JP2013202891A - Carbon fiber composite material and method for manufacturing the same - Google Patents

Carbon fiber composite material and method for manufacturing the same Download PDF

Info

Publication number
JP2013202891A
JP2013202891A JP2012073111A JP2012073111A JP2013202891A JP 2013202891 A JP2013202891 A JP 2013202891A JP 2012073111 A JP2012073111 A JP 2012073111A JP 2012073111 A JP2012073111 A JP 2012073111A JP 2013202891 A JP2013202891 A JP 2013202891A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
composite material
carbon
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073111A
Other languages
Japanese (ja)
Inventor
Akinobu Sasaki
章亘 佐々木
Takahiro Hayashi
崇寛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012073111A priority Critical patent/JP2013202891A/en
Publication of JP2013202891A publication Critical patent/JP2013202891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber composite material containing a thermoplastic resin as a matrix, the carbon fiber composite material showing an excellent surface quality and being made in particular by impregnating the carbon fiber with the thermoplastic resin without using a fibrous or powdered thermoplastic resin.SOLUTION: A composite material is composed of carbon fibers each having a fiber length of 10 mm or more and 100 mm or less, a monofilament having a fineness of 1.0 to 2.4 dtex, and a thermoplastic resin. The carbon fibers are substantially two-dimensionally randomly oriented. Regarding the carbon fibers, a ratio of a bundle (A) of carbon fibers composed of more than a critical monofilament number calculated by the equation (1) to the whole fibers is 0Vol% or more and 30Vol% or less.

Description

本発明は、熱可塑性樹脂をマトリクスとした炭素繊維複合材料に関するものであって、表面品位に優れ、特に、繊維状或いはパウダー状の熱可塑性樹脂を使用することなく、炭素繊維と熱可塑性樹脂を含浸させた炭素繊維複合材料に関する。   The present invention relates to a carbon fiber composite material using a thermoplastic resin as a matrix, and is excellent in surface quality. In particular, carbon fiber and thermoplastic resin can be used without using a fibrous or powdery thermoplastic resin. The present invention relates to an impregnated carbon fiber composite material.

特許文献1は、表面品位に優れた熱可塑性樹脂をマトリクスとした炭素繊維複合材を開示している。特許文献1では、開繊された炭素繊維と熱可塑性樹脂の塗布工程では、繊維状またはパウダー状の熱可塑性樹脂を使用することが好ましいとされている。炭素繊維と繊維状またはパウダー状の熱可塑性樹脂の塗布を行う場合には、樹脂をあらかじめ繊維状あるいはパウダー状にする必要があり、その加工作業の負荷やコストの問題があった。
一方、特許文献1に記載されている好ましい炭素繊維径5〜7μmでは、このように細い炭素繊維に熱可塑性樹脂フィルムや溶融状態の熱可塑性樹脂を用いて、炭素繊維と熱可塑性樹脂を含浸させる場合、含浸が不十分で、表面品位が不十分な問題があった。
Patent document 1 is disclosing the carbon fiber composite material which used the thermoplastic resin excellent in the surface quality as a matrix. In patent document 1, it is said that it is preferable to use a fibrous or powdery thermoplastic resin in the coating process of the opened carbon fiber and the thermoplastic resin. When carbon fiber and a fibrous or powdery thermoplastic resin are applied, it is necessary to make the resin fibrous or powdery in advance, and there are problems in the load and cost of the processing work.
On the other hand, in the preferable carbon fiber diameter of 5 to 7 μm described in Patent Document 1, the carbon fiber and the thermoplastic resin are impregnated using such a thin carbon fiber with a thermoplastic resin film or a molten thermoplastic resin. In such a case, the impregnation was insufficient and the surface quality was insufficient.

特開2011−178890号公報JP 2011-178890 A

炭素繊維と熱可塑性樹脂とから構成され、炭素繊維が実質的に二次元ランダムに配向しており、繊維状またはパウダー状の熱可塑性樹脂を使用することなく、炭素繊維と熱可塑性樹脂が良好に含浸した、表面品位の優れた複合材料を提供することである。   Consists of carbon fiber and thermoplastic resin, carbon fiber is oriented substantially two-dimensionally randomly, and carbon fiber and thermoplastic resin are good without using fibrous or powdery thermoplastic resin An object of the present invention is to provide an impregnated composite material having excellent surface quality.

