JP6775070B1 - 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法 - Google Patents

発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法 Download PDF

Info

Publication number
JP6775070B1
JP6775070B1 JP2019138072A JP2019138072A JP6775070B1 JP 6775070 B1 JP6775070 B1 JP 6775070B1 JP 2019138072 A JP2019138072 A JP 2019138072A JP 2019138072 A JP2019138072 A JP 2019138072A JP 6775070 B1 JP6775070 B1 JP 6775070B1
Authority
JP
Japan
Prior art keywords
condensate
control
power plant
valve
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138072A
Other languages
English (en)
Other versions
JP2021021361A (ja
Inventor
和宏 堂本
和宏 堂本
孝裕 竹友
孝裕 竹友
道男 佐々木
道男 佐々木
尚 三田
尚 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2019138072A priority Critical patent/JP6775070B1/ja
Priority to KR1020227001608A priority patent/KR20220019829A/ko
Priority to PCT/JP2020/028090 priority patent/WO2021020207A1/ja
Priority to TW109124738A priority patent/TWI772845B/zh
Application granted granted Critical
Publication of JP6775070B1 publication Critical patent/JP6775070B1/ja
Publication of JP2021021361A publication Critical patent/JP2021021361A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】負荷増加要求時に、発電プラントの出力を良好な応答性で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供する。【解決手段】蒸気発生器、タービン、復水器、復水調節弁、加熱器及び抽気弁を備える発電プラントの制御装置に関する。制御装置は、発電プラントに対する負荷指令値の増加時、復水調節弁の開度を絞る復水絞り制御と、蒸気発生器の負荷を増加させる負荷増加制御とを実施する。復水絞り制御では、負荷指令値の変化率に基づいて設定される開度変化率で復水調節弁及び抽気弁の開度が制御される。【選択図】図4

