JP6776569B2 - How to measure the amount of deformation of a tire bladder - Google Patents

How to measure the amount of deformation of a tire bladder Download PDF

Info

Publication number
JP6776569B2
JP6776569B2 JP2016057088A JP2016057088A JP6776569B2 JP 6776569 B2 JP6776569 B2 JP 6776569B2 JP 2016057088 A JP2016057088 A JP 2016057088A JP 2016057088 A JP2016057088 A JP 2016057088A JP 6776569 B2 JP6776569 B2 JP 6776569B2
Authority
JP
Japan
Prior art keywords
bladder
tire
amount
deformation
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057088A
Other languages
Japanese (ja)
Other versions
JP2017170682A (en
Inventor
松田 健太
健太 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2016057088A priority Critical patent/JP6776569B2/en
Publication of JP2017170682A publication Critical patent/JP2017170682A/en
Application granted granted Critical
Publication of JP6776569B2 publication Critical patent/JP6776569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、タイヤ製造過程において使用されるブラダーの変形量を測定する方法に関し、更に詳しくは、電気抵抗の変化を利用してブラダーの変形挙動を観測することを可能にしたタイヤ用ブラダーの変形量測定方法に関する。 The present invention relates to a method for measuring the amount of deformation of a bladder used in a tire manufacturing process, and more specifically, a deformation of a bladder for a tire that makes it possible to observe the deformation behavior of the bladder by utilizing a change in electrical resistance. Regarding the quantity measurement method.

空気入りタイヤの加硫工程では、未加硫タイヤを金型内に投入し、そのタイヤの内面に圧力を掛けることで最終的な製品形状を得るようにプレス成型が行われている。一般的にタイヤ内側からの圧力は袋状のゴム膜からなるブラダーを膨張させることで与えられる。ここで、ブラダーの形状や厚さなどがタイヤ形状に適合していない場合、内圧がタイヤ側にきちんと伝わらず、タイヤ表面の欠陥や発泡などの加硫故障がタイヤの各部に生じてしまう。そのため、ブラダーは加硫されるタイヤの形状、サイズ、構造などの複数の要素を基にして設計される。 In the vulcanization process of a pneumatic tire, an unvulcanized tire is put into a mold and press molding is performed so as to obtain a final product shape by applying pressure to the inner surface of the tire. Generally, the pressure from the inside of the tire is given by expanding the bladder made of a bag-shaped rubber film. Here, if the shape and thickness of the bladder do not match the tire shape, the internal pressure is not properly transmitted to the tire side, and vulcanization failures such as defects on the tire surface and foaming occur in each part of the tire. Therefore, the bladder is designed based on a plurality of factors such as the shape, size, and structure of the tire to be vulcanized.

しかしながら、ブラダーをタイヤに対して適正な形状に設計したとしても、ブラダーを要因とする加硫故障が生じる場合がある。例えば、ブラダーの膨張過程においてブラダーの各部位がタイヤ内面に対して順次接触し、その接触する順序に起因してブラダーの膨らみ方が不均一になると、加硫故障が生じ易くなる(例えば、特許文献1,2参照)。 However, even if the bladder is designed to have an appropriate shape for the tire, a vulcanization failure due to the bladder may occur. For example, in the expansion process of the bladder, each part of the bladder sequentially contacts the inner surface of the tire, and if the expansion of the bladder becomes non-uniform due to the contact order, a vulcanization failure is likely to occur (for example, patent). Refer to Documents 1 and 2).

このようにタイヤ用ブラダーの膨らみ方、即ち、歪み分布が不均一であると、それが製品タイヤの品質に対して直接的に悪影響を与えることになる。そのため、タイヤ製造過程においてブラダーの膨らみ方を観測することは重要である。ところが、ブラダーはタイヤの内側に配置されるため、タイヤの外側からブラダーの膨らみ方を目視により確認することはできない。そこで、タイヤ製造過程においてブラダーの変形挙動をリアルタイムで観測することを可能にする方法が求められている。 If the tire bladder swells in this way, that is, the strain distribution is non-uniform, it directly adversely affects the quality of the product tire. Therefore, it is important to observe how the bladder swells during the tire manufacturing process. However, since the bladder is arranged inside the tire, it is not possible to visually confirm how the bladder swells from the outside of the tire. Therefore, there is a demand for a method that enables real-time observation of the deformation behavior of the bladder in the tire manufacturing process.