本発明の複合材料は、繊維長10mm超100mm以下で単繊維繊度1.0〜2.4dtexの炭素繊維と熱可塑性樹脂とから構成され、炭素繊維が実質的に二次元ランダムに配向しており、炭素繊維が(式1)で定義される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する割合が0Vol%超30Vol%未満であることを特徴とする複合材料である。
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である。D(μm)は、式(2)を用いて、単繊維繊度E(dtex)、炭素繊維の真密度F(g/cm)から算出される。)
D=(4×E/(3.14×F))0.5×10 (2)
The composite material of the present invention is composed of carbon fibers having a fiber length of more than 10 mm and not more than 100 mm and a single fiber fineness of 1.0 to 2.4 dtex, and a thermoplastic resin, and the carbon fibers are oriented substantially two-dimensionally randomly. The carbon fiber bundle (A) in which the carbon fiber is composed of the number of critical single yarns or more defined by (Formula 1) is a composite material characterized in that the ratio to the total amount of fiber is more than 0 Vol% and less than 30 Vol% .
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the carbon fiber. D (μm) is the single fiber fineness E (dtex) and the true density F (g / cm 3 ) of the carbon fiber using the formula (2). )
D = (4 × E / (3.14 × F)) 0.5 × 10 (2)

本発明の方法によれば、繊維状またはパウダー状の熱可塑性樹脂を使用することなく、炭素繊維と熱可塑性樹脂を良好に含浸させることができ、高い表面品位を発現させることができる。   According to the method of the present invention, carbon fiber and a thermoplastic resin can be satisfactorily impregnated without using a fibrous or powdery thermoplastic resin, and a high surface quality can be expressed.

本発明の複合材料は、熱可塑性樹脂と繊維長10mm超100mm以下であって単繊維繊度が1.0〜2.4dtexである炭素繊維とから構成され、炭素繊維が実質的に二次元ランダムに配向しており、炭素繊維が(式1)で定義される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する割合が0Vol%超30Vol%未満である。
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である。D(μm)は、式(2)を用いて、単繊維繊度E(dtex)、炭素繊維の真密度F(g/cm)から算出される。)
D=(4×E/(3.14×F))0.5×10 (2)
ここで、単繊維繊度Eとは、10,000mあたりの単繊維の質量(g)である。
The composite material of the present invention is composed of a thermoplastic resin and a carbon fiber having a fiber length of more than 10 mm and not more than 100 mm and a single fiber fineness of 1.0 to 2.4 dtex, and the carbon fiber is substantially two-dimensionally random. With respect to the carbon fiber bundle (A) that is oriented and the carbon fiber is composed of the number of critical single yarns defined by (Formula 1), the ratio to the total amount of the fiber is more than 0 Vol% and less than 30 Vol%.
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the carbon fiber. D (μm) is the single fiber fineness E (dtex) and the true density F (g / cm 3 ) of the carbon fiber using the formula (2). )
D = (4 × E / (3.14 × F)) 0.5 × 10 (2)
Here, the single fiber fineness E is the mass (g) of single fibers per 10,000 m.

本発明で使用する炭素繊維は不連続であり、平均繊維長10mm超100mm以下である。本発明の複合材料は、ある程度長い炭素繊維を含んで強化機能が発現できることを特徴とし、好ましくは炭素繊維の平均繊維長が15mm以上100mm以下であり、より好ましくは15mm以上80mm以下であり、さらには20mm以上60mm以下が好ましい。   The carbon fibers used in the present invention are discontinuous and have an average fiber length of more than 10 mm and not more than 100 mm. The composite material of the present invention is characterized in that a reinforcing function can be expressed by including carbon fibers that are somewhat long, preferably the average fiber length of the carbon fibers is 15 mm or more and 100 mm or less, more preferably 15 mm or more and 80 mm or less, Is preferably 20 mm or more and 60 mm or less.

本発明の方法においては、炭素繊維として、単繊維繊度が1.0〜2.4dtexである炭素繊維を使用する。このような太い炭素繊維を使うことにより、繊維状あるいはパウダー状の熱可塑性樹脂を使用することなく、炭素繊維と熱可塑性樹脂を良好に含浸させることができ、表面品を高めることができる。   In the method of the present invention, a carbon fiber having a single fiber fineness of 1.0 to 2.4 dtex is used as the carbon fiber. By using such a thick carbon fiber, the carbon fiber and the thermoplastic resin can be satisfactorily impregnated without using a fibrous or powdery thermoplastic resin, and the surface product can be enhanced.

また、本発明に用いる強化繊維としては、断面形状が真円度0.70以上0.90以下であることが好ましい。さらに、断面形状が空豆型であることが好ましい。断面形状を比較的単純な形状である真円度0.70以上0.90以下の空豆型とすることで、単繊維の繊度が大きくなつても、真円度が0.90より大きい丸に近い断面形状の強化繊維より、ストランド強度は高い数値を維持できる。また、単繊維を密に詰めることが出来るため、プリプレグ中での繊維含有率が向上し、複合材料の力学特性を向上させることが可能となる。   Moreover, as a reinforced fiber used for this invention, it is preferable that cross-sectional shape is 0.70 or more and 0.90 or less roundness. Furthermore, the cross-sectional shape is preferably an empty bean type. Even if the fineness of the single fiber is increased, the roundness is larger than 0.90 by making the cross-sectional shape into a relatively simple shape round bean type with a roundness of 0.70 or more and 0.90 or less. The strand strength can be maintained at a higher value than the reinforcing fiber having a close sectional shape. Further, since the single fibers can be densely packed, the fiber content in the prepreg is improved, and the mechanical properties of the composite material can be improved.

