズ剤を付与して、炭素繊維と熱可塑性樹脂(P2)との密着強度を高める方法などで改善することができる。
The reinforcing fiber used in the present invention may have a sizing agent attached to the surface in order to improve the impregnation property of the thermoplastic resin (P2) into the reinforcing fiber. When a reinforcing fiber to which a sizing agent is attached is used, the type of the sizing agent can be appropriately selected according to the type of the reinforcing fiber and the thermoplastic resin (P2), and is not particularly limited. Absent.
As for the adhesion strength between the reinforcing fiber and the thermoplastic resin (P2) which is a matrix, it is desirable that the strength in the strand tensile shear test is 5 MPa or more. For this strength, in addition to the selection of the thermoplastic resin (P2), when the reinforcing fiber is carbon fiber, a method of changing the surface oxygen concentration ratio (O / C) of the carbon fiber or a sizing agent is added to the carbon fiber. Therefore, it can be improved by a method of increasing the adhesion strength between the carbon fiber and the thermoplastic resin (P2).

本発明に用いられる強化繊維の繊維長は、強化繊維の種類や熱可塑性樹脂(P2)の種類、繊維強化樹脂材中における強化繊維の配向状態等に応じて適宜決定することができるものであり、特に限定されるものではない。したがって、本発明においては目的に応じて連続繊維を用いてもよく、不連続繊維を用いてもよい。不連続繊維を用いる場合、重量平均繊維長は、通常、0.1mm〜500mmの範囲内であることが好ましく、1mm〜100mmの範囲内であることがより好ましく、5mm〜90mmの範囲内にあることが更により好ましく、10mm〜80mmの範囲内であることが特に好ましい。強化繊維の重量平均繊維長が、この範囲内にあるとき、一体成形品の寸法精度が良好なものとなる。 The fiber length of the reinforcing fiber used in the present invention can be appropriately determined according to the type of reinforcing fiber, the type of thermoplastic resin (P2), the orientation state of the reinforcing fiber in the fiber-reinforced resin material, and the like. , It is not particularly limited. Therefore, in the present invention, continuous fibers may be used or discontinuous fibers may be used depending on the intended purpose. When discontinuous fibers are used, the weight average fiber length is usually preferably in the range of 0.1 mm to 500 mm, more preferably in the range of 1 mm to 100 mm, and in the range of 5 mm to 90 mm. Even more preferably, it is particularly preferably in the range of 10 mm to 80 mm. When the weight average fiber length of the reinforcing fibers is within this range, the dimensional accuracy of the integrally molded product becomes good.

本発明においては重量繊維長が互いに異なる強化繊維を併用してもよい。換言すると、本発明に用いられる強化繊維は、重量平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
強化繊維の重量平均繊維長は、例えば、繊維強化樹脂材から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式に基づいて求めることができる。繊維強化樹脂材からの強化繊維の抽出法は、例えば、繊維強化樹脂材に500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
個数平均繊維長:Ln=ΣLi/j (1)
(Li:強化繊維の単糸の繊維長、j:強化繊維の本数)
重量平均繊維長:Lw=(ΣLi)/(ΣLi) (2)
In the present invention, reinforcing fibers having different weight fiber lengths may be used in combination. In other words, the reinforcing fibers used in the present invention may have a single peak in the weight average fiber length, or may have a plurality of peaks.
The weight average fiber length of the reinforcing fibers can be calculated based on the following formula, for example, by measuring the fiber lengths of 100 fibers randomly selected from the fiber reinforced resin material to a unit of 1 mm using a caliper or the like. .. The method for extracting the reinforcing fibers from the fiber-reinforced resin material can be performed, for example, by subjecting the fiber-reinforced resin material to heat treatment at about 500 ° C. for about 1 hour and removing the resin in the furnace.
Number average fiber length: Ln = ΣLi / j (1)
(Li: fiber length of single yarn of reinforcing fiber, j: number of reinforcing fibers)
Weight average fiber length: Lw = (ΣLi 2 ) / (ΣLi) (2)

なお、ロータリーカッターで切断した場合など、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は極めて近い値になる。
本発明において個数平均繊維長、重量平均繊維長のいずれを採用しても構わないが、繊維強化樹脂材の物性をより正確に反映できるのは、重量平均繊維長である事が多いので、重量平均繊維長を採用することが好ましい。
When the fiber length is constant, such as when cut with a rotary cutter, the number average fiber length and the weight average fiber length are extremely close to each other.
In the present invention, either the number average fiber length or the weight average fiber length may be adopted, but since it is often the weight average fiber length that can more accurately reflect the physical properties of the fiber reinforced resin material, the weight. It is preferable to adopt the average fiber length.

本発明に用いられる強化繊維の平均単繊維径は、強化繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。例えば、強化繊維として炭素繊維が用いられる場合、平均単繊維径は、通常、3μm〜50μmの範囲内であることが好ましく、4μm〜12μmの範囲内であることがより好ましく、5μm〜8μmの範囲内であることがさらに好ましい。一方、強化繊維としてガラス繊維を用いる場合、平均単繊維径は、通常、3μm〜30μmの範囲内であることが好ましい。ここで、上記単平均繊維径は、強化繊維の単糸の直径を指すものとする。したがって、強化繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する強化繊維(単糸)の直径を指す。強化繊維の平均繊維径は、例えば、JIS R7607(2000)に記載された方法によって測定することができる。 The average single fiber diameter of the reinforcing fibers used in the present invention may be appropriately determined according to the type of the reinforcing fibers, and is not particularly limited. For example, when carbon fibers are used as the reinforcing fibers, the average single fiber diameter is usually preferably in the range of 3 μm to 50 μm, more preferably in the range of 4 μm to 12 μm, and in the range of 5 μm to 8 μm. It is more preferable to be inside. On the other hand, when glass fiber is used as the reinforcing fiber, the average single fiber diameter is usually preferably in the range of 3 μm to 30 μm. Here, the single average fiber diameter refers to the diameter of the single yarn of the reinforcing fiber. Therefore, when the reinforcing fiber is in the form of a fiber bundle, it refers to the diameter of the reinforcing fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle. The average fiber diameter of the reinforcing fibers can be measured, for example, by the method described in JIS R7607 (2000).

本発明に用いられる強化繊維は、単糸状のもののみであってもよく、繊維束状のもののみであっても良く、両者が混在していてもよい。ここで示す繊維束とは2本以上の単糸が集束剤や静電気力等により近接している事を示す。繊維束状のものを用いる場合、各繊維束を構成する単糸の数は、各繊維束においてほぼ均一であってもよく、あるいは異なっていてもよい。本発明においては、単繊維数の異なる強化繊維束の混合物であると、意匠性の構成要素の種類に冨むことになるので、一体成形品の意匠性に優れ、好ましい態様である。 The reinforcing fibers used in the present invention may be only single-thread-like ones, only fiber-bundle-like ones, or both may be mixed. The fiber bundle shown here means that two or more single yarns are close to each other due to a sizing agent, electrostatic force, or the like. When a fiber bundle is used, the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle. In the present invention, a mixture of reinforcing fiber bundles having different numbers of single fibers is a preferred embodiment because the integrally molded product is excellent in designability because it depends on the type of design component.

本発明においては、強化繊維の少なくとも一部が繊維束を成していることが好ましい。強化繊維がこの様な状態の時、繊維強化樹脂材の機械強度と成形性のバランスがより向上する事ができるようになる。繊維束の存在量として特に限定は無いが、強化繊維束の割合としては、強化繊維100重量部に対し20〜99重量部含まれていることが好ましい。 In the present invention, it is preferable that at least a part of the reinforcing fibers forms a fiber bundle. When the reinforcing fiber is in such a state, the balance between the mechanical strength and the moldability of the fiber-reinforced resin material can be further improved. The amount of the fiber bundle is not particularly limited, but the ratio of the reinforcing fiber bundle is preferably 20 to 99 parts by weight with respect to 100 parts by weight of the reinforcing fiber.

本発明に用いられる強化繊維が繊維束状である場合、各繊維束を構成する単糸の数は特に限定されるものではないが、通常、数本〜数万本の範囲内とされる。
一般的に、炭素繊維は、数千〜数万本のフィラメントが集合した繊維束状となっている。強化繊維として炭素繊維を用いる場合に、炭素繊維をこのまま使用すると、繊維束の交絡部が局部的に厚くなり薄肉の繊維強化樹脂材を得ることが困難になる場合がある。このため、繊維束を拡幅したり、または開繊したりして使用するのが通常である。
単繊維束状の強化繊維を拡幅したり、又は開繊したりする場合、本発明における強化繊維は、強化繊維束(A)中の平均繊維数(N)が下記式(3)、(4)を満たすものであることが好ましい。
臨界単繊維数=600/D (3)
0.6×10/D<N<1×10/D (4)
(ここでDは強化単繊維の平均繊維径(μm)である)
When the reinforcing fibers used in the present invention are in the form of fiber bundles, the number of single yarns constituting each fiber bundle is not particularly limited, but is usually in the range of several to tens of thousands.
Generally, carbon fibers are in the form of fiber bundles in which thousands to tens of thousands of filaments are assembled. When carbon fiber is used as the reinforcing fiber, if the carbon fiber is used as it is, the entangled portion of the fiber bundle becomes thick locally, and it may be difficult to obtain a thin fiber reinforced resin material. For this reason, it is usual to use the fiber bundle by widening or opening the fiber bundle.
When widening or opening a single fiber bundle-shaped reinforcing fiber, the reinforcing fiber in the present invention has the following formulas (3) and (4) as the average number of fibers (N) in the reinforcing fiber bundle (A). ) Is satisfied.
Number of critical single fibers = 600 / D (3)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (4)
(Here, D is the average fiber diameter (μm) of the reinforced single fiber)

上記式で定義する臨界単繊維数以上の本数の単繊維で構成される強化繊維(A)について、強化繊維全量に対する割合が20Vol%以上となる量であることが好ましく、30Vol%以上となる量であることがより好ましく、更に好ましくは40Vol%以上であり、特に好ましくは50Vol%以上となる量である。強化繊維(A)以外の強化繊維として、単繊維の状態または臨界単繊維数未満の本数の単繊維で構成される単繊維束、以下、強化繊維(B)と称する場合がある、が存在してもよい。本発明の強化繊維は、特定の単糸数以上で構成される強化繊維(A)の厚みを低減させ、かつ強化繊維単位重量(g)当たりの強化繊維(A)の束数を特定の範囲とすることで繊維強化樹脂材の厚み斑を小さくできるため、成形することで薄肉でも機械物性に優れた一体成形品を得ることが可能である。 Regarding the reinforcing fiber (A) composed of a number of single fibers equal to or more than the number of critical single fibers defined by the above formula, the ratio to the total amount of reinforcing fibers is preferably 20 Vol% or more, and the amount is 30 Vol% or more. It is more preferably 40 Vol% or more, and particularly preferably 50 Vol% or more. As the reinforcing fiber other than the reinforcing fiber (A), there is a single fiber bundle composed of a single fiber state or a number of single fibers less than the critical single fiber number, which may be hereinafter referred to as a reinforcing fiber (B). You may. The reinforcing fiber of the present invention reduces the thickness of the reinforcing fiber (A) composed of a specific number of single yarns or more, and sets the number of bundles of the reinforcing fiber (A) per unit weight (g) of the reinforcing fiber within a specific range. By doing so, the thickness unevenness of the fiber-reinforced resin material can be reduced, so that it is possible to obtain an integrally molded product having excellent mechanical properties even with a thin wall by molding.

炭素繊維全量に対する強化繊維(A)の量の割合が20Vol%以上であれば、本発明の繊維強化樹脂材を成形した際に、強化繊維体積含有率の高い繊維強化複合材料を得ることができ好ましい。一方、強化繊維(A)の量の割合の上限は99Vol%であることが好ましい。繊維全量に対する強化繊維(A)の量の割合が99Vol%以下であれば、繊維の目隙が大きくならず、機械強度に優れる複合材料を得ることができる。強化繊維全量に対する強化繊維(A)の量の割合はより好ましくは20Vol%以上99Vol%未満である。強化繊維全量に対する強化繊維(A)の量の割合の上限は、95Vol%以下がより好ましく、90Vol%以下が更に好ましい。
前記のとおり、強化繊維(A)は強化単繊維の束状物であるので、便宜上、強化繊維束(A)と称されることもある。同様に、強化繊維(A)の平均単繊維数が平均繊維数と略称されることがある。
When the ratio of the amount of the reinforcing fiber (A) to the total amount of carbon fibers is 20 Vol% or more, a fiber-reinforced composite material having a high reinforcing fiber volume content can be obtained when the fiber-reinforced resin material of the present invention is molded. preferable. On the other hand, the upper limit of the proportion of the amount of the reinforcing fiber (A) is preferably 99 Vol%. When the ratio of the amount of the reinforcing fiber (A) to the total amount of the fiber is 99 Vol% or less, the gap between the fibers is not large and a composite material having excellent mechanical strength can be obtained. The ratio of the amount of the reinforcing fiber (A) to the total amount of the reinforcing fiber is more preferably 20 Vol% or more and less than 99 Vol%. The upper limit of the ratio of the amount of the reinforcing fiber (A) to the total amount of the reinforcing fiber is more preferably 95 Vol% or less, further preferably 90 Vol% or less.
As described above, since the reinforcing fiber (A) is a bundle of reinforcing single fibers, it may be referred to as a reinforcing fiber bundle (A) for convenience. Similarly, the average number of single fibers of the reinforcing fiber (A) may be abbreviated as the average number of fibers.

本発明において強化繊維として炭素繊維を用いる場合、炭素繊維束(A)中の平均繊維数(N)は本発明の目的を損なわない範囲で適宜決定することができるものであり、特に限定されるものではない。
さらに、強化繊維束(A)の形態としては、厚さが100μm以上である炭素繊維束の割合が、炭素繊維束(A)数の3%未満であることが好ましい。厚さが100μm以上である炭素繊維束が3%未満であれば、熱可塑性樹脂が繊維束内部に含浸しやすくなるので好ましい。より好ましくは厚さが100μm以上である炭素繊維束の割合は1%未満である。厚さが100μm以上である炭素繊維束の割合を3%未満とするには、使用する繊維を拡幅し、薄肉にした繊維を用いる等によりコントロールすることができる。
When carbon fibers are used as the reinforcing fibers in the present invention, the average number of fibers (N) in the carbon fiber bundle (A) can be appropriately determined as long as the object of the present invention is not impaired, and is particularly limited. It's not a thing.
Further, as the form of the reinforcing fiber bundle (A), the ratio of the carbon fiber bundle having a thickness of 100 μm or more is preferably less than 3% of the number of the carbon fiber bundles (A). When the carbon fiber bundle having a thickness of 100 μm or more is less than 3%, the thermoplastic resin is likely to be impregnated inside the fiber bundle, which is preferable. More preferably, the proportion of carbon fiber bundles having a thickness of 100 μm or more is less than 1%. In order to reduce the proportion of carbon fiber bundles having a thickness of 100 μm or more to less than 3%, it can be controlled by widening the fibers to be used and using thinned fibers.

