JP6777304B2 - Process design support system and process design support method - Google Patents

Process design support system and process design support method Download PDF

Info

Publication number
JP6777304B2
JP6777304B2 JP2016114701A JP2016114701A JP6777304B2 JP 6777304 B2 JP6777304 B2 JP 6777304B2 JP 2016114701 A JP2016114701 A JP 2016114701A JP 2016114701 A JP2016114701 A JP 2016114701A JP 6777304 B2 JP6777304 B2 JP 6777304B2
Authority
JP
Japan
Prior art keywords
region
plane
temporary
determined
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016114701A
Other languages
Japanese (ja)
Other versions
JP2017217735A (en
Inventor
勇 西田
勇 西田
敬一 白瀬
敬一 白瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2016114701A priority Critical patent/JP6777304B2/en
Publication of JP2017217735A publication Critical patent/JP2017217735A/en
Application granted granted Critical
Publication of JP6777304B2 publication Critical patent/JP6777304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Numerical Control (AREA)
  • General Factory Administration (AREA)

Description

本願発明は、素材の一部を切削などにより除去して所定の形状の対象物を得るための加工工程の設計を支援する工程設計支援システム、および、工程設計支援方法に関する。 The present invention relates to a process design support system that supports the design of a processing process for obtaining an object having a predetermined shape by removing a part of a material by cutting or the like, and a process design support method.

顧客要求の急激な変化と市場ニーズの多様化に伴い、生産形態は多品種少量生産へと移行している。多品種少量生産では、製品形状が多様化・複雑化しており、機械加工分野において、加工順序などを決定する加工準備時間が大きくなるといった問題がある。そこで、加工準備時間を短縮するために、機械加工の分野ではCADシステムとCAMシステムが利用されているが、加工箇所や加工順序の決定などの膨大な作業が使用者に求められており、生産効率を高効率化する妨げとなっている。 With the rapid changes in customer demands and the diversification of market needs, the production form is shifting to high-mix low-volume production. In high-mix low-volume production, product shapes are diversified and complicated, and in the machining field, there is a problem that the processing preparation time for determining the processing order and the like becomes long. Therefore, in order to shorten the machining preparation time, a CAD system and a CAM system are used in the field of machining, but a huge amount of work such as determining a machining location and a machining order is required of a user, and production is required. It is a hindrance to increasing efficiency.

そこで、特許文献1には、加工により除去すべき領域の表面の平面部を含む全ての平面により当該領域を一旦全て分割し、分割された領域を複数種類の組み合わせで再構成し、再構成された領域の加工順序と加工条件を定めて複数の加工工程の候補を生成する技術が記載されている。 Therefore, in Patent Document 1, the region is once divided by all the planes including the flat portion of the surface of the region to be removed by processing, and the divided regions are reconstructed by a plurality of types of combinations and reconstructed. A technique for generating candidates for a plurality of machining processes by defining the machining order and machining conditions of the regions is described.

特開2005−309713号公報Japanese Unexamined Patent Publication No. 2005-309713

ところが、従来の方法では、除去すべき領域を一旦細分化(最小分割化)し、再構成を行うという工程を経るため、場合分けの数が膨大となって好適な解を提示するまでに膨大な時間を要し、提示された結果を見ても実質的には最適な解を選択することが困難であるという問題があった。 However, in the conventional method, the region to be removed is once subdivided (minimized) and then reconstructed, so that the number of cases is enormous and it is enormous until a suitable solution is presented. There was a problem that it took a long time and it was practically difficult to select the optimum solution even by looking at the presented results.

本願発明は、上記課題に鑑みなされたものであり、除去すべき領域を細分化することなく加工に好適な領域に分割することができる工程設計支援システム、および、工程設計支援方法の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a process design support system capable of dividing a region to be removed into regions suitable for processing without subdividing the region, and a process design support method. And.

上記目的を達成するために、本願発明にかかる工程設計支援システムは、素材の一部を除去して所定の形状の対象物を得るための加工工程の設計を支援する工程設計支援システムであって、素材データと対象物データとに基づき得られる除去する一塊の領域である総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面について取得する問合せ部と、前記分割数が3以上となる仮平面の一つを前記総除去領域を分割する分割平面として決定する分割平面決定部とを備えることを特徴とする。 In order to achieve the above object, the process design support system according to the present invention is a process design support system that supports the design of a processing process for removing a part of a material to obtain an object having a predetermined shape. , The number of divisions, which is the number of temporary regions obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region, which is a mass region to be removed obtained based on the material data and the object data. It is characterized by including an inquiry unit for acquiring a plurality of temporary planes, and a division plane determination unit for determining one of the temporary planes having 3 or more divisions as a division plane for dividing the total removal area. ..

また、前記分割平面決定部により決定された分割平面によって分割される複数の分割除去領域の内、所定の条件を満たした一つの分割除去領域以外の領域の一つを次の総除去領域として決定する次総除去領域決定部をさらに備え、前記問合せ部は、前記次総除去領域決定部によって決定された総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面について取得し、前記分割平面決定部は、前記分割数が3以上となる仮平面の一つを次の分割平面として決定してもよい。 Further, among the plurality of division / removal regions divided by the division plane determined by the division plane determination unit, one of the regions other than one division / removal region satisfying a predetermined condition is determined as the next total removal region. Further, the query unit is obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region determined by the secondary total removal region determination unit. The number of divisions, which is the number of temporary regions, may be acquired for a plurality of temporary planes, and the division plane determination unit may determine one of the temporary planes having the number of divisions of 3 or more as the next division plane.

また、前記分割平面決定部は、前記分割数が最大となる仮平面を分割平面として決定してもよい。 Further, the division plane determination unit may determine the temporary plane having the maximum number of divisions as the division plane.

また、前記分割平面決定部はさらに、前記総除去領域を仮平面により分割して得られる分割数が全て2の場合、全ての仮平面を分割平面として決定してもよい。 Further, when the number of divisions obtained by dividing the total removal region by the temporary plane is all 2, the division plane determination unit may further determine all the temporary planes as the division planes.

また、前記分割平面決定部により決定された分割平面で分割された分割除去領域について、開放面部の数を取得し、開放面部の数の最も多い領域を除去領域として決定し、決定された除去領域を除去した残りの分割除去領域について開放面部の数を取得し、開放面部の数の最も多い領域を次の除去領域として決定し、決定された除去領域の順番を加工順序とする加工順序決定部をさらに備えてもよい。 Further, with respect to the divided removal region divided by the divided plane determined by the divided plane determination unit, the number of open surface portions is acquired, the region having the largest number of open surface portions is determined as the removal region, and the determined removal region is determined. The number of open surface portions is acquired for the remaining divided removal region from which the above is removed, the region having the largest number of open surface portions is determined as the next removal region, and the processing order determination unit is set in the order of the determined removal regions. May be further provided.