Description

本開示は、発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法に関する。
電力系統には、電力需要に応じた電力の安定供給が要求される。近年、環境意識の高まりに伴って再生エネルギの導入が進んでいるが、再生エネルギは気象条件の影響を受けて変動しやすいことから、従来の発電プラント(例えば火力発電プラントやコンベンショナル発電プラントなど)が付加調整力を向上することで、電力の安定供給の役割を果たすことが期待されている。例えば特許文献1には、火力発電プラントやコンベンショナル発電プラントなどに利用可能な循環式ボイラシステムが開示されている。
再生エネルギの導入が進んだ電力系統では、例えば太陽光発電の出力が低下し、且つ、電力需要が増加する夕方の時間帯のような条件下において、他の発電プラントに対する負荷要求が大きく増加することがある。そのため他の発電プラントでは、このような負荷要求増加に対応すべく、プラント出力を追従させることが求められる。発電プラントでは負荷指令値を受けてから出力に反映させるまでに少なからずタイムラグが生じてしまう。例えば、石炭を燃料とする石炭焚きボイラでは、石炭を微粉炭機で粉砕するプロセスがある為、粉砕された石炭が火炉へ投入されるまでの負荷変化初期は、負荷増加要求に対して実出力が遅れてしまう。
これに対して特許文献1では、負荷要求の増大時に、ボイラなどの蒸気発生器のタービン抽気弁及び脱気器水位調整弁を一定開度まで絞り込むことで、発電機出力を比較的に短時間で増加することが開示されている。これにより、負荷要求増大に対して蒸気発生器に対する燃料投入量の増加だけで対応する場合に比べて、タービンの強度を上げることなく、応答性の向上が可能とされている。
特開2013−53531号公報
上記特許文献では、蒸気発生器のタービン抽気弁及び脱気器水位調整弁を一定開度まで絞り込むことで、負荷要求の増大に対応している。しかしながら、このようなタービン抽気弁及び脱気器水位調整弁の絞り込みは発電機出力を急激に増加させるため、負荷要求の変動に対して過剰になってしまうおそれがある(すなわち発電機出力が一時的に負荷指令値を超えてしまうおそれがある)。
本開示の少なくとも一態様は上述の事情に鑑みなされたものであり、負荷要求増加時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供することを目的とする。
本開示の一態様に係る発電プラントの制御装置は上記課題を解決するために、
蒸気を生成可能に構成された蒸気発生器と、
前記蒸気を用いて駆動可能に構成されたタービンと、
前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
前記抽気の流量を調整可能に構成された抽気弁と、
を備える発電プラントの制御装置であって、
前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成される。
本開示の一態様に係る発電プラントの制御方法は上記課題を解決するために、
蒸気を生成可能に構成された蒸気発生器と、
前記蒸気を用いて駆動可能に構成されたタービンと、
前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
前記抽気の流量を調整可能に構成された抽気弁と、
を備える発電プラントの制御方法であって、
前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される。
本開示の少なくとも一態様によれば、負荷増加要求時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供できる。
本開示の一態様に係る発電プラントの全体構成図である。 図1の制御装置の制御フロー図である。 フィルタが偏差に対して適用するフィルタリング処理の特性関数の一例である。 復水絞り制御による発電機出力増加メカニズムを工程毎に示すフローチャートである。 スピルオーバー制御における復水排出弁に関する制御フロー図である。 発電プラントの負荷応答制御を工程毎に示すフローチャートである。 負荷応答制御時における負荷指令値と発電プラントの出力推移とを関連付けて示すタイミングチャートである。
以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
<発電プラントの構成>
図1は本開示の一態様に係る発電プラント1の全体構成図である。発電プラント1は、蒸気を生成可能に構成された蒸気発生器2を備える。蒸気発生器2は、給水に対して熱量を付与することにより蒸気を生成可能な装置である。蒸気発生器2は、例えば燃料を燃焼させることで発生させた熱量を用いて給水から蒸気を生成可能なボイラ装置である。より具体的には、ボイラ装置は、石炭を微粉炭機(不図示)で粉砕して火炉で燃焼することで蒸気を生成可能なコンベンショナルボイラである。ボイラ装置はドラム式ボイラであってもよいし、貫流式ボイラであってもよい。
蒸気発生器2で生成された蒸気は、蒸気供給路4を介してタービン6に供給される。タービン6は蒸気発生器2で生成された高温高圧の蒸気によって回転駆動される。図1では、タービン6は、上流側に配置された高圧タービン6aと、下流側に配置された2つの低圧タービン6b1、6b2と、を含む。高圧タービン6aと2つの低圧タービン6b1、6b2とは互いに直列に接続される。2つの低圧タービン6b1、6b2は互いに並列に接続される。蒸気発生器2で生成された蒸気は、まず上流側にある高圧タービン6aを駆動し、その後、下流側にある低圧タービン6b1、6b2を駆動する。
蒸気によって駆動された各タービン6の回転エネルギは、タービン6の出力軸3に連結された発電機5に入力される。発電機5では、タービン6から入力される運動エネルギが電気エネルギに変換される。発電機5で発生された電気エネルギは、例えば所定の経路を介して電力系統(不図示)に供給される。
尚、図1では発電機5にはタービン6のうち低圧タービン6b1,6b2の出力軸3のみが接続されている場合を例示しているが、タービン6のうち高圧タービン6aの出力軸のみが発電機5に接続されていてもよいし、高圧タービン6aの出力軸と低圧タービン6b1、6b2の出力軸とを共通の軸として発電機5に同軸接続されていてもよい。
蒸気発生器2及びタービン6を接続する蒸気供給路4には、蒸気発生器2からタービン6に供給される蒸気の流量を調整するための蒸気弁8(主蒸気弁)が設けられる。蒸気弁8の開度は、後述の制御装置100からの制御信号によって制御可能である。
タービン6で仕事を終えた蒸気は、下流側に配置された復水器10に供給される。復水器10は、タービン6から排出された蒸気を凝縮することにより復水を生成可能に構成される。具体的には、復水器10は、冷却水と熱交換することにより、蒸気を凝縮し、復水を生成する。復水器10で生成された復水は、復水器10が有する第1復水タンク12に貯留される。