<炭素繊維束の直径及び真円度>
(1)サンプルの作製
長さ5cmに切断した炭素繊維束をエポキシ樹脂(エポマウント主剤:エポマウント硬化剤=100:9(質量比))に包埋し、2cmに切断して横断面を露出させ、鏡面処理した。
(2)観察面のエッチング処理
更に、繊維の外形を明瞭にするために、サンプルの横断面を次の方法でエッチング処理した。
・使用装置:プラズマエッチング装置(日本電子(株)社製、製品名:P―170)
・処理条件:雰囲気ガス:Ar/O=75/25、プラズマ出力:50W、真空度:約120Pa、処理時間:5min
(3)SEM観察
前記(1)及び(2)により得られたサンプルの横断面を、SEM(PHILIPS社製、製品名:FEI―XL20)を用いて観察し、画面上に5個以上の繊維断面が写っている写真を任意に5枚撮影した。
(4)炭素繊維束の単繊維の直径測定
各サンプルについて5枚のSEM写真から任意に20個、ただし、1枚の写真から3個以上の単繊維断面を選んで、画像解析ソフトウェア(日本ロ―パー(株)製、製品名:Image― Pro PLUS)を用いて繊維断面の外形をトレースし、断面の長径(最大フェレ径)dを計測した。選んだ単繊維断面全ての長径dの平均を、炭素繊維束の単繊維の直径Diとした。
(5)真円度測定
画像解析ソフトウェア(日本ロ―パー(株)製、製品名:Image― Pro PLUS)を用いて繊維断面の外形をトレースし、周長Lおよび面積Sを計測した。各サンプルについて5枚の写真から任意に20個、ただし、1枚の写真から3個以上の繊維断面を選んで計測し、LおよびSの平均値を求め、次式により真円度を算出した。
真円度=4πS/L ・・・(3)
<Diameter and roundness of carbon fiber bundle>
(1) Preparation of sample A carbon fiber bundle cut to a length of 5 cm is embedded in an epoxy resin (Epomount main agent: Epomount curing agent = 100: 9 (mass ratio)), cut to 2 cm, and the cross section is exposed. And mirror-finished.
(2) Etching treatment of observation surface Further, in order to clarify the outer shape of the fiber, the cross section of the sample was etched by the following method.
-Equipment used: Plasma etching equipment (manufactured by JEOL Ltd., product name: P-170)
Processing conditions: atmospheric gas: Ar / O 2 = 75/25, plasma output: 50 W, vacuum: about 120 Pa, processing time: 5 min
(3) SEM observation The cross section of the sample obtained by said (1) and (2) was observed using SEM (the product name: FEI-XL20 by PHILIPS), and five or more fibers were displayed on the screen. We arbitrarily photographed five photographs showing the cross section.
(4) Measurement of single fiber diameter of carbon fiber bundle For each sample, 20 pieces are arbitrarily selected from 5 SEM photographs, but 3 or more single fiber sections are selected from one photograph, and image analysis software The outer shape of the cross section of the fiber was traced using a product name “Image-Pro PLUS” manufactured by Parr Co., Ltd., and the major axis (maximum ferret diameter) d of the cross section was measured. The average of the major axis d of all selected single fiber cross sections was defined as the diameter Di of the single fiber of the carbon fiber bundle.
(5) Roundness measurement The outer shape of the fiber cross-section was traced using image analysis software (product name: Image-Pro PLUS, manufactured by Nippon Roper Co., Ltd.), and the circumference L and area S were measured. For each sample, 20 pieces were arbitrarily selected from five photographs, but three or more fiber cross sections were selected from one photograph, measured, average values of L and S were obtained, and roundness was calculated by the following equation. .
Roundness = 4πS / L 2 (3)

本発明においては、炭素繊維は実質的に2次元的にランダムに分散している。実質的2次元ランダムとは、複合材料を構成する炭素繊維が、複合材料の接表面内に繊維軸の主配向方向があり、かつその面内において互いに直行する二方向に測定した引張弾性率のうち大きいものを小さいもので割った比が2を超えないことをいう。   In the present invention, the carbon fibers are substantially randomly dispersed two-dimensionally. Substantially two-dimensional random means that the carbon fiber constituting the composite material has a tensile modulus measured in two directions in which the main orientation direction of the fiber axis is in the contact surface of the composite material and is orthogonal to each other in the plane. It means that the ratio of the larger one divided by the smaller one does not exceed 2.

一般的に、炭素繊維は、数千〜数万本のフィラメントが集合した繊維束となっている。特に薄肉のコンポジットを得る場合、炭素繊維を繊維束のまま使用すると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られない。そのため、炭素繊維を開繊して使用することが重要となるが、本発明の複合材料は炭素繊維の開繊程度をコントロールした複合材料を特徴とする。   Generally, carbon fiber is a fiber bundle in which thousands to tens of thousands of filaments are gathered. In particular, when a thin-walled composite is obtained, if carbon fibers are used in the form of fiber bundles, the entangled portion of the fibers becomes locally thick, and a thin-walled one cannot be obtained. Therefore, it is important to open and use the carbon fiber, but the composite material of the present invention is characterized by a composite material in which the degree of opening of the carbon fiber is controlled.

