JP6785545B2 - Graphite crucible for manufacturing silicon carbide single crystal - Google Patents

Graphite crucible for manufacturing silicon carbide single crystal Download PDF

Info

Publication number
JP6785545B2
JP6785545B2 JP2015193110A JP2015193110A JP6785545B2 JP 6785545 B2 JP6785545 B2 JP 6785545B2 JP 2015193110 A JP2015193110 A JP 2015193110A JP 2015193110 A JP2015193110 A JP 2015193110A JP 6785545 B2 JP6785545 B2 JP 6785545B2
Authority
JP
Japan
Prior art keywords
raw material
crucible
sic
silicon carbide
graphite crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015193110A
Other languages
Japanese (ja)
Other versions
JP2017065968A (en
Inventor
昌史 牛尾
昌史 牛尾
藤本 辰雄
辰雄 藤本
孝幸 矢野
孝幸 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015193110A priority Critical patent/JP6785545B2/en
Publication of JP2017065968A publication Critical patent/JP2017065968A/en
Application granted granted Critical
Publication of JP6785545B2 publication Critical patent/JP6785545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、昇華再結晶法による炭化珪素単結晶製造用の黒鉛坩堝に関するものである。 The present invention relates to a graphite crucible for producing a silicon carbide single crystal by a sublimation recrystallization method.

炭化珪素(以下、「SiC」と表記することがある。)は、機械的強度に優れ、放射線に強い等の物理的、化学的な安定性から耐環境性半導体材料として注目されている。また、絶縁破壊電界強度、耐熱性、熱伝導性においてシリコン(SiC)を凌駕する物性を有しており、近年、高周波高耐圧電子デバイス用途としてSiC単結晶ウェハの需要が高まっている。しかし、その優れた物理的、化学的な安定性に起因して、SiC単結晶の製造には多くの課題が存在する。 Silicon carbide (hereinafter, may be referred to as "SiC") is attracting attention as an environment-resistant semiconductor material because of its excellent mechanical strength and physical and chemical stability such as resistance to radiation. In addition, it has physical properties that surpass silicon (SiC) in dielectric breakdown electric field strength, heat resistance, and thermal conductivity, and in recent years, demand for SiC single crystal wafers has been increasing for high-frequency and high-voltage electronic device applications. However, due to its excellent physical and chemical stability, there are many problems in producing a SiC single crystal.

現在、市販されているSiC単結晶ウェハを製造するためのSiC単結晶の育成には、主に昇華再結晶法(改良レイリー法)が用いられている。これは、不活性ガスの減圧環境中に蓋付き坩堝(通常、黒鉛製等の耐熱容器)を配置し、坩堝上蓋の内面に種結晶基板となるSiC単結晶基板を設置し、また、坩堝本体下部の原料充填部に原料となるSiC結晶粉末(以下、「SiC原料粉末」ということがある。)を充填し、これら種結晶基板とSiC原料粉末とを坩堝内部で互いに対向させて配置し、SiC原料粉末と種結晶基板との間に種結晶基板側がやや低温となるような温度勾配を形成させて2000〜2400℃に加熱し、SiC原料粉末側で生成した原料SiC結晶粉末からの昇華ガスを種結晶基板へと拡散させ、また、輸送させ、種結晶基板の表面で再結晶化させてSiC結晶を成長させる方法である。 Currently, a sublimation recrystallization method (improved Rayleigh method) is mainly used for growing a SiC single crystal for producing a commercially available SiC single crystal wafer. In this method, a crucible with a lid (usually a heat-resistant container made of graphite or the like) is placed in a reduced pressure environment of an inert gas, a SiC single crystal substrate serving as a seed crystal substrate is installed on the inner surface of the upper lid of the crucible, and the crucible body The lower raw material filling portion is filled with SiC crystal powder as a raw material (hereinafter, may be referred to as "SiC raw material powder"), and these seed crystal substrates and the SiC raw material powder are arranged so as to face each other inside the crucible. A temperature gradient is formed between the SiC raw material powder and the seed crystal substrate so that the seed crystal substrate side becomes slightly low, and the temperature is heated to 2000 to 2400 ° C., and the sublimation gas from the raw material SiC crystal powder produced on the SiC raw material powder side. Is diffused onto the seed crystal substrate, transported, and recrystallized on the surface of the seed crystal substrate to grow SiC crystals.

他のSiC単結晶の育成方法としては、SiC融液に炭素(C)を溶解させた溶液中で低温側に配置した種結晶基板上に成長層を育成する溶液成長法、SiC及びCの化合物ガスを高温で種結晶基板の表面に吹き付けて成長層を得る高温化学気相堆積法(高温CVD法)等が提案され、研究開発が進められているが、これらの方法では安定して厚い成長層を得ることが難しく、現状では昇華再結晶法が最も量産性に優れる方法であるとされている。しかしながら、この昇華再結晶法においても、得られるSiC単結晶の重量が坩堝本体下部の原料充填部内に予め充填されるSiC原料粉末の重量によって制限され、1つの単結晶インゴットから切断加工できるウェハ枚数を増やすには、原料充填部内へのSiC原料粉末の充填量を増やすと共に、坩堝系外へ漏出する昇華ガスの漏出量を可能な限り低減し、SiC原料粉末から発生した昇華ガスを種結晶基板上で効率的に再結晶化させることが重要である。 Other methods for growing a SiC single crystal include a solution growth method in which a growth layer is grown on a seed crystal substrate arranged on a low temperature side in a solution in which carbon (C) is dissolved in a SiC melt, and a compound of SiC and C. High-temperature chemical vapor deposition method (high-temperature CVD method), which obtains a growth layer by spraying gas onto the surface of the seed crystal substrate at high temperature, has been proposed and research and development are underway, but these methods provide stable and thick growth. It is difficult to obtain a layer, and the sublimation recrystallization method is currently considered to be the most mass-producible method. However, even in this sublimation recrystallization method, the weight of the obtained SiC single crystal is limited by the weight of the SiC raw material powder pre-filled in the raw material filling portion at the bottom of the crucible body, and the number of wafers that can be cut from one single crystal ingot. In order to increase the amount of the SiC raw material powder, the amount of the SiC raw material powder filled into the raw material filling part is increased, the amount of the sublimation gas leaking out of the crucible system is reduced as much as possible, and the sublimation gas generated from the SiC raw material powder is used as a seed crystal substrate. It is important to recrystallize efficiently above.