第1復水タンク12には、復水排出ライン14を介して第2復水タンク16が接続される。復水器10で生成された復水は第1復水タンク12に貯留される。第1復水タンク12には適正な復水の基準貯留レベルが設定されており、復水の貯留レベルが基準貯留レベルを超えた場合には、第1復水タンク12に貯留される復水の一部が復水排出ライン14を介して第2復水タンク16に送られることで、第1復水タンク12の復水レベルが適正に維持されるように構成される。復水排出ライン14には、復水排出ライン14を流れる復水の流量を調整可能に構成された復水排出弁27が設けられる。
復水器10で生成された復水は、復水ライン22を介して蒸気発生器2に戻される。復水ライン22には、復水ライン22を流れる復水の流量を調整するための復水調節弁23が設けられる。復水調節弁23は、通常時には上流側にある復水器10における復水レベルを適切に維持するために開度を制御されるが、後述する復水絞り制御では、積極的に開度を絞ることで、復水ライン22を流れる復水の流量を減少可能に構成されている。
また復水ライン22には、複数の加熱器24と、脱気器25とが設けられる。複数の加熱器24は、復水ライン22に沿って直列的に設けられており、復水ライン22を流れる復水をタービン6からの抽気と熱交換することにより昇温可能に構成される。タービン6からの抽気は、タービン6から延びる抽気ライン26を介して複数の加熱器24及び脱気器25にそれぞれ供給される。復水ライン22を流れる復水は、複数の加熱器24を通過することによって次第に加熱された後、蒸気発生器2に供給される。一方で、複数の加熱器24で復水と熱交換することで冷却された抽気は、復水ライン22に合流する。
抽気ライン26には、タービン6からの抽気の流量を調整するための抽気弁28が設けられる。抽気弁28の開度は、後述する制御装置100からの制御信号に基づいて開度を調整可能に構成される。抽気弁28の開度は、例えば、熱交換対象である復水ライン22の復水の流量に対応する抽気が加熱器24に供給されるように制御される。
脱気器25は復水ライン22を流れる復水に含まれる溶存酸素や炭酸ガスなどを除去するための装置である。
制御装置100は発電プラント1の制御ユニットであり、例えばコンピュータ等の電子演算装置からなるハードウェア構成を有する。制御装置100は、このようなハードウェア構成に対して、本開示の少なくとも一態様に係る制御方法を実行するためのプログラムがインストールされることで、本発明の少なくとも一態様に係る制御装置として機能可能に構成される。
制御装置100は、発電プラント1の各構成要素との間で制御信号を送受信することにより、発電プラント1を総合的に制御可能に構成される。このような発電プラント1の制御は、制御装置100が外部から取得する発電プラント1に対する負荷指令値に基づいて実施される。負荷指令値は、発電プラント1に要求される負荷に関する指令値であり、例えば電力系統における需給状態に応じて決定されてもよいし、発電プラント1のオペレータが手動設定することにより決定されてもよい。
<発電プラントの制御>
続いて上記構成を有する発電プラント1において制御装置100による具体的な制御内容について説明する。図2は図1の制御装置100の制御フロー図である。図2では制御装置100の内部が機能ブロック図として示されており、制御装置100は、蒸気弁制御部110と、蒸気発生器制御部120とを備える。蒸気弁制御部110は、入力信号に対応して蒸気弁8の開度指令値を出力する機能ブロックであり、蒸気発生器制御部120は、入力信号に対応して蒸気発生器2の制御パラメータである給水デマンド信号及び燃料デマンド信号を出力する機能ブロックである。
制御装置100には、発電機出力L(発電機5の出力)、負荷指令値Ld、蒸気圧力設定値Ps及び蒸気圧力値Pがそれぞれ入力される。発電機出力Lは、発電機5に設置された各種センサに基づいて取得可能である。負荷指令値Ldは、発電プラント1に対して外部から入力される指令値である(例えば、電力系統の電力需給状態に応じて中央給電指令室から受信される)。蒸気圧力設定値Psは、蒸気発生器2で生成される蒸気圧力の目標値であり、制御装置100において設定される。蒸気圧力値Pは、蒸気供給路4に設置された圧力センサから取得可能である。
蒸気弁制御部110では、まず発電機出力L及び負荷指令値Ldが偏差演算器102に入力される。偏差演算器102は、発電機出力L及び負荷指令値Ldの偏差ΔL(=Ld−L)を演算して出力する。偏差演算器102から出力された偏差ΔLは、スイッチ104を介してPI制御器106に入力される。スイッチ104は、復水絞り制御が実行されているか否かに基づいて、第1制御ルートC1又は第2制御ルートC2を選択可能な切替器である。第1制御ルートC1は復水絞り制御が実行されていない通常制御時に選択される制御ルートであり、偏差ΔLがそのままPI制御器106に入力される。一方の第2制御ルートC2は復水絞り制御の実行時に選択される制御ルートであり、偏差ΔLがフィルタ108を介してPI制御器106に入力される。
フィルタ108は、入力値である偏差ΔLに対して所定のフィルタリング処理を実施する。ここで図3はフィルタ108が偏差ΔLに対して適用するフィルタリング処理の特性関数fの一例である。尚、図3では、第1制御ルートC1が選択された場合に対応する特性関数f‘が比較用に破線で示されている(第1制御ルートC1では偏差ΔLがそのままPI制御器106に入力されるため、実質的に傾き「1」、切片「0」の一次線形関数である特性関数f’を有することと同等である)。
特性関数fは負側領域(すなわちΔL<0)において特性関数f‘より出力値が大きくなるように設定される。より具体的には、図3に示すように、特性関数fは正側領域(ΔL≦0)及び負側領域の閾値未満領域(ΔL<ΔL1)では傾き「1」の線形特性を有するとともに、所定値ΔL1以上の負側領域(ΔL1≦ΔL<0)では傾き「0」でありデッドバンド特性を有する。
PI制御器106は、PI制御器106に入力される偏差ΔLに対応する蒸気弁開度指令値を出力することにより、蒸気弁8の開度をフィードバック制御する。スイッチ104によって第1制御ルートC1が選択されている場合には、PI制御器106は偏差演算器102で算出された偏差ΔLに対応する蒸気弁開度指令値を出力する。一方、スイッチ104によって第2制御ルートC2が選択されている場合には、PI制御器106は、フィルタ108によってフィルタリング処理が実施された後の偏差ΔLに対応する蒸気弁指令値が出力される。フィルタ108では、図3を参照して前述したように、発電機出力Lが負荷指令値Ldより大きな負側領域において偏差ΔLが通常時に比べて大きく出力されることで、蒸気弁8の絞り動作が抑制される。これは、詳しく後述するように、負荷指令値増加時に復水絞り制御が実行されることで偏差ΔLが負側領域になった際に、蒸気弁8の絞り動作が抑制されることを意味する。
一方で蒸気発生器制御部120では、蒸気圧力設定値Ps及び蒸気圧力値Pが偏差演算器122に入力される。偏差演算器122は、蒸気圧力設定値Ps及び蒸気圧力値Pの偏差ΔP(=Ps−P)を出力する。偏差演算器122から出力される偏差ΔPは、PI制御器124に入力される。PI制御器124は、偏差ΔPに対応する出力信号を出力する。PI制御器124から出力された出力信号には、加算器126にて負荷指令値Ldがフィードフォワード成分として加算されることで、蒸気発生器2の負荷追従性が向上されている。このような蒸気発生器2の制御信号は、蒸気発生器2の制御パラメータである給水デマンド信号Sw及び燃料デマンド信号Sfとして制御対象である蒸気発生器2に対して出力される。