(熱可塑性樹脂(P2))
本発明の樹脂材に用いられる熱可塑性樹脂(P2)は、所望の強度を有する繊維強化樹脂材、繊維強化樹脂成形品を得ることができるものであれば特に限定されるものではなく、繊維強化樹脂成形品の用途等に応じて適宜選択して用いることができる。
一般的に、繊維強化樹脂材に用いられる代表的な熱可塑性樹脂(P2)としては、熱可塑性樹脂および熱硬化性樹脂が知られているが、本発明においては、マトリクスとして熱可塑性樹脂を好適に用いることができる。また、本発明においてはマトリクスとして、熱可塑性樹脂を主成分とする範囲において、好ましくは1〜40重量%、より好ましくは5〜30重量%、更により好ましくは8〜20重量%の範囲で熱硬化性樹脂を併用してもよい。熱硬化性樹脂を併用することにより、一体成形品の使用用途に応じて一体成形品の繊維強化材の物性の選択肢を広げることができる。上記熱可塑性樹脂としては、通常、軟化温度が180℃〜350℃の範囲内のものが用いられるが、これに限定されるものではない。
(Thermoplastic resin (P2))
The thermoplastic resin (P2) used for the resin material of the present invention is not particularly limited as long as a fiber-reinforced resin material having desired strength and a fiber-reinforced resin molded product can be obtained, and the fiber-reinforced resin material is not particularly limited. It can be appropriately selected and used according to the intended use of the resin molded product.
Generally, a thermoplastic resin and a thermosetting resin are known as typical thermoplastic resins (P2) used for a fiber reinforced resin material, but in the present invention, a thermoplastic resin is preferable as a matrix. Can be used for. Further, in the present invention, as a matrix, heat is preferably in the range of 1 to 40% by weight, more preferably 5 to 30% by weight, and even more preferably 8 to 20% by weight in the range containing a thermoplastic resin as a main component. A curable resin may be used in combination. By using the thermosetting resin in combination, the choice of physical properties of the fiber reinforced material of the integrally molded product can be expanded according to the intended use of the integrally molded product. As the thermoplastic resin, one having a softening temperature in the range of 180 ° C. to 350 ° C. is usually used, but the thermoplastic resin is not limited thereto.

上記熱可塑性樹脂としては、ポリ脂肪族オレフィン樹脂((メタ)アクリル樹脂を除く。)、ポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂(ポリエーテルケトン樹脂を除く。)、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、およびポリベンゾイミダゾール樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリ脂肪族オレフィン樹脂((メタ)アクリル樹脂を除く。)としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、およびポリビニルアルコール樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the thermoplastic resin include polyaliphatic olefin resin (excluding (meth) acrylic resin), polystyrene resin, polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, and (meth) acrylic resin. Polyarylate resin, polyphenylene ether resin, polyimide resin, polyether nitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin (excluding polyether ketone resin), polyether ketone resin, thermoplastic urethane resin, fluorine-based One or more kinds of resins selected from the group consisting of resins, polybenzoimidazole resins and the like can be mentioned.
Examples of the polyaliphatic olefin resin (excluding (meth) acrylic resin) include polyethylene resin, polypropylene resin, polybutadiene resin, polymethylpentene resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol. One or more kinds of resins selected from the group consisting of resins and the like can be mentioned.

上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the polystyrene resin include one or more kinds of resins selected from the group consisting of polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin) and the like.
Examples of the polyamide resin include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610. One or more kinds of resins selected from the group consisting of resins (nylon 610) and the like can be mentioned.
Examples of the polyester resin include one or more kinds of resins selected from the group consisting of polyethylene terephthalate resin, polyethylene naphthalate resin, ribobutylene terephthalate resin, polytrimethylene terephthalate resin, liquid crystal polyester and the like.

上記(メタ)アクリル樹脂としては、例えば、ポリアクリル樹脂、ポリメタクリル樹脂、ポリメチルアクリレート樹脂、およびポリメチルメタクリレート樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリフェニレンエーテル樹脂としては、例えば、ポリフェニレンエーテル樹脂、および変性ポリフェニレンエーテル等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリイミド樹脂としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、およびポリエステルイミド樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the (meth) acrylic resin include one or more kinds of resins selected from the group consisting of polyacrylic resin, polymethacrylic resin, polymethylacrylate resin, polymethylmethacrylate resin and the like.
Examples of the polyphenylene ether resin include one or more types of resins selected from the group consisting of polyphenylene ether resins, modified polyphenylene ethers, and the like.
Examples of the polyimide resin include one or more types of resins selected from the group consisting of polyimide resins, polyamide-imide resins, polyetherimide resins, polyesterimide resins and the like.

上記ポリスルホン樹脂としては、例えば、ポリスルホン樹脂、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルフェニレンスルホン樹脂、およびポリエーテルケトンスルホン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、およびポリエーテルケトンケトン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
上記フッ素系樹脂としては、例えば、ポリモノフルオロエチレン樹脂、ポリビスフルオロエチレン樹脂、ポリトリフルオロエチレン樹脂、およびポリテトラフルオロエチレン樹脂等からなる群より選ばれる1種類以上の樹脂を挙げることができる。
Examples of the polysulfone resin include one or more types of resins selected from the group consisting of polysulfone resins, modified polysulfone resins, polyethersulfone resins, polyetherphenylene sulfone resins, polyether ketone sulfone resins, and the like.
Examples of the polyetherketone resin include one or more types of resins selected from the group consisting of polyetherketone resins, polyetheretherketone resins, and polyetherketoneketone resins.
Examples of the fluororesin include one or more kinds of resins selected from the group consisting of polymonofluoroethylene resin, polybisfluoroethylene resin, polytrifluoroethylene resin, polytetrafluoroethylene resin and the like. ..

本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化温度または融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。なお、熱可塑性樹脂(P2)は、目的とする物性を損なわない範囲で、上記の強化繊維以外の各種フィラー、難燃剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤などを加えても構わない。 The thermoplastic resin used in the present invention may be only one type or two or more types. Examples of the mode in which two or more types of thermoplastic resins are used in combination include a mode in which thermoplastic resins having different softening temperatures or melting points are used in combination, a mode in which thermoplastic resins having different average molecular weights are used in combination, and the like. Can be done, but this is not the case. The thermoplastic resin (P2) contains various fillers other than the above-mentioned reinforcing fibers, flame retardants, stabilizers, mold release agents, pigments, softeners, plasticizers, and surfactants as long as the desired physical properties are not impaired. Additives such as, etc. may be added.

繊維強化樹脂材における熱可塑性樹脂(P2)の目付は、25g/m〜10000g/m以下であることが好ましい。より好ましくは50g/m〜8000g/mである。上述したように、強化繊維の目付との比率(強化繊維比率/熱可塑性樹脂(P2)の目付)の特定の数値範囲にすることにより、一体成形品になった際に、目視による強化繊維の可視性を一体成形品の全面で確保することができ、優れた意匠性を達成することができる。 The basis weight of the thermoplastic resin (P2) in the fiber-reinforced resin material is preferably 25 g / m 2 to 10000 g / m 2 or less. More preferably from 50g / m 2 ~8000g / m 2 . As described above, by setting the ratio of the reinforcing fiber to the basis weight (reinforcing fiber ratio / weight of the thermoplastic resin (P2)) within a specific numerical range, when the integrally molded product is formed, the reinforcing fiber is visually observed. Visibility can be ensured on the entire surface of the integrally molded product, and excellent designability can be achieved.

上述した熱可塑性樹脂(P1)と熱可塑性樹脂(P2)の溶着強度が10MPa以上であることが好ましい。溶着強度が10MPa未満であると、面状体と強化繊維樹脂材の密着性が十分でなく、耐候試験により一体成形品の面状体と強化繊維樹脂材の界面から剥離現象が起こることがあり好ましくない。溶着強度はより好ましくは12〜100MPa、更により好ましくは20〜80MPa、より一層好ましくは25〜50MPaでる。測定法は後述のように、熱可塑性樹脂(P1)と熱可塑性樹脂(P2)それぞれの平板状の射出成形品から所定の大きさに切削して組み立てた試料をプレス成形にて溶着させる。溶着させた試料の引張試験により得た最大荷重により評価した。 It is preferable that the welding strength of the above-mentioned thermoplastic resin (P1) and the thermoplastic resin (P2) is 10 MPa or more. If the welding strength is less than 10 MPa, the adhesion between the planar body and the reinforcing fiber resin material is not sufficient, and a weather resistance test may cause a peeling phenomenon from the interface between the planar body of the integrally molded product and the reinforcing fiber resin material. Not preferred. The welding strength is more preferably 12 to 100 MPa, even more preferably 20 to 80 MPa, and even more preferably 25 to 50 MPa. As described later, the measuring method is to press-mold a sample assembled by cutting a flat plate-shaped injection-molded product of a thermoplastic resin (P1) and a thermoplastic resin (P2) to a predetermined size. It was evaluated by the maximum load obtained by the tensile test of the welded sample.

(繊維強化樹脂材の製造方法)
本発明に用いられる繊維強化樹脂材は、一般的に公知の方法を用いて製造することができる。マトリクスとして上記の熱可塑性樹脂(P2)を用いる場合は、例えば、1.強化繊維をカットする工程、2.カットされた強化繊維を開繊させる工程、3.開繊させた強化繊維と繊維状、ペレット状または粒子状の熱可塑性樹脂(P2)を混合した後、加熱圧縮する工程により製造することができるが、この限りではない。
上述の様な製造方法により得られた繊維強化樹脂材は、面内において、強化繊維が特定の方向に配向しておらず、二次元ランダムな方向に分散して配置されている。すなわち、この様な繊維強化樹脂材は面内等方性の材料である。互いに直交する2方向の引張弾性率の比を求めることで、繊維強化樹脂材の等方性を定量的に評価できる。
(Manufacturing method of fiber reinforced resin material)
The fiber-reinforced resin material used in the present invention can be produced by a generally known method. When the above thermoplastic resin (P2) is used as the matrix, for example, 1. 2. The process of cutting reinforcing fibers. 2. The process of opening the cut reinforcing fibers. It can be produced by a step of mixing the opened reinforcing fiber with a fibrous, pellet-shaped or particulate thermoplastic resin (P2) and then heat-compressing, but this is not the case.
In the fiber-reinforced resin material obtained by the above-mentioned production method, the reinforcing fibers are not oriented in a specific direction in the plane and are dispersed and arranged in a two-dimensional random direction. That is, such a fiber-reinforced resin material is an in-plane isotropic material. The isotropic property of the fiber reinforced resin material can be quantitatively evaluated by obtaining the ratio of the tensile elastic moduli in two directions orthogonal to each other.

(樹脂材への面状体の配置)
本発明における一体成形品の製造方法では、上述の強化繊維と熱可塑性樹脂(P2)を含む繊維強化樹脂材の一つの表面の少なくとも一部に熱可塑性樹脂(P1)を含む面状体を配置する。好ましくは繊維強化材の1つの表面の全体に面状体を配置することである。面状体を繊維強化樹脂材に配置する方法としては、面状体を繊維強化樹脂材の少なくとも一部の表面の上に置いて面状体と樹脂材の界面が溶着しかつ樹脂材が流動しない条件でプレス成形をする方法(以下、一体成形前処理と略す。)と、予め面内を上下に貫通する空孔を設けた面状体を樹脂材の少なくとも一部の表面の上に配置する方法(以下、面状体空孔処理と略す。)が挙げられる。両者は製造時の設備や処理の状況によって適宜選択できるが、面状体空孔処理の方が簡便である点でより好ましい。
(Arrangement of planar body on resin material)
In the method for producing an integrally molded product in the present invention, a planar body containing the thermoplastic resin (P1) is arranged on at least a part of the surface of one of the fiber-reinforced resin materials containing the above-mentioned reinforcing fibers and the thermoplastic resin (P2). To do. It is preferable to arrange the planar body on the entire surface of one surface of the fiber reinforcing material. As a method of arranging the planar body on the fiber reinforced resin material, the planar body is placed on at least a part of the surface of the fiber reinforced resin material, the interface between the planar body and the resin material is welded, and the resin material flows. A method of press molding under the condition that the resin material is not used (hereinafter, abbreviated as integral molding pretreatment) and a planar body provided with holes that penetrate the surface vertically are arranged on the surface of at least a part of the resin material. (Hereinafter, abbreviated as planar vacancies treatment). Both can be appropriately selected depending on the equipment at the time of manufacture and the processing conditions, but the planar vacancies treatment is more preferable because it is simpler.