本発明の複合材料は、式(1) 臨界単糸数=600/D で定義する臨界単糸数以上で構成される炭素繊維束(A)の好ましい繊維全量に対する割合は、0Vol%超30Vol%未満である。   In the composite material of the present invention, the ratio of the carbon fiber bundle (A) composed of the number of critical single yarns defined by the formula (1) critical single yarn number = 600 / D is preferably more than 0 vol% and less than 30 vol%. is there.

炭素繊維束(A)の割合が30Vol%以上になると、表面品位に優れる複合材料が得られにくくなる。炭素繊維束(A)の割合はより好ましくは0Vol%超20Vol%未満である。   When the ratio of the carbon fiber bundle (A) is 30 Vol% or more, it becomes difficult to obtain a composite material having excellent surface quality. The ratio of the carbon fiber bundle (A) is more preferably more than 0 Vol% and less than 20 Vol%.

炭素繊維はサイズ材が付着されたものを用いることが好ましく、サイジング材は炭素繊維100重量部に対して、0.1〜10.0重量部であることが好ましい。   It is preferable to use a carbon fiber to which a sizing material is attached, and the sizing material is preferably 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the carbon fiber.

本発明の複合材料における熱可塑性樹脂の存在量は、炭素繊維100重量部に対し、50〜1000重量部であることが好ましい。より好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜500重量部である。   The abundance of the thermoplastic resin in the composite material of the present invention is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the carbon fibers. More preferably, it is 50 to 500 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber.

熱可塑性樹脂の種類として、ポリアミド、または共重合のポリアミド、ポリエステル、または共重合のポリエステル、ポリカーボネート、ポリアミドイミド、ポリフェニレンスルファイド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリオレフィン等を使用することができる。   As the type of thermoplastic resin, polyamide, copolymerized polyamide, polyester, copolymerized polyester, polycarbonate, polyamideimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyolefin, etc. are used. can do.

本発明の複合材料中には、本発明の目的を損なわない範囲で、ガラス繊維や有機繊維等の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。   In the composite material of the present invention, various fibrous or non-fibrous fillers such as glass fibers and organic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, and the like within the range not impairing the object of the present invention. , Plasticizers and surfactant additives may be included.

以下本発明の複合材料を好ましく得る方法について述べる。本発明の複合材料は以下の工程1〜5より、好ましく製造することができる。
1.炭素繊維をカットする工程、
2.カットされた炭素繊維を開繊させる工程、
3.開繊させた炭素繊維をシート状にする工程
4.シート状の炭素繊維に熱可塑性樹脂フィルムを積層した後、加熱することで熱可塑性樹脂を溶融させ炭素繊維に含浸させる工程、或いは、シート状の炭素繊維に押し出し機等を用いて溶融させた樹脂を含浸させる工程
5.炭素繊維シートと溶融熱可塑性樹脂が含浸した物を冷却することによりプリプレグシート状の複合材料を製造する工程。
A method for preferably obtaining the composite material of the present invention will be described below. The composite material of the present invention can be preferably produced from the following steps 1 to 5.
1. Cutting carbon fiber,
2. Opening the cut carbon fiber,
3. 3. Step of opening the opened carbon fiber into a sheet A process of laminating a thermoplastic resin film on sheet-like carbon fiber and then heating to melt the thermoplastic resin and impregnating the carbon fiber, or a resin melted on the sheet-like carbon fiber using an extruder or the like 4. impregnating step 5 A step of producing a prepreg sheet-like composite material by cooling a material impregnated with a carbon fiber sheet and a molten thermoplastic resin.

炭素繊維のカット方法として、ロータリーカッター等のナイフを用いて炭素繊維をカットする方法が例示される。   Examples of the carbon fiber cutting method include a method of cutting carbon fiber using a knife such as a rotary cutter.

カットされた炭素繊維の開繊方法として、圧縮空気を吹き付ける方法が例示される。開繊の度合いについては、空気の圧力、流量、時間等により調整される。   As a method for opening the cut carbon fiber, a method of blowing compressed air is exemplified. The degree of opening is adjusted by air pressure, flow rate, time, and the like.

開繊させた炭素繊維を例えば平板の上に、撒くことにより炭素繊維シートを製造することができる。
熱可塑性樹脂含浸工程において、炭素繊維シートに熱可塑性樹脂を積層した後、加熱する方法や、炭素繊維シートに押し出し機等を用いて溶融させた熱可塑性樹脂を含浸させる方法が好ましく利用される。
A carbon fiber sheet can be manufactured by rolling the opened carbon fiber on, for example, a flat plate.
In the thermoplastic resin impregnation step, a method of heating after laminating the thermoplastic resin on the carbon fiber sheet and a method of impregnating the carbon fiber sheet with a thermoplastic resin melted using an extruder or the like are preferably used.