特開2005−246630号公報Japanese Unexamined Patent Publication No. 2005-246630 特開2006−168128号公報Japanese Unexamined Patent Publication No. 2006-168128

本発明の目的は、電気抵抗の変化を利用してブラダーの変形挙動を観測することを可能にしたタイヤ用ブラダーの変形量測定方法を提供することにある。 An object of the present invention is to provide a method for measuring the amount of deformation of a bladder for a tire, which makes it possible to observe the deformation behavior of the bladder by utilizing a change in electrical resistance.

上記目的を達成するための本発明のタイヤ用ブラダーの変形量測定方法は、タイヤ製造過程において使用される円筒状のブラダーの変形量を測定する方法において、前記ブラダーの膜部の内表面に複数の電極を直に接着し、前記ブラダーの変形時に各電極間の電気抵抗を測定し、該電気抵抗の変化量に基づいて前記ブラダーの各電極間の局部的な変形量を検出することを特徴とするものである。 A method for measuring the amount of deformation of a bladder for a tire of the present invention for achieving the above object is a method for measuring the amount of deformation of a cylindrical bladder used in a tire manufacturing process, wherein a plurality of methods are used on the inner surface of the film portion of the bladder. The electrode is directly adhered , the electric resistance between the electrodes is measured when the bladder is deformed, and the local deformation amount between the electrodes of the bladder is detected based on the amount of change in the electric resistance. Is to be.

本発明では、ブラダーの膜部の内表面に複数の電極を設置し、ブラダーの変形時に各電極間の電気抵抗を測定し、電気抵抗の変化量に基づいてブラダーの各電極間の局部的な変形量を検出するので、タイヤ用ブラダーが未加硫タイヤの内側に挿入されていても、タイヤ製造過程におけるブラダーの変形挙動をリアルタイムで観測することが可能になる。そのため、ブラダーの変形挙動の測定結果に基づいてブラダーの形状を適正化することが可能となる。 In the present invention, a plurality of electrodes are installed on the inner surface of the film portion of the bladder, the electric resistance between each electrode is measured when the bladder is deformed, and the electric resistance is locally localized between the electrodes of the bladder based on the amount of change in the electric resistance. Since the amount of deformation is detected, even if the tire bladder is inserted inside the unvulcanized tire, the deformation behavior of the bladder in the tire manufacturing process can be observed in real time. Therefore, it is possible to optimize the shape of the bladder based on the measurement result of the deformation behavior of the bladder.

本発明において、電極はブラダーの軸方向の複数箇所かつ周方向の複数箇所に配置するこが好ましい。これにより、タイヤ用ブラダーの軸方向及び周方向の変形挙動を観測することができる。 In the present invention, it is preferable that the electrodes are arranged at a plurality of locations in the axial direction of the bladder and at a plurality of locations in the circumferential direction. This makes it possible to observe the deformation behavior of the tire bladder in the axial direction and the circumferential direction.

また、任意の電極とその周囲に位置する複数の他の電極との間の電気抵抗をそれぞれ測定することが好ましい。この場合、タイヤ用ブラダーの変形挙動をより少ない電極数で効率良く観測することができる。 Further, it is preferable to measure the electrical resistance between an arbitrary electrode and a plurality of other electrodes located around the arbitrary electrode. In this case, the deformation behavior of the tire bladder can be efficiently observed with a smaller number of electrodes.

本発明において、タイヤ用ブラダーは未加硫タイヤの加硫工程において使用されるものであることが好ましいが、未加硫タイヤの成形工程において使用されるものであっても良い。いずれの場合も、未加硫タイヤの内側に挿入されたブラダーの変形挙動をタイヤの外側から目視により観測することができないので、電気抵抗の変化を利用してブラダーの変形挙動を観測することは有意義である。 In the present invention, the tire bladder is preferably used in the vulcanization step of the unvulcanized tire, but may be used in the molding step of the unvulcanized tire. In either case, the deformation behavior of the bladder inserted inside the unvulcanized tire cannot be visually observed from the outside of the tire, so it is not possible to observe the deformation behavior of the bladder using the change in electrical resistance. It is meaningful.