(一体成形前処理)
本発明における一体成形前処理では、面状体を樹脂材の少なくとも一部の表面の上に置いてプレス成形する際、樹脂材と触れるプレス成形の金型の下型の温度は熱可塑性樹脂(P2)の軟化温度−5〜−20℃に設定することが好ましい。より好ましくは下型の温度は熱可塑性樹脂(P2)の軟化温度−8〜−15℃である。金型の下型の温度がP2の軟化温度−5℃より高ければ樹脂材が流動するため好ましくなくP2の軟化温度−20℃より低ければ面状体と樹脂材の溶着が不均一となり好ましくない。面状体と触れるプレス成形の金型の上型の温度は熱可塑性樹脂(P1)の軟化温度+5〜+20℃が好ましい。より好ましくは上型の温度は熱可塑性樹脂(P1)の軟化温度+8〜+15℃である。上型の温度がP1の軟化温度+5℃より低ければ面状体と樹脂材の溶着が不均一となり好ましくなく、軟化温度+20℃より高ければ樹脂材が流動する恐れがあるため好ましくない。プレス成形時のプレス圧力は0.5〜5MPaかつプレス時間30〜180秒の範囲が好ましく、この範囲内であれば樹脂材の流動を抑制しつつ良好な面状体と樹脂材の溶着が得られる。プレス成形後は、通水冷却した型板に挟んでプレス圧0.3〜0.5MPaの範囲で加圧冷却するのが好ましく、この範囲内であれば樹脂材の流動を抑制しつつ面状体と樹脂材の良好な溶着が得られる。
(Integral molding pretreatment)
In the integral molding pretreatment in the present invention, when the planar body is placed on the surface of at least a part of the resin material and press-molded, the temperature of the lower mold of the press-molding mold that comes into contact with the resin material is a thermoplastic resin ( It is preferable to set the softening temperature of P2) to −5 to −20 ° C. More preferably, the temperature of the lower mold is the softening temperature of the thermoplastic resin (P2) of −8 to −15 ° C. If the temperature of the lower mold of the mold is higher than the softening temperature of P2 of -5 ° C, the resin material flows, which is not preferable. If the temperature of the lower mold of P2 is lower than the softening temperature of P2 of -20 ° C, the welding between the planar body and the resin material becomes non-uniform, which is not preferable. .. The temperature of the upper mold of the press-molded mold that comes into contact with the planar body is preferably the softening temperature of the thermoplastic resin (P1) + 5 to + 20 ° C. More preferably, the temperature of the upper mold is the softening temperature of the thermoplastic resin (P1) +8 to + 15 ° C. If the temperature of the upper mold is lower than the softening temperature of P1 + 5 ° C., the welding between the planar body and the resin material becomes non-uniform, which is not preferable, and if the temperature is higher than the softening temperature + 20 ° C., the resin material may flow, which is not preferable. The press pressure during press molding is preferably in the range of 0.5 to 5 MPa and the press time is in the range of 30 to 180 seconds. Within this range, good welding of the planar body and the resin material can be obtained while suppressing the flow of the resin material. Be done. After press molding, it is preferable to perform pressure cooling in the range of press pressure of 0.3 to 0.5 MPa by sandwiching it between water-cooled templates, and if it is within this range, it is planar while suppressing the flow of the resin material. Good welding between the body and the resin material can be obtained.

(面状体空孔処理)
本発明における面状体空孔処理における空孔の設け方は公知の方法を用いることができ、ロールパンチ、ホットニードル、コールドニードル、トムソン刃、ドリル等が挙げられるが、空孔処理後の面状体の平滑性の観点からロールパンチ、トムソン刃またはドリルを使用して設けることが好ましく、産業上の観点からロールパンチを使用することが特に好ましい。
(Spherical body vacancies treatment)
A known method can be used as a method of providing holes in the surface hole processing in the present invention, and examples thereof include roll punches, hot needles, cold needles, Thomson blades, drills, etc., but the surface after the hole processing From the viewpoint of smoothness of the body, it is preferable to use a roll punch, a Thomson blade or a drill, and from an industrial point of view, it is particularly preferable to use a roll punch.

面状体空孔処理によって面状体の面内に配置された空孔間距離は5〜100mmであり、好ましくは6〜50mmであり、特に好ましくは7〜30mmである。ここでいう空孔間距離とは、面状態上で隣接する空孔間の最短距離である。空孔間距離が5mm未満であると、面状体を配置した繊維強化樹脂材を成形直前に加熱して可塑化した際、隣接する空孔同士が合体し大きな空孔となり、一体成形品の意匠性や表面性の不良原因となるため好ましくなく、空孔間距離が100mmを超えると、面状体を配置した繊維強化樹脂材を成形直前に加熱して可塑化するときに面状体と樹脂材の間に存在するエアーにより溶融した面状体に膨れが発生し、一体成形品の意匠性や表面性の不良原因となるため好ましくない。 The interpupillary distance arranged in the plane of the planar body by the planar body pore treatment is 5 to 100 mm, preferably 6 to 50 mm, and particularly preferably 7 to 30 mm. The interpupillary distance referred to here is the shortest distance between adjacent pores in a plane state. If the distance between the pores is less than 5 mm, when the fiber-reinforced resin material on which the planar body is arranged is heated and plasticized immediately before molding, the adjacent pores are united to form large pores, and the integrally molded product It is not preferable because it causes poor design and surface properties, and if the distance between pores exceeds 100 mm, the fiber-reinforced resin material on which the planar body is arranged is heated and plasticized immediately before molding. It is not preferable because the molten planar body is swelled by the air existing between the resin materials, which causes poor design and surface properties of the integrally molded product.

本発明における空孔は面状態の外形において、最も広い面積を有する向かい合った面を水平になるように空間に置いた時に、面状体を上下に貫通する空孔である。その形状は特に制限は無いが、円、楕円、半円、正方形、長方形、平行四辺形、五角形以上の多角形、および星型等の貫通形状のものならびに、十字線、および円弧等のスリット形状よりなる群より選ばれる少なくとも1種以上の形状を挙げることが好ましい。空孔のサイズは本発明の効果を発揮するものであれば特に制限は無いが、空孔の長径あるいは長辺が0.1〜5.0mmであるものが好ましく、0.2〜4.0mmであるものがより好ましく、0.3〜3.0mmであるものが更によりこのましい。空孔の形状、大きさがこの範囲であれば、面状体と樹脂材の密着性が良好であり、効率よく一体成形品の意匠性や表面性が得られる。 The holes in the present invention are holes that penetrate the planar body up and down when the facing surfaces having the widest area are placed in a horizontal space in the outer shape of the surface state. The shape is not particularly limited, but it is a penetrating shape such as a circle, an ellipse, a semicircle, a square, a rectangle, a parallelogram, a polygon of a pentagon or more, a star, and a slit shape such as a cross line and an arc. It is preferable to list at least one or more shapes selected from the group consisting of. The size of the pores is not particularly limited as long as it exhibits the effects of the present invention, but the major diameter or the long side of the pores is preferably 0.1 to 5.0 mm, and 0.2 to 4.0 mm. Is more preferable, and 0.3 to 3.0 mm is even more preferable. When the shape and size of the pores are within this range, the adhesion between the planar body and the resin material is good, and the design and surface properties of the integrally molded product can be efficiently obtained.

(一体成形品の製造方法)
本発明における一体成形品は、上述の繊維強化樹脂材の少なくとも一部の表面に熱可塑性樹脂(P1)からなる面状体を配置させ、圧縮成形(プレス成形)することで得る事ができる。得られた一体成形品は、繊維強化樹脂成形品としての機械強度に加え表面性や意匠性に優れるため、これを必要とする部位に好適に用いる事ができる。
一体成形品を得る具体的な方法は、本発明においては、生産性、等方性に優れるプレス成形などの圧縮成形である。更に詳しくは、以下の工程よりなる。繊維強化樹脂材の少なくとも一部の表面に熱可塑性樹脂(P1)からなる面状体を配置した繊維強化樹脂材を成形直前に、樹脂材を構成する熱可塑性樹脂(P2)の軟化温度以上に加熱して可塑化する(工程10)。次いで、この加熱した面状体と繊維強化樹脂材を、上型および下型から構成される圧縮成形用金型内へ搬送する(工程20)。加熱する方法としては、熱風乾燥機、赤外線加熱機などが用いられる。得られた繊維強化樹脂材は、所望の形状に形成したり、表面性の向上のために、必要に応じ再度プレス成形しても構わない。
(Manufacturing method of integrally molded product)
The integrally molded product in the present invention can be obtained by arranging a planar body made of a thermoplastic resin (P1) on the surface of at least a part of the above-mentioned fiber-reinforced resin material and performing compression molding (press molding). The obtained integrally molded product is excellent in surface properties and design properties in addition to mechanical strength as a fiber reinforced resin molded product, and therefore can be suitably used for a portion requiring this.
In the present invention, a specific method for obtaining an integrally molded product is compression molding such as press molding, which is excellent in productivity and isotropic property. More specifically, it comprises the following steps. Immediately before molding the fiber-reinforced resin material in which a planar body made of the thermoplastic resin (P1) is arranged on at least a part of the surface of the fiber-reinforced resin material, the temperature rises above the softening temperature of the thermoplastic resin (P2) constituting the resin material. It is heated and plasticized (step 10). Next, the heated planar body and the fiber-reinforced resin material are conveyed into a compression molding die composed of an upper die and a lower die (step 20). As a method of heating, a hot air dryer, an infrared heater, or the like is used. The obtained fiber-reinforced resin material may be formed into a desired shape, or may be press-molded again if necessary in order to improve the surface property.

具体的には、繊維強化樹脂材の構成する熱可塑性樹脂(P2)の軟化温度+30℃以上、熱可塑性樹脂(P2)の分解温度以下の可塑化温度に加熱して樹脂材と面状体を柔らかくした後、熱可塑性樹脂(P2)の融点以下もしくはガラス転移温度以下に調整された上型と下型とを対で構成された圧縮成形用金型内に配置して加圧する。好ましくは、樹脂材と面状体を加熱する温度は、熱可塑性樹脂(P2)の軟化温度+15℃以上、熱可塑性樹脂(P2)の分解温度−30℃である。加熱温度がその範囲以下であると、プレス成形を行うに当たり十分に熱可塑性樹脂が溶融していないため成形しにくく、またその範囲を超えると熱可塑性樹脂の分解が進むことがある。分解温度は、熱重量分析装置(TG)を用い、空気中または窒素気流下において、常温より昇温速度10℃/分の昇温速度で行うことができ、試料の1%重量減少開始温度または5%重量減少開始温度を分解温度とすることができる。 Specifically, the resin material and the planar body are heated to a softening temperature of + 30 ° C. or higher for the thermoplastic resin (P2) composed of the fiber-reinforced resin material and a plasticizing temperature equal to or lower than the decomposition temperature of the thermoplastic resin (P2). After softening, the upper mold and the lower mold adjusted to be below the melting point of the thermoplastic resin (P2) or below the glass transition temperature are placed in a pair of compression molding dies and pressed. Preferably, the temperature for heating the resin material and the planar body is the softening temperature of the thermoplastic resin (P2) + 15 ° C. or higher, and the decomposition temperature of the thermoplastic resin (P2) −30 ° C. If the heating temperature is below that range, it is difficult to mold because the thermoplastic resin is not sufficiently melted for press molding, and if it exceeds that range, the decomposition of the thermoplastic resin may proceed. The decomposition temperature can be set at a temperature rise rate of 10 ° C./min from normal temperature in air or under a nitrogen stream using a thermogravimetric analyzer (TG), and the temperature at which 1% weight loss of the sample starts or The 5% weight loss start temperature can be the decomposition temperature.

この時、該面状体は固定する事が好ましい。面状体を固定する事により、面状体の移動やシワの発生に由来する、目的とする位置の表面性や意匠性の低下を抑制する事ができる。面状体を固定する手法として特に限定は無いが、具体的には、超音波溶着、振動溶着、または突起部による固定などが挙げられる。中でも超音波溶着は簡便に溶着できるという観点から好ましく用いる事ができる。 At this time, it is preferable to fix the planar body. By fixing the planar body, it is possible to suppress deterioration of the surface property and design of the target position due to the movement of the planar body and the occurrence of wrinkles. The method for fixing the planar body is not particularly limited, and specific examples thereof include ultrasonic welding, vibration welding, and fixing by protrusions. Above all, ultrasonic welding can be preferably used from the viewpoint of easy welding.

プレス成形の際の加圧条件としては0.1〜30MPa、好ましくは6〜25MPa、さらに10〜22MPaの圧力をかけることが好ましい。圧力が0.1MPa未満の場合、繊維強化樹脂材を十分に押し切れず、スプリングバックなどが発生し素材強度が低下することがある。また圧力が30MPaを超える場合、例えば繊維強化樹脂材が大きい場合、きわめて大きなプレス機が必要となり、経済的に好ましくない場合がある。また加圧中の加熱条件としては、金型内の温度としては、熱可塑性樹脂材の種類によるが、溶融した熱可塑性樹脂材が冷却されて固化し、繊維強化樹脂材が形作られるために、熱可塑性樹脂が結晶性の場合は融点、非晶性の場合はガラス転移温度、それぞれより20℃以下であることが好ましい。 As the pressurizing condition at the time of press molding, it is preferable to apply a pressure of 0.1 to 30 MPa, preferably 6 to 25 MPa, and further preferably 10 to 22 MPa. If the pressure is less than 0.1 MPa, the fiber-reinforced resin material may not be sufficiently pushed, springback or the like may occur, and the material strength may decrease. Further, when the pressure exceeds 30 MPa, for example, when the fiber reinforced resin material is large, an extremely large press machine is required, which may be economically unfavorable. As for the heating conditions during pressurization, the temperature inside the mold depends on the type of the thermoplastic resin material, but the molten thermoplastic resin material is cooled and solidified to form the fiber-reinforced resin material. When the thermoplastic resin is crystalline, the melting point is preferable, and when the thermoplastic resin is amorphous, the glass transition temperature is preferably 20 ° C. or lower.

プレス成形終了後は圧縮成型用金型内の成形品温度が熱可塑性樹脂(P2)の軟化温度未満になった状態で圧縮成型用金型から取出し、一体成形品を得ることができる(工程30)。熱可塑性樹脂(P2)の軟化温度未満になる前に取り出すと、樹脂材が流動性を有しているので、取り出しの際に接触した器具等から与えられる荷重により、目的とする一体成形品の形状が変形することがあり好ましくない。好ましくは熱可塑性樹脂(P2)の軟化温度−20℃以下で、より好ましくは熱可塑性樹脂(P2)の軟化温度−30℃以下で、更により好ましくは熱可塑性樹脂(P2)の軟化温度−50℃以下で圧縮成形用金型から取り出すことである。 After the press molding is completed, the molded product in the compression molding die can be taken out from the compression molding die in a state where the temperature of the molded product is lower than the softening temperature of the thermoplastic resin (P2) to obtain an integrally molded product (step 30). ). If the thermoplastic resin (P2) is taken out before it becomes less than the softening temperature, the resin material has fluidity. Therefore, due to the load applied from the instruments or the like that came into contact with the resin material at the time of taking out, the target integrally molded product The shape may be deformed, which is not preferable. The softening temperature of the thermoplastic resin (P2) is preferably −20 ° C. or lower, more preferably the softening temperature of the thermoplastic resin (P2) is −30 ° C. or lower, and even more preferably the softening temperature of the thermoplastic resin (P2) −50. It is taken out from the compression molding die at a temperature of ° C or lower.