炭素繊維シートと溶融熱可塑性樹脂が含浸した物を冷却することによるプリプレグシートを得る。   A prepreg sheet is obtained by cooling a material impregnated with a carbon fiber sheet and a molten thermoplastic resin.

本発明のプリプレグシート状の複合材料は、各種の厚みとすることが可能であるが、厚みが0.05〜3mm程度が好ましい   Although the prepreg sheet-like composite material of the present invention can have various thicknesses, the thickness is preferably about 0.05 to 3 mm.

得られたプリプレグシートを用いて、プレス成形することにより、任意の形状に賦形することができる。プレス成形方法として、マトリクスの熱可塑性樹脂のガラス転移温度或いは融点以上に加熱をしておいて。その加熱されたプリプレグシートをマトリクス樹脂のガラス転移温度或いは融点以下に保たれた金型の上に置いて、プレス成形を行なう方法が例示される。   The obtained prepreg sheet can be shaped into an arbitrary shape by press molding. As a press molding method, heating is performed to the glass transition temperature or the melting point of the matrix thermoplastic resin. An example is a method in which the heated prepreg sheet is placed on a metal mold maintained at a temperature lower than the glass transition temperature or melting point of the matrix resin and press molding is performed.

複合材料は、上記のようなプレス成形により、所望の厚さの成形体を得ることができる。また型の形状等を選択することにより、三次元形状等の所望形状の成形体を得ることも可能である。   The composite material can obtain a molded body having a desired thickness by press molding as described above. It is also possible to obtain a molded body having a desired shape such as a three-dimensional shape by selecting the shape of the mold.

成形体は積層構造とすることも可能である。例えば2枚以上のプリプレグシートを積層してプレス成形する方法が挙げられる。   The molded body may have a laminated structure. For example, a method in which two or more prepreg sheets are laminated and press-molded can be mentioned.

本発明の複合材料は、サンドイッチ部材の表皮等としても提供できる。   The composite material of the present invention can also be provided as a skin of a sandwich member.

サンドイッチ部材とするときのコア材にとくに限定はないが、樹脂の発泡体や、ガラス繊維や有機繊維の不織布等が好ましく挙げられる。本発明の複合材料からなる成形体をコア部材とともに積層して、例えばプレス成形することによりサンドイッチ部材とすることができる。   The core material for the sandwich member is not particularly limited, and preferred examples include resin foam, glass fiber, and organic fiber nonwoven fabric. The molded body made of the composite material of the present invention can be laminated together with the core member, and can be made into a sandwich member by, for example, press molding.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
[複合材料における炭素繊維束(A)の繊維全量に対する割合の求め方]
1)複合材料を100mm×100mmに切り出し、厚み(Ta)を測定後、500℃×1時間程度、炉内にて樹脂を除去する。
2)樹脂を除去した複合材料より、繊維束をピンセットで全て取り出す。
3)全ての繊維束について、個々の繊維束の長さ(Li)と重量(Wi)を測定し、繊維束数(I)を記録する。ピンセットにて取り出す事ができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。このとき、1/1000gまで測定可能な天秤を用いる。なお、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、繊維を0.2mm程度の間隔で分類し、分類した繊維束を複数本まとめて重量を測定し、平均値を用いても良い。
4)全ての分類について測定後、以下の計算を行う。使用している炭素繊維の単位長さあたり繊度(e)より、分類した繊維束群の繊維本数(Ni)は次式により求められる。
Ni=Wi/(Li×e)。
炭素繊維束(A)中の平均繊維数(N)は以下の式により求める。
N=ΣNi/I
また、個々の繊維束の体積(Vi)及び、炭素繊維束(A)の繊維全体に対する割合(VR)は、使用した炭素繊維の繊維比重(ρ)を用いて次式により求められる。
Vi=Wi/ρ
VR=ΣVi/Va×100
ここで、Vaは切り出したシートの体積であり、Va=100×100×Ta
Examples are shown below, but the present invention is not limited thereto.
[How to find the ratio of the carbon fiber bundle (A) in the composite material to the total amount of fibers]
1) The composite material is cut into 100 mm × 100 mm, and after measuring the thickness (Ta), the resin is removed in a furnace for about 500 ° C. × 1 hour.
2) Remove all fiber bundles with tweezers from the composite material from which the resin has been removed.
3) For all fiber bundles, the length (Li) and weight (Wi) of each fiber bundle are measured, and the number of fiber bundles (I) is recorded. When the fiber bundle is so small that it cannot be taken out by tweezers, the weight is finally measured together (Wk). At this time, a balance capable of measuring up to 1/1000 g is used. When the fiber length is short, the weight of the fiber bundle is small and measurement becomes difficult. In such a case, the fibers may be classified at intervals of about 0.2 mm, a plurality of the classified fiber bundles may be collectively measured, and the average value may be used.
4) After measurement for all classifications, perform the following calculations. From the fineness (e) per unit length of the carbon fiber used, the number of fibers (Ni) of the classified fiber bundle group is obtained by the following equation.
Ni = Wi / (Li × e).
The average number of fibers (N) in the carbon fiber bundle (A) is obtained by the following formula.
N = ΣNi / I
Further, the volume (Vi) of each fiber bundle and the ratio (VR) of the carbon fiber bundle (A) to the whole fiber are obtained by the following formula using the fiber specific gravity (ρ) of the carbon fiber used.
Vi = Wi / ρ
VR = ΣVi / Va × 100
Here, Va is the volume of the cut sheet, Va = 100 × 100 × Ta