また、本発明はタイヤ内側に挿入されるブラダーに適用することが好ましいが、例えば、タイヤ製造過程においてカーカス部材をターンナップする際に使用されるブラダーにも適用することが可能である。 Further, the present invention is preferably applied to a bladder inserted inside a tire, but can also be applied to, for example, a bladder used when turning up a carcass member in a tire manufacturing process.

本発明の実施形態からなるタイヤ用ブラダーが加硫装置に組み込まれた状態を示す子午線断面図である。FIG. 5 is a meridional cross-sectional view showing a state in which a tire bladder according to an embodiment of the present invention is incorporated in a smelting apparatus. 本発明の実施形態からなるタイヤ用ブラダーを示す子午線断面図である。It is a meridian cross-sectional view which shows the bladder for a tire which comprises embodiment of this invention. 図2のタイヤ用ブラダーの要部を拡大して示す平面図である。It is an enlarged plan view which shows the main part of the bladder for tire of FIG. 本発明の実施形態からなるタイヤ用ブラダーの変形時に観測される電気抵抗の変化量(歪み)と内圧を示すグラフである。It is a graph which shows the change amount (strain) and the internal pressure of the electric resistance observed at the time of deformation of the tire bladder which concerns on embodiment of this invention.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明の実施形態からなるタイヤ用ブラダーが加硫装置に組み込まれた状態を示し、図2及び図3は本発明の実施形態からなるタイヤ加硫用ブラダーを示すものである。図1に示すように、ブラダー10はグリーンタイヤGの加硫工程において使用されるものである。このブラダー10は円筒状をなし、金型20内に投入されたグリーンタイヤGの内側に同軸的に挿入される。そして、ブラダー10をグリーンタイヤGの内側で膨らませることにより、グリーンタイヤGを金型20の成形面に対して押圧するように機能する。図1において、金型20は下型21、上型22及びセクター23から構成されている。また、ブラダー10の下端部は下型21と下側クランプリング24との間に把持され、ブラダー10の上端部は上側クランプリング25と補助リング26との間に把持されている。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a state in which a tire bladder according to an embodiment of the present invention is incorporated in a scouring apparatus, and FIGS. 2 and 3 show a tire brewing bladder according to an embodiment of the present invention. As shown in FIG. 1, the bladder 10 is used in the vulcanization step of the green tire G. The bladder 10 has a cylindrical shape and is coaxially inserted inside the green tire G inserted into the mold 20. Then, by inflating the bladder 10 inside the green tire G, the green tire G functions to press against the molding surface of the mold 20. In FIG. 1, the mold 20 is composed of a lower mold 21, an upper mold 22, and a sector 23. Further, the lower end of the bladder 10 is gripped between the lower mold 21 and the lower clamp ring 24, and the upper end of the bladder 10 is gripped between the upper clamp ring 25 and the auxiliary ring 26.

図2に示すように、ブラダー10は、円筒状に成形された膜部11と、該膜部11の軸方向の両端部に形成された一対のフランジ部12,12とを備えている。このブラダー10はゴム組成物から構成されているが、そのゴム組成物には加硫時の熱伝導性と強度を確保するために所定量のカーボンブラックが配合されている。そのため、ブラダー10は導電性を有している。カーボンブラックの配合量は特に限定されるものではないが、例えば、ゴム100重量部に対するカーボンブラックの配合量は20重量部〜80重量部の範囲内に設定すると良い。カーボンブラックの配合量を下限値以上とすることにより、カーボンブラックがゴム内でネットワークを形成し、電気抵抗を低減する効果が得られるようになる。また、カーボンブラックの配合量が上限値を超えると、ブラダーとしての本来の機能(伸縮性、柔軟性、耐久性)を保てなくなる恐れがある。 As shown in FIG. 2, the bladder 10 includes a film portion 11 formed in a cylindrical shape and a pair of flange portions 12, 12 formed at both ends of the film portion 11 in the axial direction. The bladder 10 is composed of a rubber composition, and the rubber composition contains a predetermined amount of carbon black in order to secure thermal conductivity and strength during vulcanization. Therefore, the bladder 10 has conductivity. The blending amount of carbon black is not particularly limited, but for example, the blending amount of carbon black with respect to 100 parts by weight of rubber may be set within the range of 20 parts by weight to 80 parts by weight. By setting the blending amount of carbon black to the lower limit value or more, the carbon black forms a network in the rubber, and the effect of reducing the electric resistance can be obtained. In addition, if the amount of carbon black blended exceeds the upper limit, the original functions (stretchability, flexibility, durability) of the bladder may not be maintained.