<復水絞り制御>
続いて上記構成を有する発電プラント1における復水絞り制御について説明する。復水絞り制御は、復水調節弁23及び抽気弁28の開度を減少させることで、発電機5の出力を増加させるための制御である。図4は復水絞り制御による発電機出力増加メカニズムを工程毎に示すフローチャートである。
復水絞り制御では、まず復水調節弁23の開度が減少するように操作される(ステップS100)。このような復水調節弁23の絞り動作は、オペレータによってマニュアル的に実施されてもよいし、制御開始のためのトリガ信号を制御装置100で検知することで、制御装置100から復水調節弁23に対して制御信号を送信することで自動的に実施されてもよい。
復水調節弁23の開度が減少すると、復水調節弁23より下流側に位置する復水ライン22を流れる復水の流量が減少する(ステップS101)。ここで復水ライン22上に設けられた複数の加熱器24では、前述したように、復水ライン22を流れる復水の流量に対応するように抽気弁28の開度が制御されることにより、復水との熱交換に要する流量の抽気が導入される。そのためステップS101のように復水ライン22における復水の流量が減少すると、それに応じて抽気弁28の開度も減少するように制御される(ステップS102)。そして抽気弁28の開度が減少すると、加熱器24に供給される抽気が減少するため、タービン6を流れる蒸気量が増加し(ステップS103)、発電機出力Lが増加する(ステップS104)。
このように復水絞り制御を実行することによって、発電機5の出力を増加させることができる。ただし復水絞り制御による発電機出力増加効果は永続的なものではなく、復水絞り制御が開始されてから、ある限られた期間における一時的なものとなる。なぜならば、復水絞り制御によって復水流量が減少するために脱気器25における脱気器レベルが低下して蒸気発生器2への給水が継続できなくなるからである。その結果、復水絞り制御による発電機出力増加効果は一時的な期間を経過すると減少してしまう。
これに対して本開示の一態様では、負荷指令値Ldが増加した際には、発電機出力Lを永続的に増加させるために、(例えば発電プラント1のオペレータによる手動操作によって)負荷指令値Ldを増加させるとともに、復水絞り制御が実行された際に第2制御ルートC2を選択することにより、復水絞り時に蒸気弁8の絞りを抑制することで、復水絞り制御による発電機出力増加効果を得られやすくしている。第2制御ルートC2ではフィルタ108によるフィルタリング処理を行うことで、偏差ΔLが負側領域において第1制御ルートC1に比べて偏差ΔLが大きくなるように設定される。これにより、復水絞り制御の実行時に蒸気弁8が絞られにくくなるため、発電機出力増加効果が得られやすくなる。
<スピルオーバー制御>
続いて復水器10で生成された復水を、第1復水タンク12及び第2復水タンク16間でやりとりすることにより、第1復水タンク12における復水レベルを適切に維持するためのスピルオーバー制御について説明する。
スピルオーバー制御は、復水絞り制御が実行されていない通常時は、前述のように復水調節弁23の開度を調整することで行われる。つまり復水調節弁23の開度を調整することで復水ライン22への復水供給量を変化させることで、第1復水タンク12に貯留された復水のレベルが適切に管理される。一方で復水絞り制御の実行時には、復水調節弁23は発電機出力Lを増加させるために第1復水タンク12の復水レベルとは関係なく絞られるため、第1復水タンク12及び第2復水タンク16の間に設けられた復水排出弁27の開度を調整することにより、スピルオーバー制御が行われる。
図5はスピルオーバー制御における復水排出弁27に関する制御フロー図である。スピルオーバー制御では、第1復水タンク12に設置された復水レベルセンサ(不図示)で検出された復水レベルFと、第1復水タンク12に対応する適切な復水レベル目標値F*とが偏差演算部130に入力されることで、偏差ΔFが算出される。偏差ΔFはPI制御器132に入力されることで、偏差ΔFに対応する復水排出弁開度指令値が出力される。これにより、復水レベルが復水レベル目標値F*になるように(すなわち偏差ΔFがゼロになるように)フィードバック制御が行われる。
ここで復水レベル目標値F*は、復水レベル目標値設定部134によって設定される。復水レベル目標値設定部134では、加算器136において通常目標値F*1に加算目標値F*2を加算することで復水レベル目標値F*が設定される。加算目標値F*2は、復水絞り制御が実行中であるか否かに基づいて「0」又は「α(ゼロより大きな数)」のいずれか一方が選択される。具体的には、復水絞り制御が実行中である場合にはスイッチ138が加算目標値F*2として「0」を選択する。この場合、復水レベル目標値F*は、F*1+F*2(=0)=F*1となる。一方で復水絞り制御が実行されていない通常時には、スイッチ138は加算目標値F*2として「α」を選択する。この場合、復水レベル目標値F*は、F*1+F*2=F*1+αとなる。
このように復水レベル目標値F*は、復水絞り制御が実施されていない場合には、復水絞り制御が実施されている場合に比べてαの分だけ大きく設定される。これにより復水絞り制御が実施されていない場合には、復水排出弁27の開度が小さく固定され(好ましくは全閉状態に設定され)、復水排出弁27はスピルオーバー制御に関わらないようになる。一方で、復水絞り制御が実施されている場合には、復水レベル目標値F*にαが加算されないため、復水排出弁27の開度が復水レベル目標値F*になるようにフィードバック制御される。これにより、復水調節弁23が復水絞り制御によって絞られた状態にある場合においても、復水排出弁27の開度を調整することによってスピルオーバー制御を実施することが可能となる。
<負荷応答制御>
続いて発電プラント1に対する負荷指令値Ldが増加変動した場合における発電プラント1の負荷応答制御に関して具体的に説明する。図6は発電プラント1の負荷応答制御を工程毎に示すフローチャートであり、図7は負荷応答制御時における負荷指令値Ldと発電プラント1の出力推移とを関連付けて示すタイミングチャートである。ここでは図7に示すように、初期状態として第1定常値L1にあった負荷指令値Ldが時刻t1〜時刻t2において単調増加して、第2定常値L2まで増加するように変動した場合を例に説明する。
まず制御装置100は、発電プラントに入力される負荷指令値Ldを監視し(ステップS200)、負荷指令値Ldが増加したか否かを判定する(ステップS201)。ステップS201における判定は、例えば、時刻t1以前の第1定常値L1に対する負荷指令値Ldの変化量が判定用閾値に達したか否かに基づいて行われる。本開示の一態様では、例えば、制御装置100は、負荷指令値Ldの変化率(所定期間における負荷指令値Ldの変化量)が判定用閾値を超えた場合に、負荷指令値Ldが増加したと判定される。