(炭素繊維)
PAN系炭素繊維束1(単繊維繊度 1.3dtex、真密度1.8、繊維径10μm、24,000フィラメント、強度 4218MPa、弾性率 236GPa、真円度:0.80)
PAN系炭素繊維束2(単繊維繊度 2.4dtex、真密度1.8、繊維径13μm、12,000フィラメント、強度 3477MPa、弾性率 240Pa、真円度:0.80)
PAN系炭素繊維束3(単繊維繊度 0.7dtex、真密度1.8、繊維径7μm、12,000フィラメント、強度 4116MPa、弾性率 235GPa、真円度:0.95)
(Carbon fiber)
PAN-based carbon fiber bundle 1 (single fiber fineness 1.3 dtex, true density 1.8, fiber diameter 10 μm, 24,000 filament, strength 4218 MPa, elastic modulus 236 GPa, roundness: 0.80)
PAN-based carbon fiber bundle 2 (single fiber fineness 2.4 dtex, true density 1.8, fiber diameter 13 μm, 12,000 filament, strength 3477 MPa, elastic modulus 240 Pa, roundness: 0.80)
PAN-based carbon fiber bundle 3 (single fiber fineness 0.7 dtex, true density 1.8, fiber diameter 7 μm, 12,000 filament, strength 4116 MPa, elastic modulus 235 GPa, roundness: 0.95)

(熱可塑性樹脂)
ポリプロピレン樹脂(プライムポリマー(株)製、製品名:J108M)
(Thermoplastic resin)
Polypropylene resin (manufactured by Prime Polymer Co., Ltd., product name: J108M)

(実施例1)
(樹脂フィルムの作製)
加熱冷却二段プレス(神藤金属工業所社製、F−37)を用いてポリプロピレン樹脂のペレットを220℃の加熱盤で挟み込み、加圧して薄く引き延ばした。その後、冷却盤で冷却することにより厚み約62μmの樹脂フィルムを作製した。作製した樹脂フィルムの1mあたりの重量は約56gであった。
Example 1
(Production of resin film)
Polypropylene resin pellets were sandwiched between 220 ° C. heating plates using a heating / cooling two-stage press (F-37, manufactured by Shinfuji Metal Industry Co., Ltd.), and were pressed and stretched thinly. Thereafter, a resin film having a thickness of about 62 μm was produced by cooling with a cooling plate. The weight of the produced resin film per 1 m 2 was about 56 g.

(炭素繊維シート及びプリプレグの作製)
炭素繊維として、炭素繊維束1を使用した。この炭素繊維束を長さ25mmにカットして、カットした炭素繊維束を開繊装置により開繊した。開繊装置として、小孔を有した管を用意し、コンプレッサーを用いて圧縮空気を送気した。この時、小孔からの風速は100m/secであった。開繊操作を2回実施した炭素繊維を目付け100g/mの炭素繊維シート状にした。この炭素繊維シート状物の両面から前記樹脂フィルム、フッ素樹脂製フィルム(日東電工社製、ニトフロンフィルム970−4UL)、アルミ製の平板の順に挟み、前記加熱冷却二段プレスの加熱盤で220℃、5分、20kPa、冷却盤で5分、20kPaの条件で、プリプレグ目付約212g/m、炭素繊維重量含有率約47%、炭素繊維体積含有率約31%である、厚み約180μmのプリプレグを得た。このプリプレグについて、式(1)で定義される臨界繊維数は60、臨界単糸数以上で構成される繊維束(A)中の平均単糸数は200、臨界単糸数以上で構成される炭素繊維束の割合は10%であった。このプリプレグを11枚重ねて、平板金型内に置いて、220℃で圧縮成形を行ない、厚みが約2mmの平板を得た。表面に繊維の凸凹は無く、表面品位は良好であった。
(Production of carbon fiber sheet and prepreg)
A carbon fiber bundle 1 was used as the carbon fiber. This carbon fiber bundle was cut into a length of 25 mm, and the cut carbon fiber bundle was opened using a fiber opening device. A tube having small holes was prepared as a fiber opening device, and compressed air was supplied using a compressor. At this time, the wind speed from the small hole was 100 m / sec. The carbon fiber subjected to the opening operation twice was formed into a carbon fiber sheet having a basis weight of 100 g / m 2 . The carbon fiber sheet-like product is sandwiched in this order from the resin film, fluororesin film (Nitto Denko Corporation, Nitoflon film 970-4UL), and aluminum flat plate in order, and 220 with the heating plate of the heating / cooling two-stage press. ℃ 5 minutes, 20 kPa, 5 minutes with a cooling plate, 20 kPa, the prepreg weight is about 212 g / m 2 , the carbon fiber weight content is about 47%, the carbon fiber volume content is about 31%, the thickness is about 180 μm A prepreg was obtained. About this prepreg, the number of critical fibers defined by the formula (1) is 60, the average number of single yarns in the fiber bundle (A) composed of the number of critical single yarns is 200, and the carbon fiber bundle composed of the number of critical single yarns or more. The ratio was 10%. Eleven prepregs were stacked and placed in a flat plate mold and compression molded at 220 ° C. to obtain a flat plate having a thickness of about 2 mm. There was no unevenness of the fiber on the surface, and the surface quality was good.

