JP6781673B2 - 熱エネルギー回収装置 - Google Patents

熱エネルギー回収装置 Download PDF

Info

Publication number
JP6781673B2
JP6781673B2 JP2017122012A JP2017122012A JP6781673B2 JP 6781673 B2 JP6781673 B2 JP 6781673B2 JP 2017122012 A JP2017122012 A JP 2017122012A JP 2017122012 A JP2017122012 A JP 2017122012A JP 6781673 B2 JP6781673 B2 JP 6781673B2
Authority
JP
Japan
Prior art keywords
exhaust gas
economizer
thermal energy
energy recovery
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017122012A
Other languages
English (en)
Other versions
JP2019007380A (ja
Inventor
足立 成人
成人 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017122012A priority Critical patent/JP6781673B2/ja
Priority to EP18174498.8A priority patent/EP3418524A1/en
Priority to KR1020180069476A priority patent/KR20190000300A/ko
Priority to CN201810651047.2A priority patent/CN109113820A/zh
Publication of JP2019007380A publication Critical patent/JP2019007380A/ja
Priority to KR1020200014082A priority patent/KR20200016914A/ko
Application granted granted Critical
Publication of JP6781673B2 publication Critical patent/JP6781673B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、熱エネルギー回収装置に関する。
従来、特許文献1に開示されるように、内燃機関から排出される排ガスの熱エネルギーを回収する熱エネルギー回収装置が知られている。この熱エネルギー回収装置は、加熱器、膨張機、発電機、凝縮器、循環ポンプ及びこれらの機器を接続する配管を有しており、この配管を通じて低沸点の作動媒体を各機器に流通させるオーガニックランキンサイクルを構成している。そして、排ガスエコノマイザにおいて排ガスの熱を利用して発生させた蒸気を加熱器に流入させ、加熱器において蒸気により作動媒体を加熱し、蒸発した作動媒体によって発電機のロータを回転させることにより、排ガスの熱エネルギーが電気エネルギーとして回収される。
特開2016−200048号公報
特許文献1では、内燃機関から排出される排ガスは、過給機のタービン及び排ガスエコノマイザを順に通過した後、外部に排出される。ここで、排ガスエコノマイザにおいて排ガスの熱を利用して蒸気を発生させることができる一方、排ガスエコノマイザを通過する際に排ガスの圧力損失が増加してしまう。これにより、排ガスをスムーズに外部へ排出することが困難になる場合がある。
本発明は、上記課題に鑑みてなされたものであり、その目的は、内燃機関から排出される排ガスの熱エネルギーを回収すると共に、その排ガスをスムーズに外部へ排出することを可能とする熱エネルギー回収装置を提供することである。
本発明の一局面に係る熱エネルギー回収装置は、内燃機関から排出される排ガスの熱エネルギーを回収する装置である。この熱エネルギー回収装置は、前記排ガスが流れる排ガス経路と熱媒体が流れる熱媒経路とに接続され、前記排ガス経路から流入する前記排ガスと前記熱媒経路から流入する前記熱媒体との間で熱交換することにより前記熱媒体を加熱するエコノマイザと、前記熱媒経路に接続され、前記エコノマイザで加熱された前記熱媒体の熱エネルギーを回収する熱エネルギー回収部と、前記排ガス経路に配置され、前記排ガス経路を流れる前記排ガスを昇圧させる送風機構と、を備えている。
この熱エネルギー回収装置によれば、エコノマイザにおいて排ガスとの熱交換により熱媒体を加熱し、加熱された熱媒体の熱エネルギーを熱エネルギー回収部において回収することにより、内燃機関から排出される排ガスの熱エネルギーを回収することができる。ここで、内燃機関から排出される排ガスがエコノマイザを通過する際、排ガスの圧力損失が大きくなることがある。これに対して、この熱エネルギー回収装置では、排ガス経路に配置された送風機構によって排ガスを昇圧させることができるため、エコノマイザの通過時に生じる排ガスの圧力損失を補うことができる。したがって、この熱エネルギー回収装置によれば、内燃機関から排出される排ガスの熱エネルギーを回収すると共に、その排ガスをスムーズに外部へ排出することが可能になる。
上記熱エネルギー回収装置において、前記熱エネルギー回収部は、前記エコノマイザで加熱された前記熱媒体と作動媒体との間で熱交換することにより前記作動媒体を加熱する加熱器と、前記加熱器で加熱された蒸気状の前記作動媒体のエネルギーを電気エネルギーとして回収する回収機と、を有していてもよい。この熱エネルギー回収装置は、前記送風機構の駆動エネルギーとして、前記回収機により回収された電気エネルギーが用いられるように構成されていてもよい。
この構成によれば、排ガスの熱エネルギーを利用して発生させた電気エネルギーを送風機構の駆動に用いることにより、別の電源から送風機構に供給する電力をより少なくすることができる。
上記熱エネルギー回収装置において、前記送風機構は、前記排ガスの流れ方向において前記エコノマイザよりも下流側に配置されていてもよい。
この構成によれば、エコノマイザで熱交換に供された後の排ガスが送風機構を通過するため、内燃機関から排出された直後の高温の排ガスが送風機構を通過する場合に比べて、送風機構の熱損傷をより軽減することができる。
上記熱エネルギー回収装置において、前記エコノマイザは、前記排ガスが通過する空間を有するシェルと、前記空間に配置されると共に前記熱媒体が流れるチューブと、を有していてもよい。前記エコノマイザは、前記空間を規定する前記シェルの内面が前記排ガス経路の内面と面一になるように前記排ガス経路に接続されていてもよい。