一方、図1〜図3に示すように、ブラダー10の膜部11の内表面には複数の電極13が間隔をおいて設置されている。より具体的には、複数の電極13は、ブラダー10の軸方向の複数箇所に並ぶように配列され、かつブラダー10の周方向の複数箇所に並ぶように配列されている。各電極13は導電性接着剤等によりブラダー10に対して接着されていても良く、或いは、ブラダー10に対して一体的に加硫接着されていても良い。図3に示すように、各電極13にはリード線14が接続され、そのリード線14がブラダー10の外部に引き出されている。なお、図1及び図2においてはリード線14の図示が省略されている。 On the other hand, as shown in FIGS. 1 to 3, a plurality of electrodes 13 are installed at intervals on the inner surface of the film portion 11 of the bladder 10. More specifically, the plurality of electrodes 13 are arranged so as to be arranged at a plurality of positions in the axial direction of the bladder 10 and arranged at a plurality of positions in the circumferential direction of the bladder 10. Each electrode 13 may be adhered to the bladder 10 with a conductive adhesive or the like, or may be integrally vulcanized and adhered to the bladder 10. As shown in FIG. 3, a lead wire 14 is connected to each electrode 13, and the lead wire 14 is led out to the outside of the bladder 10. Note that the lead wire 14 is not shown in FIGS. 1 and 2.

グリーンタイヤGを加硫する場合、金型20内にグリーンタイヤGを投入し、その内側でブラダー10を膨張させた状態でグリーンタイヤGの内外から加熱を行う。その際、ブラダー10の膜部11に設置された複数の電極13を利用して、ブラダー10の変形時に各電極13,13間の電気抵抗を測定し、該電気抵抗の変化量に基づいてブラダー10の各電極13,13間の局部的な変形量(歪み)を検出する。ブラダー10は均一材料(ゴム組成物)から成形されていて比較的電気を通し易い性質を有しており、ブラダー10の各部位の変形量が大きくなるほど当該部位の電気抵抗が大きくなるので、電気抵抗の変化量と変形量との間には相関性がある。このような特性を利用してブラダー10の局部的な変形量(歪み)を検出することができる。 When vulcanizing the green tire G, the green tire G is put into the mold 20 and heated from the inside and outside of the green tire G with the bladder 10 expanded inside the green tire G. At that time, using a plurality of electrodes 13 installed on the film portion 11 of the bladder 10, the electric resistance between the electrodes 13 and 13 is measured when the bladder 10 is deformed, and the bladder is based on the amount of change in the electric resistance. The amount of local deformation (distortion) between the electrodes 13 and 13 of 10 is detected. The bladder 10 is molded from a uniform material (rubber composition) and has a property of relatively easily conducting electricity. As the amount of deformation of each part of the bladder 10 increases, the electric resistance of the part increases. There is a correlation between the amount of change in resistance and the amount of deformation. The amount of local deformation (distortion) of the bladder 10 can be detected by utilizing such a characteristic.

例えば、図3においては、四角形の四隅に対応する位置A,B,C,Dとその中心にある位置Pにそれぞれ電極13が配置されており、位置P−A間の電気抵抗R1と、位置P−B間の電気抵抗R2と、位置P−C間の電気抵抗R3と、位置P−D間の電気抵抗R4とが経時的に測定されるようになっている。 For example, in FIG. 3, electrodes 13 are arranged at positions A, B, C, D corresponding to the four corners of the quadrangle and a position P at the center thereof, and the electric resistance R1 between the positions PA and the position. The electric resistance R2 between P and B, the electric resistance R3 between positions CC, and the electric resistance R4 between positions P and D are measured over time.