(実施例2)
炭素繊維として、炭素繊維束2を使用した以外は実施例1と同様な操作を実施した。このプリプレグについて、式(1)で定義される臨界繊維数は46、臨界単糸数以上で構成される繊維束(A)中の平均単糸数は100、臨界単糸数以上で構成される炭素繊維束の割合は10%であった。表面に繊維の凸凹は無く、表面品位は良好であった。
(Example 2)
The same operation as in Example 1 was performed except that the carbon fiber bundle 2 was used as the carbon fiber. About this prepreg, the number of critical fibers defined by the formula (1) is 46, the average number of single yarns in the fiber bundle (A) composed of the critical number of single yarns is 100, and the carbon fiber bundle composed of the number of critical single yarns or more. The ratio was 10%. There was no unevenness of the fiber on the surface, and the surface quality was good.

(比較例1)
炭素繊維として、炭素繊維束3を使用した以外は実施例1と同様な操作を実施した。このプリプレグについて、式(1)で定義される臨界繊維数は86、臨界単糸数以上で構成される繊維束(A)中の平均単糸数は300、臨界単糸数以上で構成される炭素繊維束の割合は10%であった。表面品位は不良であった。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the carbon fiber bundle 3 was used as the carbon fiber. About this prepreg, the number of critical fibers defined by the formula (1) is 86, the average number of single yarns in the fiber bundle (A) composed of the critical number of single yarns is 300, and the carbon fiber bundle composed of the number of critical single yarns or more. The ratio was 10%. The surface quality was poor.

Claims (6)

繊維長10mm超100mm以下で単繊維繊度1.0〜2.4dtexの炭素繊維と熱可塑性樹脂とから構成され、炭素繊維が実質的に二次元ランダムに配向しており、炭素繊維が(式1)で計算される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する割合が0Vol%超30Vol%未満であることを特徴とする複合材料。
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である。D(μm)は、式(2)を用いて、単繊維繊度E(dtex)、炭素繊維の比重F(g/cm)から算出される。)
D=(4×E/(3.14×F))0.5×10 (2)
It is composed of a carbon fiber having a fiber length of more than 10 mm and not more than 100 mm and a single fiber fineness of 1.0 to 2.4 dtex and a thermoplastic resin. The carbon fibers are substantially two-dimensionally randomly oriented, and the carbon fibers are represented by (formula 1 The composite material characterized in that the carbon fiber bundle (A) composed of the number of critical single yarns or more calculated in (1) is greater than 0 Vol% and less than 30 Vol%.
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the carbon fiber. D (μm) is the single fiber fineness E (dtex) and the specific gravity F (g / cm 3 ) of the carbon fiber using the formula (2). Calculated from
D = (4 × E / (3.14 × F)) 0.5 × 10 (2)
前記炭素繊維に含まれる単繊維の繊維軸に垂直な断面の形状が真円度0.70以上0.90以下である、請求項1に記載の複合材料。   The composite material according to claim 1, wherein a shape of a cross section perpendicular to a fiber axis of a single fiber contained in the carbon fiber has a roundness of 0.70 or more and 0.90 or less. 繊維長10mm超100mm以下で単繊維繊度1.0〜2.4dtexの炭素繊維束を開繊して、炭素繊維が(式1)で計算される臨界単糸数以上で構成される炭素繊維束(A)を繊維全量に対する割合が0Vol%超30Vol%未満として、該炭素繊維を実質的に二次元ランダムに配向して、シート状にして、該シートに熱可塑性樹脂フィルムを積層して、加熱しながら圧縮成形することを特徴とする複合材料の製造方法。   A carbon fiber bundle having a fiber length of more than 10 mm and not more than 100 mm and having a single fiber fineness of 1.0 to 2.4 dtex is opened and the carbon fiber is composed of the number of critical single yarns calculated by (Equation 1) ( The ratio of A) to the total amount of fibers is more than 0 vol% and less than 30 vol%, the carbon fibers are oriented substantially two-dimensionally randomly to form a sheet, and a thermoplastic resin film is laminated on the sheet and heated. A method for producing a composite material, characterized in that compression molding is performed. 前記炭素繊維に含まれる単繊維の繊維軸に垂直な断面の形状が真円度0.70以上0.90以下である、請求項3に記載の複合材料の製造方法。   The manufacturing method of the composite material of Claim 3 whose cross-sectional shape perpendicular | vertical to the fiber axis of the single fiber contained in the said carbon fiber is 0.70 or more and 0.90 or less. 繊維長10mm超100mm以下で単繊維繊度1.0〜2.4dtexの炭素繊維束を開繊して、炭素繊維が(式1)で計算される臨界単糸数以上で構成される炭素繊維束(A)を繊維全量に対する割合が0Vol%超30Vol%未満として、該炭素繊維を実質的に二次元ランダムに配向して、シート状にして、該シートに溶融した熱可塑性樹脂を供給することを特徴とする複合材料の製造方法。   A carbon fiber bundle having a fiber length of more than 10 mm and not more than 100 mm and having a single fiber fineness of 1.0 to 2.4 dtex is opened and the carbon fiber is composed of the number of critical single yarns calculated by (Equation 1) ( The ratio of A) to the total amount of fibers is more than 0 vol% and less than 30 vol%, and the carbon fibers are oriented substantially two-dimensionally randomly to form a sheet, and a molten thermoplastic resin is supplied to the sheet. A method for producing a composite material. 前記炭素繊維に含まれる単繊維の繊維軸に垂直な断面の形状が真円度0.70以上0.90以下である、請求項5に記載の複合材料の製造方法。   The method for producing a composite material according to claim 5, wherein a shape of a cross section perpendicular to a fiber axis of a single fiber contained in the carbon fiber has a roundness of 0.70 or more and 0.90 or less.
JP2012073111A 2012-03-28 2012-03-28 Carbon fiber composite material and method for manufacturing the same Pending JP2013202891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073111A JP2013202891A (en) 2012-03-28 2012-03-28 Carbon fiber composite material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073111A JP2013202891A (en) 2012-03-28 2012-03-28 Carbon fiber composite material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013202891A true JP2013202891A (en) 2013-10-07