この構成によれば、エコノマイザと排ガス経路との接続部において排ガスをスムーズに流すことができるため、当該接続部における排ガスの圧力損失を小さくすることができる。
上記熱エネルギー回収装置において、前記送風機構が複数配置されていてもよい。
この構成によれば、複数の送風機構を用いて排ガスを昇圧させることにより、エコノマイザの通過時に生じる圧力損失をより確実に補うことができる。
上記熱エネルギー回収装置において、複数の前記送風機構は、前記排ガス経路の幅方向に並んで配置されていてもよい。
この構成によれば、排ガス経路の幅方向に並ぶ複数の送風機構を用いることにより、排ガス経路の幅が大きい場合でも、排ガスを確実に昇圧させることができる。
上記熱エネルギー回収装置において、前記エコノマイザは、前記排ガスの流れ方向において直列に複数配置されていてもよい。
この構成によれば、複数のエコノマイザを用いることにより、内燃機関から排出される排ガスの熱エネルギーを高効率に回収することができる。しかも、複数のエコノマイザを直列に配置することによりスペース効率の面においても有利である。
上記熱エネルギー回収装置において、前記排ガス経路は、複数の経路に分岐していてもよい。前記エコノマイザは、前記複数の経路の各々に配置されていてもよい。
この構成によれば、複数のエコノマイザを並列に配置することにより、直列配置の場合に比べて排ガスの圧力損失をより小さくすることができる。
上記熱エネルギー回収装置において、前記排ガスは、JIS K 2205に規定されるA重油又はJIS K 2205に規定されるC重油であって硫黄成分が2.0質量%以下になるまで精製されたものを燃料として前記内燃機関で燃焼させたときに排出されるものであってもよい。この熱エネルギー回収装置において、前記エコノマイザから流出する前記排ガスの温度が130℃未満になってもよい。
硫黄成分が2.0質量%以下であるA重油又は硫黄成分が2.0質量%以下になるまで精製されたC重油を燃料とした場合には、内燃機関から排出される排ガスの酸露点が下がる。このため、エコノマイザから流出する排ガスの温度を130℃未満まで低下させても、排ガスが液化して排ガス経路の配管や煙突が腐食する問題を回避することができる。
以上の説明から明らかなように、本発明によれば、内燃機関から排出される排ガスの熱エネルギーを回収すると共に、排ガスをスムーズに外部へ排出することを可能とする熱エネルギー回収装置を提供することができる。
本発明の実施形態1における熱エネルギー回収装置の構成を模式的に示す図である。 図1中の領域IIにおけるエコノマイザと排ガス経路との接続部の構成を詳細に示す図である。 本発明の実施形態2における熱エネルギー回収装置の構成を模式的に示す図である。 実施形態2の変形例における送風機構の配置を示す模式図である。 本発明の実施形態3における熱エネルギー回収装置の構成を模式的に示す図である。 本発明のその他実施形態における熱エネルギー回収装置を説明するための模式図である。
以下、図面に基づいて、本発明の実施形態に係る熱エネルギー回収装置について詳細に説明する。
(実施形態1)
まず、本発明の実施形態1に係る熱エネルギー回収装置1について、図1を主に参照して説明する。図1は、実施形態1に係る熱エネルギー回収装置1の構成を模式的に示している。
熱エネルギー回収装置1は、例えば船舶に搭載されるものであって、船舶推進用の内燃機関から排出される排ガスの熱エネルギーを回収する装置である。図1に示すように、船内には、船舶推進用の内燃機関(ディーゼルエンジン)と、この内燃機関から排出される排ガスが流れる排ガス経路100と、過給機90と、が配置されている。内燃機関から排出される排ガスは、排ガス経路100を通じて船外に排出される。過給機90は、ターボチャージャーであって、排ガスの流れを受けて回転するタービン92と、このタービン92の回転により駆動する圧縮機91と、を有している。圧縮機91は、外部から取り込んだ空気を圧縮して内燃機関へ送る。本実施形態において、内燃機関は、A重油(JIS K 2205 1991)、又は硫黄成分が2.0質量%以下になるまで精製されたC重油(JIS K 2205 1991)を燃料として燃焼させる。なお、本発明では内燃機関の燃料はこれらに限定されず、例えば精製前のC重油や液化天然ガス(LNG;Liquefied Natural Gas)であってもよい。
熱エネルギー回収装置1は、複数のエコノマイザ11(第1エコノマイザ11A,第2エコノマイザ11B,第3エコノマイザ11C)と、複数の熱エネルギー回収部10(第1熱エネルギー回収部10A,第2熱エネルギー回収部10B,第3熱エネルギー回収部10C)と、送風機構30と、を主に備えている。図1に示すように、本実施形態において、複数のエコノマイザ11は、排ガスの流れ方向において(排ガス経路100の上流側から下流側に向かって)直列に配置されている。熱エネルギー回収部10は、エコノマイザ11と同じ数(本実施形態では3つ)だけ設けられている。
船内には、例えば水などの熱媒体が流れる複数の熱媒経路12(第1熱媒経路12A,第2熱媒経路12B,第3熱媒経路12C)が設けられている。図1に示すように、第1熱媒経路12Aは、第1エコノマイザ11Aと第1熱エネルギー回収部10Aとに接続されており、第1エコノマイザ11Aと第1熱エネルギー回収部10Aとの間で熱媒体を循環させる。第1熱媒経路12Aは、第1エコノマイザ11Aから第1熱エネルギー回収部10Aに熱媒体を送る送り側経路12AAと、第1熱エネルギー回収部10Aから第1エコノマイザ11Aに熱媒体を戻す戻し側経路12ABと、を有している。同様に、第2熱媒経路12Bは、第2エコノマイザ11Bと第2熱エネルギー回収部10Bとに接続されており、第2エコノマイザ11Bと第2熱エネルギー回収部10Bとの間で熱媒体を循環させる。また第3熱媒経路12Cは、第3エコノマイザ11Cと第3熱エネルギー回収部10Cとに接続されており、第3エコノマイザ11Cと第3熱エネルギー回収部10Cとの間で熱媒体を循環させる。
エコノマイザ11は、内燃機関から排出される排ガスと水(熱媒体)との間で熱交換することにより水を加熱し、水蒸気又は温水を発生させる熱交換器である。エコノマイザ11は、排ガス経路100と、熱媒経路12と、に接続されている。