負荷指令値Ldが増加したと判定された場合(ステップS201:YES)、復水絞り制御が実施される(ステップS202)。復水絞り制御は、前述したように復水調節弁23及び抽気弁28の開度を減少させることにより実施される。このような復水調節弁23の絞り動作は、例えばオペレータによってマニュアル的に行われてもよいし、制御装置100から制御信号を復水調節弁23及び抽気弁28に対して送信することにより自動的に行われてもよい。ステップS202で復水絞り制御が実施されると、図4を参照して前述したように、発電機5の出力が一時的に増加する。
続いて制御装置100は、蒸気発生器2の負荷増加制御を実施する(ステップS203)。復水絞り制御は前述のように一時的な発電機5の出力増加にとどまるため、蒸気発生器2の負荷増加制御を実施することで、復水絞り制御による出力増加効果が減少した後においても負荷指令値Ldの増加に追従することができる。
尚、図6では形式上の都合からステップS202を実施した後に、ステップS203を実施するように記載されているが、ステップS202及びS203は同時に実施されてもよい。すなわち復水絞り制御及び負荷増加制御は同時に実施されてもよい。前述のように負荷増加制御は復水絞り制御より応答性が低いため(負荷指令値Ldの変化開始時の初動が遅いため)、これらを同時に実施することが好ましい。また当該思想の範囲において、図6に示すようにステップS202の後にステップS203を実施することや、ステップS202の前にステップS203を実施することは否定されない。
このような復水絞り制御及び負荷増加制御は、負荷指令値Ldが第2定常値L2に到達するまで継続され(ステップS204:YES)、発電プラント1の出力が第2定常値L2に対して十分に収束した場合(ステップS205:YES)、終了する(END)。
ここで図7では、比較例として、時刻t1から復水絞り制御のみを実施した場合(第1比較例)、及び、復水絞り制御を実施せずに時刻t1から蒸気発生器2の負荷増加制御のみを実施した場合(第2比較例)が示されている。第1比較例では、復水絞り制御のみが実施されているため、第2比較例より応答性がよく、時刻t1の直後は発電プラント1の出力を一時的に増加できているが、このような復水絞り制御による出力増加効果は前述したように永続的には続かない。第2比較例では、負荷増加制御のみが実施されており、応答性が低くなっている。特に蒸気発生器2が石炭焚きボイラのような装置である場合には、石炭を微粉炭機で粉砕するプロセスがあるため、粉砕された石炭が火炉へ投入されて出力に反映されるまでのタイムラグが大きく、応答性が悪くなっている。これらの比較例に対して本態様では、負荷指令値Ldの増加時に復水絞り制御と負荷増加制御とを組み合わせることで、負荷指令値Ldの変化に対して良好な応答性が得られるとともに、発電プラント1の出力が第2定常値L2に収束するまでの時間が短くなることが示されている。
また復水絞り制御では前述のように復水調節弁23及び抽気弁28の開度が絞られるが、その際の開度変化率は、ステップS200で取得された負荷指令値Ldの変化率に基づいて設定される。復水絞り制御による発電機出力Lの変化量は、復水調節弁23及び抽気弁28の開度の変化率に依存する。そのため、復水絞り制御の実行時における復水調節弁23及び抽気弁28の開度変化率を制御することにより、発電機出力Lの変化量が過剰になることで負荷指令値Ldから乖離しすぎることを抑制できる。
図7の第1比較例の復水絞り制御では、このように復水調節弁23及び抽気弁28の開度の変化率が任意に制御されているため、時刻t1の直後において発電機出力Lが急増し、負荷指令値Ldからの乖離量が大きくなっている。これに対して本形態では、復水調節弁23及び抽気弁28の開度の変化率を負荷指令値Ldの変化率に基づいて設定することで、第1比較例に比べて時刻t1の直後における発電機出力Lの増加が適度に抑制され、負荷指令値Ldからの乖離量が少なくなっている。これは、復水絞り制御による発電機出力Lが負荷指令値Ldの変化に対応するように調整できており、良好な追従性が得られていることを示している。
以上説明したように本開示の少なくとも一態様によれば、負荷増加要求時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供できる。
その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の一態様に係る発電プラントの制御装置は、
蒸気を生成可能に構成された蒸気発生器(例えば上記実施形態の蒸気発生器2)と、
前記蒸気を用いて駆動可能に構成されたタービン(例えば上記実施形態のタービン6)と、
前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器(例えば上記実施形態の復水器10)と、
前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁(例えば上記実施形態の復水調節弁23)と、
前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器(例えば上記実施形態の加熱器24)と、
前記抽気の流量を調整可能に構成された抽気弁(例えば上記実施形態の抽気弁28)と、
を備える発電プラント(例えば上記実施形態の発電プラント1)の制御装置(例えば上記実施形態の制御装置100)であって、
前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成される。
上記(1)の態様によれば、発電プラントに対する負荷指令値の増加時、負荷増加制御に加えて復水調節弁の開度を絞る復水絞り制御を実施することで、発電プラントの出力を応答性よく増加させることができる。これにより、比較的応答に時間を要する負荷増加制御のみを実施する場合に比べて、良好な応答性が得られる。また復水絞り制御と負荷増加制御とを実施することで、負荷指令値の変化が大きな場合においても目標負荷に至るまで発電プラントの出力を増加させることができる。このように復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
また復水絞り制御では、復水調節弁及び抽気弁の開度は負荷指令値の変化率に基づいて設定される開度変化率に基づいて制御される。これにより、復水絞り制御による発電機出力が負荷指令値の変化に対応するように調整することができる。その結果、復水絞り制御が実施された際に発電機出力が負荷指令値を大きく超えて乖離することを抑制し、負荷指令値に対する良好な追従性が得られる。
(2)他の態様では上記(1)の態様において、
前記発電プラントは、前記タービンへの蒸気供給量を制御するための蒸気弁(例えば上記実施形態の蒸気弁8)を更に備え、
前記復水絞り制御の実行中、前記復水絞り制御の実行に起因した前記蒸気弁に対する開度指令値の減少を抑制するように構成される(例えば上記実施形態において蒸気弁開度指令値を出力するPI制御器106に入力される偏差ΔLがフィルタ108によって補正される)。