特開2014-040,372号公報Japanese Unexamined Patent Publication No. 2014-040,372 特開2014-111,546号公報Japanese Unexamined Patent Publication No. 2014-111,546 特許第4,230,035号公報Japanese Patent No. 4,230,035

ECS Journal of Solid State Science and Technology, 2 (8) N3018-N3021 (2013).ECS Journal of Solid State Science and Technology, 2 (8) N3018-N3021 (2013). Journal of Crystal Growth 258 (2003)261-267.Journal of Crystal Growth 258 (2003) 261-267. Material Science and Engineering B61-62 (1999) 107-112.Material Science and Engineering B61-62 (1999) 107-112.

しかしながら、通常の昇華再結晶法では、充填したSiC原料粉末の重量に対して、得られる成長結晶の重量が少ないという問題がある。これは、結晶成長中に昇華ガスが少なからず坩堝外へ漏出してしまうということに加え、昇華再結晶法における成長原理として、SiC原料粉末から発生する昇華ガスはSiとCの1:1の組成比で構成されるのではなく、一貫してSi過剰のガス組成を有することに起因すると考えられる。SiCから発生する昇華ガスは、主としてSi、SiC、SiCから構成されることが知られており、温度の上昇に伴って昇華ガス全体の組成はそのC分圧比を増すものの、例えば非特許文献1に示されているように、2200℃においても昇華ガス中のC分圧比は30%程度に止まっている。また、この昇華ガスがSi過剰の組成比で構成されることについては、昇華後にSiC原料粉末がCからなる残渣として残存することからも明らかである。昇華ガスがSi過剰な組成比を有することは、昇華ガス全てが結晶成長に寄与するのではなく、昇華ガス中に含まれるCの量に依存してSiC成長層が形成されることを意味する。つまり、種結晶基板の表面に到達した昇華ガスは、再結晶化に際し、最大でも昇華ガス中に含まれるCの量だけSiC単結晶を形成することができ、過剰分のSiは相手となるCが存在せず成長に寄与できない。従って、単純にSiC原料粉末から発生した昇華ガスのみでSiC単結晶を成長させる場合、計算上得られる成長層の総重量は予め充填しておいたSiC原料粉末の重量の30%程度に止まってしまい、昇華再結晶法の量産性を低下させる大きな要因となっている。 However, the usual sublimation recrystallization method has a problem that the weight of the obtained grown crystal is smaller than the weight of the filled SiC raw material powder. This is because the sublimation gas leaks out of the crucible during crystal growth, and as a growth principle in the sublimation recrystallization method, the sublimation gas generated from the SiC raw material powder is 1: 1 of Si and C. It is considered that it is not composed of the composition ratio but consistently has a gas composition of excess Si. Sublimation gas generated from SiC mainly Si, Si 2 C, are known to be composed of SiC 2, although the composition of the whole sublimation gas with increasing temperature increases the C partial pressure ratio, for example, non As shown in Patent Document 1, the C partial pressure ratio in the sublimation gas remains at about 30% even at 2200 ° C. Further, it is clear that this sublimation gas is composed of an excess composition ratio of Si from the fact that the SiC raw material powder remains as a residue composed of C after sublimation. The fact that the sublimation gas has an excess composition ratio of Si means that not all the sublimation gas contributes to crystal growth, but the SiC growth layer is formed depending on the amount of C contained in the sublimation gas. .. That is, the sublimation gas that has reached the surface of the seed crystal substrate can form a SiC single crystal as much as the amount of C contained in the sublimation gas at the time of recrystallization, and the excess Si is the partner C. Does not exist and cannot contribute to growth. Therefore, when a SiC single crystal is simply grown using only the sublimation gas generated from the SiC raw material powder, the total weight of the growth layer obtained by calculation is only about 30% of the weight of the previously filled SiC raw material powder. This is a major factor in reducing the mass productivity of the sublimation recrystallization method.