ここで、ブラダー10の変形時に観測される電気抵抗の変化量(歪み)と内圧の経時的な変化は図4のように表わされる。図4において、横軸は時間を示し、縦軸は電気抵抗の変化量(歪み)と内圧を示す。電気抵抗の変化量は各部位での電気抵抗の変形前の値と変形後の値との差又は変形前の値に対する変形後の値の変化率である。図4に示すように、ブラダー10の内圧が増加し、ブラダー10の変形量が大きくなるに連れて、位置P−A間、位置P−B間、位置P−C間及び位置P−D間の各部位の電気抵抗の変化量が増大することが判る。 Here, the amount of change (strain) in electrical resistance observed when the bladder 10 is deformed and the change in internal pressure over time are represented as shown in FIG. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the amount of change (strain) in electrical resistance and the internal pressure. The amount of change in electrical resistance is the difference between the value before deformation and the value after deformation of the electrical resistance at each part, or the rate of change of the value after deformation with respect to the value before deformation. As shown in FIG. 4, as the internal pressure of the bladder 10 increases and the amount of deformation of the bladder 10 increases, between positions PA, between positions P and B, between positions P and C, and between positions P and D. It can be seen that the amount of change in the electrical resistance of each part of the above increases.

このようにして得られるデータから、複数部位の歪みを比較することにより、どの部位が良く伸びているのか、或いは、伸びていないのかを判断することができる。その結果、ブラダー10の変形挙動の測定結果に基づいてブラダー10の形状を適正化することが可能となる。 From the data obtained in this way, it is possible to determine which part is well stretched or not stretched by comparing the strains of the plurality of parts. As a result, it is possible to optimize the shape of the bladder 10 based on the measurement result of the deformation behavior of the bladder 10.

また、リアルタイムでの観測が可能であることから、ブラダー10の各部位の電気抵抗の変化量(歪み)とブラダー10の内圧とを突き合わせることにより、ブラダー10又はグリーンタイヤGの変形がいつ完了したのか、各部位の歪みの時系列比較(例えば、位置P−Cの部位は変形が終わり、位置P−Aの部位は変形が継続するような状況の把握)、どのくらいの内圧で変形が完了したのか、という情報を得ることができる。このような情報は加硫工程におけるフィードバックとして有効に活用することができる。 In addition, since real-time observation is possible, when the deformation of the bladder 10 or the green tire G is completed by comparing the amount of change (distortion) in the electrical resistance of each part of the bladder 10 with the internal pressure of the bladder 10. Time-series comparison of the strain of each part (for example, grasping the situation where the part at position CC finishes the deformation and the part at position PA continues to deform), how much internal pressure is required to complete the deformation You can get information about whether you did it. Such information can be effectively used as feedback in the vulcanization process.

上述のように電極13をブラダー10の軸方向の複数箇所かつ周方向の複数箇所に配置した場合、ブラダー10の軸方向及び周方向の変形挙動を観測することができる。これにより、グリーンタイヤGに付与されるタイヤ軸方向及びタイヤ周方向の変形挙動を容易に把握することができる。 When the electrodes 13 are arranged at a plurality of axial directions and a plurality of circumferential directions of the bladder 10 as described above, the deformation behavior of the bladder 10 in the axial direction and the circumferential direction can be observed. As a result, the deformation behavior of the green tire G in the tire axial direction and the tire circumferential direction can be easily grasped.

また、任意の電極13(例えば、位置Pの電極)とその周囲に位置する複数の他の電極(例えば、位置A〜Dに電極)との間の電気抵抗(R1〜R4)をそれぞれ測定するようにした場合、ブラダー10の変形挙動をより少ない数の電極13によって効率良く観測することができる。 Further, the electrical resistance (R1 to R4) between an arbitrary electrode 13 (for example, an electrode at position P) and a plurality of other electrodes (for example, electrodes at positions A to D) located around the arbitrary electrode 13 is measured. When this is done, the deformation behavior of the bladder 10 can be efficiently observed with a smaller number of electrodes 13.