(圧縮成形用金型)
本発明に用いられる圧縮成形用金型の製品部の表面であり、一体成形品の面状体が配置された側と接触する製品部の表面には凹凸が設置されていてもよい。その凸凹は、一体成形品の表面性を改善したり、加飾用の目的などのために設置されていることが好ましい。金型の製品部とは一体成形品をプレス成形により製造する際に、プレス成形が稼働している間に圧縮成形用金型と、プレス成形前の面状体、繊維強化樹脂材またはプレス成形後の一体成形品の少なくとも1つが接触する部分を表す。加飾用の凹凸は、物理的に規則的な凹凸模様、不規則な凹凸模様、シワ模様またはこれらの組合せ等を付与するために金型の製品部の表面に設置されたものを言う。具体的には、例えばシボと呼ばれ、該シボパターンは本発明の効果を損なわない限り特に制限を受けないが、例えば、株式会社棚澤八光社やテニバック社といったシボメーカーが発行するシボ見本を目視で眺め、成形品の目視で見た外観性や手触り感といった意匠性や汚れのつきにくさや汚れの落とし易さ等の機能性を考慮し決定してもよい。具体的には、そのような凹凸のパターンとしては、皮革(ウロコ)状模様、梨地、木目、岩目、砂目、布目、波目、布地模様、幾何学模様、または表面に平行な細かい線が入る筋目若しくはシルクラインなどがある。他に艶消し加工、サンドブラスト加工で付与されるような凹凸形状も含まれる。シボの深さは10〜300μmであることが好ましく、より好ましくは20〜200μmである。また抜き勾配を0.5〜20°付与された加飾用の凹凸のパターンが付与されたものを製造時に用いることが好ましい。抜き勾配の数値範囲は好ましくは0.6〜15°、より好ましくは0.7〜10°、更により好ましくは1〜8°である。本発明の加飾用面状体が設置された繊維強化樹脂材は、プレス成形時に繊維強化樹脂材とともに加飾用面状体が流動するため、金型の製品部から一体成形品の面状体の表面部分に加飾用の凹凸をトレースしたり、転写することができる。その結果、金型の製品部の表面に設置された凹凸が付与された一体成形品を得ることができる。このような一体成形品は、一体形成品の意匠性の向上に寄与することができ、産業上の有用性が高い。
(Compression molding mold)
Concavities and convexities may be provided on the surface of the product part of the compression molding die used in the present invention, which is in contact with the side on which the planar body of the integrally molded product is arranged. It is preferable that the unevenness is installed for the purpose of improving the surface property of the integrally molded product or for the purpose of decoration. What is the product part of the mold? When an integrally molded product is manufactured by press molding, the mold for compression molding and the planar body before press molding, fiber reinforced resin material or press molding are performed while the press molding is in operation. Represents a portion of contact with at least one of the later integrally molded products. The unevenness for decoration refers to a pattern installed on the surface of the product part of the mold in order to give a physically regular uneven pattern, an irregular uneven pattern, a wrinkle pattern, or a combination thereof. Specifically, for example, it is called a grain, and the grain pattern is not particularly limited as long as the effect of the present invention is not impaired. For example, a grain sample issued by a grain maker such as Tanasawa Hakkou Co., Ltd. or Tenibak Co., Ltd. May be determined in consideration of the design such as the appearance and the feel of the molded product as seen visually, and the functionality such as the difficulty of getting stains and the ease of removing stains. Specifically, such uneven patterns include leather (scale) patterns, satin finish, wood grain, rock grain, sand grain, cloth grain, wavy pattern, cloth pattern, geometric pattern, or fine lines parallel to the surface. There are lines or silk lines that can be used. In addition, uneven shapes such as those given by matting and sandblasting are also included. The grain depth is preferably 10 to 300 μm, more preferably 20 to 200 μm. Further, it is preferable to use a product having a pattern of unevenness for decoration having a draft of 0.5 to 20 ° at the time of manufacturing. The numerical range of the draft is preferably 0.6 to 15 °, more preferably 0.7 to 10 °, and even more preferably 1 to 8 °. In the fiber-reinforced resin material on which the decorative surface of the present invention is installed, the decorative surface flows together with the fiber-reinforced resin during press molding, so that the surface of the integrally molded product is formed from the product part of the mold. The unevenness for decoration can be traced or transferred to the surface part of the body. As a result, it is possible to obtain an integrally molded product having irregularities installed on the surface of the product portion of the mold. Such an integrally molded product can contribute to the improvement of the design of the integrally formed product, and is highly industrially useful.

上述の工程により得られた一体成形品である繊維強化樹脂成形品は、表面性・意匠性に優れ、繊維強化樹脂成形体として十分な引張強度、引張弾性率の等方性(Eδ)を有しているので、自動車用途、航空機用途、電器筐体用途など様々な用途に用いる事ができる。 The fiber-reinforced resin molded product, which is an integrally molded product obtained by the above step, has excellent surface properties and design properties, and has sufficient tensile strength and tensile elastic modulus isotropic (Eδ) as a fiber-reinforced resin molded product. Therefore, it can be used for various purposes such as automobile use, aircraft use, and electric housing use.

以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、本実施例における各値は、以下の方法に従って求めた。各実施例の製造条件および結果について表1に、各比較例の製造条件および結果について表2に示した。 Examples are shown below, but the present invention is not limited thereto. In addition, each value in this Example was obtained according to the following method. Table 1 shows the manufacturing conditions and results of each example, and Table 2 shows the manufacturing conditions and results of each comparative example.

1)熱可塑性樹脂の軟化温度、降温結晶化温度、分解温度
示差走査熱量分析装置(DSC)を用いて、窒素雰囲気下、昇温速度20℃/分で測定した。熱可塑性樹脂が結晶性樹脂の場合は吸熱ピークトップの融点値を軟化温度とし、非晶性樹脂の場合はガラス転移温度+100℃を軟化温度とした。降温結晶化温度は、DSCを用いて試料の結晶融解温度+15℃の温度まで昇温し、2分間その温度を保持した後、10℃/分の速度で降温し発熱ピークトップの温度を降温結晶化温度とした。分解温度は、熱重量分析装置(TG)を用い、常温より昇温速度10℃/分の昇温速度で行い、試料の重量減少開始温度を分解温度とした。
1) Softening temperature, temperature lowering crystallization temperature, decomposition temperature of thermoplastic resin The temperature was measured at a heating rate of 20 ° C./min under a nitrogen atmosphere using a differential scanning calorimetry device (DSC). When the thermoplastic resin was a crystalline resin, the melting point value of the heat absorption peak top was set as the softening temperature, and when the thermoplastic resin was an amorphous resin, the glass transition temperature + 100 ° C. was set as the softening temperature. The temperature-lowering crystallization temperature is raised to a temperature of the crystal melting temperature of the sample + 15 ° C. using DSC, held at that temperature for 2 minutes, and then lowered at a rate of 10 ° C./min to lower the temperature at the top of the exothermic peak. It was set to the crystallization temperature. The decomposition temperature was set by using a thermogravimetric analyzer (TG) at a temperature rising rate of 10 ° C./min from room temperature, and the weight reduction start temperature of the sample was defined as the decomposition temperature.

2)全光線透過率
JIS K7361−1:1997に記載の方法に準じて全光線透過率(Tt)を測定した。
2) Total light transmittance The total light transmittance (Tt) was measured according to the method described in JIS K7361-1: 1997.

3)厚み
面状体および繊維強化樹脂材の厚みは市販のデジタルマイクロメーターもしくはノギスを用いて測定した。
3) Thickness The thickness of the planar body and the fiber reinforced resin material was measured using a commercially available digital micrometer or caliper.

4)熱収縮率
200mm×200mmにカットした面状体の中央を中心とし、面状体の四辺に並行な100mmの線を互いに直角になるように2本書くことで図1に示すような十字線を描いた。次に十字線を書いた面状体を無張力下、フッ素樹脂含浸ガラスクロス(中興化成工業株式会社製FGF−400−10−600W(商品名))の上にのせ、表1もしくは表2の各実施例・比較例に示した製造条件の加熱温度にまで上昇させたホットプレート(アズワン株式会社製HPD−4500BZN(商品名))の上で10分間加熱した。その後ホットプレートから面状体を降ろして常温まで冷却し、十字線の長さを定規を用いて測定し、下記式にしたがって熱収縮率を算出した。
熱収縮率=(加熱後の十字線の長さ(mm))/200(mm)×100 (5)
4) Heat shrinkage rate A cross as shown in FIG. 1 by drawing two 100 mm lines parallel to the four sides of the planar body centered on the center of the planar body cut to 200 mm × 200 mm so that they are perpendicular to each other. I drew a line. Next, a planar body with a cross line drawn on it is placed on a fluororesin-impregnated glass cloth (FGF-400-10-600W (trade name) manufactured by Chukoh Chemical Industries, Ltd.) under no tension, and is shown in Table 1 or Table 2. It was heated for 10 minutes on a hot plate (HPD-4500BZN (trade name) manufactured by AS ONE Corporation) that had been raised to the heating temperature of the production conditions shown in each Example / Comparative Example. After that, the planar body was taken down from the hot plate and cooled to room temperature, the length of the crosshair was measured using a ruler, and the heat shrinkage rate was calculated according to the following formula.
Heat shrinkage = (length of crosshair after heating (mm)) / 200 (mm) x 100 (5)

5)繊維強化樹脂材の繊維強化繊維体積割合(Vf)、目付の比率等
繊維強化樹脂材を500℃×1時間、炉内にて処理し熱可塑性樹脂(P2)を燃焼除去し、処理前後の試料の質量を秤量することによって強化繊維分と熱可塑性樹脂(P2)分の質量を算出した。これらの値と、燃焼除去処理前に測定した繊維強化樹脂材の大きさから繊維強化樹脂材中の強化繊維の重量比率や、目付の比率(強化繊維目付/熱可塑性樹脂(P2)目付)算出することができる。次に、各成分の比重を用いて強化繊維と熱可塑性樹脂(P2)の体積を算出し、下記式に従って繊維強化樹脂材の強化繊維体積割合(Vf)を百分率にて算出した。
Vf(%)=100×強化繊維体積/(強化繊維体積+熱可塑性樹脂体積) (6)
5) Fiber-reinforced fiber volume ratio (Vf), grain ratio, etc. of fiber-reinforced resin material The fiber-reinforced resin material is treated in a furnace at 500 ° C for 1 hour to burn and remove the thermoplastic resin (P2) before and after the treatment. The masses of the reinforcing fibers and the thermoplastic resin (P2) were calculated by weighing the samples of. From these values and the size of the fiber-reinforced resin material measured before the combustion removal treatment, the weight ratio of the reinforcing fibers in the fiber-reinforced resin material and the ratio of the grain (reinforced fiber grain / thermoplastic resin (P2) grain) are calculated. can do. Next, the volumes of the reinforcing fiber and the thermoplastic resin (P2) were calculated using the specific gravity of each component, and the reinforcing fiber volume ratio (Vf) of the fiber-reinforced resin material was calculated as a percentage according to the following formula.
Vf (%) = 100 x volume of reinforcing fiber / (volume of reinforcing fiber + volume of thermoplastic resin) (6)

6)繊維強化樹脂材の引張強度
繊維強化樹脂材の引張強度は、JIS K7094に記載の引張試験により求めた。また、機械強度の等方性は、繊維強化樹脂材の任意の方向、およびこれと直交する方向を基準とする引張試験を行い、得られた引張弾性率から大きいものを小さいもので割った比率(Eδ)を算出することで確認した。
6) Tensile strength of fiber-reinforced resin material The tensile strength of the fiber-reinforced resin material was determined by the tensile test described in JIS K7094. The isotropic strength of the mechanical strength is determined by conducting a tensile test based on an arbitrary direction of the fiber reinforced resin material and a direction orthogonal to the direction, and dividing the obtained tensile elastic modulus by a small one. It was confirmed by calculating (Eδ).

7)一体成形前処理
200mm×95mmにカットした繊維強化樹脂材の上に同じサイズにカットした面状体を載せ、手動油圧プレス機(東洋精機株式会社製MP−WCH(商品名))を用い熱盤上の温度を、面状体を構成する熱可塑性樹脂(P1)の軟化温度+10℃、熱盤下の温度を繊維強化樹脂材の軟化温度−10℃とし、プレス圧2MPa、プレス時間3分でプレス成形した後、直ちに通水冷却した金属板に挟んでプレス圧0.5MPaでプレスしながら1分間冷却することで、一体成形前処理を行った。
7) Integral molding pretreatment A sheet metal cut to the same size is placed on a fiber reinforced resin material cut to 200 mm x 95 mm, and a manual hydraulic press (MP-WCH (trade name) manufactured by Toyo Seiki Co., Ltd.) is used. The temperature on the hot plate is the softening temperature of the thermoplastic resin (P1) constituting the planar body + 10 ° C., the temperature under the hot plate is the softening temperature of the fiber reinforced resin material −10 ° C., the press pressure is 2 MPa, and the press time is 3 Immediately after press molding in minutes, it was sandwiched between water-cooled metal plates and cooled at a press pressure of 0.5 MPa for 1 minute to perform integral molding pretreatment.

8)加熱温度
成形前に加熱した直後の繊維強化樹脂材の表面温度を、熱電対を用いて測定した。
8) Heating temperature The surface temperature of the fiber-reinforced resin material immediately after heating before molding was measured using a thermocouple.

9)溶着強度
面状体を構成している熱可塑性樹脂(P1)および繊維強化樹脂材を構成している熱可塑性樹脂(P2)を用い、射出成形機(株式会社日本製鋼所製J110AD110H(商品名))にて、成形温度は軟化温度+30℃、金型温度はガラス転移温度−10℃の条件で150mm長×100mm幅×1mm厚の平板をそれぞれ射出成形した。次に、得られた平板の成形体を図2に示す形状になるよう切削して組み立てた後、形状に沿う金型に設置し、手動油圧プレス機を用い、熱盤温度は熱可塑性樹脂(P1)もしくは熱可塑性樹脂(P2)の軟化温度のうち、より高い方の軟化温度より10℃高い温度とし、プレス圧2MPa、プレス時間3分の条件でプレス成形した。成形後、直ちに通水冷却した金属板に挟んでプレス圧0.5MPaでプレスしながら1分冷却し、溶着強度試験片を作成した。23℃50%RH下で24時間以上放置した。この試験片を用い、JIS K7094に記載の引張試験により得られた最大荷重点を溶着強度とした。
9) Welding strength Using a thermoplastic resin (P1) that constitutes a planar body and a thermoplastic resin (P2) that constitutes a fiber reinforced resin material, an injection molding machine (J110AD110H manufactured by Nippon Steel Co., Ltd.) (Product) Name)), a flat plate having a length of 150 mm, a width of 100 mm, and a thickness of 1 mm was injection-molded under the conditions that the molding temperature was the softening temperature + 30 ° C. and the mold temperature was the glass transition temperature −10 ° C. Next, the obtained flat plate molded body was cut and assembled so as to have the shape shown in FIG. 2, installed in a mold according to the shape, and a manual hydraulic press was used, and the hot plate temperature was set to a thermoplastic resin (thermoplastic resin). The softening temperature of P1) or the thermoplastic resin (P2) was set to a temperature 10 ° C. higher than the higher softening temperature, and press molding was performed under the conditions of a press pressure of 2 MPa and a press time of 3 minutes. Immediately after molding, it was sandwiched between water-cooled metal plates and cooled for 1 minute while pressing at a press pressure of 0.5 MPa to prepare a welding strength test piece. It was left at 23 ° C. and 50% RH for 24 hours or more. Using this test piece, the maximum load point obtained by the tensile test described in JIS K7094 was defined as the welding strength.