また、前記分割除去領域についての加工制約条件に基づいて決定された加工順序を入れ替える順序調整部をさらに備えても構わない。 Further, an order adjusting unit for exchanging the machining order determined based on the machining constraint conditions for the division / removal region may be further provided.

また、上記目的を達成するために、本願発明にかかる工程設計支援方法は、素材の一部を除去して所定の形状の対象物を得るための加工工程の設計を支援する工程設計支援方法であって、素材データと対象物データとに基づき得られる除去する一塊の領域である総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面についてそれぞれ問合せ、前記分割数が3以上となる仮平面の一つを前記総除去領域を分割する分割平面として決定することを特徴とする。 Further, in order to achieve the above object, the process design support method according to the present invention is a process design support method that supports the design of a processing process for removing a part of a material to obtain an object having a predetermined shape. It is the number of temporary regions obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region, which is a mass region to be removed obtained based on the material data and the object data. It is characterized in that the number of divisions is queried for each of a plurality of temporary planes, and one of the temporary planes having the number of divisions of 3 or more is determined as the division plane for dividing the total removal region.

なお、前記工程設計支援システムが含む各処理をコンピュータに実行させるためのプログラムを実施することも本願発明の実施に該当する。無論、そのプログラムが記録された記録媒体を実施することも本願発明の実施に該当する。 It should be noted that the implementation of the present invention also corresponds to the implementation of the program for causing the computer to execute each process included in the process design support system. Of course, implementing a recording medium on which the program is recorded also corresponds to the implementation of the present invention.

本願発明によれば、切削加工などによって素材から除去する総除去領域を細分化することなく、加工に好適な分割平面を簡便に決定することができる。さらに、分割平面で分割された分割除去領域について好適な加工順序を提示することができる。従って、素材から対象物の形状に至るまでの加工工程を提示することができ加工工程の設計を支援することが可能となる。 According to the present invention, it is possible to easily determine a division plane suitable for processing without subdividing the total removal region to be removed from the material by cutting or the like. Further, it is possible to present a suitable processing order for the divided removal region divided by the divided plane. Therefore, it is possible to present the processing process from the material to the shape of the object, and to support the design of the processing process.

図1は、工程設計支援システムの機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of a process design support system. 図2は、素材、対象物、および、総除去領域を示す斜視図である。FIG. 2 is a perspective view showing the material, the object, and the total removal area. 図3は、工程設計支援システムの処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing a processing flow of the process design support system. 図4は、総除去領域を一の仮平面で分割した状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which the total removal area is divided by one temporary plane. 図5は、総除去領域を他の仮平面で分割した状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which the total removal region is divided by another temporary plane. 図6は、分割平面で分割された総除去領域をばらばらにして示す斜視図である。FIG. 6 is a perspective view showing the total removal area divided by the division plane separately. 図7は、分割除去領域それぞれの開放面部の数を示す斜視図である。FIG. 7 is a perspective view showing the number of open surface portions of each of the divided removal regions. 図8は、最初の分割平面が決定された後の分割除去領域の加工順序のパターンを示す図である。FIG. 8 is a diagram showing a processing order pattern of the division removal region after the first division plane is determined. 図9は、SRV2に含まれる微小加工領域の開放面部の数を示す斜視図である。FIG. 9 is a perspective view showing the number of open surface portions of the micromachined region included in SRV2. 図10は、SRV2における微小加工領域の加工順序のパターンを示す図である。FIG. 10 is a diagram showing a processing order pattern of a micromachining region in SRV2. 図11は、SRV4に含まれる微小加工領域の開放面部の数を示す斜視図である。FIG. 11 is a perspective view showing the number of open surface portions of the micromachined region included in SRV4. 図12は、SRV4における微小加工領域の加工順序のパターンを示す図である。FIG. 12 is a diagram showing a processing order pattern of a micromachining region in SRV4. 図13は、最初に取得された総除去領域における分割除去領域(微小加工領域)の加工順序の一例を示す図である。FIG. 13 is a diagram showing an example of the processing order of the divided removal region (micro processing region) in the total removal region acquired first. 図14は、仮平面に斜面が含まれている場合を示す斜視図である。FIG. 14 is a perspective view showing a case where the temporary plane includes a slope.

次に、本願発明に係る工程設計支援システム、および、工程設計支援方法の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本願発明に係る工程設計支援システム、および、工程設計支援方法の一例を示したものに過ぎない。従って本願発明は、以下の実施の形態を参考に請求の範囲の文言によって範囲が画定されるものであり、以下の実施の形態のみに限定されるものではない。よって、以下の実施の形態における構成要素のうち、本願発明の最上位概念を示す独立請求項に記載されていない構成要素については、本願発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Next, an embodiment of the process design support system and the process design support method according to the present invention will be described with reference to the drawings. The following embodiments are merely examples of the process design support system and the process design support method according to the present invention. Therefore, the present invention is defined by the wording of the claims with reference to the following embodiments, and is not limited to the following embodiments. Therefore, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present invention are not necessarily necessary for achieving the object of the present invention, but more. Described as constituting a preferred form.

また、図面は、本願発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。 In addition, the drawings are schematic views in which emphasis, omission, and ratio are adjusted as appropriate to show the invention of the present application, and may differ from the actual shape, positional relationship, and ratio.

図1は、工程設計支援システムの機能構成を示すブロック図である。 FIG. 1 is a block diagram showing a functional configuration of a process design support system.

図2は、素材、対象物、および、総除去領域を示す斜視図である。 FIG. 2 is a perspective view showing the material, the object, and the total removal area.

これらの図に示すように本実施の形態に係る工程設計支援システム100は、金属や樹脂などからなる被切削材である素材200の一部を除去して所定の形状の対象物を得るための切削加工工程の設計を支援するシステムであり、コンピュータにソフトウエア(プログラム)を実行させることで実現されるシステムである。工程設計支援システム100は、コンピュータにより実現される機能部として、問合せ部101と、分割平面決定部102と、次総除去領域決定部103と、加工順序決定部104と、順序調整部105とを備えている。なお、コンピュータとは、CPU(中央処理装置)を備え、表示装置や入力装置などの入出力手段、メモリや外部記憶装置などの記憶手段など一般的な構成を備えた電子計算機である。 As shown in these figures, the process design support system 100 according to the present embodiment removes a part of the material 200 which is a material to be cut made of metal, resin, or the like to obtain an object having a predetermined shape. It is a system that supports the design of the cutting process, and is a system that is realized by having a computer execute software (program). The process design support system 100 includes a query unit 101, a division plane determination unit 102, a next total removal area determination unit 103, a machining order determination unit 104, and an order adjustment unit 105 as functional units realized by a computer. I have. A computer is an electronic computer including a CPU (central processing unit) and having a general configuration such as input / output means such as a display device and an input device, and storage means such as a memory and an external storage device.