図1に示すように、排ガス経路100は、内燃機関から過給機90のタービン92に排ガスを導く第1排ガス経路101と、タービン92から第1エコノマイザ11Aに排ガスを導く第2排ガス経路102と、第1エコノマイザ11Aから第2エコノマイザ11Bに排ガスを導く第3排ガス経路103と、第2エコノマイザ11Bから第3エコノマイザ11Cに排ガスを導く第4排ガス経路104と、第3エコノマイザ11Cから船外へ排ガスを導く第5排ガス経路105と、を有している。
第1エコノマイザ11Aには、その一端側に第2排ガス経路102が接続されると共に、他端側に第3排ガス経路103が接続されている。第2エコノマイザ11Bには、その一端側に第3排ガス経路103が接続されると共に、他端側に第4排ガス経路104が接続されている。第3エコノマイザ11Cには、その一端側に第4排ガス経路104が接続されると共に、他端側に第5排ガス経路105が接続されている。これにより、内燃機関から排出される排ガスを過給機90のタービン92に通過させた後、第1〜第3エコノマイザ11A,11B,11Cを順に通過させ、その後船外へ排出することができる。そして、各エコノマイザ11において、排ガス経路100から流入する排ガスと熱媒経路12から流入する水との間で熱交換を行うことができる。
図2は、図1中の領域IIにおけるエコノマイザ11と排ガス経路100との接続部の構成を示している。なお、図2では、第1エコノマイザ11Aと排ガス経路100との接続部が図示されていないが、第2,第3エコノマイザ11B,11Cと排ガス経路100との接続部と同様に構成されている。
図2に示すように、第3排ガス経路103は、排ガスGが流れる空間103Dが設けられた筒状の部材からなっている。同様に、第4,第5排ガス経路104,105も、排ガスGが流れる空間104D,105Dが設けられた筒状の部材からなっている。
第4排ガス経路104の上端及び下端には、径方向外側に拡がる上端フランジ104C及び下端フランジ104Bがそれぞれ設けられている。同様に、第3排ガス経路103の上端にも径方向外側に拡がる上端フランジ103Cが設けられており、第5排ガス経路105の下端にも径方向外側に広がる下端フランジ105Bが設けられている。なお、第3排ガス経路103の下端にも下端フランジが設けられているが、図2では省略されている。
第2エコノマイザ11Bは、例えばシェル&チューブ式熱交換器であって、排ガスGが通過する空間51Dを有するシェル51と、この空間51Dに配置される蛇行状のチューブ52(伝熱管)と、を有している。シェル51の空間51Dは、上流側の第3排ガス経路103の空間103D、及び下流側の第4排ガス経路104の空間104Dに連通している。チューブ52は、第2熱媒経路12Bから送られる水(熱媒体)が流れるものであり、第2熱媒経路12Bの戻し側経路が接続される熱媒入口52Aと、第2熱媒経路12Bの送り側経路が接続される熱媒出口52Bと、を有する。
第2エコノマイザ11Bによれば、第3排ガス経路103からシェル51の空間51Dに流入する排ガスと、第2熱媒経路12B(戻し側流路)からチューブ52内に流入する水との間で熱交換を行うことができる。そして、排ガスとの熱交換により発生させた水蒸気を、第2熱媒経路12Bの送り側流路を通じて第2熱エネルギー回収部10Bに送ることができる。
第3エコノマイザ11Cも、第2エコノマイザ11Bと同様のシェル&チューブ式熱交換器からなっており、排ガスGが通過する空間41Dを有するシェル41と、この空間41Dに配置されると共に第3熱媒経路12Cから流入する水(熱媒体)が流れるチューブ42と、を有している。また第1エコノマイザ11Aも、第2,第3エコノマイザ11B,11Cと同様の構成を有するシェル&チューブ式熱交換器からなっている。
第2エコノマイザ11Bのシェル51の上端及び下端には、径方向外側に拡がる上端フランジ51B及び下端フランジ51Cが設けられている。図2に示すように、シェル51は、上端フランジ51Bが第4排ガス経路104の下端フランジ104Bに接触すると共に、下端フランジ51Cが第3排ガス経路103の上端フランジ103Cに接触した状態で固定されている。両フランジは、例えばボルトなどの締結部材(図示しない)を貫通させることにより互いに固定される。
これと同様に、第3エコノマイザ11Cのシェル41の上端及び下端にも、径方向外側に拡がる上端フランジ41B及び下端フランジ41Cが設けられている。そして、シェル41は、上端フランジ41Bが第5排ガス経路105の下端フランジ105Bに接触すると共に、下端フランジ41Cが第4排ガス経路104の上端フランジ104Cに接触した状態で固定されている。
図2に示すように、第2エコノマイザ11Bは、空間51Dを規定するシェル51の内面51Aが第3,第4排ガス経路103,104の内面103A,104Aと面一になるように、第3,第4排ガス経路103,104にそれぞれ接続されている。つまり、シェル51の内面51Aと第3排ガス経路103の内面103Aとの接続部において段差が形成されておらず、またシェル51の内面51Aと第4排ガス経路104の内面104Aとの接続部においても段差が形成されていない。これにより、第2エコノマイザ11Bと第3,第4排ガス経路103,104との接続部における排ガスGの流れの乱れが抑制され、その結果排ガスGの圧力損失を抑えることができる。これと同様に、第3エコノマイザ11Cも、空間41Dを規定するシェル41の内面41Aが第4,第5排ガス経路104,105の内面104A,105Aと面一になるように、第4,第5排ガス経路104,105にそれぞれ接続されている。
なお、本実施形態のように、エコノマイザ11のシェル内面と排ガス経路100の内面とが面一である場合には限定されず、エコノマイザ11のシェル内面と排ガス経路100の内面との接続部において段差が形成されていてもよい。
本実施形態において、排ガスの温度は、過給機90のタービン92の出口において二百数十度であり、第3エコノマイザ11Cの出口において130℃未満(例えば100℃程度)にまで下がる。ここで、硫黄成分が多いC重油などが内燃機関の燃料として用いられる場合には、排ガスの温度が130℃未満まで低下すると、排ガスの液化により排ガス経路100を構成する筒状の部材(配管や煙突など)の腐食が問題となる。これに対して、本実施形態では、A重油又は精製されたC重油が内燃機関の燃料として用いられるため、排ガスの酸露点がより下がっている。このため、排ガスの温度を第3エコノマイザ11Cの出口において130℃未満まで低下させたとしても、上述のような腐食の問題を回避することができる。
図1に示すように、熱エネルギー回収部10は、熱媒経路12に接続されており、エコノマイザ11で加熱された熱媒体(水蒸気)の熱エネルギーを回収する部分である。本実施形態では、第1〜第3熱エネルギー回収部10A,10B,10Cは、それぞれ同じ構成を有している。ここでは、第1熱エネルギー回収部10Aの構成についてのみ説明し、第2,第3熱エネルギー回収部10B,10Cの説明については省略する。