10)一体成形品の表面性
表1もしくは表2記載の条件で成形した一体成形品において、面状体に対して垂直方向の断面を顕微鏡で観察し、面状体が配置されている側の表層から表層近傍の強化繊維束までの距離を30点計測し、その平均値を耐候試験前の表面樹脂層厚み(a)とした。得られた一体成形品に耐候性試験を行い、耐候性試験後の一体成形品の表面樹脂層厚みを前述のように測定し、その平均値を耐候試験後の表面樹脂層厚み(b)とした。耐候性試験はアイスーパーUVテスターSUV−W151(岩崎電気株式会社製)を用い、ブラックパネル温度70℃、相対湿度50%、照射強度900W/m、60分中30秒降雨あり、照射時間90時間で行った。得られた(a)、(b)の値から、(b)/(a)×100(%)の値を計算した。計算値が40%以上をOKと判定し、40%未満をNGと判定した。
10) Surface properties of the integrally molded product In the integrally molded product molded under the conditions shown in Table 1 or Table 2, the cross section in the direction perpendicular to the planar body is observed with a microscope, and the side on which the planar body is arranged is observed. The distance from the surface layer to the reinforcing fiber bundle near the surface layer was measured at 30 points, and the average value was taken as the surface resin layer thickness (a) before the weather resistance test. A weather resistance test was performed on the obtained integrally molded product, the surface resin layer thickness of the integrally molded product after the weather resistance test was measured as described above, and the average value was taken as the surface resin layer thickness (b) after the weather resistance test. did. The weather resistance test used the eye super UV tester SUV-W151 (manufactured by Iwasaki Electric Co., Ltd.), black panel temperature 70 ° C, relative humidity 50%, irradiation intensity 900 W / m 2 , 30 seconds of rainfall in 60 minutes, irradiation time 90. I went in time. From the obtained values (a) and (b), the value of (b) / (a) × 100 (%) was calculated. A value of 40% or more was determined to be OK, and a value of less than 40% was determined to be NG.

11)一体成形品の意匠性
表1もしくは表2記載の条件で成形した一体成形品の表面を株式会社キーエンス製形状測定レーザーマイクロスコープ(商品名:VK−X100、対物レンズ20倍)を用いて面状体が配置されている側の一体成形品の表面から強化繊維(炭素繊維)が露出しているかどうかを観察し、耐候試験前の強化繊維(炭素繊維)の露出の有無を判定した。露出していない場合はOK、露出している場合はNGとした。得られた一体成形品を用いて前述のように耐候性試験を行い、前述のように耐候試験後の強化繊維の露出の有無を同様に判定した。
強化繊維の可視性は、前述の耐候試験前後の一体成形品を目視観察することで判定し、面状体が配置されている側の一体成形品の表面から強化繊維が見える場合をOK、強化繊維が全体的に白っぽく見える状態を白化、強化繊維の一部が白っぽく見える状態をやや白化、強化繊維が部分的に見えない場合を部分的にNG、強化繊維が全体的に見えない場合をNGとした。上記の「白化」、「やや白化」の状態とは成形体の一部が実際に白色の物質を含んでいて白色を呈しているだけではなく、上記のような光学上の現象として、シボ付き成形体を特定の角度から観察したときだけ、そのシボ付き成形体の表面の一部が、まるでカビが生えているかのように、他の部分とは異なった色に見えることも指す。
11) Designability of the integrally molded product The surface of the integrally molded product molded under the conditions shown in Table 1 or 2 was surfaced using a shape measurement laser microscope (trade name: VK-X100, objective lens 20x) manufactured by Keyence Co., Ltd. It was observed whether or not the reinforcing fibers (carbon fibers) were exposed from the surface of the integrally molded product on the side where the planar body was arranged, and it was determined whether or not the reinforcing fibers (carbon fibers) were exposed before the weather resistance test. If it was not exposed, it was OK, and if it was exposed, it was NG. The weather resistance test was carried out using the obtained integrally molded product as described above, and the presence or absence of exposure of the reinforcing fibers after the weather resistance test was similarly determined as described above.
The visibility of the reinforcing fibers is determined by visually observing the integrally molded product before and after the above-mentioned weather resistance test, and it is OK if the reinforcing fibers can be seen from the surface of the integrally molded product on the side where the planar body is arranged. Whitening the state where the fibers look whitish as a whole, whitening the state where some of the reinforcing fibers look whitish, NG when the reinforcing fibers are partially invisible, NG when the reinforcing fibers are not totally visible And said. The above-mentioned "whitening" and "slightly whitening" states are not only that a part of the molded product actually contains a white substance and is white, but also that the above-mentioned optical phenomenon is wrinkled. It also means that only when the molded product is observed from a specific angle, a part of the surface of the textured molded product looks different from the other parts as if it were moldy.

これらの判定結果を総合して下記のA〜Dランクを定め、Aランク、Bランクは総合判定がOK、Cランク、Dランクは総合判定がNGと判定した。
Aランク:耐候試験前後の強化繊維の露出が全てOKであり、かつ耐候試験前後の可視性が全てOKの場合
Bランク:耐候試験前後の強化繊維の露出が全てOKであり、かつ耐候試験前後の可視性が白化またはやや白化の場合、
Cランク:耐候試験前後の強化繊維の露出の少なくともいずれかが部分的にNGまたはNGであり、かつ耐候試験前後の可視性が全てOK、やや白化または白化の場合
Dランク:耐候試験前後の強化繊維の露出の結果を問わず、耐候試験前後の強化繊維の可視性の少なくともいずれかが部分的にNGまたはNGの場合
The following A to D ranks were determined by integrating these judgment results, and the overall judgment was OK for A rank and B rank, and the overall judgment was NG for C rank and D rank.
Rank A: When all the exposure of the reinforcing fibers before and after the weather resistance test is OK and all the visibility before and after the weather resistance test is OK B rank: All the exposure of the reinforcing fibers before and after the weather resistance test is OK and before and after the weather resistance test If the visibility of is bleached or slightly bleached
C rank: If at least one of the exposures of the reinforcing fibers before and after the weather resistance test is partially NG or NG, and the visibility before and after the weather resistance test is all OK, and if it is slightly whitened or whitened, D rank: Strengthening before and after the weather resistance test If at least one of the visibility of the reinforcing fibers before and after the weathering test is partially NG or NG, regardless of the result of fiber exposure.

12)空孔間距離の測定
面状体にあけた空孔のうち、隣接する空孔同士の最短距離をノギスで測定し、空孔間距離とした。
12) Measurement of interpupillary distance The shortest distance between adjacent vacancies among the vacancies made in the planar body was measured with a caliper and used as the interpupillary distance.

13)繊維強化樹脂材中の炭素繊維束(A)の割合の算出
繊維強化樹脂材中に含まれる炭素繊維束(A)の割合の求め方は、以下の通りである。繊維強化樹脂材を50mm×50mmの大きさに切り出し、500℃の炉内で1時間程度加熱し、熱可塑性樹脂(P2)を完全に除去した後、繊維束をピンセットで全て取り出し、繊維束の長さ(Li)と質量(Wi)、繊維束数(I)を測定した。ピンセットにて取り出すことができない程度に繊維束が小さいものについては、まとめて最後に質量を測定した(Wk)。質量の測定には、1/100mgまで測定可能な天秤を用いる。
測定後、以下の計算を行った。使用している炭素繊維の繊度(F)より、個々の繊維束の繊維本数(Ni)は、次式により求めた。
繊維本数(Ni)=Wi/(Li×F) (7)
炭素繊維束(A)中の平均繊維数(N)は、以下の式により求めた。
N=ΣNi/I (8)
また、炭素繊維束(A)の強化繊維全体に対する体積の割合(VR)は、炭素繊維の密度(ρ)を用いて次式により求めた。
VR=Σ(Wi/ρ)x100/((Wk+ΣWi)/ρ) (9)
13) Calculation of the ratio of the carbon fiber bundle (A) in the fiber reinforced resin material The method of obtaining the ratio of the carbon fiber bundle (A) contained in the fiber reinforced resin material is as follows. The fiber-reinforced resin material is cut into a size of 50 mm × 50 mm, heated in a furnace at 500 ° C. for about 1 hour to completely remove the thermoplastic resin (P2), and then all the fiber bundles are taken out with tweezers to form the fiber bundles. The length (Li), mass (Wi), and number of fiber bundles (I) were measured. For those whose fiber bundles were so small that they could not be taken out with tweezers, the mass was measured at the end (Wk). A balance capable of measuring up to 1/100 mg is used for measuring the mass.
After the measurement, the following calculation was performed. From the fineness (F) of the carbon fibers used, the number of fibers (Ni) of each fiber bundle was calculated by the following formula.
Number of fibers (Ni) = Wi / (Li × F) (7)
The average number of fibers (N) in the carbon fiber bundle (A) was calculated by the following formula.
N = ΣNi / I (8)
The volume ratio (VR) of the carbon fiber bundle (A) to the entire reinforcing fiber was calculated by the following formula using the carbon fiber density (ρ).
VR = Σ (Wi / ρ) x100 / ((Wk + ΣWi) / ρ) (9)

14)強化繊維の重量平均炭素繊維長
強化繊維の平均繊維長は、繊維強化樹脂材から上記の操作により熱可塑性樹脂(P2)を完全に除去した後、無作為に抽出した100本の強化繊維の繊維長をノギス等により1mm単位まで測定した。一般に、個々の強化繊維の繊維長をLiとすると、繊維強化樹脂材中の数平均繊維長Lnと重量平均繊維長Lwは以下の数式(1)、(2)により求められる。なお、数平均繊維長Lnと重量平均繊維長Lwの単位は、共にmmである。
Ln=ΣLi/I (1)
Lw=(ΣLi)/(ΣLi) (2)
ここで「I」とは、繊維長を測地した炭素繊維の本数を表す。
14) Weight average carbon fiber length of reinforcing fibers The average fiber length of reinforcing fibers is 100 reinforcing fibers randomly selected after completely removing the thermoplastic resin (P2) from the fiber reinforced resin material by the above operation. The fiber length of the above was measured up to 1 mm unit with a nogisu or the like. In general, assuming that the fiber length of each reinforcing fiber is Li, the number average fiber length Ln and the weight average fiber length Lw in the fiber reinforced resin material can be obtained by the following mathematical formulas (1) and (2). The units of the number average fiber length Ln and the weight average fiber length Lw are both mm.
Ln = ΣLi / I (1)
Lw = (ΣLi 2 ) / (ΣLi) (2)
Here, "I" represents the number of carbon fibers whose fiber length is measured.

(繊維強化樹脂材の製造)
[製造例A]
強化繊維として、東邦テナックス株式会社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KS(商品名)(平均単繊維径7μm、単繊維数24000本)をナイロン系サイジング剤処理したものを使用し、熱可塑性樹脂(P2)として、ユニチカ株式会社製のナイロン6樹脂A1030(商品名)を用いて、米国特許出願公開公報第2015/0152231号明細書に記載された方法に準拠し、炭素繊維目付1660g/m、ナイロン6樹脂目付1964g/mである、面内等方的に重量平均繊維長が20mmの炭素繊維が2次元ランダム配向した等方性基材を作成した。
(Manufacturing of fiber reinforced plastic material)
[Manufacturing Example A]
As reinforcing fibers, PAN-based carbon fiber "Tenax" (registered trademark) STS40-24KS (trade name) (average single fiber diameter 7 μm, number of single fibers 24,000) manufactured by Toho Tenax Co., Ltd. is treated with a nylon sizing agent. In use, as the thermoplastic resin (P2), nylon 6 resin A1030 (trade name) manufactured by Unitica Co., Ltd. is used, and carbon is used in accordance with the method described in US Patent Application Publication No. 2015/0152231. An isotropic base material in which carbon fibers having a fiber grain of 1660 g / m 2 and a nylon 6 resin grain of 1964 g / m 2 and having an in-plane isometric weight average fiber length of 20 mm were randomly oriented in two dimensions was prepared.

得られた等方性基材を、上部に凹部を有する金型を用いて290℃に加熱したプレス装置にて、2.0MPaにて15分間加熱し、厚さ2.65mmの強化繊維体積割合(Vf)は35%、強化繊維が2次元ランダム配向した繊維強化樹脂材を得た。得られた繊維強化樹脂材をDSCで測定した結果、融点は225℃であり、表1もしくは表2に軟化温度225℃と記載した。なおさらなる測定の結果、本製造例による繊維強化樹脂材に含まれる熱可塑性樹脂(P2)のガラス転移温度は示差走査熱量分析により50℃、分解温度は熱重量分析により300℃であった。繊維強化樹脂材の引張強度は350MPaであり、Eδは1.03であった。 The obtained isotropic base material was heated at 2.0 MPa for 15 minutes in a press device heated to 290 ° C. using a mold having a recess at the top, and the reinforcing fiber volume ratio (Vf) having a thickness of 2.65 mm was obtained. ) Was 35%, and a fiber-reinforced resin material in which the reinforcing fibers were two-dimensionally randomly oriented was obtained. As a result of measuring the obtained fiber-reinforced resin material by DSC, the melting point was 225 ° C., and the softening temperature of 225 ° C. was described in Table 1 or Table 2. As a result of further measurement, the glass transition temperature of the thermoplastic resin (P2) contained in the fiber-reinforced resin material according to the present production example was 50 ° C. by differential scanning calorimetry, and the decomposition temperature was 300 ° C. by thermogravimetric analysis. The tensile strength of the fiber-reinforced resin material was 350 MPa, and Eδ was 1.03.