問合せ部101は、工程設計支援システム100を実現しているコンピュータ、または、別のコンピュータで実行されているいわゆるCADソフトウエア300などに素材200の三次元形状を示す素材データと、素材200から切り出される対象物202の三次元形状を示す対象物データとを提供する処理部である。また、問合せ部101は、素材データと対象物データとに基づいて、切削加工により素材200から除去する一塊の三次元的な領域である仮想的な総除去領域201の表面に存在する平面部を取得したり、平面部を含む一つの仮平面により総除去領域201を分割して得られる仮領域の数である分割数を仮平面毎に取得する処理部である。 The inquiry unit 101 is cut out from the material 200 and the material data showing the three-dimensional shape of the material 200 on a computer that realizes the process design support system 100 or the so-called CAD software 300 that is executed by another computer. It is a processing unit that provides object data indicating a three-dimensional shape of the object 202 to be obtained. Further, the inquiry unit 101 provides a flat surface portion existing on the surface of a virtual total removal region 201, which is a mass of three-dimensional regions to be removed from the material 200 by cutting, based on the material data and the object data. It is a processing unit that acquires the number of divisions, which is the number of temporary regions obtained by dividing the total removal area 201 by one temporary plane including a flat surface portion, for each temporary plane.

ここで、総除去領域201の抽出は、素材データと対象物データを用いた三次元形状の差演算により行われる。また、仮平面は、図中XYZの軸に直角に交わる平面ばかりでなく、これらの平面に対し斜めに配置される平面も含まれる。また、図中のXYZ軸は、加工機の軸と一致していてもよい。 Here, the extraction of the total removal region 201 is performed by the difference calculation of the three-dimensional shape using the material data and the object data. Further, the temporary plane includes not only a plane intersecting the axis of XYZ at right angles in the drawing but also a plane arranged diagonally with respect to these planes. Further, the XYZ axes in the drawing may coincide with the axes of the processing machine.

なお、問合せ部101は、素材データと対象物データとを指定することにより、総除去領域201において、仮平面とこれに紐付けられた分割数を取得すればよく、工程設計支援システム100が素材データと対象物データを必ずしも保有している必要はない。一方、問合せ部101が、素材データと対象物データとに基づき、総除去領域201を抽出し、平面部を特定し、分割数を算出することを否定するものではない。 By designating the material data and the object data, the inquiry unit 101 may acquire the temporary plane and the number of divisions associated with the temporary plane in the total removal area 201, and the process design support system 100 uses the material. It is not always necessary to have data and object data. On the other hand, it is not denied that the inquiry unit 101 extracts the total removal area 201 based on the material data and the object data, specifies the plane unit, and calculates the number of divisions.

分割平面決定部102は、問合せ部101が取得した仮平面と分割数とに基づき、分割数が3以上となる仮平面を総除去領域201を分割する分割平面として決定する処理部である。なお、分割数が3以上となる仮平面が複数存在する場合は、それぞれを分割平面として決定し、それぞれの分割平面毎に以下に示す処理を行い、複数のパターンを提示しても構わない。また、分割数が最も多い仮平面を分割平面としても構わない。 The division plane determination unit 102 is a processing unit that determines a temporary plane having a division number of 3 or more as a division plane for dividing the total removal area 201, based on the temporary plane acquired by the inquiry unit 101 and the number of divisions. When there are a plurality of temporary planes having 3 or more divisions, each of them may be determined as a division plane, and the processing shown below may be performed for each division plane to present a plurality of patterns. Further, the temporary plane having the largest number of divisions may be used as the division plane.

ここで、分割平面決定部102は、最大の分割数が2であった場合、つまり、総除去領域201を仮平面により分割して得られる分割数が全て2であった場合は、全ての仮平面を分割平面として決定する。 Here, the division plane determination unit 102 is all temporary when the maximum number of divisions is 2, that is, when the total number of divisions 201 is divided by the temporary plane and the number of divisions is all 2. Determine the plane as the split plane.

次総除去領域決定部103は、分割平面決定部102により決定された分割平面によって分割される複数の分割除去領域(以下、略字でSRVと記載する場合がある。)の内、所定の条件を満たした一つの分割除去領域以外の領域の一つを次の総除去領域201として決定する処理部である。 The next total removal area determination unit 103 satisfies a predetermined condition among a plurality of division removal areas (hereinafter, may be abbreviated as SRV) divided by the division plane determined by the division plane determination unit 102. This is a processing unit that determines one of the filled regions other than the divided removal region as the next total removal region 201.

ここで、所定の条件とは、例えば、(1)切削工具に最も近い。(2)大気に触れる面である開放面部(Open Face)が最も多い。(3)体積が最も大きいなどである。 Here, the predetermined condition is, for example, (1) closest to the cutting tool. (2) The open face, which is the surface that comes into contact with the atmosphere, is the most common. (3) The volume is the largest.

また、次総除去領域決定部103は、分割平面決定部102が最大の分割数が2であると判断した場合は、機能しないものとなっている。 Further, the next total removal area determination unit 103 does not function when the division plane determination unit 102 determines that the maximum number of divisions is 2.

なお本実施形態の場合、問合せ部101は、次総除去領域決定部103によって総除去領域201が決定された場合、新たな総除去領域201の全ての仮平面について分割数をCADソフトウエア300に問合せる。また、分割平面決定部102は、問合せ部101により得られた分割数が3以上(例えば最大)となる仮平面を次の分割平面として決定する。 In the case of the present embodiment, when the total removal area 201 is determined by the next total removal area determination unit 103, the inquiry unit 101 sets the number of divisions to the CAD software 300 for all the temporary planes of the new total removal area 201. Inquire. Further, the division plane determination unit 102 determines a temporary plane obtained by the inquiry unit 101 in which the number of divisions is 3 or more (for example, the maximum) as the next division plane.

加工順序決定部104は、分割平面決定部102により決定された分割平面で分割された分割除去領域について、大気に触れる面である開放面部の数を取得する。そして、開放面部の数の最も多い領域を除去領域として決定し、決定された除去領域を仮想的に除去した残りの分割除去領域についてさらに開放面部の数を取得し、開放面部の数の最も多い領域を次の除去領域として決定し、決定された除去領域の順番を加工順序とする処理部である。 The processing order determination unit 104 acquires the number of open surface portions that are surfaces that come into contact with the atmosphere for the division removal region divided by the division plane determined by the division plane determination unit 102. Then, the region having the largest number of open surface portions is determined as the removal region, and the number of open surface portions is further acquired for the remaining divided removal region in which the determined removal region is virtually removed, and the number of open surface portions is the largest. It is a processing unit that determines a region as the next removal region and sets the order of the determined removal regions as the machining order.