上記(2)の態様によれば、復水絞り制御が実施された際に、蒸気弁の開度減少が抑制される。これにより、復水絞り制御によって発電機出力が一時的に増加した場合に、目標出力を超えた発電機出力を減少させるように蒸気弁の開度が減少することで、発電機出力が低下することを抑制できる。その結果、復水絞り制御による発電機出力増加効果をより的確に得ることができる。
(3)他の態様では上記(1)の態様において、
前記発電機の出力と前記負荷指令値との偏差に基づいて前記蒸気弁の開度を制御可能に構成された蒸気弁制御部(例えば上記実施形態の蒸気弁制御部110)を備え、
前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が負側領域において、前記偏差に対する前記蒸気弁の開度が、前記復水絞りの非実行中に比べて大きくなるように制御するように構成される(例えば上記実施形態においてフィルタ108が図3に示す特性を有する)。
上記(3)の態様によれば、復水絞り制御が実施されることで偏差が負側領域になった場合には、復水絞り制御が実施されていない時に比べて蒸気弁の開度が大きくなるように制御される。これにより、復水絞り制御の実施時における蒸気弁の開度減少が抑制されるので、復水絞り制御による発電機出力増加効果をより的確に得ることができる。
(4)他の態様では上記(3)の態様において、
前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が所定値以上の負側領域において、前記偏差に対する前記蒸気弁の開度が、前記偏差に対して一定になるように制御するように構成される(例えば上記実施形態においてフィルタ108が図3に示す特性を有する)。
上記(4)の態様によれば、偏差が所定値以上の負側領域にある場合に蒸気弁の開度が一定になるように抑制されるため、復水絞り制御による発電機出力増加効果をより的確に得ることができる。
(5)他の態様では上記(1)から(4)のいずれか一態様において、
前記発電プラントは、
前記復水器に貯留される前記復水を排出可能に構成された復水排出ライン(例えば上記実施形態の復水排出ライン14)と、
前記復水排出ラインにおける前記復水の流量を調整可能に構成された復水排出弁(例えば上記実施形態の復水排出弁27)と、
を更に備え、
前記復水絞り制御の実行中、前記復水排出弁の開度を調整することにより、前記復水器における前記復水のレベルを制御するように構成される(例えば上記実施形態において復水絞り制御時に復水排出弁27を制御して復水レベルを調整する)。
上記(5)の態様によれば、復水絞り制御によって復水調節弁を絞り制御しつつ、復水排出弁の開度制御によって復水レベルを適切に管理できる。
(6)他の態様では上記(1)から(5)のいずれか一態様において、
前記復水絞り制御と前記負荷増加制御とは同時に実施される。
上記(6)の態様によれば、負荷指令値の変動時に、復水絞り制御と負荷増加制御とを同時に実施することで、良好な応答性をもって発電プラントの出力を追従させることができる。
(7)他の態様では上記(1)から(6)のいずれか一態様において、
前記負荷指令値が5%以上増加した場合に、前記復水絞り制御を実行するように構成される。
上記(7)の態様によれば、負荷指令値が5%以上増加する比較的大きな負荷指令値の変動に対して、発電プラントの出力を応答性よく好適に追従させることができる。
(8)他の態様では上記(1)から(7)のいずれか一態様において、
前記負荷指令値は、電力系統の需給状態に応じて中央給電司令室から前記発電プラントに入力される。
上記(8)の態様によれば、電力系統の需給状態に応じて、発電プラントの出力を応答性よく好適に追従させることができる。
(9)他の態様では上記(1)から(8)のいずれか一態様において、
前記蒸気発生器は、石炭を燃料とする石炭焚きボイラである。
上記(9)の態様によれば、石炭を微粉炭機で粉砕するプロセスがあることにより、運転制御による負荷指令値への応答性が低い石炭焚きボイラを蒸気発生器として用いる発電プラントにおいても、復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
(10)本開示の一態様に係る発電プラントは、
上記(1)から(9)のいずれか一態様の制御装置を備える。
上記(10)の態様によれば、復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
(11)本開示の一態様に係る発電プラントの制御方法は、
蒸気を生成可能に構成された蒸気発生器(例えば上記実施形態の蒸気発生器2)と、
前記蒸気を用いて駆動可能に構成されたタービン(例えば上記実施形態のタービン6)と、
前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器(例えば上記実施形態の復水調節弁23)と、
前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁(例えば上記実施形態の復水調節弁23)と、
前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器(例えば上記実施形態の加熱器24)と、
前記抽気の流量を調整可能に構成された抽気弁(例えば上記実施形態の抽気弁28)と、
を備える発電プラント(例えば上記実施形態の発電プラント1)の制御方法であって、
前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される。
上記(11)の態様によれば、発電プラントに対する負荷指令値の増加時、負荷増加制御に加えて復水調節弁の開度を絞る復水絞り制御を実施することで、発電プラントの出力を応答性よく増加させることができる。これにより、比較的応答に時間を要する負荷増加制御のみを実施する場合に比べて、良好な応答性が得られる。また復水絞り制御と負荷増加制御とを実施することで、負荷指令値の変化が大きな場合においても目標負荷に至るまで発電プラントの出力を増加させることができる。このように復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
また復水絞り制御では、復水調節弁及び抽気弁の開度は負荷指令値の変化率に基づいて設定される開度変化率に基づいて制御される。これにより、復水絞り制御による発電機出力が負荷指令値の変化に対応するように調整することができる。その結果、復水絞り制御が実施された際に発電機出力が負荷指令値を大きく超えて乖離することを抑制し、負荷指令値に対する良好な追従性が得られる。
1 発電プラント
2 蒸気発生器
3 出力軸
4 蒸気供給路
5 発電機
6 タービン
8 蒸気弁
10 復水器
12 第1復水タンク
14 復水排出ライン
16 第2復水タンク
22 復水ライン
23 復水調節弁
24 加熱器
25 脱気器
26 抽気ライン
27 復水排出弁
28 抽気弁
100 制御装置
102 偏差演算器
104 スイッチ
106 PI制御器
108 フィルタ
110 蒸気弁制御部
120 蒸気発生器制御部
122 偏差演算器
124 PI制御器
126 加算器
130 偏差演算部
132 PI制御器
134 復水レベル目標値設定部
136 加算器
138 スイッチ