繊維強化樹脂材に含まれる強化繊維の重量平均繊維長は20mmであり、臨界単繊維数は86本であり、強化繊維全量のうち、臨界単繊維数以上の本数の炭素単繊維からなる強化繊維(A)の割合は85vol%であった。繊維強化樹脂材中の、強化繊維(A)以外の強化繊維(残りの15vol%)として、臨界単繊維数未満の本数の炭素単繊維からなる束、および単繊維状の炭素繊維も存在した。強化繊維(A)、臨界単繊維数未満の本数の炭素単繊維からなる束のいずれも、単繊維数が異なる炭素繊維束の混合物であった。 The weight average fiber length of the reinforcing fibers contained in the fiber reinforced resin material is 20 mm, the number of critical single fibers is 86, and the number of carbon single fibers in the total amount of the reinforcing fibers is equal to or more than the number of critical single fibers. The ratio of (A) was 85 vol%. As the reinforcing fibers (remaining 15 vol%) other than the reinforcing fibers (A) in the fiber-reinforced resin material, a bundle composed of carbon monofibers having a number less than the critical number of single fibers and a monofiber-like carbon fiber were also present. Both the reinforcing fiber (A) and the bundle composed of carbon monofibers having a number less than the critical number of single fibers were a mixture of carbon fiber bundles having different numbers of single fibers.

(表面加飾用面状体の製造)
[製造例1]
熱可塑性樹脂として宇部興産株式会社製のナイロン6樹脂1030B(商品名)のペレットを用い、池貝鉄工株式会社製単層Tダイ成形機にてシリンダー温度260℃、スクリュー回転数50rpmの条件で溶融させ、キャスティングロールにて30℃にて冷却しながら0.5〜0.7m/分の引き取り速度で引き取りを行い、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は225℃であり、表1に軟化温度225℃と記載した。なお、降温結晶化温度は170℃であった。290℃での熱収縮率は3.2%であり、全光線透過率は82%であった。
(Manufacturing of surface decoration surface)
[Manufacturing Example 1]
Nylon 6 resin 1030B (trade name) pellets manufactured by Ube Kosan Co., Ltd. are used as the thermoplastic resin and melted in a single-layer T-die molding machine manufactured by Ikegai Iron Works Co., Ltd. under the conditions of a cylinder temperature of 260 ° C. and a screw rotation speed of 50 rpm. , While cooling at 30 ° C. with a casting roll, picking was performed at a picking rate of 0.5 to 0.7 m / min to obtain a planar body having a thickness of 100 μm. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 1 shows the softening temperature of 225 ° C. The temperature-lowering crystallization temperature was 170 ° C. The heat shrinkage at 290 ° C. was 3.2% and the total light transmittance was 82%.

[製造例2]
単層Tダイ成形機の代わりに株式会社プラコー社製3層空冷インフレーション成形機を用いた他は製造例1と同様に製造し、厚み100μmの面状体を得た。3層空冷インフレーション成形機の製造条件としては、外層、中間層、内層に同じ面状体用ペレットを供給することにより単層面状体を作製し、その際のシリンダー温度は260℃、ブロー比1.5、空冷温度23℃、風速8〜10m/分、引き取り速度1.5〜2.0m/分であった。得られた面状体をDSCで測定した結果、融点は225℃であり、表2に軟化温度225℃と記載した。なお、降温結晶化温度は170℃であった。290℃での熱収縮率は6.7%であり、全光線透過率は82%であった。
[Manufacturing Example 2]
A planar body having a thickness of 100 μm was obtained in the same manner as in Production Example 1 except that a 3-layer air-cooled inflation molding machine manufactured by PLACO Co., Ltd. was used instead of the single-layer T-die molding machine. As the manufacturing conditions of the three-layer air-cooled inflation molding machine, a single-layer planar body is produced by supplying the same pellets for the planar body to the outer layer, the intermediate layer, and the inner layer, and the cylinder temperature at that time is 260 ° C. and the blow ratio is 1. The air cooling temperature was 2.5, the wind speed was 8 to 10 m / min, and the take-up speed was 1.5 to 2.0 m / min. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 2 shows the softening temperature of 225 ° C. The temperature-lowering crystallization temperature was 170 ° C. The heat shrinkage at 290 ° C. was 6.7% and the total light transmittance was 82%.

[製造例3]
宇部興産株式会社製のナイロン6樹脂1030B(商品名)のペレット99.8775重量%に対し、伊勢化学工業株式会社製ヨウ化第一銅0.075重量%、日本化学産業株式会社製ヨウ化カリウム0.0375重量%、およびキャボット社製カーボンブラックBP800(商品名)0.01重量%となるように混合し、東芝機械株式会社製30mmφ2軸押出機(TEM−26SS−10/1V)(商品名)を用い、シリンダー温度260℃、スクリュー回転数200rpm、吐出量20kg/hrの条件で溶融混練して得られたペレットを120℃の減圧乾燥機で乾燥して面状体作成用ペレットとしての熱可塑性樹脂を得た。この熱可塑性樹脂ペレットをナイロン6樹脂ペレットの代わりに用いた他は製造例1と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は225℃であり、表1に軟化温度225℃と記載した。なお、降温結晶化温度は170℃であった。290℃での熱収縮率は1.8%であり、全光線透過率は70%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 3]
Nylon 6 resin 1030B (trade name) manufactured by Ube Kosan Co., Ltd. pellets 99.8775% by weight, Ise Chemical Industry Co., Ltd. made cuprous iodide 0.075% by weight, Nippon Chemical Industry Co., Ltd. potassium iodide Mix so as to be 0.0375% by weight and 0.01% by weight of carbon black BP800 (trade name) manufactured by Cabot, and 30 mmφ twin-screw extruder (TEM-26SS-10 / 1V) manufactured by Toshiba Machine Co., Ltd. (trade name). ), The pellets obtained by melt-kneading under the conditions of a cylinder temperature of 260 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 20 kg / hr are dried in a vacuum dryer at 120 ° C. to generate heat as pellets for forming a planar body. A plastic resin was obtained. This thermoplastic resin pellet was produced in the same manner as in Production Example 1 except that the nylon 6 resin pellet was used instead of the nylon 6 resin pellet, and a planar body having a thickness of 100 μm was obtained. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 1 shows the softening temperature of 225 ° C. The temperature-lowering crystallization temperature was 170 ° C. The heat shrinkage at 290 ° C. was 1.8% and the total light transmittance was 70%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例4]
熱可塑性樹脂として、宇部興産株式会社製のナイロン6樹脂1030B(商品名)のペレット99.7775重量%に対し、伊勢化学工業株式会社製ヨウ化第一銅0.075重量%、日本化学産業株式会社製ヨウ化カリウム0.0375重量%、キャボット社製カーボンブラックBP800(商品名)0.01重量%、およびBASF社製の光安定剤であるHALS系化合物CHIMASSORB2020FDL(商品名)(高分子量ヒンダードアミン型光安定剤、分子量:2600〜3400、融点:130〜136℃)0.1重量%となるように混合し、2軸押出機でペレット化して面状体作成用ペレットとしての熱可塑性樹脂を得た。この熱可塑性樹脂ペレットを用いた他は製造例3と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は225℃であり、表1に軟化温度225℃と記載した。なお、降温結晶化温度は170℃であった。290℃での熱収縮率は1.8%であり、全光線透過率は70%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 4]
As a thermoplastic resin, nylon 6 resin 1030B (trade name) manufactured by Ube Kosan Co., Ltd. has 99.7777% by weight of pellets, while Ise Chemical Industry Co., Ltd. has 0.075% by weight of cuprous iodide, Nippon Chemical Industry Co., Ltd. 0.0375% by weight of potassium iodide manufactured by the company, 0.01% by weight of carbon black BP800 (trade name) manufactured by Cabot, and CHIMASSORB2020FDL (trade name) (high molecular weight hindered amine type), which is a photostabilizer manufactured by BASF. Photostabilizer, molecular weight: 2600 to 3400, melting point: 130 to 136 ° C.) Mixing to 0.1% by weight and pelletizing with a twin-screw extruder to obtain a thermoplastic resin as pellets for creating planar bodies. It was. A planar body having a thickness of 100 μm was obtained by producing in the same manner as in Production Example 3 except that the thermoplastic resin pellets were used. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 1 shows the softening temperature of 225 ° C. The temperature-lowering crystallization temperature was 170 ° C. The heat shrinkage at 290 ° C. was 1.8% and the total light transmittance was 70%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例5]
ユニチカ株式会社製のナイロン66樹脂E2035(商品名)を用い、東芝機械株式会社製30mmφ2軸押出機のシリンダー温度を280℃、単層Tダイ成形機のシリンダー温度を280℃とした他は製造例3と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は260℃であり、表1に軟化温度260℃と記載した。なお、降温結晶化温度は220℃であった。310℃での熱収縮率は1.7%であり、全光線透過率は70%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 5]
Manufacturing example using nylon 66 resin E2035 (trade name) manufactured by Unitika Co., Ltd., with the cylinder temperature of a 30 mmφ twin-screw extruder manufactured by Toshiba Machine Co., Ltd. set to 280 ° C and the cylinder temperature of a single-layer T-die molding machine set to 280 ° C. It was manufactured in the same manner as in No. 3 to obtain a planar body having a thickness of 100 μm. As a result of measuring the obtained planar body by DSC, the melting point was 260 ° C., and Table 1 shows the softening temperature of 260 ° C. The temperature lowering crystallization temperature was 220 ° C. The heat shrinkage at 310 ° C. was 1.7% and the total light transmittance was 70%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例6]
製造例5で得られた面状体に空孔間距離10mmの空孔を付与する代わりに、3mm長さの十字スリットを空孔間距離10mmでトムソン刃の打ち抜き加工により付与した。
[Manufacturing Example 6]
Instead of imparting holes with a pore-to-hole distance of 10 mm to the planar body obtained in Production Example 5, a cross slit having a length of 3 mm was provided by punching a Thomson blade at a pore-to-hole distance of 10 mm.

[製造例7]
熱可塑性樹脂として旭化成株式会社製のナイロン66/ナイロン6共重合樹脂“レオナ”(登録商標)9400S(商品名)を用い、単層Tダイ成形機にてシリンダー温度を270℃にした他は製造例1と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は250℃であり、表1に軟化温度250℃と記載した。なお、降温結晶化温度は190℃であった。300℃での熱収縮率は1.7%であり、全光線透過率は72%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 7]
As a thermoplastic resin, nylon 66 / nylon 6 copolymer resin "Leona" (registered trademark) 9400S (trade name) manufactured by Asahi Kasei Co., Ltd. was used, and the cylinder temperature was set to 270 ° C by a single-layer T-die molding machine. It was manufactured in the same manner as in Example 1 to obtain a planar body having a thickness of 100 μm. As a result of measuring the obtained planar body by DSC, the melting point was 250 ° C., and Table 1 shows the softening temperature of 250 ° C. The temperature-decreasing crystallization temperature was 190 ° C. The heat shrinkage at 300 ° C. was 1.7% and the total light transmittance was 72%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例8]
熱可塑性樹脂としてアルケマ株式会社製のナイロン11樹脂“リルサン”(登録商標)BESNO TL(商品名)を用い、単層Tダイ成形機にてシリンダー温度を250℃にした他は製造例3と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は190℃であり、表1に軟化温度190℃と記載した。なお、降温結晶化温度は140℃であった。290℃での熱収縮率は1.6%であり、全光線透過率は72%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 8]
Same as Production Example 3 except that nylon 11 resin "Lilsan" (registered trademark) BESNO TL (trade name) manufactured by Alchema Co., Ltd. was used as the thermoplastic resin and the cylinder temperature was set to 250 ° C. by a single-layer T-die molding machine. A planar body having a thickness of 100 μm was obtained. As a result of measuring the obtained planar body by DSC, the melting point was 190 ° C., and Table 1 shows the softening temperature of 190 ° C. The temperature-lowering crystallization temperature was 140 ° C. The heat shrinkage at 290 ° C. was 1.6% and the total light transmittance was 72%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例9]
3層空冷インフレーション成形機の条件をシリンダー温度は270℃、ブロー比1.5、空冷温度23℃、風速40m/分、引き取り速度8.0m/分にした他は製造例2と同様に製造し、厚み5μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は225℃であり、表2に軟化温度225℃と記載した。290℃での熱収縮率は11.4%であり、全光線透過率は93%であった。
[Manufacturing Example 9]
The conditions of the three-layer air-cooled inflation molding machine were the same as in Production Example 2 except that the cylinder temperature was 270 ° C, the blow ratio was 1.5, the air-cooled temperature was 23 ° C, the wind speed was 40 m / min, and the take-up speed was 8.0 m / min. , A planar body having a thickness of 5 μm was obtained. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 2 shows the softening temperature of 225 ° C. The heat shrinkage at 290 ° C. was 11.4% and the total light transmittance was 93%.

[製造例10]
単層Tダイ成形機にてシリンダー温度を255℃、引き取り速度を0.06m/分にした他は製造例1と同様に製造し、厚み600μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は225℃であり、表2に軟化温度225℃と記載した。290℃での熱収縮率は3.2%であり、全光線透過率は34%であった。
[Manufacturing Example 10]
A planar body having a thickness of 600 μm was obtained by manufacturing in the same manner as in Production Example 1 except that the cylinder temperature was 255 ° C. and the take-up speed was 0.06 m / min using a single-layer T-die molding machine. As a result of measuring the obtained planar body by DSC, the melting point was 225 ° C., and Table 2 shows the softening temperature of 225 ° C. The heat shrinkage at 290 ° C. was 3.2% and the total light transmittance was 34%.