以上の処理により、開放面部が最大の分割除去領域は、実際の切削工程においては切削工具の接近が容易となり、使用可能な工具への制約も緩くなる領域であるため、加工順序の優先度が高い領域となる。 By the above processing, the split removal region having the maximum open surface portion is a region where the cutting tool can be easily approached in the actual cutting process and the restrictions on the usable tools are relaxed. Therefore, the priority of the machining order is given. It will be a high area.

ここで、開放面部とは、一般的には大気と接触している面として説明される。なお、開放面部の数は厳密な平面の数でなくてもよい。例えば図7に示すように、SRV1では、上方から見た場合(図中Z軸負の方向に見た場合)、平面が4面看取されるが、SRV1をX軸Y軸Z軸のそれぞれに直角に交差する面で形成される仮想的な直方体で覆うとすると、上方から見た四つの平面は1平面で覆われるため、当該部分の開放面部の数を1と考えてもかまわない。この考え方によるとSRV1全体の開放面部の数は、5となる。よって、開放面部の数に関しては、実質的に大気と接触している面を、開放面部の数と考えても構わない。また、加工機の特性を考慮し、切削工具が進入できるおおよその面で開放面部の数を決定してもよい。具体的には、前記仮想的な直方体のうち、素材が保持(チャック)されている面は大気と接触していても開放面部に含めないとしても構わない。 Here, the open surface portion is generally described as a surface in contact with the atmosphere. The number of open surface portions does not have to be the exact number of planes. For example, as shown in FIG. 7, in SRV1, when viewed from above (when viewed in the negative direction of the Z-axis in the figure), four planes are seen, but SRV1 is viewed on each of the X-axis, Y-axis, and Z-axis. If it is covered with a virtual rectangular parallelepiped formed by planes intersecting at right angles to the above, the four planes viewed from above are covered with one plane, and therefore the number of open planes of the portion may be considered to be one. According to this idea, the number of open surface portions of the entire SRV1 is 5. Therefore, regarding the number of open surface portions, the surface that is substantially in contact with the atmosphere may be considered as the number of open surface portions. Further, in consideration of the characteristics of the processing machine, the number of open surface portions may be determined based on the approximate surface on which the cutting tool can enter. Specifically, of the virtual rectangular parallelepiped, the surface on which the material is held (chucked) may not be included in the open surface portion even if it is in contact with the atmosphere.

なお、開放面部の数は、加工順序決定部104が計算により取得してもよく、CADソフトウエア300に問いあわせることにより取得しても構わない。 The number of open surface portions may be acquired by the machining order determination unit 104 by calculation, or may be acquired by inquiring to the CAD software 300.

順序調整部105は、分割除去領域についての加工制約条件を取得し、当該加工制約条件に基づいて、加工順序決定部104で決定された加工順序を入れ替える処理部である。 The order adjusting unit 105 is a processing unit that acquires machining constraint conditions for the division / removal region and replaces the machining order determined by the machining order determination section 104 based on the machining constraint conditions.

ここで、加工制約条件とは、図2に示すように、対象物202の二つの領域に同軸の貫通孔を設ける場合、二つの領域に挟まれている分割除去領域を除去する前に貫通孔を穿設するという条件を例示できる。この場合、貫通孔を設ける領域は、平面で囲まれた領域ではないため、分割平面決定部102によっては特定されない。そこで、順序調整部105は、このような分割平面決定部102では特定されない加工対象領域を予め取得しておき、加工順序の適切な箇所に追加挿入しても構わない。 Here, the machining constraint condition is that, as shown in FIG. 2, when a coaxial through hole is provided in two regions of the object 202, the through hole is provided before the divided removal region sandwiched between the two regions is removed. Can be exemplified as the condition of piercing. In this case, since the region where the through hole is provided is not a region surrounded by a plane, it is not specified by the division plane determination unit 102. Therefore, the order adjusting unit 105 may acquire a processing target area that is not specified by the dividing plane determining unit 102 in advance and additionally insert it at an appropriate position in the processing order.

その他加工条件としては、同じ切削工具を用いて除去する分割除去領域は加工順序を連続させる、要求される寸法公差が同じ分割除去領域は加工順序を連続させる、要求される直角度、平行度、平面度などが所定の閾値よりも厳しい場合、分割除去領域の加工順序を調整するなどである。さらに、順序調整部105は、次の加工制約条件を加えても構わない。例えば、切削工具に近い側の分割除去領域から加工する、体積の大きい分割除去領域から加工する、などである。 Other machining conditions include continuous machining order for the split removal area to be removed using the same cutting tool, continuous machining order for the split removal area with the same required dimensional tolerance, required squareness, parallelism, When the flatness or the like is stricter than a predetermined threshold value, the processing order of the divided removal region is adjusted. Further, the order adjusting unit 105 may add the following processing constraint conditions. For example, machining is performed from the split removal region on the side closer to the cutting tool, machining is performed from the split removal region having a large volume, and the like.

また本実施形態の場合、工程設計支援システム100は、分割平面決定部102で決定された分割平面や分割平面で分割された分割除去領域の加工順などをディスプレイなどに視覚的に表示させる結果提示部106を備えている。これにより除去対象である分割除去領域や分割除去領域の加工順序を作業者に視覚的に知覚させることができ、加工工程決定の支援を行うことが可能となる。結果提示部106で得られる結果は、CAMシステム301に送られて、実行される。 Further, in the case of the present embodiment, the process design support system 100 visually displays the processing order of the division plane determined by the division plane determination unit 102 and the division removal area divided by the division plane on a display or the like. The unit 106 is provided. As a result, the operator can visually perceive the processing order of the divided removal area and the divided removal area to be removed, and it is possible to support the determination of the processing process. The result obtained by the result presenting unit 106 is sent to the CAM system 301 and executed.

次に、上記工程設計支援システム100の各処理部を機能させて分割平面と加工順序とを決定する流れを説明する。 Next, the flow of making each processing unit of the process design support system 100 function to determine the division plane and the processing order will be described.

図3は、工程設計支援システムの処理の流れを示すフローチャートである。 FIG. 3 is a flowchart showing a processing flow of the process design support system.