図1に示すように、第1熱エネルギー回収部10Aは、循環ポンプ18と、加熱器13と、膨張機15及び発電機16を含む発電装置14と、凝縮器17と、これらの機器を順に接続すると共に低沸点の作動媒体が循環する循環経路20と、を有している。これらの構成要素によって、オーガニックランキンサイクルが構成されている。
循環経路20は、循環ポンプ18から吐出された作動媒体を、加熱器13、膨張機15及び凝縮器17の各機器を順に経て再び循環ポンプ18に吸入させるものであり、本実施形態では第1〜第4配管21〜24からなっている。作動媒体としては、例えばR245faなどのフロン系媒体を用いることができるが、これに限定されない。
第1配管21は、循環ポンプ18の吐出口と加熱器13における作動媒体の入口とを接続している。第2配管22は、加熱器13における作動媒体の出口と膨張機15とを接続している。第3配管23は、膨張機15と凝縮器17における作動媒体の入口とを接続している。第4配管24は、凝縮器17における作動媒体の出口と循環ポンプ18の吸入口とを接続している。
循環ポンプ18は、例えば電動ポンプであり、作動媒体を加圧し、加圧された作動媒体を第1配管21を通じて加熱器13に供給する。循環ポンプ18の動作は、制御部60によりコントロールされる。
加熱器13は、第1エコノマイザ11Aで加熱された熱媒体(水蒸気)と循環ポンプ18により送られる作動媒体との間で熱交換することにより作動媒体を加熱する。加熱器13は、循環ポンプ18により送られる作動媒体が流れる第1流路13Aと、送り側経路12AAから流入する水蒸気が流れる第2流路13Bと、を有している。加熱器13は、第1流路13Aを流れる作動媒体と第2流路13Bを流れる水蒸気との間で熱交換を行う。これにより、作動媒体が水蒸気によって加熱されて蒸発する。つまり、本実施形態では、加熱器13は、水蒸気との熱交換により作動媒体を蒸発させる蒸発器として機能する。なお、加熱器13において作動媒体と熱交換した後の水蒸気(又は当該熱交換により水蒸気が凝縮して発生する水)は、戻し側経路12ABを通じて第1エコノマイザ11Aに戻る。
発電装置14は、膨張機であるスクリュー式のタービン15と、タービン15に接続された発電機16と、を含み、これらが共通のハウジング(図示しない)に収容された構成を有している。タービン15は、第2配管22を通じて加熱器13から流入する作動媒体の圧力と第3配管23を通じて凝縮器17に向かって流出する作動媒体の圧力との差によって回転駆動する。発電機16は、タービン15の回転により発電することによって、加熱器13で加熱された蒸気状の作動媒体のエネルギーを電気エネルギーとして回収する回収機として機能する。なお、回収機は、発電機16に限定されるものではない。またタービン15としては、スクロール式などの容積型のタービンや遠心型ガスタービンなどの非容積型のタービンを用いることもできる。
凝縮器17は、膨張機15から送られる作動媒体が流れる第1流路17Aと、例えば冷却水などの冷却媒体が流れる第2流路17Bと、を有している。第2流路17Bには、クーリングタワー(図示しない)などの冷却水源から冷却水循環ポンプなどによって冷却水が供給される。凝縮器17は、第1流路17Aを流れる作動媒体と第2流路17Bを流れる冷却媒体との間で熱交換を行う。これにより、作動媒体が冷却媒体により冷却されて凝縮する。
次に、熱エネルギー回収装置1における重要な構成要素である送風機構30について説明する。図1に示すように、本実施形態において、送風機構30は、第5排ガス経路105に配置されている。つまり、送風機構30は、排ガスの流れ方向において第3エコノマイザ11C(最下流に位置するエコノマイザ11)よりも下流側に配置されている。なお、送風機構30の位置はこれに限定されず、第3,第4排ガス経路103,104(エコノマイザ11同士の間)に配置されていてもよいし、第2排ガス経路102(最上流に位置する第1エコノマイザ11Aよりも上流側)に配置されていてもよい。
送風機構30は、例えば軸流ファンであって、モーター31と、モーター31の回転軸31Aに接続されたプロペラ32と、を有しており、モーター31が回転駆動することによりプロペラ32が回転するように構成されている。図2に示すように、送風機構30は、回転軸31Aが排ガスの流れ方向に沿った状態で第5排ガス経路105の筒内に収容されている。送風機構30によれば、プロペラ32を回転させることにより第5排ガス経路105を流れる排ガスを上流側から吸い込むと共に昇圧させ、昇圧させた排ガスを下流側に吐き出すことができる。
モーター31は、外部電源(図示しない)から供給される電力に加えて、熱エネルギー回収部10の回収機により回収された電気エネルギー、即ち発電機16において発生させた電気エネルギーを補助電力として駆動するように構成されている。つまり、送風機構30の駆動エネルギーとして、発電機16において発生させた電気エネルギーを利用することが可能になっている。なお、モーター31は、発電機16において発生させた電気エネルギーを利用せず、外部電源から供給される電力のみによって駆動してもよい。
熱エネルギー回収装置1においては、複数のエコノマイザ11を排ガス経路100の途中に配置することにより、排ガスの熱を利用して水蒸気を発生させることができるが、エコノマイザ11を通過する際に排ガスの圧力損失が問題になる。図2では、エコノマイザ11のチューブ42,52が簡略化して描かれているが、実際にはシェル41,51の径方向断面の大部分を占めるようにチューブ42,52が配置されている。このため、各エコノマイザ11のシェル41,51内において、チューブ42,52の存在により排ガスの流れが乱れることがある。その結果、排ガスの圧力損失が大きくなり、排ガスをスムーズに船外へ排出するのが困難になることがある。特に、本実施形態のように、複数のエコノマイザ11が排ガスの流れ方向において直列に配置される場合には、この問題が顕著である。
これに対して、本実施形態に係る熱エネルギー回収装置1によれば、排ガス経路100に送風機構30を配置し、この送風機構30によって排ガスを昇圧させることにより、各エコノマイザ11の通過時に生じる排ガスの圧力損失を補うことができる。これにより、各エコノマイザ11において排ガスの熱エネルギーを回収すると共に、排ガスをスムーズに船外へ排出することが可能になっている。