10 ブラダー
11 膜部
12 フランジ部
13 電極
14 リード線
20 金型
G グリーンタイヤ
10 Bladder 11 Membrane 12 Flange 13 Electrode 14 Lead wire 20 Mold G Green tire

Claims (3)

タイヤ製造過程においてタイヤ内側に挿入される円筒状のブラダーの変形量を測定する方法において、前記ブラダーの膜部の内表面に複数の電極を直に接着し、前記ブラダーの変形時に各電極間の電気抵抗を測定し、該電気抵抗の変化量に基づいて前記ブラダーの各電極間の局部的な変形量を検出することを特徴とするタイヤ用ブラダーの変形量測定方法。 In a method of measuring the amount of deformation of a cylindrical bladder inserted inside a tire in the tire manufacturing process, a plurality of electrodes are directly adhered to the inner surface of the film portion of the bladder, and between the electrodes when the bladder is deformed. A method for measuring the amount of deformation of a bladder for tires, which comprises measuring the electric resistance and detecting the amount of local deformation between each electrode of the bladder based on the amount of change in the electric resistance. 前記電極を前記ブラダーの軸方向の複数箇所かつ周方向の複数箇所に配置することを特徴とする請求項1に記載のタイヤ用ブラダーの変形量測定方法。 The method for measuring the amount of deformation of a tire bladder according to claim 1, wherein the electrodes are arranged at a plurality of locations in the axial direction and a plurality of locations in the circumferential direction of the bladder. 任意の電極とその周囲に位置する複数の他の電極との間の電気抵抗をそれぞれ測定することを特徴とする請求項1又は2に記載のタイヤ用ブラダーの変形量測定方法。 The method for measuring the amount of deformation of a tire bladder according to claim 1 or 2, wherein the electrical resistance between an arbitrary electrode and a plurality of other electrodes located around the arbitrary electrode is measured, respectively.
JP2016057088A 2016-03-22 2016-03-22 How to measure the amount of deformation of a tire bladder Active JP6776569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057088A JP6776569B2 (en) 2016-03-22 2016-03-22 How to measure the amount of deformation of a tire bladder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057088A JP6776569B2 (en) 2016-03-22 2016-03-22 How to measure the amount of deformation of a tire bladder

Publications (2)

Publication Number Publication Date
JP2017170682A JP2017170682A (en) 2017-09-28
JP6776569B2 true JP6776569B2 (en) 2020-10-28

Family

ID=59969989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057088A Active JP6776569B2 (en) 2016-03-22 2016-03-22 How to measure the amount of deformation of a tire bladder

Country Status (1)

Country Link
JP (1) JP6776569B2 (en)

Also Published As

Publication number Publication date
JP2017170682A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
US10022928B2 (en) Measuring tire pressure in a tire mold
JP6776569B2 (en) How to measure the amount of deformation of a tire bladder
JP5787732B2 (en) Tire vulcanizing bladder
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP5701565B2 (en) Tire vulcanization bladder
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP6912366B2 (en) How to make a pneumatic tire
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
CN106599413B (en) Tire bead parameter design method based on tire bead pressure
JP4687401B2 (en) Test method for evaluating thermal degradation of pneumatic tires
JP7475136B2 (en) TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
CN113366295B (en) Method and device for checking the electrical conductivity of a tyre for vehicle wheels
JP4857900B2 (en) Tire vulcanization method
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
JP4853146B2 (en) Tire vulcanization method
JP2007168208A (en) Vulcanization apparatus for tire
JP6592342B2 (en) Rubber entrapping method, apparatus, and program for tire vulcanizer
JP2015168122A (en) Bladder for tire vulcanization and method for measuring distortion of bladder for tire vulcanization
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
JP2017227544A (en) Tire vulcanization bladder rubber composition and evaluation method thereof
WO2019116627A1 (en) Pneumatic tire
JP6489920B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2015116738A (en) Pneumatic tire manufacturing method and vulcanizer
JP2017100297A (en) Tire vulcanizing bladder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6776569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250