まず、問合せ部101がCADソフトウエア300に素材データと対象物データとを提示し、CADソフトウエア300から一塊の総除去領域201を取得する(S101)。なお、総除去領域201とは、素材データや対象物データと同様のデータである。また、素材データと対象物データによっては、総除去領域201が複数存在する場合も発生するが、その場合は各総除去領域201について下記の処理を行えばよい。 First, the inquiry unit 101 presents the material data and the object data to the CAD software 300, and acquires the total removal area 201 of a mass from the CAD software 300 (S101). The total removal area 201 is the same data as the material data and the object data. Further, depending on the material data and the object data, a plurality of total removal areas 201 may exist. In that case, the following processing may be performed for each total removal area 201.

次に、問合せ部101が、取得した総除去領域201について表面に存在する平面部を含む仮平面を抽出し、当該仮平面によって総除去領域201を分割した場合に得られる分割数をCADソフトウエア300に問いあわせて結果を取得する(S102)。この処理は、総除去領域201の表面に存在する斜面を含む仮平面の全てについて行われる。 Next, the inquiry unit 101 extracts a temporary plane including a flat surface portion existing on the surface of the acquired total removal area 201, and divides the total removal area 201 by the temporary plane, and the number of divisions obtained is determined by CAD software. Inquire about 300 and obtain the result (S102). This process is performed on all of the temporary planes including the slopes existing on the surface of the total removal region 201.

具体的に例えば、図4に示すような仮平面203で総除去領域201を分割すると、分割数は、a、b、c、dで示すように4となる。一方、図5に示すような仮平面203で総除去領域201を分割すると、分割数は、a、bで示すように2となる。 Specifically, for example, when the total removal region 201 is divided on the temporary plane 203 as shown in FIG. 4, the number of divisions is 4, as shown by a, b, c, and d. On the other hand, when the total removal area 201 is divided on the temporary plane 203 as shown in FIG. 5, the number of divisions is 2 as shown by a and b.

次に、分割平面決定部102は、例えば最大の分割数に紐付けられた仮平面を抽出し、当該仮平面を分割平面として決定する(S103)。本実施形態の場合、図4に示す仮平面203に基づく分割数が4で最大であるため、この仮平面203が分割平面として決定される。決定された分割平面で分割された総除去領域201を分解して示すと図6に示すような状態となる。 Next, the division plane determination unit 102 extracts, for example, a temporary plane associated with the maximum number of divisions, and determines the temporary plane as the division plane (S103). In the case of the present embodiment, since the number of divisions based on the temporary plane 203 shown in FIG. 4 is the maximum at 4, this temporary plane 203 is determined as the division plane. When the total removal region 201 divided by the determined division plane is decomposed and shown, the state as shown in FIG. 6 is obtained.

また、分割平面決定部102は、取得した最大の分割数が2の場合、全ての仮平面を分割平面として決定する。 Further, when the maximum number of divisions acquired is 2, the division plane determination unit 102 determines all temporary planes as division planes.

このように、本実施形態では、最初に取得された総除去領域201の全体を全ての仮平面で細分化することなく分割平面を容易に決定することが可能である。 As described above, in the present embodiment, it is possible to easily determine the division plane without subdividing the entire first acquired total removal area 201 into all the temporary planes.

なお、最大の分割数が3以上であって同じ分割数の仮平面がある場合は、それぞれの分割平面について以下の処理を行ってもよく、最後に取得した仮平面を分割平面として以下の処理を行ってもよい。 If the maximum number of divisions is 3 or more and there are temporary planes with the same number of divisions, the following processing may be performed for each division plane, and the last acquired temporary plane is used as the division plane and the following processing is performed. May be done.

次に、次総除去領域決定部103は、図4に示す分割除去領域a、b、c、dについて開放面部の数が最も多い分割除去領域以外の領域の一つを次の総除去領域201として決定する(S104)。具体的には分割除去領域aの開放面部の数は5、分割除去領域bの開放面部の数は4、分割除去領域cの開放面部の数は2、分割除去領域dの開放面部の数は4であるので、分割除去領域a以外の領域、例えば分割除去領域bを次の総除去領域201として決定する(S104)。 Next, the next total removal region determination unit 103 sets one of the regions other than the division removal region having the largest number of open surface portions for the division removal regions a, b, c, and d shown in FIG. 4 as the next total removal region 201. (S104). Specifically, the number of open surface portions of the divided removal region a is 5, the number of open surface portions of the divided removal region b is 4, the number of open surface portions of the divided removal region c is 2, and the number of open surface portions of the divided removal region d is 2. Since it is 4, an area other than the divided removal area a, for example, the divided removal area b is determined as the next total removal area 201 (S104).

以上の処理を全ての分割平面が決定されるまで繰り返し行う(S105)。本実施形態の場合、図7に示すように、最初に決定された分割平面(図4に示す仮平面203)で総除去領域201を切断すると、SRV1〜SRV4の四つの領域に分割される。そして、SRV2〜SRV4のいずれの領域についても、どのような仮平面で分割しても分割数が2となるため(分割平面の最大数が2)、いずれの仮平面も分割平面として決定される。以上のように、最初に取得された総除去領域201すべてについて分割平面が決定されると分割平面決定の処理が終了する。ここで、分割平面の最大数が2となった場合に決定された分割平面で分割された領域を微小加工領域(Primitive)とし、Pと略して記載する場合がある。 The above process is repeated until all the division planes are determined (S105). In the case of the present embodiment, as shown in FIG. 7, when the total removal region 201 is cut at the first determined division plane (temporary plane 203 shown in FIG. 4), the total removal region 201 is divided into four regions SRV1 to SRV4. Then, in any region of SRV2 to SRV4, the number of divisions is 2 regardless of the provisional plane (the maximum number of division planes is 2), so that any provisional plane is determined as the division plane. .. As described above, when the division plane is determined for all the first acquired total removal areas 201, the process of determining the division plane is completed. Here, the region divided by the division plane determined when the maximum number of division planes is 2, is referred to as a micromachining region (Primitive), and may be abbreviated as P.

次に、加工順序決定部104は、分割平面決定部102により決定された分割平面で分割された分割除去領域について、大気に触れる面である開放面部の数を取得し、開放面部の数の最も多い領域を除去領域として決定する(S106)。 Next, the machining order determination unit 104 acquires the number of open surface portions, which are surfaces that come into contact with the atmosphere, for the division removal region divided by the division plane determined by the division plane determination unit 102, and has the largest number of open surface portions. A large number of regions are determined as removal regions (S106).