[製造例11]
熱可塑性樹脂として帝人株式会社製のポリエチレンナフタレート樹脂“テオネックス”(登録商標)TN8065S(商品名)を用い、単層Tダイ成形機にてシリンダー温度を300℃にした他は製造例1と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は265℃であり、表2に軟化温度265℃と記載した。なお、降温結晶化温度は200℃であった。310℃での熱収縮率は3.6%であり、全光線透過率は85%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 11]
Same as Production Example 1 except that polyethylene naphthalate resin "Theonex" (registered trademark) TN8065S (trade name) manufactured by Teijin Co., Ltd. was used as the thermoplastic resin and the cylinder temperature was set to 300 ° C. with a single-layer T-die molding machine. A planar body having a thickness of 100 μm was obtained. As a result of measuring the obtained planar body by DSC, the melting point was 265 ° C., and Table 2 shows the softening temperature of 265 ° C. The temperature-lowering crystallization temperature was 200 ° C. The heat shrinkage at 310 ° C. was 3.6% and the total light transmittance was 85%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例12]
熱可塑性樹脂として宇部興産株式会社製のナイロン12/ナイロン6共重合樹脂7024B(商品名)を用い、単層Tダイ成形機にてシリンダー設定温度を240℃にした他は製造例1と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は200℃であり、表2に軟化温度200℃と記載した。なお、降温結晶化温度は130℃であった。290℃での熱収縮率は4.7%であり、全光線透過率は82%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 12]
Nylon 12 / nylon 6 copolymer resin 7024B (trade name) manufactured by Ube Kosan Co., Ltd. was used as the thermoplastic resin, and the cylinder set temperature was set to 240 ° C. by a single-layer T-die molding machine, as in Production Example 1. It was manufactured to obtain a planar body having a thickness of 100 μm. As a result of measuring the obtained planar body by DSC, the melting point was 200 ° C., and Table 2 shows the softening temperature of 200 ° C. The temperature-lowering crystallization temperature was 130 ° C. The heat shrinkage at 290 ° C. was 4.7% and the total light transmittance was 82%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

[製造例13]
熱可塑性樹脂としてユニチカ株式会社製のナイロン66樹脂E2035(商品名)99.2875重量%に対し、伊勢化学工業株式会社製ヨウ化第一銅0.075重量%と日本化学産業株式会社製ヨウ化カリウム0.0375重量%ならびにキャボット社製カーボンブラックBP800(商品名)0.6重量%を2軸押出機でペレット化したものを用いた他は製造例5と同様に製造し、厚み100μmの面状体を得た。得られた面状体をDSCで測定した結果、融点は260℃であり、表2に軟化温度260℃と記載した。なお、降温結晶化温度は220℃であった。310℃での熱収縮率は1.6%であり、全光線透過率は2%であった。
得られた面状体に空孔直径0.5mm、空孔間距離10mmの空孔をロールパンチ加工により付与した。
[Manufacturing Example 13]
As a thermoplastic resin, nylon 66 resin E2035 (trade name) manufactured by Unitika Co., Ltd. was 99.2875% by weight, whereas carbon black iodide manufactured by Ise Chemical Industry Co., Ltd. was 0.075% by weight and iodine was manufactured by Nippon Chemical Industry Co., Ltd. A surface having a thickness of 100 μm was produced in the same manner as in Production Example 5 except that 0.0375% by weight of potassium and 0.6% by weight of carbon black BP800 (trade name) manufactured by Cabot were pelletized by a twin-screw extruder. I got the shape. As a result of measuring the obtained planar body by DSC, the melting point was 260 ° C., and Table 2 shows the softening temperature of 260 ° C. The temperature lowering crystallization temperature was 220 ° C. The heat shrinkage at 310 ° C. was 1.6% and the total light transmittance was 2%.
The obtained planar body was provided with pores having a pore diameter of 0.5 mm and a pore-to-pore distance of 10 mm by roll punching.

(一体成形品の製造)
製造例Aで得られた繊維強化樹脂材と製造例1〜13で得られた面状体を用い、表1もしくは表2記載の条件で一体成形品を製造した。各実施例および各比較例の製造方法の詳細については後述する。
(Manufacturing of integrally molded products)
Using the fiber-reinforced resin material obtained in Production Example A and the planar body obtained in Production Examples 1 to 13, an integrally molded product was produced under the conditions shown in Table 1 or Table 2. Details of the manufacturing method of each Example and each Comparative Example will be described later.

[実施例1]
製造例Aで得られた繊維強化樹脂材を200×95mmに切り出し、製造例1で得られた面状体に対して上述した一体成形前処理の操作を行い、面状体と繊維強化樹脂材を固定し、赤外線加熱機により290℃に昇温した。これを150℃に加熱された上型と下型から構成される圧縮成形用金型に導入し、プレス圧力20MPaで1分間加圧し、プレス成形品の温度が150℃になった状態で取り出し、一体成形品を得た。金型は製品面が210×100mmである平板金型を用い、該平板金型には図3で示した皮革状模様のシボパターン(テニバック社 のT−1709、シボ深さ70μm、抜き勾配8°)を有するものを用いた。
得られた一体成形品の表面性は良好であり、耐候試験後の強化繊維可視性は面状体に白化が生じていたものの強化繊維の露出は無く意匠性はBランクに該当しOKであった。更に製造例1で用いた熱可塑性樹脂(P1)と製造例Aで用いた熱可塑性樹脂(P2)の溶着強度は40MPaであり、繊維強化樹脂成形品として優れた表面性と意匠性を有していると言える。
[Example 1]
The fiber-reinforced resin material obtained in Production Example A is cut out to a size of 200 × 95 mm, and the above-mentioned integral molding pretreatment operation is performed on the planar body obtained in Production Example 1, and the planar body and the fiber-reinforced resin material are subjected to the above-mentioned operation. Was fixed and the temperature was raised to 290 ° C. by an infrared heater. This was introduced into a compression molding die composed of an upper mold and a lower mold heated to 150 ° C., pressed at a press pressure of 20 MPa for 1 minute, and taken out when the temperature of the press molded product reached 150 ° C. An integrally molded product was obtained. As the mold, a flat plate mold having a product surface of 210 × 100 mm is used, and the flat plate mold has a leather-like textured pattern (Tenibac T-1709, texture depth 70 μm, draft 8) shown in FIG. Those having °) were used.
The surface properties of the obtained integrally molded product were good, and the visibility of the reinforcing fibers after the weather resistance test showed that the planar body was whitened, but the reinforcing fibers were not exposed and the design was B rank and OK. It was. Further, the welding strength of the thermoplastic resin (P1) used in Production Example 1 and the thermoplastic resin (P2) used in Production Example A is 40 MPa, and it has excellent surface properties and design properties as a fiber-reinforced resin molded product. It can be said that it is.

[比較例1]
製造例2の面状体を用いた他は実施例1と同様の手法で一体成形品を得た。得られた一体成形品の耐候試験前の表面樹脂層厚みは、実施例1よりも薄かった。面状体の熱収縮率が大きいため面状体の厚さ斑が大きく、且つ薄くなっている箇所が増えた為であると思われる。その結果、耐候試験後の表面樹脂層厚みがより薄くなり、部分的な強化繊維の露出が見られるようになり、かつ薄くなった表面樹脂層にクラックが発生することで白化し、繊維強化樹脂成形品としての表面性や意匠性に劣る。なお、P1とP2の溶着強度は40MPaであった。
[Comparative Example 1]
An integrally molded product was obtained by the same method as in Example 1 except that the planar body of Production Example 2 was used. The surface resin layer thickness of the obtained integrally molded product before the weather resistance test was thinner than that of Example 1. It is considered that this is because the heat shrinkage rate of the planar body is large, so that the thickness unevenness of the planar body is large and the number of thinned parts is increased. As a result, the thickness of the surface resin layer after the weather resistance test becomes thinner, partial exposure of the reinforcing fibers can be seen, and cracks occur in the thinned surface resin layer to whiten the fiber-reinforced resin. It is inferior in surface and design as a molded product. The welding strength of P1 and P2 was 40 MPa.

[実施例2〜3]
実施例2〜3は製造例3の面状体を用い、一体成形前処理の操作を行う代わりに製造例3で得られた面状体を図4に記載の位置に超音波溶着で固定し、実施例3の金型はシボパターンのある金型の代わりに鏡面パターンの平板金型を用いた他は実施例1と同様な手法で一体成形品を得た。実施例2および実施例3で得られた一体成形品の耐候試験後の表面樹脂層厚みは実施例1より厚く、熱安定剤として配合したヨウ化第一銅やヨウ化カリウムならびにUV吸収剤として配合したカーボンブラックの配合効果が発現し、表面性は良好であり、耐候試験後の強化繊維可視性は面状体にやや白化が生じたものの強化繊維の露出は無く意匠性はOKであった。実施例2および実施例3におけるP1とP2の溶着強度は40MPaであり、繊維強化樹脂成形品として優れた表面性と意匠性を有している。
[Examples 2 to 3]
In Examples 2 and 3, the planar body of Production Example 3 was used, and instead of performing the operation of the integral molding pretreatment, the planar body obtained in Production Example 3 was fixed at the position shown in FIG. 4 by ultrasonic welding. As the mold of Example 3, an integrally molded product was obtained by the same method as in Example 1 except that a flat plate mold having a mirror surface pattern was used instead of the mold having a grain pattern. The surface resin layer thickness of the integrally molded products obtained in Examples 2 and 3 after the weather resistance test was thicker than that in Example 1, and as a cuprous iodide, potassium iodide, and a UV absorber compounded as a heat stabilizer. The blending effect of the blended carbon black was exhibited, the surface properties were good, and the visibility of the reinforcing fibers after the weather resistance test was that the planar body was slightly whitened, but the reinforcing fibers were not exposed and the design was OK. .. The welding strength of P1 and P2 in Examples 2 and 3 is 40 MPa, and the fiber-reinforced resin molded product has excellent surface properties and design properties.

[実施例4]
実施例4は製造例4の面状体を用いた他は実施例2と同様の手法で一体成形品を得た。得られた一体成形品の耐候試験後の表面樹脂層厚みは実施例1よりさらに厚く、熱安定剤として配合したヨウ化第一銅やヨウ化カリウム、UV吸収剤として配合したカーボンブラックや光安定剤(耐UV剤)として配合したHALS系化合物の配合効果が発現し、表面性や意匠性に優れ、P1とP2の溶着強度は40MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 4]
An integrally molded product was obtained in the same manner as in Example 2 except that the planar body of Production Example 4 was used in Example 4. The thickness of the surface resin layer of the obtained integrally molded product after the weather resistance test was even thicker than that of Example 1, and cuprous iodide and potassium iodide compounded as heat stabilizers, carbon black compounded as a UV absorber, and photostable. Since the effect of blending the HALS-based compound blended as an agent (UV resistant agent) is exhibited, the surface properties and design properties are excellent, and the welding strength of P1 and P2 is 40 MPa, the surface is particularly excellent as a fiber reinforced resin molded product. It has sex and design.

[実施例5]
熱可塑性樹脂(P1)としてナイロン66樹脂を配合した製造例5の面状体を用い、赤外線加熱機により310℃に昇温した他は実施例2と同様の手法で一体成形品を得た。得られた一体成形品の表面性と意匠性は良好であり、P1とP2の溶着強度は40MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 5]
An integrally molded product was obtained in the same manner as in Example 2 except that the planar body of Production Example 5 in which nylon 66 resin was blended as the thermoplastic resin (P1) was used and the temperature was raised to 310 ° C. by an infrared heater. The obtained integrally molded product has good surface properties and design properties, and since the welding strength of P1 and P2 is 40 MPa, it has particularly excellent surface properties and design properties as a fiber reinforced resin molded product.

[実施例6]
製造例6の面状体を用いた他は実施例5と同様の手法で一体成形品を得た。得られた一体成形品の表面性と意匠性は良好であり、P1とP2の溶着強度は40MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 6]
An integrally molded product was obtained in the same manner as in Example 5 except that the planar body of Production Example 6 was used. The obtained integrally molded product has good surface properties and design properties, and since the welding strength of P1 and P2 is 40 MPa, it has particularly excellent surface properties and design properties as a fiber reinforced resin molded product.

[実施例7]
製造例5の面状体を2枚重ねして用いた他は実施例5と同様の手法で一体成形品を得た。得られた一体成形品の表面性と意匠性は良好であり、P1とP2の溶着強度は40MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 7]
An integrally molded product was obtained in the same manner as in Example 5 except that two planar bodies of Production Example 5 were stacked and used. The obtained integrally molded product has good surface properties and design properties, and since the welding strength of P1 and P2 is 40 MPa, it has particularly excellent surface properties and design properties as a fiber reinforced resin molded product.

[実施例8]
熱可塑性樹脂(P1)としてナイロン66/ナイロン6共重合樹脂を配合した製造例7の面状体を用い、赤外線加熱機により300℃に昇温した他は実施例2と同様の手法で一体成形品を得た。得られた一体成形品の表面性と意匠性は良好であり、P1とP2の溶着強度は40MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 8]
Using the planar body of Production Example 7 in which nylon 66 / nylon 6 copolymer resin was blended as the thermoplastic resin (P1), integrally molded by the same method as in Example 2 except that the temperature was raised to 300 ° C. by an infrared heater. I got the item. The obtained integrally molded product has good surface properties and design properties, and since the welding strength of P1 and P2 is 40 MPa, it has particularly excellent surface properties and design properties as a fiber reinforced resin molded product.

[実施例9]
熱可塑性樹脂(P1)としてナイロン11樹脂を配合した製造例8の面状体を用い、赤外線加熱機により290℃に昇温した他は実施例2と同様の手法で一体成形品を得た。得られた一体成形品の表面性と意匠性は良好であり、P1とP2の溶着強度は30MPaであることから、繊維強化樹脂成形品として特に優れた表面性と意匠性を有している。
[Example 9]
An integrally molded product was obtained in the same manner as in Example 2 except that the planar body of Production Example 8 in which nylon 11 resin was blended as the thermoplastic resin (P1) was used and the temperature was raised to 290 ° C. by an infrared heater. The obtained integrally molded product has good surface properties and design properties, and since the welding strength of P1 and P2 is 30 MPa, it has particularly excellent surface properties and design properties as a fiber reinforced resin molded product.

[比較例2]
面状体に製造例9で得られた面状体を用いた以外は、比較例1と同様の手法で一体成形品を得た。得られた一体成形品の耐候試験前の表面樹脂層厚みは、面状体の厚みが薄く熱収縮率が大きいため比較例1よりも薄く、耐候試験後の表面樹脂層厚みがより薄くなり、部分的な強化繊維の露出が見られるようになり、繊維強化樹脂成形品としての表面性や意匠性に劣る。なお、P1とP2の溶着強度は40MPaであった。
[Comparative Example 2]
An integrally molded product was obtained in the same manner as in Comparative Example 1 except that the planar body obtained in Production Example 9 was used as the planar body. The surface resin layer thickness of the obtained integrally molded product before the weather resistance test was thinner than that of Comparative Example 1 because the thickness of the planar body was thin and the heat shrinkage rate was large, and the surface resin layer thickness after the weather resistance test was thinner. Partial exposure of the reinforcing fibers is observed, and the surface and design of the fiber-reinforced resin molded product are inferior. The welding strength of P1 and P2 was 40 MPa.