このような昇華再結晶法の量産性の課題に対し、特許文献1では、前記原料充填部の容器構造を二重壁構造とし、内側に貫通孔を有する分離壁を設け、加熱開始後一定時間の後に分離壁を動かすことにより、壁面に接していた原料を容器内に露出させ、これを新たな昇華ガス供給面として利用することで、昇華ガスを供給し続けることができるとする技術を開示している。この方法によれば、予め導入しておいたSiC原料粉末をより効率良く昇華ガスとして容器内の成長空間領域へ供給できる。しかしながら、2000℃を超える高温環境下で、しかも、SiC原料粉末からの昇華ガスに晒されながら、坩堝容器内で機械的な駆動制御を行うことは、部材同士の固着や消耗等により、十分な再現性を実現することが難しくて現実的ではない。更に、この方法においても、昇華ガスのうち、成長に寄与可能な割合が低いという根本的な問題は前記と同様である。 In response to such a problem of mass productivity of the sublimation recrystallization method, in Patent Document 1, the container structure of the raw material filling portion has a double wall structure, a separation wall having a through hole is provided inside, and a certain period of time after the start of heating Disclosed a technology that allows the sublimation gas to be continuously supplied by exposing the raw material that was in contact with the wall surface in the container by moving the separation wall after the above and using this as a new sublimation gas supply surface. doing. According to this method, the previously introduced SiC raw material powder can be more efficiently supplied as a sublimation gas to the growth space region in the container. However, it is sufficient to perform mechanical drive control in the crucible container in a high temperature environment exceeding 2000 ° C. and while being exposed to sublimation gas from the SiC raw material powder due to sticking and wear of the members. Reproducibility is difficult and impractical. Further, also in this method, the fundamental problem that the ratio of the sublimation gas that can contribute to growth is low is the same as described above.

一方、特許文献2では、昇華再結晶法とは異なり、原理的にはSiC原料からの昇華ガスを外部から際限なく継続的に供給可能な高温CVD法において、長時間の安定した結晶成長を実現するための技術を開示している。この方法は、高温CVD法の量産性を阻害する要因が、長時間に亘る原料の昇華ガス供給によってガス排出口で発生する詰まりの現象に起因しているとし、未反応ガスの排出経路にパージガスを拡散導入可能な構造を設け、これによってガス排出口の詰まりを効果的に抑止し、長時間の結晶成長を可能にするとされている。しかしながら、この方法においても、容器内の構造や温度分布に対して、キャリアガス、原料ガス、及び不活性ガスの間の供給バランスが崩れると、ガス排出口だけでなく、意図しないガス滞留部に多くの結晶が付着する等の問題が起こり、長時間安定的に結晶成長を維持するための制御が容易ではないという問題がある。 On the other hand, in Patent Document 2, unlike the sublimation recrystallization method, in principle, stable crystal growth for a long time is realized in a high-temperature CVD method in which sublimation gas from a SiC raw material can be continuously supplied from the outside endlessly. The technology for doing so is disclosed. According to this method, the factor that hinders the mass productivity of the high-temperature CVD method is due to the phenomenon of clogging that occurs at the gas outlet due to the supply of sublimation gas of the raw material for a long time, and purge gas is used in the discharge path of unreacted gas. It is said that a structure that allows diffusion and introduction of gas is provided, which effectively suppresses clogging of the gas outlet and enables long-term crystal growth. However, even in this method, if the supply balance between the carrier gas, the raw material gas, and the inert gas is lost with respect to the structure and temperature distribution in the container, not only the gas outlet but also the unintended gas retention portion is formed. Problems such as adhesion of many crystals occur, and there is a problem that control for maintaining stable crystal growth for a long time is not easy.

また、特許文献3においては、結晶として特定の研削法で加工した炭化珪素結晶を用い、原料充填部には原料として珪素を充填し、また、この珪素原料と種結晶基板との間に炭素材(炭素粒13、貫通孔14、及び炭素板15)を配置し、この炭素材中を通過する原料充填部からの珪素ガスと炭素材中の炭素とを反応させ、SiC単結晶の結晶成長に寄与するガスを得て結晶成長を行う珪素ガス炭素反応法が開示されている。しかしながら、この方法は、黒鉛坩堝の原料充填部に原料炭化珪素を充填し、この原料炭化珪素を昇華させ、生成した昇華ガスを種結晶基板の表面で再結晶化させる昇華再結晶法とは原理的に異なる方法である。 Further, in Patent Document 3, a silicon carbide crystal processed by a specific grinding method is used as the crystal, silicon is filled in the raw material filling portion as a raw material, and a carbon material is used between the silicon raw material and the seed crystal substrate. (Carbon grains 13, through holes 14, and carbon plate 15) are arranged, and silicon gas from the raw material filling portion passing through the carbon material is reacted with carbon in the carbon material to grow a SiC single crystal. A silicon gas carbon reaction method in which a contributing gas is obtained to grow a crystal is disclosed. However, this method is based on the principle of the sublimation recrystallization method in which the raw material filling portion of the graphite crucible is filled with the raw material silicon carbide, the raw material silicon carbide is sublimated, and the generated sublimation gas is recrystallized on the surface of the seed crystal substrate. It is a different method.

ところで、従来において、昇華再結晶法に用いられる黒鉛坩堝については、SiCから発生する原料昇華ガスとの反応や2000℃を超える高温への加熱により、黒鉛坩堝自体も昇華・消耗することが知られており、また、容器としての高い堅牢性が求められることから、その表面に対して、可能な限り緻密でかつ平坦になるように精密な仕上げ加工が行われてきた。しかしながら、非特許文献2には、昇華再結晶法において、黒鉛製坩堝内部の原料充填部に同位体元素13Cを導入したSiC原料粉末を充填して結晶成長を行った結果、13Cが成長結晶に含まれる割合は原料充填部内に充填したSiC原料粉末における13Cが占めた割合より低く、更に実験後の坩堝の内壁面においても13Cが検出されていることが示されている。 By the way, conventionally, regarding the graphite crucible used in the sublimation recrystallization method, it is known that the graphite crucible itself is sublimated and consumed by the reaction with the raw material sublimation gas generated from SiC and the heating to a high temperature exceeding 2000 ° C. In addition, since high robustness as a container is required, the surface thereof has been subjected to precision finishing so as to be as dense and flat as possible. However, Non-Patent Document 2, sublimation in recrystallization method, as a result of crystal growth by filling a SiC raw material powder was introduced isotope 13 C in the raw material filling part of the internal graphite crucible, 13 C growth It is shown that the ratio contained in the crystals is lower than the ratio occupied by 13 C in the SiC raw material powder filled in the raw material filling part, and 13 C is also detected on the inner wall surface of the crucible after the experiment.