具体的には、図7に示すように、最初に決定される分割平面により分割される領域であるSRV1〜SRV4の開放面部の数をそれぞれ算出する。本実施形態の場合、SRV1の開放面部の数が5と最も大きいので、加工順序の優先順位は最も高くなる。つまりSRV1が最初に加工されることになる。 Specifically, as shown in FIG. 7, the number of open surface portions of SRV1 to SRV4, which are regions divided by the first divided plane, is calculated. In the case of this embodiment, since the number of open surface portions of SRV1 is the largest at 5, the priority of the machining order is the highest. That is, SRV1 is processed first.

次に、SRV2とSRV4との開放面部の数は4であって、同じであるので、加工順序は、図8に示すように、二つの場合に分かれる。 Next, since the number of open surface portions of SRV2 and SRV4 is 4 and is the same, the machining order is divided into two cases as shown in FIG.

次に、SRV2の加工順序の決め方を示す。図9の上段に示すように、SRV2は、微小加工領域Pに分けられる。P1〜P3の開放面部の数は、図9中の括弧内に数字で示されている(以下、開放面部の数を記載する場合には、同様に図の中に記載する。)。同図に示すように、P1の開放面部の数が最も大きいので、P1の加工順序が最優先となる。次の加工順を決めるには、図9の下段に示すように、P1を加工除去したと想定し、加工後のP2、P3の開放面部の数を取得する。この場合には、P2の開放面部の数とP3の開放面部の数とは同じであり、SRV2での加工順序は、図10に示すように、二つの場合に分かれる。 Next, how to determine the processing order of SRV2 will be shown. As shown in the upper part of FIG. 9, SRV2 is divided into a micromachining region P. The number of open surface portions of P1 to P3 is indicated by a number in parentheses in FIG. 9 (hereinafter, when the number of open surface portions is described, it is also described in the figure). As shown in the figure, since the number of open surface portions of P1 is the largest, the processing order of P1 has the highest priority. In order to determine the next processing order, as shown in the lower part of FIG. 9, it is assumed that P1 is processed and removed, and the number of open surface portions of P2 and P3 after processing is acquired. In this case, the number of open surface portions of P2 and the number of open surface portions of P3 are the same, and the processing order in SRV2 is divided into two cases as shown in FIG.

SRV3は、微小加工領域が一つであり、そのままになる。 SRV3 has one micromachining area and remains as it is.

SRV4は、図11に示すように、微小加工領域としてはP5〜P10に分けられる。微小加工領域の加工順序は、SRV2で行った同様に開放面部の数の降順で決定すると、その結果は、図12に示す。複数の加工順序の場合が算出される。 As shown in FIG. 11, SRV4 is divided into P5 to P10 as micromachining regions. The machining order of the micromachining region is determined in descending order of the number of open surface portions in the same manner as in SRV2, and the result is shown in FIG. The case of multiple machining orders is calculated.

以上の様に、総除去領域201のSRV1〜SRV4までに加工順序は、図8に記載の加工順序の中に、図10に示すSRV2の加工順序と、図12に示すSRV4の加工順序導入することにより得られる加工順序は、複数の場合が発生し、これらを選択することができることになる。 As described above, the machining order of SRV1 to SRV4 of the total removal area 201 is the machining order of SRV2 shown in FIG. 10 and the machining order of SRV4 shown in FIG. 12 in the machining order shown in FIG. As a result, a plurality of cases occur in the processing order obtained, and these can be selected.

複数の場合からどの加工順序を選択するかは、色々な方法があるが、ここでは、加工時間や工具交換回数に関するシミュレーションを行うことにより決定してもよく、シミュレーションの結果は、結果提示部106で表示されてもかまわない。 There are various methods for selecting which machining order is selected from a plurality of cases, but here, it may be determined by performing a simulation regarding the machining time and the number of tool changes, and the result of the simulation is the result presentation unit 106. It does not matter if it is displayed as.

加工機等を操作する作業者は、結果提示部106により提示された結果に基づき加工に適した加工順序を選択できる。例えば、最短の加工時間を選択したい作業者は、結果提示部106で示さる加工時間が最も短くなる加工順序を選択できる。同様に、工具の交換回数を最も少なくしたい作業者は、それに適した加工順序を選択できる。両方に関して、希望する条件を選びたい場合には、その希望する条件の加工順序を選択できる。 The operator who operates the processing machine or the like can select a processing order suitable for processing based on the result presented by the result presenting unit 106. For example, a worker who wants to select the shortest machining time can select the machining order in which the machining time shown by the result presentation unit 106 is the shortest. Similarly, the operator who wants to minimize the number of tool changes can select a suitable machining sequence. If you want to select the desired conditions for both, you can select the machining order of the desired conditions.

次に、加工順序が決定された分割除去領域に加工制約条件が含まれているか否かを順序調整部105が判断し(S108)、加工制約条件が含まれている場合は、順序が調整される(S109)。 Next, the order adjusting unit 105 determines whether or not the machining constraint condition is included in the division removal region for which the machining order is determined (S108), and if the machining constraint condition is included, the order is adjusted. (S109).

なお、図13に示すように、加工順序が決定されてしまった場合、加工順序の5番目に該当する領域は、図2に示すように、当該領域の両側に同軸上のドリル加工が施される対象物が存在するため、加工順序が最後になるように調整されてもよい。すなわち、加工制約条件の中で、順序を入れ替える方が、妥当と思われる場合には、順序が調製されることになる。 As shown in FIG. 13, when the machining order has been determined, the fifth region of the machining order is coaxially drilled on both sides of the region as shown in FIG. Since there is an object to be processed, the processing order may be adjusted to be the last. That is, if it seems more appropriate to change the order within the machining constraints, the order will be prepared.

以上により、分割除去領域の加工順序が決定される。 From the above, the processing order of the divided removal region is determined.

分割除去領域とその加工順序が決定されると、それぞれの分割除去領域に対して使用可能な工具を工具リストを元に選定し、工具径路を生成してもよい。 Once the split removal region and its machining order are determined, tools that can be used for each split removal region may be selected based on the tool list to generate a tool path.

本実施形態の工程設計支援システム100、および、工程設計支援方法によれば、素材の形状と対象物の形状の差分である総除去領域を全ての平面で分割し、細分化した後再構成する必要がなくなり、短時間で切削加工に好適な除去領域である分割除去領域と、好適な加工順序とを提示することが可能となる。例えば、本実施形態の工程設計支援システム100、および、工程設計支援方法によれば、提示する分割除去領域の数を従来の方法に比べて二桁程度減少させることが可能となる。 According to the process design support system 100 of the present embodiment and the process design support method, the total removal region, which is the difference between the shape of the material and the shape of the object, is divided by all planes, subdivided, and then reconstructed. It becomes unnecessary, and it becomes possible to present a divided removal region, which is a removal region suitable for cutting, and a suitable machining order in a short time. For example, according to the process design support system 100 and the process design support method of the present embodiment, the number of divided and removed regions to be presented can be reduced by about two orders of magnitude as compared with the conventional method.