Claims (11)

  1. 蒸気を生成可能に構成された蒸気発生器と、
    前記蒸気を用いて駆動可能に構成されたタービンに連結された発電機と、
    前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
    前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
    前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
    前記抽気の流量を調整可能に構成された抽気弁と、
    を備える発電プラントの制御装置であって、
    前記発電プラントに対する負荷指令値の増加時、前記復水調節弁及び前記抽気弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
    前記復水絞り制御では、前記発電機の出力の前記負荷指令値からの乖離量が所定値以下になるように、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成された、発電プラントの制御装置。
  2. 前記発電プラントは、前記タービンへの蒸気供給量を制御するための蒸気弁を更に備え、
    前記復水絞り制御の実行中、前記復水絞り制御の実行に起因した前記蒸気弁に対する開度指令値の減少を抑制するように構成された、請求項1に記載の発電プラントの制御装置。
  3. 前記発電機の出力と前記負荷指令値との偏差に基づいて前記蒸気発生器から前記タービンに供給される蒸気の流量を調整するための蒸気弁の開度を制御可能に構成された蒸気弁制御部を備え、
    前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が負側領域において、前記偏差に対する前記蒸気弁の開度が、前記復水絞りの非実行中に比べて大きくなるように制御するように構成された、請求項1に記載の発電プラントの制御装置。
  4. 前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が所定値以上の負側領域において、前記偏差に対する前記蒸気弁の開度が、前記偏差に対して一定になるように制御するように構成された、請求項3に記載の発電プラントの制御装置。
  5. 前記発電プラントは、
    前記復水器に貯留される前記復水を排出可能に構成された復水排出ラインと、
    前記復水排出ラインにおける前記復水の流量を調整可能に構成された復水排出弁と、
    を更に備え、
    前記復水絞り制御の実行中、前記復水排出弁の開度を調整することにより、前記復水器における前記復水のレベルを制御するように構成された、請求項1から4のいずれか一項に記載の発電プラントの制御装置。
  6. 前記復水絞り制御と前記負荷増加制御とは同時に実施される、請求項1から5のいずれか一項に記載の発電プラントの制御装置。
  7. 前記負荷指令値が5%以上増加した場合に、前記復水絞り制御を実行するように構成された、請求項1から6のいずれか一項に記載の発電プラントの制御装置。
  8. 前記負荷指令値は、電力系統の需給状態に応じて中央給電司令室から前記発電プラントに入力される、請求項1から7のいずれか一項に記載の発電プラントの制御装置。
  9. 前記蒸気発生器は、石炭を燃料とする石炭焚きボイラである、請求項1から8のいずれか一項に記載の発電プラントの制御装置。
  10. 請求項1から9のいずれか一項に記載の制御装置を備える、発電プラント。
  11. 蒸気を生成可能に構成された蒸気発生器と、
    前記蒸気を用いて駆動可能に構成されたタービンと、
    前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
    前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
    前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
    前記抽気の流量を調整可能に構成された抽気弁と、
    を備える発電プラントの制御方法であって、
    前記発電プラントに対する負荷指令値の増加時、前記復水調節弁及び前記抽気弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
    前記復水絞り制御では、発電機の出力の前記負荷指令値からの乖離量が所定値以下になるように、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される、発電プラントの制御方法。
JP2019138072A 2019-07-26 2019-07-26 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法 Active JP6775070B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019138072A JP6775070B1 (ja) 2019-07-26 2019-07-26 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
KR1020227001608A KR20220019829A (ko) 2019-07-26 2020-07-20 발전 플랜트의 제어 장치, 발전 플랜트 및 발전 플랜트의 제어 방법
PCT/JP2020/028090 WO2021020207A1 (ja) 2019-07-26 2020-07-20 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
TW109124738A TWI772845B (zh) 2019-07-26 2020-07-22 發電廠的控制裝置、發電廠及發電廠的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138072A JP6775070B1 (ja) 2019-07-26 2019-07-26 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法