なお、本実施形態では、送風機構の一例として、排ガスが回転軸31Aに沿って直線的に流れる軸流送風機について説明したが、これに限定されない。本発明における送風機構は、例えば、昇圧された排ガスが径方向外側に向かって吐き出される遠心送風機(シロッコファン、ターボファンなど)であってもよいし、排ガスがファンの回転軸に対して斜め方向に流れる斜流送風機であってもよい。しかし、遠心送風機や斜流送風機では、排ガス経路100の内面に向かって排ガスが吐き出されるのに対し、本実施形態における軸流送風機によれば、排ガス経路100が延びる方向に沿って排ガスを吐き出すことができるため、圧力損失を低減する観点から特に好ましい。さらに、本発明における送風機構は、ファンにも限定されず、ファンよりも高い圧力に排ガスを昇圧させるブロワーやコンプレッサーを採用することも可能である。
ここで、上記の通り説明した実施形態1に係る熱エネルギー回収装置1の特徴及び作用効果について列記する。
熱エネルギー回収装置1は、内燃機関から排出される排ガスの熱エネルギーを回収する装置である。熱エネルギー回収装置1は、排ガスが流れる排ガス経路100と熱媒体(水、水蒸気)が流れる熱媒経路12とに接続され、排ガス経路100から流入する排ガスと熱媒経路12から流入する熱媒体(水)との間で熱交換することにより熱媒体(水)を加熱するエコノマイザ11と、熱媒経路12に接続され、エコノマイザ11で加熱された熱媒体(水蒸気)の熱エネルギーを回収する熱エネルギー回収部10と、排ガス経路100に配置され、排ガス経路100を流れる排ガスを昇圧させる送風機構30と、を備えている。
熱エネルギー回収装置1によれば、エコノマイザ11において排ガスとの熱交換により熱媒体(水)を加熱し、加熱された熱媒体(水蒸気)の熱エネルギーを熱エネルギー回収部10において回収することにより、内燃機関から排出される排ガスの熱エネルギーを回収することができる。ここで、内燃機関から排出される排ガスがエコノマイザ11を通過する際、排ガスの圧力損失が大きくなることがある。これに対して、熱エネルギー回収装置1では、排ガス経路100に配置された送風機構30によって排ガスを昇圧させることができるため、エコノマイザ11の通過時に生じる排ガスの圧力損失を補うことができる。したがって、熱エネルギー回収装置1によれば、内燃機関から排出される排ガスの熱エネルギーを回収すると共に、その排ガスをスムーズに船外へ排出することが可能になる。
熱エネルギー回収装置1において、熱エネルギー回収部10は、エコノマイザ11で加熱された熱媒体(水蒸気)と作動媒体との間で熱交換することにより作動媒体を加熱する加熱器13と、加熱器13で加熱された蒸気状の作動媒体のエネルギーを電気エネルギーとして回収する発電機16(回収機)と、を有している。熱エネルギー回収装置1は、送風機構30の駆動エネルギーとして、発電機16において発生した(回収機により回収された)電気エネルギーが用いられるように構成されている。これにより、排ガスの熱エネルギーを利用して発生させた電気エネルギーを送風機構30の駆動に用いることによって、外部電源から送風機構30に供給する電力をより少なくすることができる。
熱エネルギー回収装置1において、送風機構30は、排ガスの流れ方向において第3エコノマイザ11Cよりも下流側に配置されている。これにより、第1〜第3エコノマイザ11A,11B,11Cで熱交換に供された後の排ガスが送風機構30を通過するため、内燃機関から排出された直後の高温の排ガスが送風機構30を通過する場合に比べて、送風機構30の熱損傷をより軽減することができる。
熱エネルギー回収装置1において、エコノマイザ11は、排ガスが通過する空間41D,51Dを有するシェル41,51と、空間41D,51Dに配置されると共に熱媒体(水、水蒸気)が流れるチューブ42,52と、を有している。エコノマイザ11は、空間41D,51Dを規定するシェル41,51の内面41A,51Aが排ガス経路100の内面103A,104A,105Aと面一になるように排ガス経路100に接続されている。これにより、エコノマイザ11と排ガス経路100との接続部において排ガスをスムーズに流すことができるため、当該接続部における排ガスの圧力損失を小さくすることができる。
熱エネルギー回収装置1において、エコノマイザ11は、排ガスの流れ方向において直列に複数配置されている。これにより、複数のエコノマイザ11(第1〜第3エコノマイザ11A,11B,11C)を用いることによって、内燃機関から排出される排ガスの熱エネルギーを高効率に回収することができる。しかも、複数のエコノマイザ11を直列に配置することにより、船内のスペース効率の面においても有利である。
熱エネルギー回収装置1において、排ガスは、A重油又は硫黄成分が2.0質量%以下になるまで精製されたC重油を燃料として内燃機関で燃焼させたときに排出されるものである。熱エネルギー回収装置1において、第3エコノマイザ11Cから流出する排ガスの温度が130℃未満になる。
硫黄成分が2.0質量%以下であるA重油又は硫黄成分が2.0質量%以下になるまで精製されたC重油を燃料とした場合には、内燃機関から排出される排ガスの酸露点が下がる。このため、第3エコノマイザ11Cから流出する排ガスの温度を130℃未満まで低下させても、排ガスが液化して排ガス経路100が腐食する問題を回避することができる。
(実施形態2)
次に、本発明の実施形態2に係る熱エネルギー回収装置1Aについて、図3を参照して説明する。実施形態2に係る熱エネルギー回収装置1Aは、基本的に実施形態1に係る熱エネルギー回収装置1と同様の構成を備えているが、複数の送風機構30が排ガス経路100に配置されている点で実施形態1と異なっている。以下、実施形態1と異なる点についてのみ説明する。
図3に示すように、実施形態2に係る熱エネルギー回収装置1Aでは、複数(2つ)の送風機構30が排ガス経路100に配置されている(第1送風機構30A,第2送風機構30B)。実施形態2においては、第1送風機構30Aが第5排ガス経路105に配置されると共に、第2送風機構30Bが第2排ガス経路102に配置されている。つまり、第2送風機構30Bが排ガスの流れ方向において第1エコノマイザ11A(最上流のエコノマイザ11)よりも上流側に配置されると共に、第1送風機構30Aが排ガスの流れ方向において第3エコノマイザ11C(最下流のエコノマイザ11)よりも下流側に配置されている。第1,第2送風機構30A,30Bは、それぞれ同じ構成を有するものであるが、互いに異なる構成のものでもよい。
実施形態2によれば、複数の送風機構30を用いて排ガスを昇圧させることにより、エコノマイザ11の通過時に生じる排ガスの圧力損失をより確実に補うことができる。なお、送風機構30の位置は、図3に示す位置に限定されるものではない。例えば、送風機構30は、第3排ガス経路103(第1エコノマイザ11Aと第2エコノマイザ11Bとの間)や第4排ガス経路104(第2エコノマイザ11Bと第3エコノマイザ11Cとの間)に配置されてもよい。また3つ以上の送風機構30が排ガス経路100に配置されてもよい。