なお、本願発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本願発明の実施の形態としてもよい。また、上記実施の形態に対して本願発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本願発明に含まれる。 The invention of the present application is not limited to the above-described embodiment. For example, another embodiment realized by arbitrarily combining the components described in the present specification and excluding some of the components may be the embodiment of the present invention. In addition, the present invention also includes modifications obtained by making various modifications that can be conceived by those skilled in the art within the scope of the gist of the present invention, that is, the meaning indicated by the words described in the claims. Is done.

例えば、上記実施の形態では、素材データと対象物データから直ちに仮平面を抽出し、分割平面を決定したが、対象物データの各軸の最小値・最大値を含む各軸に直角な平面で素材データを分割し、その平面より外側の領域を除去する前処理部を備えても構わない。この場合、前処理部によって残されたものが新たな素材データとなる。 For example, in the above embodiment, a temporary plane is immediately extracted from the material data and the object data to determine the division plane, but the plane is perpendicular to each axis including the minimum and maximum values of each axis of the object data. A preprocessing unit that divides the material data and removes a region outside the plane may be provided. In this case, what is left by the preprocessing unit becomes new material data.

また、図14に示すように、微小加工領域に斜めに加工を行う必要のある面が存在場合、微小加工領域は、P11〜P13に分かれる。この場合の加工順序の選び方は、SRV2やSRV4で説明を行った内容と同じであり、開放面部の数を取得し、開放面部の数の阿合微小加工領域から加工順序を決定する。この場合の加工順序は、P11→P12→P13の場合とP11→P13→P12の場合二つの加工順序が選択できる。 Further, as shown in FIG. 14, when there is a surface that needs to be processed diagonally in the micromachining region, the micromachining region is divided into P11 to P13. The method of selecting the machining order in this case is the same as that described in SRV2 and SRV4, the number of open surface portions is acquired, and the machining order is determined from the Aai micromachining region of the number of open surface portions. In this case, two machining orders can be selected for the case of P11 → P12 → P13 and the case of P11 → P13 → P12.

また、除去領域が決定される度に加工制約条件の有無を判断し、加工順序の調整を行うものとして説明したが、加工順序を調整するタイミングは特に限定されるものではない。例えば、全ての除去領域の順序が決まった後、順序調整部105が加工順序を調整してもかまわない。また、順序調整部105は、分割平面によっては決定することができない領域、例えば、図2に示すようなY軸に沿ってドリルによって穿設される孔などを加工順序に挿入することも可能である。 Further, although it has been described that the presence or absence of the machining constraint condition is determined every time the removal region is determined and the machining order is adjusted, the timing for adjusting the machining order is not particularly limited. For example, after the order of all the removal regions is determined, the order adjusting unit 105 may adjust the machining order. Further, the order adjusting unit 105 can also insert a region that cannot be determined depending on the dividing plane, for example, a hole drilled along the Y axis as shown in FIG. 2 in the machining order. is there.

また、工程設計支援システム100は、素材の形状を示す情報である形状データと対象部の形状を示す情報である対象物データから一塊の総除去領域を抽出する総除去領域抽出部を備えても構わない。 Further, the process design support system 100 may include a total removal area extraction unit that extracts a mass of total removal areas from shape data that is information indicating the shape of the material and object data that is information indicating the shape of the target portion. I do not care.

また、隣接する分割除去領域を結合して加工作業の基本単位領域となるような分割除去領域を再構成する除去領域再構成部を備えても構わない。 Further, it may be provided with a removal area reconstructing unit for reconstructing a divisional removal area that is a basic unit area for machining work by combining adjacent divisional removal areas.

また、実施の形態では、図中のXZ平面に平行な仮平面と、XY平面に平行な仮平面で総除去領域201を分割する場合を説明したが、この例示は、図中ZY平面に平行な仮平面で総除去領域201を分割することや、斜めに配置される仮平面を否定するものではない。 Further, in the embodiment, the case where the total removal region 201 is divided by the temporary plane parallel to the XZ plane in the drawing and the temporary plane parallel to the XY plane has been described, but this example is parallel to the ZZ plane in the drawing. It does not mean that the total removal area 201 is divided by a temporary plane, or that the temporary plane arranged diagonally is denied.

本願発明は、NC加工機などを用いて対象物を製造する際における加工工程の設計などに利用可能である。 The invention of the present application can be used for designing a processing process when manufacturing an object using an NC processing machine or the like.

100 工程設計支援システム
101 問合せ部
102 分割平面決定部
103 次総除去領域決定部
104 加工順序決定部
105 順序調整部
106 結果提示部
200 素材
201 総除去領域
202 対象物
203 仮平面
300 CADソフトウエア
301 CAMソフトウエア
100 Process design support system 101 Inquiry unit 102 Division plane determination unit 103 Next total removal area determination unit 104 Machining order determination unit 105 Order adjustment unit 106 Result presentation unit 200 Material 201 Total removal area 202 Object 203 Temporary plane 300 CAD software 301 CAM software

Claims (8)