[比較例3]
面状体に製造例10で得られた面状体を用いた以外は、比較例1と同様の手法で一体成形品を得た。面状体の厚みが厚いため、加熱した面状体を設置した繊維強化樹脂材を金型へ手動搬送するとき、手動搬送に用いた保護手袋に溶融した面状体が付着し、付着した溶融面状体がめくれることにより、一体成形品の表面樹脂層が部分的に非常に薄くなるため、耐候試験後の強化繊維の露出が部分的に見られ、かつ薄くなった表面樹脂層にクラックが入るため白化するようになり、繊維強化樹脂成形品としての表面性や意匠性に劣る。なお、P1とP2の溶着強度は40MPaであった。
[Comparative Example 3]
An integrally molded product was obtained in the same manner as in Comparative Example 1 except that the planar body obtained in Production Example 10 was used as the planar body. Due to the thick thickness of the planar body, when the fiber reinforced resin material on which the heated planar body is installed is manually transported to the mold, the molten planar body adheres to the protective gloves used for the manual transport, and the molten planar body adheres to the mold. Since the surface resin layer of the integrally molded product is partially thinned by turning over the planar body, the reinforcing fibers are partially exposed after the weather resistance test, and the thinned surface resin layer is cracked. As it enters, it becomes whitened and is inferior in surface and design as a fiber reinforced resin molded product. The welding strength of P1 and P2 was 40 MPa.

[比較例4]
熱可塑性樹脂(P1)としてポリエチレンナフタレート樹脂(PEN)を用いた製造例11で得られた面状体を用い、表2記載の条件で一体成形品を得た。一体成形品の表面樹脂層を測定するために切り出しを行うと、切り出し時の応力により表面樹脂層に剥離が発生したため、表面樹脂層の厚みを測定することは困難であった。このため、繊維強化樹脂成形品としての表面性に劣る。なお、P1とP2の溶着強度は8MPaであり、一体成形品においてP1とP2が溶着する表面樹脂層で剥離が生じやすいことがわかる。
[Comparative Example 4]
Using the planar body obtained in Production Example 11 using polyethylene naphthalate resin (PEN) as the thermoplastic resin (P1), an integrally molded product was obtained under the conditions shown in Table 2. When cutting out to measure the surface resin layer of the integrally molded product, it was difficult to measure the thickness of the surface resin layer because the surface resin layer was peeled off due to the stress at the time of cutting out. Therefore, the surface property as a fiber-reinforced resin molded product is inferior. It should be noted that the welding strength of P1 and P2 is 8 MPa, and it can be seen that peeling is likely to occur in the surface resin layer where P1 and P2 are welded in the integrally molded product.

[比較例5]
熱可塑性樹脂(P1)としてナイロン12/ナイロン6共重合樹脂を用いた製造例12で得られた面状体を用い、表2記載の条件で一体成形品を得た。熱収縮率が大きいナイロン12/ナイロン6共重合樹脂は、比較例1と同様に面状体の熱収縮率が大きいため面状体の厚さ斑が大きく、表面性や意匠性に劣る結果であった。なお、P1とP2の溶着強度は16MPaであるが、P1であるナイロン12/ナイロン6共重合樹脂がP2であるナイロン6樹脂より柔らかく、溶着強度試験時にナイロン12/ナイロン6共重合樹脂のみが変形したためである。
[Comparative Example 5]
Using the planar body obtained in Production Example 12 using a nylon 12 / nylon 6 copolymer resin as the thermoplastic resin (P1), an integrally molded product was obtained under the conditions shown in Table 2. Nylon 12 / nylon 6 copolymer resin having a large heat shrinkage rate has a large heat shrinkage rate of the planar body as in Comparative Example 1, so that the thickness unevenness of the planar body is large, resulting in inferior surface and design properties. there were. Although the welding strength of P1 and P2 is 16 MPa, the nylon 12 / nylon 6 copolymer resin of P1 is softer than the nylon 6 resin of P2, and only the nylon 12 / nylon 6 copolymer resin is deformed during the welding strength test. Because it was done.

[比較例6]
熱可塑性樹脂(P1)に配合するカーボンブラック量を増量した製造例13で得られた面状体を用いた他は実施例5と同様の手法で一体成形品を得た。カーボンブラック量の増量により耐候試験による表面樹脂層厚みの減少は抑制できるが強化繊維の可視性が極めて劣り、好ましくない。
[Comparative Example 6]
An integrally molded product was obtained in the same manner as in Example 5 except that the planar body obtained in Production Example 13 in which the amount of carbon black blended in the thermoplastic resin (P1) was increased was used. Although the decrease in the surface resin layer thickness due to the weather resistance test can be suppressed by increasing the amount of carbon black, the visibility of the reinforcing fibers is extremely poor, which is not preferable.

[比較例7]
面状体を用いない他は実施例1と同様の手法で一体成形品を得た。面状体を使用していないため表面樹脂層が薄く、耐候試験後の強化繊維の露出が顕著であり、好ましくない。
これらの実施例・比較例の一体成形品の製造条件、評価結果を表1および表2に纏めた。
[Comparative Example 7]
An integrally molded product was obtained by the same method as in Example 1 except that the planar body was not used. Since the planar body is not used, the surface resin layer is thin, and the exposed reinforcing fibers after the weather resistance test are remarkable, which is not preferable.
Tables 1 and 2 summarize the manufacturing conditions and evaluation results of the integrally molded products of these Examples and Comparative Examples.

本発明の表面改善用面状体と繊維強化樹脂材との一体成形品の製造方法は、繊維強化樹脂成形品の表面の改善に関するものであり、外装部品の生産に好適に使用される。 The method for producing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material of the present invention relates to improving the surface of a fiber-reinforced resin molded product, and is suitably used for producing exterior parts.

1:熱可塑性樹脂(P1)からなる成形品
2:熱可塑性樹脂(P2)からなる成形品
3:表面加飾用面状体
4:繊維強化樹脂材
5:超音波溶着のポイント
1: Molded product made of thermoplastic resin (P1) 2: Molded product made of thermoplastic resin (P2) 3: Surface for surface decoration 4: Fiber reinforced resin material 5: Points of ultrasonic welding

Claims (4)

熱可塑性樹脂(P1)を含む表面加飾用面状体と、強化繊維および熱可塑性樹脂(P2)を含む繊維強化樹脂材との一体成形品であって、表面加飾用面状体は面内を上下方向に貫通する空孔を有し、その空孔が5〜100mmの間隔で面内に配置されており、表面加飾用面状体の全光線透過率が10%以上、厚みが1〜500μm、熱収縮率が0.1〜4.6%であり、かつ熱可塑性樹脂(P1)の軟化温度が熱可塑性樹脂(P2)の軟化温度に対して−40℃以上+40℃未満であり、以下工程を含む表面加飾用面状体と繊維強化樹脂材との一体成形品の製造方法。ただし、表面加飾用面状体の熱収縮率は、200mm×200mmにカットした表面加飾用面状体の中央を中心とし、表面加飾用面状体の四辺に並行な100mmの線を互いに直角になるように十字線状に2本書き、この十字線を書いた表面加飾用面状体を無張力下、フッ素樹脂含浸ガラスクロスの上にのせ、工程10において加熱される時の温度にしたホットプレートの上で10分間加熱したあとでホットプレートから表面加飾用面状体を降ろして常温まで冷却し、十字線の長さを、定規を用いて測定し、加熱戦後の十字線の長さの比率から算出した値である。
工程10:強化繊維と熱可塑性樹脂(P2)を含む繊維強化樹脂材の表面の少なくとも一部に、熱可塑性樹脂(P1)を含む表面加飾用面状体を配置し、熱可塑性樹脂(P2)の軟化温度以上に加熱する工程、
工程20:前記軟化温度以上に加熱した表面加飾用面状体を配置した繊維強化樹脂材を、上型および下型から構成される圧縮成形用金型内に搬送する工程、
工程30:コールドプレス成形法にて表面加飾用面状体を配置した繊維強化樹脂材に対してプレス成形を行い、圧縮成形用金型内の成形品温度が熱可塑性樹脂(P2)の軟化温度未満になった状態で圧縮成形用金型から取出し、一体成形品を得る工程
It is an integrally molded product of a surface-decorating surface containing a thermoplastic resin (P1) and a fiber-reinforced resin material containing a reinforcing fiber and a thermoplastic resin (P2), and the surface-decorating surface is a surface. It has holes that penetrate in the vertical direction, and the holes are arranged in the plane at intervals of 5 to 100 mm. The total light transmittance of the surface decoration surface is 10% or more, and the thickness is thick. It is 1 to 500 μm , the thermal shrinkage is 0.1 to 4.6%, and the softening temperature of the thermoplastic resin (P1) is -40 ° C or more and less than + 40 ° C with respect to the softening temperature of the thermoplastic resin (P2). A method for manufacturing an integrally molded product of a surface-decorating planar body and a fiber-reinforced resin material, which includes the following steps. However, the heat shrinkage rate of the surface decoration surface is centered on the center of the surface decoration surface cut to 200 mm × 200 mm, and 100 mm lines parallel to the four sides of the surface decoration surface are drawn. Two cross-shaped lines are drawn so as to be perpendicular to each other, and the surface decoration surface body on which the cross-shaped lines are drawn is placed on a fluororesin-impregnated glass cloth under no tension, and is heated in step 10. After heating for 10 minutes on a hot plate that has been heated to a temperature, the surface decoration surface is lowered from the hot plate and cooled to room temperature, the length of the cross line is measured using a ruler, and the cross after the heating war It is a value calculated from the ratio of line lengths.
Step 10: A surface decoration surface body containing the thermoplastic resin (P1) is arranged on at least a part of the surface of the fiber-reinforced resin material containing the reinforcing fiber and the thermoplastic resin (P2), and the thermoplastic resin (P2) is arranged. ) The process of heating above the softening temperature,
Step 20: A step of transporting a fiber-reinforced resin material on which a surface-decorating planar body heated to a temperature equal to or higher than the softening temperature is arranged into a compression molding die composed of an upper die and a lower die.
Step 30: Press molding is performed on the fiber-reinforced resin material on which the surface decoration surface is arranged by the cold press molding method, and the temperature of the molded product in the compression molding die softens the thermoplastic resin (P2). A process of taking out from a compression molding die when the temperature is lower than the temperature and obtaining an integrally molded product.
表面加飾用面状体は面内を上下方向に貫通する空孔を有し、その空孔が50mmの間隔で面内に配置されている請求項1に記載の一体成形品の製造方法。 The integrally molded product according to claim 1, wherein the surface decoration surface has holes penetrating in the plane in the vertical direction, and the holes are arranged in the plane at intervals of 6 to 50 mm. Production method. 熱可塑性樹脂(P1)と熱可塑性樹脂(P2)との溶着強度が10MPa以上である請求項1〜2のいずれか1項に記載の一体成形品の製造方法。 The method for producing an integrally molded product according to any one of claims 1 to 2, wherein the welding strength of the thermoplastic resin (P1) and the thermoplastic resin (P2) is 10 MPa or more. 圧縮成形用金型の製品部の表面に凹凸が設置された請求項1〜3のいずれか1項に記載の一体成形品の製造方法 The method for manufacturing an integrally molded product according to any one of claims 1 to 3, wherein irregularities are provided on the surface of the product portion of the compression molding die.
JP2016193049A 2016-09-30 2016-09-30 Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material Active JP6787736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193049A JP6787736B2 (en) 2016-09-30 2016-09-30 Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193049A JP6787736B2 (en) 2016-09-30 2016-09-30 Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material

Publications (2)

Publication Number Publication Date
JP2018052037A JP2018052037A (en) 2018-04-05
JP6787736B2 true JP6787736B2 (en) 2020-11-18

Family

ID=61833470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193049A Active JP6787736B2 (en) 2016-09-30 2016-09-30 Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material

Country Status (1)

Country Link
JP (1) JP6787736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385390B2 (en) 2019-07-25 2023-11-22 株式会社アーク Composite manufacturing method and composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158831A (en) * 2009-01-08 2010-07-22 Tokyo R & D Co Ltd Method of manufacturing woven fabric decorated resin product, and woven fabric decorated resin product manufactured by the method
JP4807477B2 (en) * 2011-05-10 2011-11-02 東レ株式会社 Manufacturing method of press-molded products
CN103797051B (en) * 2011-09-06 2017-05-17 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
WO2015023000A1 (en) * 2013-08-13 2015-02-19 帝人株式会社 Method for manufacturing decorative molding and decorative molding

Also Published As

Publication number Publication date
JP2018052037A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP2716433B1 (en) Method for manufacturing compact with sustained isotropy
JP6170837B2 (en) Molded product with excellent surface design composed of fiber reinforced composite material
US9969146B2 (en) Layered substrate and method for manufacturing same
EP2752442A1 (en) Molded body having rising surface, and method for producing same
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
TW201241056A (en) Reinforcing fiber composite material
JP2016216654A (en) Tape-like prepreg and fiber-reinforced molded body
JP2015044326A (en) Decorative molded body and method for producing decorative molded body
JP6163970B2 (en) Decorative molded product and method for producing decorative molded product
JP6787736B2 (en) Method for manufacturing an integrally molded product of a surface-improving planar body and a fiber-reinforced resin material
JP5833385B2 (en) Method for producing molded body made of fiber reinforced composite material
JP5801658B2 (en) Thin-walled molded product having uniform thickness and method for producing the same
JP2016108348A (en) Laminated base material and method for manufacturing the same
CN115023329B (en) Cold press molded article comprising carbon fiber and glass fiber, and method for producing same
US20220145528A1 (en) Method for producing opened carbon fibre bundle and fibre reinforced composite material
US10913182B2 (en) Fiber-reinforced resin shaped product having grains on at least part of surface
JP2013202891A (en) Carbon fiber composite material and method for manufacturing the same
JP6855388B2 (en) Fiber-reinforced resin molded body having grain on at least a part of the surface and its manufacturing method
JP5864166B2 (en) Molded body having smooth surface and uniform thickness, and method for producing the same
WO2022050213A1 (en) Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor
KR20230117607A (en) Manufacturing method of transparent conductive film
Hwang et al. Fracture Parameters of Short Carbon Fiber Reinforced Polycarbonate Composite Fabricated by Injection Molding Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150