Publications (2)

Publication Number Publication Date
JP6775070B1 true JP6775070B1 (ja) 2020-10-28
JP2021021361A JP2021021361A (ja) 2021-02-18

Family

ID=72938121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138072A Active JP6775070B1 (ja) 2019-07-26 2019-07-26 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法

Country Status (4)

Country Link
JP (1) JP6775070B1 (ja)
KR (1) KR20220019829A (ja)
TW (1) TWI772845B (ja)
WO (1) WO2021020207A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454204A (ja) * 1990-06-21 1992-02-21 Mitsubishi Heavy Ind Ltd 抽気復水タービンの制御装置
JP2000303803A (ja) * 1999-04-21 2000-10-31 Nippon Steel Corp 発電システム
JP2002129908A (ja) * 2000-10-25 2002-05-09 Kawasaki Steel Corp 蒸気タービン復水器の水位レベル制御方法
ES2742025T3 (es) * 2010-12-27 2020-02-12 Mitsubishi Hitachi Power Sys Dispositivo de control de caudal de condensado para una central eléctrica y procedimiento de control
JP5685165B2 (ja) * 2011-09-01 2015-03-18 三菱日立パワーシステムズ株式会社 発電プラント及びその発電出力増加方法
JP6545737B2 (ja) * 2017-02-23 2019-07-17 三菱重工業株式会社 発電システム及び発電システムの制御方法
CN107965356B (zh) * 2017-12-25 2020-01-31 东北电力大学 一种火电机组灵活性提升控制方法

Also Published As

Publication number Publication date
TWI772845B (zh) 2022-08-01
TW202126895A (zh) 2021-07-16
JP2021021361A (ja) 2021-02-18
WO2021020207A1 (ja) 2021-02-04
KR20220019829A (ko) 2022-02-17

Similar Documents

Publication Publication Date Title
JP4745767B2 (ja) 燃料流量制御装置及び発電システム並びに燃料流量制御方法
KR101862893B1 (ko) 가스 및 증기 터빈 복합 발전 설비의 작동 방법과, 이 방법을 실행하기 위해 제공된 가스 및 증기 터빈 복합 발전 설비와, 상응하는 조절 장치
KR101841316B1 (ko) 증기 터빈의 단기간 출력 상승을 조절하기 위한 방법
JP6139311B2 (ja) 調節弁の制御方法及び制御装置、これらを使用した発電プラント
JP5840032B2 (ja) 発電システム及びその蒸気温度制御方法
JP5050013B2 (ja) 複合発電プラント及びその制御方法
JP6775070B1 (ja) 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
EP2867735B1 (en) A method for optimization of control and fault analysis in a thermal power plant
JP4892539B2 (ja) 複合発電プラント及び排熱回収ボイラ
CN104074560A (zh) 用于燃气轮机联合循环发电机组蒸汽旁路控制的方法
CN115751279A (zh) 调峰调频火力发电机组主蒸汽温度优化控制方法、装置
JP6036376B2 (ja) ボイラシステム
CN114719626A (zh) 一种空冷机组背压大闭环优化***
JPS6039842B2 (ja) ボイラ・タ−ビン協調変圧運転方法
JP2005214047A (ja) コンバインドサイクル発電プラントおよびその運転方法
WO2022118854A1 (ja) 発電システム、及びその制御方法並びにプログラム
WO2022145276A1 (ja) 制御装置および制御方法
JPH03290006A (ja) 複合サイクルプラントのガスタービン制御装置
JP4981509B2 (ja) 複合発電プラント蒸気タービンの運転制御装置
CN110703703B (zh) 一种火力发电机组的高加给水旁路控制方法
JP2007132630A (ja) ボイラ再熱蒸気温度制御装置及び方法
JP4690904B2 (ja) ボイラシステム及びその制御方法
JPS6235561B2 (ja)
CN117553288A (zh) 一种燃气轮机透平冷却空气***冷却水流量控制方法
JP2002286202A (ja) ボイラ蒸気温度制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6775070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150