素材の除去すべき領域の表面の平面部を含む平面で前記領域を分割し、分割された領域に基づき所定の形状の対象物を得るための加工工程の設計を支援する工程設計支援システムであって、
素材データと対象物データとに基づき得られる除去する一塊の領域である総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面について取得する問合せ部と、
前記分割数が3以上となる仮平面の一つを、前記総除去領域を分割する分割平面として決定する分割平面決定部と
を備える工程設計支援システム。
It is a process design support system that supports the design of a processing process for obtaining an object of a predetermined shape based on the divided region by dividing the region by a plane including a flat surface portion of the surface of the region to be removed from the material. hand,
The number of divisions, which is the number of temporary regions obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region, which is a mass region to be removed obtained based on the material data and the object data. The query part to acquire for multiple temporary planes and
A process design support system including a division plane determination unit that determines one of the temporary planes having three or more divisions as a division plane that divides the total removal region.
前記分割平面決定部により決定された分割平面によって分割される複数の分割除去領域の内、所定の条件を満たした一つの分割除去領域以外の領域の一つを次の総除去領域として決定する次総除去領域決定部をさらに備え、
前記問合せ部は、
前記次総除去領域決定部によって決定された総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面について取得し、
前記分割平面決定部は、
前記分割数が3以上となる仮平面の一つを次の分割平面として決定する
請求項1に記載の工程設計支援システム。
Of the plurality of division / removal regions divided by the division plane determined by the division plane determination unit, one of the regions other than one division / removal region satisfying a predetermined condition is determined as the next total removal region. Further equipped with a total removal area determination unit
The inquiry part
The number of divisions, which is the number of temporary regions obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region determined by the secondary total removal region determination unit, is acquired for a plurality of temporary planes. ,
The division plane determination unit
The process design support system according to claim 1, wherein one of the temporary planes having three or more divisions is determined as the next division plane.
前記分割平面決定部は、
前記分割数が最大となる仮平面を分割平面として決定する
請求項1または2に記載の工程設計支援システム。
The division plane determination unit
The process design support system according to claim 1 or 2, wherein the temporary plane having the maximum number of divisions is determined as the division plane.
前記分割平面決定部はさらに、
前記総除去領域を仮平面により分割して得られる分割数が全て2の場合、全ての仮平面を分割平面として決定する
請求項1〜3のいずれか一項に記載の工程設計支援システム。
The division plane determination unit further
The process design support system according to any one of claims 1 to 3, wherein when the total number of divisions obtained by dividing the total removal area by a temporary plane is all 2, all the temporary planes are determined as the division planes.
前記分割平面決定部により決定された分割平面で分割された分割除去領域について、開放面部の数を取得し、開放面部の数の最も多い領域を除去領域として決定し、決定された除去領域を除去した残りの分割除去領域について開放面部の数を取得し、開放面部の数の最も多い領域を次の除去領域として決定し、決定された除去領域の順番を加工順序とする加工順序決定部をさらに備える
請求項1〜4のいずれか一項に記載の工程設計支援システム。
For the divided removal region divided by the divided plane determined by the divided plane determination unit, the number of open surface portions is acquired, the region having the largest number of open surface portions is determined as the removal region, and the determined removal region is removed. The number of open surface portions is acquired for the remaining divided removal regions, the region having the largest number of open surface portions is determined as the next removal region, and the machining order determination portion in which the determined removal region order is the machining order is further added. The process design support system according to any one of claims 1 to 4.
前記分割除去領域についての加工制約条件に基づいて決定された加工順序を入れ替える順序調整部をさらに備える
請求項5に記載の工程設計支援システム。
The process design support system according to claim 5, further comprising an order adjusting unit that replaces the machining order determined based on the machining constraint conditions for the split removal region.
前記加工順序について、少なくとも加工時間や工具交換回数に関する情報を表示する結果提示部を有する請求項5または6に記載の工程設計支援システム。 The process design support system according to claim 5 or 6, further comprising a result presentation unit that displays information on at least the machining time and the number of tool changes for the machining sequence. 素材の除去すべき領域の表面の平面部を含む平面で前記領域を分割し、分割された領域に基づき所定の形状の対象物を得るための加工工程の設計を支援する工程設計支援方法であって、
素材データと対象物データとに基づき得られる除去する一塊の領域である総除去領域の表面の平面部を含む仮平面により前記総除去領域を分割して得られる仮領域の数である分割数を複数の仮平面についてそれぞれ問合せ、
前記分割数が3以上となる仮平面の一つを、前記総除去領域を分割する分割平面として決定する
工程設計支援方法。
It is a process design support method that supports the design of a processing process for obtaining an object having a predetermined shape based on the divided region by dividing the region by a plane including a flat surface portion of the surface of the region to be removed from the material. hand,
The number of divisions, which is the number of temporary regions obtained by dividing the total removal region by a temporary plane including a flat surface portion of the surface of the total removal region, which is a mass region to be removed obtained based on the material data and the object data. Inquire about multiple temporary planes, respectively,
A process design support method for determining one of the temporary planes having 3 or more divisions as a division plane for dividing the total removal region.
JP2016114701A 2016-06-08 2016-06-08 Process design support system and process design support method Active JP6777304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016114701A JP6777304B2 (en) 2016-06-08 2016-06-08 Process design support system and process design support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016114701A JP6777304B2 (en) 2016-06-08 2016-06-08 Process design support system and process design support method

Publications (2)

Publication Number Publication Date
JP2017217735A JP2017217735A (en) 2017-12-14
JP6777304B2 true JP6777304B2 (en) 2020-10-28

Family

ID=60658297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016114701A Active JP6777304B2 (en) 2016-06-08 2016-06-08 Process design support system and process design support method

Country Status (1)

Country Link
JP (1) JP6777304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003996A (en) * 2018-06-27 2020-01-09 国立大学法人神戸大学 Process designing system, processing device, and process designing method
JP7362104B2 (en) * 2019-06-28 2023-10-17 国立大学法人神戸大学 Production planning device, production planning program, and production planning method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905025B2 (en) * 1993-03-12 1999-06-14 三菱電機株式会社 Numerical control information creation apparatus and method
JP4512754B2 (en) * 2004-04-21 2010-07-28 財団法人新産業創造研究機構 Process design support system and process design support method
US7805215B2 (en) * 2006-08-01 2010-09-28 Mitsubishi Electric Corporation Programming device and programming method

Also Published As

Publication number Publication date
JP2017217735A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP2016517470A (en) Platform construction for additive manufacturing
JP4512754B2 (en) Process design support system and process design support method
CN102445922A (en) Method and device for composite machining
US10967572B2 (en) Build plates including conduits for additive manufacturing systems and methods of building components on build plates
Hosseini et al. Prediction of cutting forces in broaching operation
JP6777304B2 (en) Process design support system and process design support method
CN105190456A (en) Numerical-control-machining-program creation device
US6643560B2 (en) Data generating device, data generating method and data generating program
JP6829874B2 (en) Processing support system
CN111144026B (en) Data processing method and device of simulation software for path planning
TW201337484A (en) Processing program generating device, processing program generatingmethod and processing program generatingprogram
JP7127803B2 (en) Process design system and process order determination method
JP2006240183A (en) Method and apparatus for fabricating mold
US7319913B2 (en) Device and method for extracting unmachined shape
CN111837080B (en) Tool path generation method
JP7362104B2 (en) Production planning device, production planning program, and production planning method
JP4748049B2 (en) Method of determining the machining process
JP3220743B2 (en) Flat part / standing wall part dividing method and recording medium
JP2004291097A (en) Automatic design method for electric discharge machining electrode for metal mold, system, program, and storage medium
JP7067272B2 (en) How to create a work drawing automatically
JP4276127B2 (en) Machining tool selection device, machining tool selection method, and program
JP7345821B2 (en) Machining simulation system and machining simulation program
JP5253829B2 (en) CAD system and CAM machining information generation method
Sarhan et al. COMPUTER AIDED PROCESS PLANNING FOR PRISMATIC PARTS
JP2020003996A (en) Process designing system, processing device, and process designing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6777304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250