Family

ID=49522533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073111A Pending JP2013202891A (en) 2012-03-28 2012-03-28 Carbon fiber composite material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013202891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183248A (en) * 2015-03-26 2016-10-20 東レ株式会社 Sheet material, integrated molding and method for producing integrated molding
JP2019065248A (en) * 2017-10-05 2019-04-25 住友ベークライト株式会社 Molding material and molded body
CN110549711A (en) * 2018-05-30 2019-12-10 永虹先进材料股份有限公司 Long-fiber sheet molding compound and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183248A (en) * 2015-03-26 2016-10-20 東レ株式会社 Sheet material, integrated molding and method for producing integrated molding
JP2019065248A (en) * 2017-10-05 2019-04-25 住友ベークライト株式会社 Molding material and molded body
CN110549711A (en) * 2018-05-30 2019-12-10 永虹先进材料股份有限公司 Long-fiber sheet molding compound and manufacturing method thereof
JP2019209677A (en) * 2018-05-30 2019-12-12 永虹先進材料股▲ふん▼有限公司 Long fiber SMC and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5627803B2 (en) Random mats and fiber reinforced composites
US10322559B2 (en) Shaped product having standing plane, and method for manufacturing the same
JP5576147B2 (en) Carbon fiber composite material
JP6075094B2 (en) Method for producing molded product having rib structure
JP5436700B2 (en) Random mats and fiber reinforced composite materials
KR102320480B1 (en) Carbon fiber reinforced molding material and molded body
JP2011178890A (en) Carbon fiber composite material
WO2014021315A1 (en) Random mat, and compact of fibre-reinforced composite material
WO2013147257A1 (en) Carbon fibre thermoplastic resin prepreg, carbon fibre composite material and manufacturing method
KR102044261B1 (en) Random mat and molding of fiber-reinforced composite material
US9193840B2 (en) Carbon fiber composite material
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP5851767B2 (en) Fiber reinforced substrate
WO2014021316A1 (en) Random mat, and compact of fibre-reinforced composite material
JP2011241338A (en) Carbon fiber composite material
JP2014210991A (en) Reinforcing fiber mat and method for producing reinforcing fiber mat
JP5812439B2 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP2013202891A (en) Carbon fiber composite material and method for manufacturing the same
JP2013221040A (en) Chopped strand prepreg, fiber reinforced thermoplastic resin sheet, molded plate using the sheet, and method for manufacturing fiber reinforced thermoplastic resin sheet
JP2012158846A (en) Random mat having superior design
JP2013203835A (en) Carbon fiber-coposite material, and method for producing the same
JP5749572B2 (en) Method for producing molded body maintaining isotropic property
JP2013049751A (en) Fiber reinforcement substrate
KR20210023799A (en) Laminate
JP2013203836A (en) Carbon fiber composite molded article, carbon fiber sandwich material, and automotive floor pan containing the carbon fiber composite molded article