そこで、本発明者らは、この非特許文献2における実験事実について検討し、この実験事実は“結晶成長に寄与する炭素源は単にSiC原料粉末からのみ供給されるのではなく、黒鉛製坩堝の内壁面からも供給され、成長結晶に取り込まれていること”を示しているのではないかと考え、黒鉛製坩堝の内壁面を積極的に昇華ガスと反応させ、これを結晶成長のためのC供給源として利用し、成長結晶へ取り込むことができれば、これまで予め坩堝内に充填されたSiC原料粉末からのC供給に限られ、制限されていた結晶成長量を大きく増加させることができるのではないかと考えた。 Therefore, the present inventors examined the experimental facts in this Non-Patent Document 2, and the experimental facts were that "the carbon source that contributes to crystal growth is not only supplied from the SiC raw material powder, but the graphite crucible. Considering that it may indicate that it is also supplied from the inner wall surface and incorporated into the growth crystal, the inner wall surface of the graphite crucible is positively reacted with the sublimation gas, and this is C for crystal growth. If it can be used as a supply source and incorporated into growing crystals, it may be possible to greatly increase the amount of crystal growth that has been limited, which has been limited to the supply of C from the SiC raw material powder previously filled in the crucible. I wondered if there was one.

そして、本発明者らは、このような考えの下で、如何にして黒鉛製坩堝の内壁面を昇華ガスと効率良く反応させ、これによってこの黒鉛製坩堝の内壁面を結晶成長のためのC供給源として利用するかについて検討した結果、黒鉛製坩堝の内壁面に粗面部を形成して昇華ガスとの接触面積を大きくすることにより、黒鉛製坩堝の原料充填部に充填するSiC原料粉末の量を増加させなくても、この黒鉛製坩堝の内壁面を結晶成長のためのC供給源として利用し、結晶成長量を増加させることができることを見出し、本発明を完成した。 Then, based on this idea, the present inventors efficiently react the inner wall surface of the graphite crucible with the sublimation gas, thereby making the inner wall surface of the graphite crucible C for crystal growth. As a result of examining whether to use it as a supply source, the SiC raw material powder to be filled in the raw material filling part of the graphite crucible by forming a rough surface portion on the inner wall surface of the graphite crucible to increase the contact area with the sublimation gas. We have found that the inner wall surface of this graphite crucible can be used as a C supply source for crystal growth without increasing the amount, and the amount of crystal growth can be increased, and the present invention has been completed.

従って、本発明は、昇華再結晶法において、坩堝内に充填されたSiC原料粉末を効率的に利用してSiC単結晶を成長させることができ、より量産性に優れたSiC単結晶製造用の黒鉛坩堝を提供することを目的とする。 Therefore, the present invention can grow a SiC single crystal by efficiently utilizing the SiC raw material powder filled in the crucible in the sublimation recrystallization method, and is used for producing a SiC single crystal having more excellent mass productivity. It is an object of the present invention to provide a graphite crucible.

すなわち、本発明の要旨は以下の通りである。
(1) 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有し、前記坩堝本体下部の原料充填部に原料炭化珪素を充填すると共に、前記坩堝上蓋の内面に炭化珪素単結晶からなる種結晶基板を設置し、前記原料炭化珪素を加熱して昇華させ、発生した昇華ガスを前記種結晶基板の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝であって、前記坩堝本体の内壁面に粗面部を有することを特徴とする炭化珪素単結晶製造用の黒鉛坩堝。
(2) 前記粗面部が、坩堝本体の内壁面において坩堝本体下部の原料充填部より上方に位置することを特徴とする前記(1)に記載の炭化珪素
(3) 前記粗面部は、その表面粗度Raが1μm以上であることを特徴とする前記(1)又は(2)に記載の炭化珪素単結晶製造用の黒鉛坩堝。
That is, the gist of the present invention is as follows.
(1) The crucible body made of graphite formed in the shape of an upper end opening cylinder and the crucible upper lid that closes the upper end opening of the crucible body are provided, and the raw material filling portion at the lower part of the crucible body is filled with raw material silicon carbide. , A seed crystal substrate made of a silicon carbide single crystal is placed on the inner surface of the crucible upper lid, the raw material silicon carbide is heated and sublimated, and the generated sublimation gas is recrystallized on the surface of the seed crystal substrate. A graphite crucible for producing a silicon carbide single crystal by the method, wherein the inner wall surface of the crucible body has a rough surface portion, and the graphite crucible for producing a silicon carbide single crystal.
(2) The silicon carbide according to (1) above, wherein the rough surface portion is located on the inner wall surface of the crucible main body above the raw material filling portion at the lower part of the crucible main body.
(3) The graphite crucible for producing a silicon carbide single crystal according to (1) or (2) above, wherein the rough surface portion has a surface roughness Ra of 1 μm or more.

本発明のSiC単結晶製造用の黒鉛坩堝によれば、昇華再結晶法において、坩堝内に充填されたSiC原料粉末を効率的に利用してSiC単結晶を成長させることができ、坩堝内に充填されるSiC原料粉末の充填量を必要以上に増加させることなく、比較的大きな炭化珪素単結晶を育成することが可能となり、量産性に優れた昇華再結晶法を実現することができる。 According to the graphite crucible for producing a SiC single crystal of the present invention, in the sublimation recrystallization method, the SiC raw material powder filled in the crucible can be efficiently used to grow the SiC single crystal, and the SiC single crystal can be grown in the crucible. It is possible to grow a relatively large silicon carbide single crystal without unnecessarily increasing the filling amount of the SiC raw material powder to be filled, and it is possible to realize a sublimation recrystallization method having excellent mass productivity.

図1は、昇華再結晶法により炭化珪素単結晶を育成する際の育成装置を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining a growing apparatus for growing a silicon carbide single crystal by a sublimation recrystallization method. 図2は、本発明の実施の一例に係る黒鉛坩堝の構造を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the structure of a graphite crucible according to an example of carrying out the present invention.

以下、本発明の実施の形態に係る具体的な内容について述べる。
図1は、昇華再結晶法により炭化珪素単結晶を育成する際に用いられる従来の育成装置の構成を示す説明図であり、この育成装置に組み込まれた黒鉛坩堝1は、上端開口筒状に形成された黒鉛製の坩堝本体2とこの坩堝本体2の上端開口部を閉塞する黒鉛製の坩堝上蓋3とを有し、前記坩堝本体2下部の原料充填部には原料の炭化珪素粉末(SiC原料粉末)4が充填されていると共に、前記坩堝上蓋3の内面には炭化珪素単結晶からなる種結晶基板5が固着されている。
Hereinafter, specific contents according to the embodiment of the present invention will be described.
FIG. 1 is an explanatory diagram showing a configuration of a conventional growing device used when growing a silicon carbide single crystal by a sublimation recrystallization method, and the graphite crucible 1 incorporated in this growing device has an upper end opening tube shape. It has a formed graphite crucible body 2 and a graphite crucible top lid 3 that closes the upper end opening of the crucible body 2, and a raw material silicon carbide powder (SiC) is used in the raw material filling portion below the crucible body 2. The raw material powder) 4 is filled, and a seed crystal substrate 5 made of a silicon carbide single crystal is fixed to the inner surface of the crucible upper lid 3.

この図1に示す育成装置において、前記黒鉛坩堝1の外側には、黒鉛坩堝1の全体を取り囲むように断熱材6が配設されており、これら黒鉛坩堝1及び断熱材6は支持棒7に支持されて二重石英管8の内部へ導入される。そして、この二重石英管8の外側にはワークコイル9が巻付け状態に取り付けられており、このワークコイル9を流れる高周波電流により黒鉛坩堝1が誘導加熱され、この誘導加熱によってSiC原料粉末が所定の温度に加熱されて昇華し、昇華ガスとなり、坩堝本体2下部の原料充填部付近の温度よりやや低温に維持された種結晶基板5に向けて移動し、この種結晶基板5の表面でSiCが再結晶化し、結晶成長が進行する。 In the growing apparatus shown in FIG. 1, a heat insulating material 6 is arranged on the outside of the graphite crucible 1 so as to surround the entire graphite crucible 1, and the graphite crucible 1 and the heat insulating material 6 are attached to a support rod 7. It is supported and introduced into the double quartz tube 8. Then, a work coil 9 is attached to the outside of the double quartz tube 8 in a wound state, and the graphite crucible 1 is induced and heated by the high frequency current flowing through the work coil 9, and the SiC raw material powder is generated by this induction heating. It is heated to a predetermined temperature and sublimates to become a sublimation gas, which moves toward the seed crystal substrate 5 maintained at a temperature slightly lower than the temperature near the raw material filling portion in the lower part of the crucible body 2 and on the surface of the seed crystal substrate 5. SiC is recrystallized and crystal growth proceeds.

本発明においては、図2に示すように、図1に示す黒鉛坩堝1において、坩堝本体2下部の原料充填部に充填したSiC原料粉末4の表面から上の種結晶基板5に至るまでの坩堝本体2の周壁部内面に、粗面加工により形成された粗面部2aが設けられており、この粗面部2aが形成されることにより、SiC単結晶の育成開始前において黒鉛坩堝1内の空間部に露出する坩堝本体2の周壁部内面の表面積が大きくなり、昇華ガスとの接触面積が大きくなって反応性が高められている。なお、この図2に示す例では坩堝本体2下部の原料充填部より上の部分でその周壁部内面の全面に粗面部2aが設けられているが、この粗面部2aについては、坩堝本体2の周壁部及び底壁部を含めた坩堝本体2の内壁面全面に設けられていてもよく、また、底壁部を除く周壁部の内面全面に設けられていてもよく、更に、周壁部の内面に部分的に設けられていてもよく、更にはその形状やパターンについても昇華ガスとの接触面積が増加して反応性が高くなれば、特に制限されるものではない。 In the present invention, as shown in FIG. 2, in the graphite crucible 1 shown in FIG. 1, the crucible from the surface of the SiC raw material powder 4 filled in the raw material filling portion at the lower part of the crucible body 2 to the seed crystal substrate 5 above. A rough surface portion 2a formed by rough surface processing is provided on the inner surface of the peripheral wall portion of the main body 2, and by forming this rough surface portion 2a, a space portion in the graphite crucible 1 is provided before the start of growth of the SiC single crystal. The surface area of the inner surface of the peripheral wall portion of the crucible body 2 exposed to graphite is increased, and the contact area with the sublimation gas is increased to enhance the reactivity. In the example shown in FIG. 2, a rough surface portion 2a is provided on the entire inner surface of the peripheral wall portion above the raw material filling portion at the lower part of the crucible main body 2, but the rough surface portion 2a is of the crucible main body 2. It may be provided on the entire inner wall surface of the crucible main body 2 including the peripheral wall portion and the bottom wall portion, may be provided on the entire inner surface of the peripheral wall portion excluding the bottom wall portion, and further, the inner surface of the peripheral wall portion may be provided. The crucible may be partially provided, and the shape and pattern thereof are not particularly limited as long as the contact area with the sublimation gas increases and the reactivity becomes high.

そして、この粗面部2aについては、その表面粗度Ra(JIS B0601:2013)が1μm以上であり、好ましくは2μm以上50μm以下、より好ましくは5μm以上50μm以下であるのがよく、昇華ガスによるエッチング反応が有為的に促進され、SiC単結晶の育成時に黒鉛坩堝1における坩堝本体2の内壁面を炭素源として効果的に利用することができる。
なお、黒鉛坩堝には、高周波誘導電流が黒鉛坩堝の内部に浸透できず、発熱が伝導体である黒鉛坩堝の表面(外壁面近傍)で起きるという、いわゆる表皮効果によって、主に坩堝外周部を中心として加熱される特徴があることから、坩堝内壁に上記の如き粗面部が形成されたとしても、この誘導電流が有意な擾乱を受けることは無く、従って加熱される黒鉛坩堝の加熱状態についても有意な影響を受けることがない。
The surface roughness Ra (JIS B0601: 2013) of the rough surface portion 2a is preferably 1 μm or more, preferably 2 μm or more and 50 μm or less, more preferably 5 μm or more and 50 μm or less, and etching with a sublimation gas. The reaction is significantly promoted, and the inner wall surface of the crucible body 2 in the graphite crucible 1 can be effectively used as a carbon source during the growth of the SiC single crystal.
In the graphite crucible, the high-frequency induced current cannot penetrate inside the graphite crucible, and heat is generated on the surface of the graphite crucible (near the outer wall surface), which is a conductor, so that the outer periphery of the crucible is mainly affected. Since it has the characteristic of being heated as the center, even if the rough surface portion as described above is formed on the inner wall of the crucible, this induced current is not significantly disturbed, and therefore the heated state of the graphite crucible to be heated is also changed. Not significantly affected.

ここで、前記黒鉛坩堝1の坩堝本体2の内壁面に所望の表面粗度Raを有する粗面部2aを形成する方法としては、黒鉛の表面に粗面加工を行うことができれば特に制限されるものではなく、例えば、金属製の組ヤスリ及び真鍮製ブラシ等を用いた粗面加工や、通常の研磨・研削加工に用いられる工具等を用いた粗面加工を始めとして、黒鉛坩堝1の加工仕上げとして、坩堝本体2の内壁面を目の粗いサンドペーパー等で研磨する等の簡便な方法を採ることも可能である。 Here, the method of forming the rough surface portion 2a having the desired surface roughness Ra on the inner wall surface of the crucible main body 2 of the graphite crucible 1 is particularly limited as long as the surface of the graphite can be roughened. Instead, for example, rough surface processing using metal sandpaper and brass brushes, rough surface processing using tools used for normal polishing and grinding, etc., and finishing of graphite crucible 1 As a result, it is also possible to adopt a simple method such as polishing the inner wall surface of the crucible body 2 with coarse sandpaper or the like.

以下に、本発明の実施例を述べる。
〔実施例1〕
実施例1においては、昇華再結晶法により炭化珪素単結晶を育成する際に用いられる図1に示す育成装置において、図2に示す構造を有する2インチ口径の黒鉛坩堝を採用し、この際に粗面加工で形成された粗面部の表面粗度Raが1.2μmのものを用いた。前記粗面部を形成する粗面加工は、坩堝本体下部の原料充填部より上の種結晶基板に至るまでの坩堝本体の周壁部内面に対してサンドペーパーでの粗面化を実施し、表面粗度Raの測定は、接触式段差計(Mitutoyo製SURFTEST型番SV-3100)を用い、4μm走査の粗さ測定により行った。
Examples of the present invention will be described below.
[Example 1]
In Example 1, in the growing apparatus shown in FIG. 1 used when growing a silicon carbide single crystal by the sublimation recrystallization method, a 2-inch diameter graphite crucible having the structure shown in FIG. 2 was adopted, and at this time, The surface roughness Ra of the rough surface portion formed by the rough surface processing was 1.2 μm. In the rough surface processing for forming the rough surface portion, the inner surface of the peripheral wall portion of the crucible body up to the seed crystal substrate above the raw material filling portion in the lower part of the crucible body is roughened with sandpaper to roughen the surface. The degree Ra was measured by measuring the roughness of a 4 μm scan using a contact type profilometer (SURFTEST model number SV-3100 manufactured by Mitutoyo).

次に、上記の育成装置を用い、常法に従って昇華再結晶法によるSiC単結晶の育成を行った。この際、二重石英管の内部を真空排気し、原料充填部内のSiC原料粉末を2000℃まで上昇させ、その後にアルゴンガスを流入させて二重石英管内圧力を約1.3kPaに保ち、SiC原料粉末を目標温度の約2400℃まで上昇させて成長を行った。
この実施例1において、原料充填部内に充填したSiC原料粉末に対して得られた成長結晶の歩留り(以下、「結晶成長の歩留り」という。)は、質量割合〔(成長結晶の質量)÷(SiC原料粉末の質量)×100〕で65%であった。
Next, using the above-mentioned growing apparatus, a SiC single crystal was grown by a sublimation recrystallization method according to a conventional method. At this time, the inside of the double quartz tube is evacuated, the SiC raw material powder in the raw material filling part is raised to 2000 ° C., and then argon gas is flowed in to maintain the pressure inside the double quartz tube at about 1.3 kPa, and the SiC is The raw material powder was raised to a target temperature of about 2400 ° C. for growth.
In Example 1, the yield of the grown crystals obtained with respect to the SiC raw material powder filled in the raw material filling portion (hereinafter, referred to as “crystal growth yield”) is the mass ratio [(mass of grown crystals) ÷ ( The mass of the SiC raw material powder) × 100] was 65%.

〔実施例2〕
黒鉛坩堝の坩堝本体内壁面に形成した粗面部の表面粗度Raを3.3μmとしたこと以外は、上記の実施例1と同様にして、昇華再結晶法によるSiC単結晶の結晶成長を行った。この実施例2における結晶成長の歩留りは68%であった。
[Example 2]
Crystal growth of a SiC single crystal by a sublimation recrystallization method was carried out in the same manner as in Example 1 above, except that the surface roughness Ra of the rough surface portion formed on the inner wall surface of the crucible body of the graphite crucible was set to 3.3 μm. It was. The yield of crystal growth in Example 2 was 68%.

〔実施例3〕
黒鉛坩堝の坩堝本体内壁面に形成した粗面部の表面粗度Raを6.0μmとしたこと以外は、上記の実施例1と同様にして、昇華再結晶法によるSiC単結晶の結晶成長を行った。この実施例3における結晶成長の歩留りは71%であった。
なお、この実施例3の昇華再結晶法によるSiC単結晶の結晶成長に際し、上記の粗面部を有する黒鉛坩堝を用いることに加えて、ワークコイルの位置や加熱電流の調整等により系外へのガス漏出を抑制したところ、結晶成長の歩留りは80%にまで達した。
[Example 3]
Crystal growth of a SiC single crystal by a sublimation recrystallization method was carried out in the same manner as in Example 1 above, except that the surface roughness Ra of the rough surface portion formed on the inner wall surface of the crucible body of the graphite crucible was 6.0 μm. It was. The yield of crystal growth in Example 3 was 71%.
In addition, in the crystal growth of the SiC single crystal by the sublimation recrystallization method of Example 3, in addition to using the graphite crucible having the above-mentioned rough surface portion, the position of the work coil and the heating current are adjusted to the outside of the system. When gas leakage was suppressed, the crystal growth yield reached 80%.

〔比較例1〕
実施例1と同寸法の口径(2インチ口径)であって粗面部のない従来の黒鉛坩堝を備えた図1に示す育成装置を用い、実施例1と同様にしてSiC単結晶の結晶成長を行った。この黒鉛坩堝の内壁面は研磨加工が施されていてその表面粗度Raは0.5μm以下であった。
この比較例1においては、結晶成長後の坩堝の内壁面は厚み1mm以下の深さでエッチングされ、消耗が確認されたものの、結晶成長の歩留りは40%に過ぎなかった。
[Comparative Example 1]
Using the growth device shown in FIG. 1 equipped with a conventional graphite crucible having the same size as that of Example 1 (2 inch diameter) and no rough surface portion, the crystal growth of the SiC single crystal was carried out in the same manner as in Example 1. went. The inner wall surface of this graphite crucible was polished and its surface roughness Ra was 0.5 μm or less.
In Comparative Example 1, the inner wall surface of the crucible after crystal growth was etched to a depth of 1 mm or less, and wear was confirmed, but the yield of crystal growth was only 40%.

〔比較例2〕
また、その他の比較例として、坩堝本体の内壁面を昇華ガスとの反応性の低い材料で被覆した場合について調べた。実施例1及び比較例1と同寸法の2インチ口径の黒鉛坩堝を用意し、その坩堝本体の内壁面における実施例1の粗面部に相当する領域に対して、CVD法により昇華ガスと反応性の低いTaC(炭化タンタル)からなる厚さ20μmの被覆層を形成した。このようにして準備された黒鉛坩堝を使い、実施例1及び比較例1と同様の条件でSiC単結晶の結晶成長を行った。
この比較例2においては、結晶成長後の坩堝壁面のエッチング、消耗はほぼ確認されず、結晶成長の歩留りは30%に過ぎなかった。
[Comparative Example 2]
In addition, as another comparative example, the case where the inner wall surface of the crucible body was covered with a material having low reactivity with sublimation gas was investigated. A 2-inch diameter graphite crucible having the same dimensions as that of Example 1 and Comparative Example 1 was prepared, and the region corresponding to the rough surface portion of Example 1 on the inner wall surface of the crucible body was reactive with sublimation gas by the CVD method. A 20 μm-thick coating layer made of low-grade TaC (tantalum carbide) was formed. Using the graphite crucible prepared in this way, crystal growth of a SiC single crystal was carried out under the same conditions as in Example 1 and Comparative Example 1.
In Comparative Example 2, etching and wear of the crucible wall surface after crystal growth were hardly confirmed, and the yield of crystal growth was only 30%.

以上の各実施例及び比較例の結果から、本発明の黒鉛坩堝を用いることにより、同じ原料充填量からより重量の大きなSiC単結晶を育成できることが判明した。従って、本発明の黒鉛坩堝の使用により、原料充填量を増加させるための坩堝構造の大幅な修正をすることなく、飛躍的に量産性を高めることが可能である。なお、口径が大きな場合にも、昇華ガスの流れとして坩堝内壁表面との反応が低減するものではなく、昇華ガスの絶対量が増加して坩堝本体の内壁面のエッチング・消耗も増加することから、本発明の黒鉛坩堝の使用による結晶成長への寄与は、坩堝の口径に関わらず得られるものである。 From the results of each of the above Examples and Comparative Examples, it was found that by using the graphite crucible of the present invention, a heavier SiC single crystal can be grown from the same raw material filling amount. Therefore, by using the graphite crucible of the present invention, it is possible to dramatically improve mass productivity without significantly modifying the crucible structure for increasing the filling amount of raw materials. Even when the diameter is large, the reaction with the surface of the inner wall of the crucible does not decrease as the flow of sublimation gas, and the absolute amount of sublimation gas increases and the etching and consumption of the inner wall surface of the crucible body also increases. The contribution of the use of the graphite crucible of the present invention to crystal growth can be obtained regardless of the diameter of the crucible.

1…黒鉛坩堝、2…坩堝本体、2a…粗面部、3…坩堝上蓋、4…SiC原料粉末、5…種結晶基板、6…断熱材、7…支持棒、8…二重石英管、9…ワークコイル。 1 ... Graphite crucible, 2 ... Crucible body, 2a ... Rough surface, 3 ... Crucible top lid, 4 ... SiC raw material powder, 5 ... Seed crystal substrate, 6 ... Insulation material, 7 ... Support rod, 8 ... Double quartz tube, 9 … Work coil.

Claims (1)

上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有し、前記坩堝本体下部の原料充填部に原料炭化珪素を充填すると共に、前記坩堝上蓋の内面に炭化珪素単結晶からなる種結晶基板を設置し、前記原料炭化珪素を加熱して昇華させ、発生した昇華ガスを前記種結晶基板の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝であって、
前記原料炭化珪素の表面から上の前記種結晶基板に至るまでの前記坩堝本体の周壁部内面に、粗面加工により形成された、表面粗度Raが1μm以上である粗面部を有する
ことを特徴とする炭化珪素単結晶製造用の黒鉛坩堝。
Upper end opening A graphite crucible body formed in a tubular shape and a crucible upper lid that closes the upper end opening of the crucible body are provided, and the raw material filling portion at the lower part of the crucible body is filled with raw material silicon carbide and the crucible is filled with the raw material silicon carbide. A seed crystal substrate made of a silicon carbide single crystal is placed on the inner surface of the upper lid, and the raw material silicon carbide is heated and sublimated, and the generated sublimation gas is recrystallized on the surface of the seed crystal substrate. A graphite crucible for producing silicon single crystals
The inner surface of the peripheral wall portion of the crucible body from the surface of the raw material silicon carbide to the seed crystal substrate above has a rough surface portion having a surface roughness Ra of 1 μm or more formed by rough surface processing. > A graphite crucible for the production of silicon carbide single crystals.
JP2015193110A 2015-09-30 2015-09-30 Graphite crucible for manufacturing silicon carbide single crystal Active JP6785545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193110A JP6785545B2 (en) 2015-09-30 2015-09-30 Graphite crucible for manufacturing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193110A JP6785545B2 (en) 2015-09-30 2015-09-30 Graphite crucible for manufacturing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2017065968A JP2017065968A (en) 2017-04-06
JP6785545B2 true JP6785545B2 (en) 2020-11-18

Family

ID=58493758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193110A Active JP6785545B2 (en) 2015-09-30 2015-09-30 Graphite crucible for manufacturing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP6785545B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004150A (en) * 2019-06-26 2021-01-14 イビデン株式会社 Carbon-based composite material
CN112760712A (en) * 2020-12-24 2021-05-07 湖南三安半导体有限责任公司 Crystal growth device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387680B2 (en) * 2005-05-13 2008-06-17 Cree, Inc. Method and apparatus for the production of silicon carbide crystals
JP5170127B2 (en) * 2010-02-18 2013-03-27 トヨタ自動車株式会社 Method for producing SiC single crystal
KR102163489B1 (en) * 2013-12-05 2020-10-07 재단법인 포항산업과학연구원 Growth device for single crystal

Also Published As

Publication number Publication date
JP2017065968A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US8568531B2 (en) Seed holder for crystal growth reactors
JP2017178646A (en) Graphite crucible for producing silicon carbide single crystal
JP7083732B2 (en) Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment
KR102675266B1 (en) Tantalum carbide-coated carbon material, method for manufacturing thereof, and member for semiconductor single crystal manufacturing apparatus
JP2011018772A (en) Susceptor for silicon carbide single crystal film forming device
JP6785545B2 (en) Graphite crucible for manufacturing silicon carbide single crystal
US20140182516A1 (en) Apparatus for fabricating ingot
US20140158042A1 (en) Apparatus for fabricating ingot
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP6910168B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
KR101897078B1 (en) Apparatus and method for fabricating ingot
KR20130000294A (en) Apparatus for fabricating ingot
KR20130022596A (en) Apparatus for fabricating ingot and method for providing material
JP2016011215A (en) Manufacturing apparatus and manufacturing method for single crystal
KR20130033838A (en) Apparatus for fabricating ingot
JP6058491B2 (en) Vapor growth reactor
JP2013075789A (en) Apparatus and method for producing compound semiconductor single crystal
US20140190413A1 (en) Apparatus for fabricating ingot
KR20130069192A (en) Apparatus for growing of sic single crystal
KR101886271B1 (en) Apparatus for fabricating ingot and method for fabricating ingot
US20230227998A1 (en) Method for adjusting thermal field of silicon carbide single crystal growth
KR20130053743A (en) Apparatus for fabricating ingot and method for temperature control of the same
CN110408997B (en) Heat-insulating shielding member and single crystal manufacturing apparatus provided with same
KR101882317B1 (en) Apparatus and method for fabricating single crystal
WO2020241578A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL INGOT

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350