図4は、実施形態2の変形例における送風機構30の配置を示している。図4に示すように、複数(2つ)の送風機構30は、排ガス経路100の幅方向(排ガスの流れ方向に対して直交する方向)に並んで配置されていてもよい。この場合、排ガス経路100の幅が大きい場合でも、排ガス経路100の流路面積の大部分に送風機構30を配置することができるため、送風機構30により昇圧されないまま排ガスが下流側へ流れるのを防ぐことができる。したがって、排ガスを確実に昇圧させることができる。図4では、第5排ガス経路105において複数の送風機構30が幅方向に並んで配置されているが、第2〜第4排ガス経路102,103,104において同様に複数の送風機構30が幅方向に並べられてもよい。また3つ以上の送風機構30が排ガス経路100の幅方向に並んで配置されていてもよい。
(実施形態3)
次に、本発明の実施形態3に係る熱エネルギー回収装置1Bについて、図5を参照して説明する。実施形態3に係る熱エネルギー回収装置1Bは、基本的に実施形態1に係る熱エネルギー回収装置1と同様の構成を備えているが、複数のエコノマイザ11が並列に配置されている点で実施形態1と異なっている。以下、実施形態1と異なる点についてのみ説明する。
図5に示すように、実施形態3において、排ガス経路100は、複数の経路に分岐している。より具体的には、排ガス経路100は、第2排ガス経路102における任意の点P1から分岐すると共に第2排ガス経路102から流入する排ガスを第4エコノマイザ11Dに導く第6排ガス経路106と、第4エコノマイザ11Dから船外へ排ガスを導く第7排ガス経路107と、を有している。このように、実施形態3においては、排ガス経路100は、第1,第2,第5排ガス経路101,102,105からなる経路と、第6,第7排ガス経路106,107からなる経路と、に分岐しており、各分岐経路にエコノマイザ11(第1エコノマイザ11A,第4エコノマイザ11D)が配置されている。なお、第4エコノマイザ11Dは、第1〜第3エコノマイザ11A,11B,11Cと同様の構成を有するものである。また第4熱エネルギー回収部10Dは、第4熱媒経路12Dを介して第4エコノマイザ11Dに接続されており、これも第1〜第3熱エネルギー回収部10A,10B,10Cと同様の構成を有するものである。
送風機構30は、2つのエコノマイザ11の下流側、即ち第5,第7排ガス経路105,107にそれぞれ配置されている。なお、送風機構30の位置は、図5に示す位置に限定されず、例えば、第2排ガス経路102における点P1よりも上流側の位置(つまり分岐点よりも上流側の位置)に配置されていてもよい。
実施形態3に係る熱エネルギー回収装置1Bによれば、複数のエコノマイザ11を並列に配置することにより、複数のエコノマイザ11を直列に配置する場合に比べて、排ガスの圧力損失をより小さくすることができる。しかも、各分岐経路に送風機構30を配置することにより、排ガスをよりスムーズに船外に排出することが可能になる。
なお、排ガス経路100は、3つ以上の経路に分岐していてもよく、その場合、3つ以上のエコノマイザ11が各分岐経路にそれぞれ配置される。また図5の形態では、各分岐経路に1つずつエコノマイザ11が配置される場合について説明したが、各分岐経路において複数のエコノマイザ11が直列に配置されていてもよい。つまり、複数のエコノマイザ11が直列と並列を組み合わせた形態で配置されていてもよい。
(その他実施形態)
最後に、本発明のその他実施形態に係る熱エネルギー回収装置について説明する。
実施形態1においては、図1に示すように、第1,第2エコノマイザ11A,11Bで発生させた蒸気が、それぞれ別の熱エネルギー回収部(第1,第2熱エネルギー回収部10A,10B)に送られる場合について説明したが、これに限定されない。図6に示すように、第1熱エネルギー回収部10Aは、加熱器13として、蒸発器19Aと、蒸発器19Aの下流側に配置された過熱器19と、を有していてもよい。そして、第1エコノマイザ11Aで発生させた蒸気が第1熱媒経路12Aを通じて蒸発器19Aに送られると共に、第2エコノマイザ11Bで発生させた蒸気が第2熱媒経路12Bを通じて過熱器19に送られてもよい。また図6の形態において、蒸発器19Aにはエコノマイザ11で発生させた蒸気以外の熱源(例えば船内で利用する水蒸気)が供給されると共に、過熱器19にはエコノマイザ11で発生させた蒸気が供給されてもよい。
実施形態1〜3では、複数のエコノマイザ11が設けられる場合について説明したがこれに限定されず、1つのエコノマイザ11のみが設けられてもよい。
実施形態1では、第1〜第3エコノマイザ11A,11B,11Cの全てにおいて蒸気を発生させる場合について説明したが、これに限定されない。例えば、第1,第2エコノマイザ11A,11Bにおいて排ガスの熱により蒸気を発生させる一方、第3エコノマイザ11Cにおいては排ガスの熱により温水を発生させてもよい。
実施形態1では、熱媒体の一例として水を説明したがこれに限定されず、例えば熱媒油や各種冷媒などの他の熱媒体を用いることも可能である。
実施形態1では、熱エネルギー回収部10が水蒸気により作動媒体を蒸発させて電気エネルギーを回収するバイナリー発電装置である場合について説明したが、これに限定されない。例えば、エコノマイザ11で発生させた水蒸気を船用の蒸気タービンに供給してもよいし、例えばスートブロー装置などの船内の需要先にそのまま供給し、バラストタンク、積荷室又は甲板の洗浄に使用してもよい。これらも水蒸気の熱エネルギー回収の一態様となる。
実施形態1では、船舶推進用ディーゼルエンジン(内燃機関)から排出される排ガスの熱エネルギーを回収する場合について説明したがこれに限定されず、例えばガソリンエンジンから排出される排ガスの熱エネルギー回収に適用されてもよい。
今回開示された実施形態は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1,1A,1B 熱エネルギー回収装置
10(10A,10B,10C,10D) 熱エネルギー回収部
11(11A,11B,11C,11D) エコノマイザ
12(12A,12B,12C,12D) 熱媒経路
13 加熱器
16 発電機(回収機)
19 過熱器(加熱器)
19A 蒸発器(加熱器)
30(30A,30B) 送風機構
41,51 シェル
41A,51A 内面
41D,51D 空間
42,52 チューブ
100 排ガス経路
103A,104A,105A 内面
G 排ガス

Claims (7)

  1. 内燃機関から排出される排ガスの熱エネルギーを回収する熱エネルギー回収装置であって、
    前記排ガスが流れる排ガス経路と熱媒体が流れる熱媒経路とに接続され、前記排ガス経路から流入する前記排ガスと前記熱媒経路から流入する前記熱媒体との間で熱交換することにより前記熱媒体を加熱するエコノマイザと、
    前記熱媒経路に接続され、前記エコノマイザで加熱された前記熱媒体の熱エネルギーを回収する熱エネルギー回収部と、
    前記排ガス経路に配置され、前記排ガス経路を流れる前記排ガスを昇圧させる送風機構と、を備え
    前記エコノマイザは、前記排ガスが通過する空間を有するシェルと、前記空間に配置されると共に前記熱媒体が流れるチューブと、を有し、
    前記エコノマイザは、前記空間を規定する前記シェルの内面が前記排ガス経路の内面と面一になるように前記排ガス経路に接続されており、
    前記排ガスは、JIS K 2205に規定されるA重油又はJIS K 2205に規定されるC重油であって硫黄成分が2.0質量%以下になるまで精製されたものを燃料として前記内燃機関で燃焼させたときに排出されるものであり、
    前記エコノマイザから流出する前記排ガスの温度が130℃未満になることを特徴とする、熱エネルギー回収装置。
  2. 前記熱エネルギー回収部は、
    前記エコノマイザで加熱された前記熱媒体と作動媒体との間で熱交換することにより前記作動媒体を加熱する加熱器と、
    前記加熱器で加熱された蒸気状の前記作動媒体のエネルギーを電気エネルギーとして回収する回収機と、を有しており、
    前記送風機構の駆動エネルギーとして、前記回収機により回収された電気エネルギーが用いられるように構成されていることを特徴とする、請求項1に記載の熱エネルギー回収装置。
  3. 前記送風機構は、前記排ガスの流れ方向において前記エコノマイザよりも下流側に配置されていることを特徴とする、請求項1又は2に記載の熱エネルギー回収装置。
  4. 前記送風機構が複数配置されていることを特徴とする、請求項1〜の何れか1項に記載の熱エネルギー回収装置。
  5. 複数の前記送風機構は、前記排ガス経路の幅方向に並んで配置されていることを特徴とする、請求項に記載の熱エネルギー回収装置。
  6. 前記エコノマイザは、前記排ガスの流れ方向において直列に複数配置されていることを特徴とする、請求項1〜の何れか1項に記載の熱エネルギー回収装置。
  7. 前記排ガス経路は、複数の経路に分岐しており、
    前記エコノマイザが前記複数の経路の各々に配置されていることを特徴とする、請求項1〜の何れか1項に記載の熱エネルギー回収装置。
JP2017122012A 2017-06-22 2017-06-22 熱エネルギー回収装置 Expired - Fee Related JP6781673B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017122012A JP6781673B2 (ja) 2017-06-22 2017-06-22 熱エネルギー回収装置
EP18174498.8A EP3418524A1 (en) 2017-06-22 2018-05-28 Waste heat recovery system
KR1020180069476A KR20190000300A (ko) 2017-06-22 2018-06-18 열 에너지 회수 장치
CN201810651047.2A CN109113820A (zh) 2017-06-22 2018-06-22 热能回收装置
KR1020200014082A KR20200016914A (ko) 2017-06-22 2020-02-06 열 에너지 회수 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122012A JP6781673B2 (ja) 2017-06-22 2017-06-22 熱エネルギー回収装置

Publications (2)

Publication Number Publication Date
JP2019007380A JP2019007380A (ja) 2019-01-17
JP6781673B2 true JP6781673B2 (ja) 2020-11-04

Family

ID=62386213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122012A Expired - Fee Related JP6781673B2 (ja) 2017-06-22 2017-06-22 熱エネルギー回収装置

Country Status (4)

Country Link
EP (1) EP3418524A1 (ja)
JP (1) JP6781673B2 (ja)
KR (2) KR20190000300A (ja)
CN (1) CN109113820A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530890B1 (de) * 2018-02-27 2022-10-12 Orcan Energy AG Antrieb mit integriertem orc

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272308A (ja) * 1992-03-26 1993-10-19 Toshiba Corp 有機媒体適用動力回収プラント
JP2001082732A (ja) * 1999-09-16 2001-03-30 Minoru Yoshimoto 燃焼炉の廃ガス冷却装置
JP2011149332A (ja) * 2010-01-21 2011-08-04 Mitsubishi Heavy Ind Ltd 排熱回収発電装置およびこれを備えた船舶
FI124749B (fi) * 2011-02-23 2015-01-15 Wärtsilä Finland Oy Pesurisysteemi pakokaasujen käsittelemiseksi vesialuksessa ja menetelmä pakokaasujen käsittelemiseksi vesialuksen pesurisysteemisessä
JP5683359B2 (ja) * 2011-03-31 2015-03-11 三菱重工業株式会社 排熱回収発電装置
US9587828B2 (en) * 2013-03-14 2017-03-07 Siemens Aktiengesellschaft Localized flue gas dilution in heat recovery steam generator
CN104712402B (zh) * 2013-12-12 2017-04-05 霍特安热能技术(江苏)有限公司 利用发动机排气废热的有机朗肯循环发电***
JP5916772B2 (ja) * 2014-01-09 2016-05-11 三菱重工業株式会社 排ガス処理装置、船舶、水供給方法
JP6502014B2 (ja) * 2014-01-24 2019-04-17 日立造船株式会社 廃熱回収装置
JP6349240B2 (ja) * 2014-12-05 2018-06-27 三菱重工業株式会社 排ガス処理装置
PL3230562T3 (pl) * 2014-12-08 2019-10-31 Waertsilae Finland Oy Układ do oczyszczania gazów spalinowych silnika tłokowego wewnętrznego spalania w statku morskim i sposób działania układu do oczyszczania gazów spalinowych
JP6389794B2 (ja) * 2015-04-09 2018-09-12 株式会社神戸製鋼所 熱エネルギー回収装置
JP6599200B2 (ja) * 2015-10-09 2019-10-30 三菱日立パワーシステムズ株式会社 排熱回収ボイラ及び排熱回収ボイラのガスシール方法

Also Published As

Publication number Publication date
KR20200016914A (ko) 2020-02-17
CN109113820A (zh) 2019-01-01
EP3418524A1 (en) 2018-12-26
JP2019007380A (ja) 2019-01-17
KR20190000300A (ko) 2019-01-02

Similar Documents

Publication Publication Date Title
CA2589781C (en) Method and apparatus for power generation using waste heat
US7665304B2 (en) Rankine cycle device having multiple turbo-generators
WO2011136118A1 (ja) 排熱回収発電装置およびこれを備えた船舶
KR20180005289A (ko) 배열 회수 장치, 이것을 구비하고 있는 가스 터빈 플랜트, 및 배열 회수 방법
RU2644801C2 (ru) Термодинамическая система комбинированного цикла для выработки механической энергии и способ выработки механической энергии и приведения в действие турбомашины
WO2012132514A1 (ja) 排熱回収発電装置
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
JP7059347B2 (ja) 排熱回収プラント、及びコンバインドサイクルプラント
US11708773B2 (en) Plant and operation method therefor
KR102220071B1 (ko) 보일러 시스템
JP6265535B2 (ja) 給水予熱装置、これを備えているガスタービンプラント、及び給水予熱方法
JP6781673B2 (ja) 熱エネルギー回収装置
PT2211028E (pt) Sistema para converter calor perdido a partir de uma fonte de calor perdido
JP5527513B2 (ja) 流体機械駆動システム
KR102153769B1 (ko) 선박의 폐열회수 시스템
US10408092B2 (en) Heat exchanger, energy recovery system, and vessel
KR101519542B1 (ko) 유기냉매의 폐열을 이용한 선박의 에너지 절감 장치
JP2013104335A (ja) ラジアルタービンホイール
ITMI20090039A1 (it) Procedimento e sistema per la generazione di energia utilizzante sorgenti di calore liquide e o gassose a bordo di unita navali
JP2022001760A (ja) 液化天然ガス圧縮システム
KR20150088516A (ko) 유기냉매의 폐열을 이용한 선박의 에너지 절감 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6781673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees