JP6773907B2 - Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element - Google Patents

Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
JP6773907B2
JP6773907B2 JP2019529280A JP2019529280A JP6773907B2 JP 6773907 B2 JP6773907 B2 JP 6773907B2 JP 2019529280 A JP2019529280 A JP 2019529280A JP 2019529280 A JP2019529280 A JP 2019529280A JP 6773907 B2 JP6773907 B2 JP 6773907B2
Authority
JP
Japan
Prior art keywords
liquid crystal
sealant
display element
crystal display
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019529280A
Other languages
Japanese (ja)
Other versions
JPWO2019221027A1 (en
Inventor
慶枝 松井
慶枝 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2019221027A1 publication Critical patent/JPWO2019221027A1/en
Application granted granted Critical
Publication of JP6773907B2 publication Critical patent/JP6773907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制でき、接着性に優れ、かつ、表示性能に優れる液晶表示素子を得ることができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element, which can suppress insertion of a liquid crystal into a sealant and contamination of the liquid crystal by the sealant, and can obtain a liquid crystal display element having excellent adhesiveness and display performance. The present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているようなシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方にシール剤を塗布して枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴をシールパターンの枠内全面に滴下し、すぐに他方の透明基板を貼り合わせ、シール部に紫外線等の光を照射したり加熱したりすることによりシール剤を硬化させ、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, dropping using a sealing agent as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a construction method is used.
In the dropping method, first, a sealant is applied to one of the two transparent substrates with electrodes to form a frame-shaped seal pattern. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped on the entire surface of the frame of the seal pattern, and immediately the other transparent substrate is attached, and the seal portion is irradiated with light such as ultraviolet rays or heated. This cures the sealant to produce a liquid crystal display element. If the substrates are bonded under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency, and this dropping method is currently the mainstream method for manufacturing the liquid crystal display element.

ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、「狭額縁設計」ともいう)。
しかしながら、滴下工法で狭額縁設計の液晶表示素子を製造すると、シール剤がブラックマトリックスの直下に配置されるため、シール剤を光照射により硬化させる場合、照射した光が遮られてシール剤の内部に光が到達し難く、シール剤の硬化が不充分となることがある。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出して液晶汚染を発生させやすくなるという問題があった。
By the way, in the present age when various mobile devices with liquid crystal panels such as mobile phones and portable game machines are widespread, miniaturization of devices is the most sought after issue. As a method of miniaturization, a narrowing of the frame of the liquid crystal display unit can be mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as “narrow frame design”).
However, when a liquid crystal display element with a narrow frame design is manufactured by the dropping method, the sealant is placed directly under the black matrix. Therefore, when the sealant is cured by light irradiation, the irradiated light is blocked and the inside of the sealant is blocked. It is difficult for light to reach the surface, and the sealant may not be sufficiently cured. If the sealant is not sufficiently cured in this way, there is a problem that the uncured sealant component elutes into the liquid crystal and easily causes liquid crystal contamination.

そこで、シール剤を熱のみによって硬化させることが検討されてきたが、光照射による硬化なしでは、加熱した際に液晶が流動し、硬化途中のシール剤部に差し込んでシールパターンの破れ等が発生したり、加熱により粘度の低下したシール剤により液晶が汚染されたりするという問題があった。
特に近年、パネルの狭額縁化につれ、塗布されるシール剤の線幅も細くなり、貼り合わせた後のシール断面積が小さくなっている。そのため、シールパターンの破れ等が発生しやすくなっている。
Therefore, it has been studied to cure the sealant only by heat, but without curing by light irradiation, the liquid crystal flows when heated and is inserted into the sealant part during curing to cause tearing of the seal pattern. There is a problem that the liquid crystal is contaminated by the sealing agent whose viscosity is lowered by heating.
In particular, in recent years, as the frame of the panel has become narrower, the line width of the sealant to be applied has become narrower, and the cross-sectional area of the seal after bonding has become smaller. Therefore, the seal pattern is liable to be torn.

特開2001−133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/092718

本発明は、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制でき、接着性に優れ、かつ、表示性能に優れる液晶表示素子を得ることができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 The present invention provides a sealant for a liquid crystal display element, which can suppress insertion of a liquid crystal into a sealant and contamination of the liquid crystal by the sealant, and can obtain a liquid crystal display element having excellent adhesiveness and display performance. With the goal. Another object of the present invention is to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

本発明は、硬化性樹脂と、熱硬化剤と、最大粒子径が前記液晶表示素子のセルギャップの100%以上の柔軟粒子とを含有し、前記硬化性樹脂は、1分子中に3つ以上のエポキシ基を有する化合物を含み、前記1分子中に3つ以上のエポキシ基を有する化合物は、1分子中に3つ以上のエポキシ基とイソシアヌル骨格とを有する化合物、及び/又は、1分子中に3つ以上のエポキシ基を有するグリシジルアミン型エポキシ化合物であり、PSA型液晶表示素子の基板間における液晶の封止に用いられる液晶滴下工法用シール剤である。
以下に本発明を詳述する。
The present invention contains a curable resin, a thermosetting agent, and flexible particles having a maximum particle diameter of 100% or more of the cell gap of the liquid crystal display element, and the curable resin contains three or more in one molecule. The compound having three or more epoxy groups in one molecule is a compound having three or more epoxy groups and an isocyanul skeleton in one molecule, and / or one molecule. It is a glycidylamine type epoxy compound having three or more epoxy groups, and is a sealant for a liquid crystal dropping method used for sealing liquid crystal between substrates of a PSA type liquid crystal display element.
The present invention will be described in detail below.

近年、高速応答性や高いコントラストを実現することができる液晶表示素子としてPSA(Polymer Sustained Alignment)型液晶表示素子が注目されている。PSA型液晶表示素子では、重合性化合物を含有する液晶組成物が用いられ、液晶表示素子のセル内に充填された該液晶組成物に光を照射すること等により該液晶組成物中の重合性化合物を重合させて基板上に凹凸形状を形成することで、均一なプレチルト角を付与して液晶分子の配向を制御している。しかしながら、従来のシール剤を用いてPSA型液晶表示素子の封止を行った場合、基板上に形成される凹凸形状にばらつきが生じ、均一なプレチルト角を付与できないことがあるという問題があった。 In recent years, a PSA (Polymer Sustained Alignment) type liquid crystal display element has been attracting attention as a liquid crystal display element capable of realizing high-speed response and high contrast. In the PSA type liquid crystal display element, a liquid crystal composition containing a polymerizable compound is used, and the liquid crystal composition filled in the cell of the liquid crystal display element is irradiated with light to be polymerizable in the liquid crystal composition. By polymerizing the compounds to form an uneven shape on the substrate, a uniform pretilt angle is imparted and the orientation of the liquid crystal molecules is controlled. However, when the PSA type liquid crystal display element is sealed using a conventional sealing agent, there is a problem that the uneven shape formed on the substrate may vary and a uniform pretilt angle may not be imparted. ..

本発明者は、従来のシール剤を用いてPSA型液晶表示素子の封止を行った場合に基板上に形成される凹凸形状にばらつきが生じる原因が、硬化性樹脂として一般的にシール剤に含まれる(メタ)アクリル化合物にあると考えた。即ち、硬化性樹脂中の(メタ)アクリル化合物が液晶に溶出することで液晶中の重合性化合物を重合させる際に該(メタ)アクリル化合物の重合も起こり、該(メタ)アクリル化合物が重合した部分で目的のものと異なる凹凸形状が形成されているものと考えた。そこで本発明者は、(メタ)アクリル化合物を含有しない、又は、(メタ)アクリル化合物の含有量を少なくしたシール剤を用いてPSA型液晶表示素子を封止することを検討したが、このようなシール剤を用いた場合、液晶によるシール剤への差し込みが生じやすくなるという問題があった。そこで本発明者は、最大粒子径が液晶表示素子のセルギャップの100%以上である柔軟粒子を配合することにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制することを検討した。しかしながら、液晶によるシール剤への差し込みやシール剤による液晶汚染を充分に抑制するために柔軟粒子を多量に配合すると、得られるシール剤が接着性に劣るものとなるという問題があった。そこで本発明者は、更に、硬化性樹脂として1分子中に3つ以上のエポキシ基を有する化合物を用いることを検討した。その結果、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制でき、接着性に優れ、かつ、表示性能に優れる液晶表示素子を得ることができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の液晶表示素子用シール剤における、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果は、シール剤を熱のみによって硬化させる場合に特に顕著となる。また、本発明の液晶表示素子用シール剤は、PSA型液晶表示素子用シール剤として好適に用いられる。
The inventor of the present invention generally uses a sealant as a curable resin because the uneven shape formed on the substrate varies when the PSA type liquid crystal display element is sealed using a conventional sealant. It was considered to be in the (meth) acrylic compound contained. That is, when the (meth) acrylic compound in the curable resin is eluted into the liquid crystal to polymerize the polymerizable compound in the liquid crystal, the (meth) acrylic compound also polymerizes, and the (meth) acrylic compound is polymerized. It was considered that a concave-convex shape different from the intended one was formed in the part. Therefore, the present inventor has considered sealing the PSA type liquid crystal display element with a sealant that does not contain the (meth) acrylic compound or has a reduced content of the (meth) acrylic compound. When a simple sealant is used, there is a problem that the liquid crystal is likely to be inserted into the sealant. Therefore, the present inventor has studied to suppress insertion of liquid crystal into a sealant and liquid crystal contamination by the sealant by blending flexible particles having a maximum particle size of 100% or more of the cell gap of the liquid crystal display element. .. However, if a large amount of flexible particles are blended in order to sufficiently suppress the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant, there is a problem that the obtained sealant becomes inferior in adhesiveness. Therefore, the present inventor further examined the use of a compound having three or more epoxy groups in one molecule as the curable resin. As a result, it is possible to obtain a sealant for a liquid crystal display element, which can suppress insertion of the liquid crystal into the sealant and contamination of the liquid crystal by the sealant, and can obtain a liquid crystal display element having excellent adhesiveness and display performance. The present invention has been completed.
In the sealant for a liquid crystal display element of the present invention, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant becomes particularly remarkable when the sealant is cured only by heat. Further, the sealant for a liquid crystal display element of the present invention is suitably used as a sealant for a PSA type liquid crystal display element.

本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、1分子中に3つ以上のエポキシ基を有する化合物(以下、「3官能以上のエポキシ化合物」ともいう)を含む。本発明の液晶表示素子用シール剤が上記3官能以上のエポキシ化合物を含有することにより、液晶のシール剤への差し込みを抑制することができ、かつ、得られる液晶表示素子が表示性能に優れるものとなる。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin contains a compound having three or more epoxy groups in one molecule (hereinafter, also referred to as “trifunctional or higher functional epoxy compound”). When the sealant for a liquid crystal display element of the present invention contains the above-mentioned trifunctional or higher functional epoxy compound, it is possible to suppress insertion of the liquid crystal into the sealant, and the obtained liquid crystal display element has excellent display performance. It becomes.

上記3官能以上のエポキシ化合物は、反応性に優れ、得られる液晶表示素子用シール剤が液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなることから、1分子中に6つ以上のエポキシ基を有することが好ましい。
また、上記3官能以上のエポキシ化合物は、液晶のシール剤への差し込みを抑制する効果に優れることから、1分子中に3つ以上のエポキシ基とイソシアヌル骨格とを有する化合物、及び/又は、1分子中に3つ以上のエポキシ基を有するグリシジルアミン型エポキシ化合物であることが好ましい。より好ましくは、1分子中に3つ以上のエポキシ基とイソシアヌル骨格とを有する化合物である。
The above-mentioned trifunctional or higher functional epoxy compound has excellent reactivity, and the obtained sealant for a liquid crystal display element is superior due to the effect of suppressing the insertion of the liquid crystal into the sealant and the liquid crystal contamination by the sealant. It is preferable to have 6 or more epoxy groups in it.
Further, since the trifunctional or higher functional epoxy compound is excellent in the effect of suppressing insertion of the liquid crystal into the sealant, a compound having three or more epoxy groups and an isocyanul skeleton in one molecule and / or 1 It is preferably a glycidylamine type epoxy compound having three or more epoxy groups in the molecule. More preferably, it is a compound having three or more epoxy groups and an isocyanul skeleton in one molecule.

上記3官能以上のエポキシ化合物としては、具体的には例えば、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物等が挙げられる。なかでも、下記式(1)で表される化合物、下記式(2)で表される化合物が好ましく、下記式(1)で表される化合物がより好ましい。 Specific examples of the trifunctional or higher functional epoxy compound include a compound represented by the following formula (1), a compound represented by the following formula (2), and a compound represented by the following formula (3). Can be mentioned. Among them, the compound represented by the following formula (1) and the compound represented by the following formula (2) are preferable, and the compound represented by the following formula (1) is more preferable.

Figure 0006773907
Figure 0006773907

Figure 0006773907
Figure 0006773907

Figure 0006773907
Figure 0006773907

上記硬化性樹脂は、上記3官能以上のエポキシ化合物に加えて他の硬化性樹脂を含有してもよい。上記他の硬化性樹脂を含有する場合、上記硬化性樹脂100重量部中における上記3官能以上のエポキシ化合物の含有量の好ましい下限は50重量部、好ましい上限は95重量部である。上記3官能以上のエポキシ化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の液晶への溶出、及び、液晶のシール剤への差し込みを抑制する効果により優れるものとなる。上記3官能以上のエポキシ化合物の含有量のより好ましい下限は60重量部、より好ましい上限は90重量部である。 The curable resin may contain another curable resin in addition to the trifunctional or higher functional epoxy compound. When the other curable resin is contained, the preferable lower limit of the content of the trifunctional or higher functional epoxy compound in 100 parts by weight of the curable resin is 50 parts by weight, and the preferable upper limit is 95 parts by weight. When the content of the above trifunctional or higher functional epoxy compound is within this range, the effect of suppressing the elution of the obtained sealant for a liquid crystal display element into the liquid crystal and the insertion of the liquid crystal into the sealant becomes excellent. .. The more preferable lower limit of the content of the trifunctional or higher functional epoxy compound is 60 parts by weight, and the more preferable upper limit is 90 parts by weight.

上記他の硬化性樹脂としては、単官能エポキシ化合物又は2官能エポキシ化合物が好適に用いられる。 As the other curable resin, a monofunctional epoxy compound or a bifunctional epoxy compound is preferably used.

上記単官能エポキシ化合物又は上記2官能エポキシ化合物としては、多官能エポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させてなる、1分子中にエポキシ基を1つ又は2つ有する部分(メタ)アクリル変性エポキシ樹脂(以下、単に「部分(メタ)アクリル変性エポキシ樹脂」ともいう)が好ましい。特に、得られる液晶表示素子用シール剤の速硬化性が向上し、液晶によるシール剤への差し込みを抑制する効果により優れるものとなることから、上記部分(メタ)アクリル変性エポキシ樹脂を後述する熱ラジカル重合開始剤と組み合わせて用いることが好ましい。 The monofunctional epoxy compound or the bifunctional epoxy compound is a portion obtained by reacting a part of the epoxy groups of the polyfunctional epoxy compound with (meth) acrylic acid and having one or two epoxy groups in one molecule. A (meth) acrylic-modified epoxy resin (hereinafter, also simply referred to as “partial (meth) acrylic-modified epoxy resin”) is preferable. In particular, the quick-curing property of the obtained sealant for a liquid crystal display element is improved, and the effect of suppressing the liquid crystal from being inserted into the sealant is excellent. Therefore, the heat of the above-mentioned partial (meth) acrylic-modified epoxy resin will be described later. It is preferably used in combination with a radical polymerization initiator.

上記単官能エポキシ化合物のうちその他のものとしては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、p−tert−ブチルフェニルグリシジルエーテル、グリシジル(メタ)アクリレート等が挙げられる。
なお、本明細書において上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味する。
Other examples of the monofunctional epoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, p-tert-butyl phenyl glycidyl ether, and glycidyl (meth) acrylate.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylate" means acrylate or methacrylate.

上記2官能エポキシ化合物のうちその他のものとしては、例えば、ビスフェノールA型2官能エポキシ化合物、ビスフェノールF型2官能エポキシ化合物、ビスフェノールS型2官能エポキシ化合物、2,2’−ジアリルビスフェノールA型2官能エポキシ化合物、水添ビスフェノール型2官能エポキシ化合物、プロピレンオキシド付加ビスフェノールA型2官能エポキシ化合物、レゾルシノール型2官能エポキシ化合物、ビフェニル型2官能エポキシ化合物、スルフィド型2官能エポキシ化合物、ジフェニルエーテル型2官能エポキシ化合物、ジシクロペンタジエン型2官能エポキシ化合物、ナフタレン型2官能エポキシ化合物、グリシジルアミン型2官能エポキシ化合物、アルキルポリオール型2官能エポキシ化合物、ゴム変性型2官能エポキシ化合物、2官能グリシジルエステル化合物等が挙げられる。 Other examples of the above bifunctional epoxy compounds include bisphenol A type bifunctional epoxy compound, bisphenol F type bifunctional epoxy compound, bisphenol S type bifunctional epoxy compound, and 2,2'-diallyl bisphenol A type bifunctional. Epoxy compound, hydrogenated bisphenol type bifunctional epoxy compound, propylene oxide added bisphenol A type bifunctional epoxy compound, resorcinol type bifunctional epoxy compound, biphenyl type bifunctional epoxy compound, sulfide type bifunctional epoxy compound, diphenyl ether type bifunctional epoxy compound , Dicyclopentadiene type bifunctional epoxy compound, naphthalene type bifunctional epoxy compound, glycidylamine type bifunctional epoxy compound, alkyl polyol type bifunctional epoxy compound, rubber modified bifunctional epoxy compound, bifunctional glycidyl ester compound and the like. ..

本発明の液晶表示素子用シール剤は、上記他の硬化性樹脂としてエポキシ基を有さない(メタ)アクリル化合物を含有してもよいが、PSA型液晶表示素子の場合の液晶への溶出による凹凸形状への悪影響を抑制する観点から、該エポキシ基を有さない(メタ)アクリル化合物を含有しないことが好ましい。
なお、本明細書において上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。
The sealant for a liquid crystal display element of the present invention may contain a (meth) acrylic compound having no epoxy group as the other curable resin described above, but it is due to elution into a liquid crystal in the case of a PSA type liquid crystal display element. From the viewpoint of suppressing adverse effects on the uneven shape, it is preferable not to contain the (meth) acrylic compound having no epoxy group.
In the present specification, the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group, and the above-mentioned "(meth) acryloyl" means acryloyl or methacryloyl.

本発明の液晶表示素子用シール剤は、熱硬化剤を含有する。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The sealant for a liquid crystal display element of the present invention contains a thermosetting agent.
Examples of the heat-curing agent include organic acid hydrazide, imidazole derivatives, amine compounds, polyhydric phenolic compounds, acid anhydrides and the like. Of these, organic acid hydrazide is preferably used.
The above thermosetting agent may be used alone or in combination of two or more.

上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド、日本ファインケム社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH−J、アミキュアUDH、アミキュアUDH−J等が挙げられる。
上記日本ファインケム社製の有機酸ヒドラジドとしては、例えば、MDH等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine-Techno, and organic acid hydrazides manufactured by Japan Finechem Co., Ltd.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazide manufactured by Ajinomoto Fine-Techno Co., Ltd. include Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J and the like.
Examples of the organic acid hydrazide manufactured by Japan Finechem Co., Ltd. include MDH and the like.

上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、熱硬化性により優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is in this range, the thermosetting property can be made more excellent without deteriorating the coatability of the obtained sealant for the liquid crystal display element. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.

本発明の液晶表示素子用シール剤は、重合開始剤を含有することが好ましい。
上記重合開始剤としては、例えば、ラジカル重合開始剤、カチオン重合開始剤等が挙げられる。
なかでも、上記重合開始剤としてラジカル重合開始剤を含有することが好ましい。後述する柔軟粒子によるスプリングバックは、該柔軟粒子の最大粒子径だけでなくシール剤の硬化速度にも影響を受ける。上記ラジカル重合開始剤は、熱硬化剤に比べて硬化速度を格段に速くすることができるため、上記柔軟粒子と組み合わせて用いることにより、上記柔軟粒子により発生しやすいスプリングバックの発生を抑制し、得られる液晶表示素子がギャップ保持性により優れるものとなる。
The sealant for a liquid crystal display element of the present invention preferably contains a polymerization initiator.
Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators and the like.
Among them, it is preferable to contain a radical polymerization initiator as the above-mentioned polymerization initiator. The springback by the soft particles described later is affected not only by the maximum particle size of the soft particles but also by the curing speed of the sealant. Since the radical polymerization initiator can significantly increase the curing rate as compared with the thermosetting agent, when used in combination with the flexible particles, the generation of springback that is likely to occur due to the flexible particles can be suppressed. The obtained liquid crystal display element is superior in gap retention.

上記ラジカル重合開始剤としては、加熱によりラジカルを発生する熱ラジカル重合開始剤、光照射によりラジカルを発生する光ラジカル重合開始剤等が挙げられる。なかでも、熱ラジカル重合開始剤が好ましい。特に、上述したように、得られる液晶表示素子用シール剤の速硬化性が向上し、液晶によるシール剤への差し込みを抑制する効果により優れるものとなることから、上記部分(メタ)アクリル変性エポキシ樹脂を上記熱ラジカル重合開始剤と組み合わせて用いることがより好ましい。 Examples of the radical polymerization initiator include a thermal radical polymerization initiator that generates radicals by heating, a photoradical polymerization initiator that generates radicals by light irradiation, and the like. Of these, a thermal radical polymerization initiator is preferable. In particular, as described above, the quick-curing property of the obtained sealant for the liquid crystal display element is improved, and the effect of suppressing the liquid crystal from being inserted into the sealant is more excellent. Therefore, the above-mentioned partial (meth) acrylic-modified epoxy is obtained. It is more preferable to use the resin in combination with the above thermal radical polymerization initiator.

上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等で構成されるものが挙げられる。なかでも、液晶汚染を抑制する観点から、アゾ化合物で構成される開始剤(以下、「アゾ開始剤」ともいう)が好ましく、高分子アゾ化合物で構成される開始剤(以下、「高分子アゾ開始剤」ともいう)がより好ましい。
上記熱ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイル基を反応させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal radical polymerization initiator include those composed of an azo compound, an organic peroxide, or the like. Among them, an initiator composed of an azo compound (hereinafter, also referred to as “azo initiator”) is preferable from the viewpoint of suppressing liquid crystal contamination, and an initiator composed of a polymer azo compound (hereinafter, “polymer azo”) is preferable. Also referred to as "initiator") is more preferred.
The thermal radical polymerization initiator may be used alone or in combination of two or more.
In the present specification, the above-mentioned "polymer azo compound" means a compound having an azo group and having a number average molecular weight of 300 or more, which generates a radical capable of reacting a (meth) acryloyl group by heat. To do.

上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へ容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin while preventing adverse effects on the liquid crystal. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).

上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ開始剤のうち市販されているものとしては、例えば、VPE−0201、VPE−0401、VPE−0601、VPS−0501、VPS−1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ開始剤としては、例えば、V−65、V−501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group and the like.
Commercially available polymer azo initiators include, for example, VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and the like. Can be mentioned.
Examples of the azo initiator that is not a polymer include V-65 and V-501 (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).

上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.

上記熱ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The thermal radical polymerization initiator may be used alone or in combination of two or more.

上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン、2−(ジメチルアミノ)−2−((4−メチルフェニル)メチル)−1−(4−(4−モルホリニル)フェニル)−1−ブタノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1−(4−(フェニルチオ)フェニル)−1,2−オクタンジオン2−(O−ベンゾイルオキシム)、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
上記光ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, and 2- (dimethylamino). ) -2-((4-Methylphenyl) methyl) -1- (4- (4-morpholinyl) phenyl) -1-butanone, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis ( 2,4,6-trimethylbenzoyl) phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-Hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethyl Examples thereof include benzoyldiphenylphosphine oxide.
The photoradical polymerization initiator may be used alone or in combination of two or more.

上記カチオン重合開始剤としては、光カチオン重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄−アレン錯体、チタノセン錯体、アリールシラノール−アルミニウム錯体等の有機金属錯体類等が挙げられる。
As the cationic polymerization initiator, a photocationic polymerization initiator is preferably used.
The photocationic polymerization initiator is not particularly limited as long as it generates protonic acid or Lewis acid by light irradiation, and may be an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salt, aromatic halonium salt and aromatic sulfonium salt, and organic metal complexes such as iron-allene complex, titanosen complex and arylsilanol-aluminum complex. Can be mentioned.

上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP−150、アデカオプトマーSP−170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include ADEKA OPTMER SP-150 and ADEKA OPTMER SP-170 (both manufactured by ADEKA).

上記光カチオン重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The photocationic polymerization initiator may be used alone or in combination of two or more.

上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is in this range, the obtained sealant for a liquid crystal display element is excellent in storage stability and curability while suppressing liquid crystal contamination. The more preferable lower limit of the content of the polymerization initiator is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の液晶表示素子用シール剤は、PSA型液晶表示素子の基板間における液晶の封止に好適に用いられる。
本発明の液晶表示素子用シール剤は、最大粒子径が液晶表示素子のセルギャップの100%以上である柔軟粒子(以下、単に「柔軟粒子」ともいう)を含有する。上記柔軟粒子は、液晶表示素子を製造する際に、他のシール剤成分と液晶との間の障壁となって、液晶がシール剤に差し込むこと、及び、シール剤が液晶へ溶出することを防止する役割を有する。また、上記柔軟粒子を配合することにより、基板を貼り合わせた後、シール剤が硬化するまでの基板のずれを防止することができる。
液晶表示素子のセルギャップは、表示素子により異なるため限定されないが、一般的な液晶表示素子のセルギャップは、2μm以上10μm以下である。
The sealant for a liquid crystal display element of the present invention is suitably used for sealing liquid crystals between substrates of a PSA type liquid crystal display element.
The sealant for a liquid crystal display element of the present invention contains flexible particles (hereinafter, also simply referred to as “flexible particles”) having a maximum particle diameter of 100% or more of the cell gap of the liquid crystal display element. The flexible particles act as a barrier between other sealant components and the liquid crystal when manufacturing the liquid crystal display element, and prevent the liquid crystal from being inserted into the sealant and elution of the sealant into the liquid crystal. Has a role to play. Further, by blending the above-mentioned flexible particles, it is possible to prevent the substrate from being displaced until the sealant is cured after the substrates are bonded together.
The cell gap of the liquid crystal display element is not limited because it differs depending on the display element, but the cell gap of a general liquid crystal display element is 2 μm or more and 10 μm or less.

上記柔軟粒子の最大粒子径は、液晶表示素子のセルギャップの100%以上である。上記柔軟粒子の最大粒子径が液晶表示素子のセルギャップの100%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制できるものとなる。上記柔軟粒子の最大粒子径は、液晶表示素子のセルギャップの100%を超えることが好ましい。また、上記柔軟粒子の最大粒子径は、5μm以上であることが好ましい。
また、上記柔軟粒子の最大粒子径の好ましい上限は20μmである。上記柔軟粒子の最大粒子径が20μm以下であることにより、スプリングバックを抑制し、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子の最大粒子径のより好ましい上限は15μmである。
更に、上記柔軟粒子の最大粒子径は、セルギャップの260%以下であることが好ましい。上記柔軟粒子の最大粒子径がセルギャップの260%以下であることにより、スプリングバックを抑制し、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子の最大粒子径のより好ましい上限はセルギャップの220%、更に好ましい上限はセルギャップの170%である。
なお、本明細書において、上記柔軟粒子の最大粒子径及び後述する平均粒子径は、シール剤に配合する前の粒子については、レーザー回折式粒度分布測定装置を用いて測定することにより得られる値を意味する。上記レーザー回折式粒度分布測定装置としては、マスターサイザー2000(マルバーン社製)等を用いることができる。また、シール剤に含まれる粒子については、走査型電子顕微鏡を用いて、1万倍の倍率で観察した10個の粒子の粒子径の最大値及び平均値を意味する。上記走査型電子顕微鏡としては、電界放出形走査電子顕微鏡S−4800(日立ハイテクノロジーズ社製)等を用いることができる。
また、液晶表示素子中においては、シール剤の硬化物中に、貼り合わせた基板によって押しつぶされることで形状に歪みが生じている柔軟粒子の存在が確認されれば、上記柔軟粒子の最大粒子径が液晶表示素子のセルギャップの100%以上であると言える。
The maximum particle size of the flexible particles is 100% or more of the cell gap of the liquid crystal display element. When the maximum particle size of the flexible particles is 100% or more of the cell gap of the liquid crystal display element, it is possible to suppress the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant. The maximum particle size of the flexible particles preferably exceeds 100% of the cell gap of the liquid crystal display element. The maximum particle size of the flexible particles is preferably 5 μm or more.
The preferable upper limit of the maximum particle size of the flexible particles is 20 μm. When the maximum particle size of the flexible particles is 20 μm or less, springback is suppressed, and the obtained liquid crystal display element has better gap retention. A more preferable upper limit of the maximum particle size of the flexible particles is 15 μm.
Further, the maximum particle size of the flexible particles is preferably 260% or less of the cell gap. When the maximum particle size of the flexible particles is 260% or less of the cell gap, springback is suppressed, and the obtained liquid crystal display element becomes more excellent in gap retention. A more preferable upper limit of the maximum particle size of the flexible particles is 220% of the cell gap, and a more preferable upper limit is 170% of the cell gap.
In the present specification, the maximum particle size of the flexible particles and the average particle size described later are values obtained by measuring the particles before blending with the sealant using a laser diffraction type particle size distribution measuring device. Means. As the laser diffraction type particle size distribution measuring device, Master Sizar 2000 (manufactured by Malvern) or the like can be used. Further, with respect to the particles contained in the sealant, it means the maximum value and the average value of the particle diameters of the 10 particles observed at a magnification of 10,000 times using a scanning electron microscope. As the scanning electron microscope, a field emission scanning electron microscope S-4800 (manufactured by Hitachi High-Technologies Corporation) or the like can be used.
Further, in the liquid crystal display element, if the presence of flexible particles whose shape is distorted by being crushed by the bonded substrate is confirmed in the cured product of the sealant, the maximum particle diameter of the flexible particles is confirmed. Can be said to be 100% or more of the cell gap of the liquid crystal display element.

上記柔軟粒子は、上記レーザー回折式分布測定装置により測定された柔軟粒子の粒度分布のうち、5μm以上の粒子径の粒子の含有割合が体積頻度で60%以上であることが好ましい。5μm以上の粒子径の粒子の含有割合が体積頻度で60%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。5μm以上の粒子径の粒子の含有割合は、80%以上であることがより好ましい。 The soft particles preferably have a volume frequency of 60% or more in terms of the content ratio of particles having a particle size of 5 μm or more in the particle size distribution of the soft particles measured by the laser diffraction type distribution measuring device. When the content ratio of the particles having a particle diameter of 5 μm or more is 60% or more in terms of volume frequency, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant becomes excellent. The content ratio of particles having a particle size of 5 μm or more is more preferably 80% or more.

上記柔軟粒子は、上記レーザー回折式分布測定装置により測定された柔軟粒子の粒度分布のうち、液晶表示素子のセルギャップの100%以上の粒子の含有割合が体積頻度で70%以上であることが好ましい。液晶表示素子のセルギャップの100%以上の粒子の含有割合が体積頻度で70%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子は、液晶表示素子のセルギャップの100%以上の粒子の含有割合が体積頻度で100%、即ち、液晶表示素子のセルギャップの100%以上の粒子のみで構成されることがより好ましい。 The soft particles have a volume frequency of 70% or more in a particle content ratio of 100% or more of the cell gap of the liquid crystal display element in the particle size distribution of the soft particles measured by the laser diffraction type distribution measuring device. preferable. When the content ratio of particles of 100% or more in the cell gap of the liquid crystal display element is 70% or more in terms of volume frequency, the effect of suppressing the insertion of the liquid crystal into the sealant and the liquid crystal contamination by the sealant becomes excellent. It is more preferable that the flexible particles are composed of only particles having a content ratio of 100% or more of the cell gap of the liquid crystal display element of 100% by volume frequency, that is, 100% or more of the cell gap of the liquid crystal display element. ..

上記柔軟粒子の平均粒子径の好ましい下限は2μm、好ましい上限は15μmである。上記柔軟粒子の平均粒子径が2μm以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子の平均粒子径が15μm以下であることにより、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子の平均粒子径のより好ましい下限は4μm、より好ましい上限は12μmである。 The preferable lower limit of the average particle size of the flexible particles is 2 μm, and the preferable upper limit is 15 μm. When the average particle size of the flexible particles is 2 μm or more, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant is more excellent. When the average particle size of the flexible particles is 15 μm or less, the obtained liquid crystal display element has better gap retention. The more preferable lower limit of the average particle size of the flexible particles is 4 μm, and the more preferable upper limit is 12 μm.

上記柔軟粒子としては、全体の最大粒子径が上述した範囲であれば、最大粒子径の異なる2種以上の柔軟粒子を混合して用いてもよい。即ち、最大粒子径が液晶表示素子のセルギャップの100%未満の柔軟粒子と、最大粒子径が液晶表示素子のセルギャップの100%以上の柔軟粒子とを混合して用いてもよい。 As the flexible particles, two or more types of flexible particles having different maximum particle diameters may be mixed and used as long as the total maximum particle diameter is in the above range. That is, flexible particles having a maximum particle diameter of less than 100% of the cell gap of the liquid crystal display element and flexible particles having a maximum particle diameter of 100% or more of the cell gap of the liquid crystal display element may be mixed and used.

上記柔軟粒子の粒子径の変動係数(以下、「CV値」ともいう)は、30%以下であることが好ましい。上記柔軟粒子の粒子径のCV値が30%以下であることにより、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子の粒子径のCV値は、28%以下であることがより好ましく、15%以下であることが更に好ましい。
なお、本明細書において上記「粒子径のCV値」は、下記式により求められる値を意味する。
粒子径のCV値(%)=(粒子径の標準偏差/平均粒子径)×100
The coefficient of variation of the particle size of the flexible particles (hereinafter, also referred to as “CV value”) is preferably 30% or less. When the CV value of the particle diameter of the flexible particles is 30% or less, the obtained liquid crystal display element becomes more excellent in gap retention. The CV value of the particle size of the flexible particles is more preferably 28% or less, and further preferably 15% or less.
In addition, in this specification, the said "CV value of particle diameter" means the value obtained by the following formula.
CV value of particle size (%) = (standard deviation of particle size / average particle size) x 100

上記柔軟粒子は、最大粒子径や平均粒子径やCV値が上述した範囲外のものであっても、分級することにより、最大粒子径や平均粒子径やCV値を上述した範囲内とすることができる。また、粒子径が液晶表示素子のセルギャップの100%未満である柔軟粒子は、液晶によるシール剤への差し込みやシール剤による液晶汚染の抑制に寄与せず、シール剤に配合するとチクソ値を上昇させることがあるため、分級により除去しておくことが好ましい。
上記柔軟粒子を分級する方法としては、例えば、湿式分級、乾式分級等の方法が挙げられる。なかでも、湿式分級が好ましく、湿式篩分級がより好ましい。
Even if the maximum particle size, the average particle size, and the CV value of the flexible particles are outside the above-mentioned range, the maximum particle size, the average particle size, and the CV value are set within the above-mentioned range by classifying. Can be done. In addition, flexible particles having a particle size of less than 100% of the cell gap of the liquid crystal display element do not contribute to the insertion of the liquid crystal into the sealant or the suppression of liquid crystal contamination by the sealant, and when blended with the sealant, the chixo value increases. Therefore, it is preferable to remove the particles by classification.
Examples of the method for classifying the flexible particles include wet classification and dry classification. Of these, wet classification is preferable, and wet sieve classification is more preferable.

上記柔軟粒子は、負荷を与えるときの原点用荷重値から所定の反転荷重値に至るまでの圧縮変位をL1とし、負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位をL2としたとき、L2/L1を百分率で表した回復率が80%以下であることが好ましい。上記柔軟粒子の回復率が80%以下であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子の回復率のより好ましい上限は70%、更に好ましい上限は60%である。
また、上記柔軟粒子の回復率は、実質的には5%以上となる。
なお、上記柔軟粒子の回復率は、微小圧縮試験機を用いて、粒子1個に一定負荷(1g)をかけ、その負荷を除去した後の回復挙動を解析することにより導出することができる。
The flexible particles have a compressive displacement of L1 from the origin load value when a load is applied to a predetermined reversal load value, and unloading from the reversal load value when the load is released to the origin load value. When the displacement is L2, the recovery rate of L2 / L1 expressed as a percentage is preferably 80% or less. When the recovery rate of the flexible particles is 80% or less, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant is more excellent. The more preferable upper limit of the recovery rate of the soft particles is 70%, and the more preferable upper limit is 60%.
Further, the recovery rate of the flexible particles is substantially 5% or more.
The recovery rate of the flexible particles can be derived by applying a constant load (1 g) to one particle using a microcompression tester and analyzing the recovery behavior after removing the load.

上記柔軟粒子は、1gの負荷を与えたときの圧縮変位をL3とし、粒子径をDnとしたとき、L3/Dnを百分率で表した1g歪みが30%以上であることが好ましい。上記柔軟粒子の1g歪みが30%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子の1g歪みのより好ましい下限は40%である。
なお、上記柔軟粒子の1g歪みは、微小圧縮試験機を用いて、粒子1個に1gの負荷をかけ、その時の変位量を測定することにより導出することができる。
When the compressive displacement of the flexible particles when a load of 1 g is applied is L3 and the particle diameter is Dn, the 1 g strain in which L3 / Dn is expressed as a percentage is preferably 30% or more. When the 1 g distortion of the flexible particles is 30% or more, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant is more excellent. A more preferable lower limit of the 1 g strain of the soft particles is 40%.
The 1 g strain of the flexible particles can be derived by applying a load of 1 g to each particle using a microcompression tester and measuring the amount of displacement at that time.

上記柔軟粒子は、粒子が破壊した時点の圧縮変位をL4とし、粒子径をDnとしたとき、L4/Dnを百分率で表した破壊歪みが50%以上であることが好ましい。上記柔軟粒子の破壊歪みが50%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子の破壊歪みのより好ましい下限は60%である。
なお、上記柔軟粒子の破壊歪みは、微小圧縮試験機を用いて、粒子1個に負荷をかけていき、その粒子が破壊する変位量を測定することにより導出することができる。上記圧縮変位L4は、負荷荷重に対して変位量が不連続に大きくなる時点を、粒子が破壊した時点として算出する。負荷荷重を大きくしても変形するだけで破壊しない場合、破壊歪みは100%以上と考える。
When the compressive displacement of the flexible particles at the time of fracture is L4 and the particle diameter is Dn, the fracture strain in which L4 / Dn is expressed as a percentage is preferably 50% or more. When the fracture strain of the flexible particles is 50% or more, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant is more excellent. A more preferable lower limit of the fracture strain of the flexible particles is 60%.
The fracture strain of the flexible particles can be derived by applying a load to one particle using a microcompression tester and measuring the amount of displacement at which the particles are fractured. The compression displacement L4 is calculated as the time when the particles are broken at the time when the displacement amount becomes discontinuously large with respect to the load. If the fracture is only deformed and not destroyed even if the load is increased, the fracture strain is considered to be 100% or more.

上記柔軟粒子は、ガラス転移温度の好ましい下限が−200℃、好ましい上限が40℃である。上記柔軟粒子のガラス転移温度は、低いほど液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する観点では良好な傾向にあるが、−200℃以上であることにより、粒子としてのハンドリング性により優れるものとなる。上記柔軟粒子のガラス転移温度が40℃以下であることにより、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子のガラス転移温度のより好ましい下限は−150℃、より好ましい上限は35℃である。
なお、上記柔軟粒子のガラス転移温度は、JIS K 7121の「プラスチックスの転移温度測定方法」に基づいた示差走査熱量測定(DSC)により測定される値を示す。
The flexible particles have a preferable lower limit of the glass transition temperature of −200 ° C. and a preferred upper limit of 40 ° C. The lower the glass transition temperature of the soft particles, the better the tendency from the viewpoint of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant. However, when the temperature is −200 ° C. or higher, the handling property as particles Will be better. When the glass transition temperature of the flexible particles is 40 ° C. or lower, the obtained liquid crystal display element becomes more excellent in gap retention. The more preferable lower limit of the glass transition temperature of the soft particles is −150 ° C., and the more preferable upper limit is 35 ° C.
The glass transition temperature of the flexible particles indicates a value measured by differential scanning calorimetry (DSC) based on JIS K 7121 “Method for measuring transition temperature of plastics”.

上記柔軟粒子としては、例えば、シリコーン系粒子、ビニル系粒子、ウレタン系粒子、フッ素系粒子、ニトリル系粒子等が挙げられる。なかでも、シリコーン系粒子、ビニル系粒子が好ましい。 Examples of the flexible particles include silicone-based particles, vinyl-based particles, urethane-based particles, fluorine-based particles, nitrile-based particles, and the like. Of these, silicone-based particles and vinyl-based particles are preferable.

上記シリコーン系粒子としては、樹脂への分散性の観点からシリコーンゴム粒子が好ましい。
上記シリコーン系粒子のうち市販されているものとしては、例えば、KMP−594、KMP−597、KMP−598、KMP−600、KMP−601、KMP−602(いずれも信越化学工業社製)、トレフィルE−506S、EP−9215(いずれも東レ・ダウコーニング社製)等が挙げられ、これらを分級して用いることができる。上記シリコーン系粒子は、単独で用いられてもよいし、2種以上が併用されてもよい。
As the silicone-based particles, silicone rubber particles are preferable from the viewpoint of dispersibility in the resin.
Commercially available silicone particles include, for example, KMP-594, KMP-597, KMP-598, KMP-600, KMP-601, KMP-602 (all manufactured by Shin-Etsu Chemical Co., Ltd.), and Torayfil. Examples thereof include E-506S and EP-9215 (both manufactured by Toray Dow Corning Co., Ltd.), and these can be classified and used. The silicone-based particles may be used alone or in combination of two or more.

上記ビニル系粒子としては、(メタ)アクリル粒子が好適に用いられる。
上記(メタ)アクリル粒子は、原料となる単量体を公知の方法により重合させることで得ることができる。具体的には例えば、ラジカル重合開始剤の存在下で単量体を懸濁重合する方法、ラジカル重合開始剤の存在下で非架橋の種粒子に単量体を吸収させることにより種粒子を膨潤させてシード重合する方法等が挙げられる。
なお、本明細書において上記「(メタ)アクリル」は、アクリル又はメタクリルを意味する。
As the vinyl-based particles, (meth) acrylic particles are preferably used.
The (meth) acrylic particles can be obtained by polymerizing a monomer as a raw material by a known method. Specifically, for example, a method of suspend-polymerizing a monomer in the presence of a radical polymerization initiator, or swelling a seed particle by allowing a non-crosslinked seed particle to absorb the monomer in the presence of a radical polymerization initiator. Examples thereof include a method of subjecting and seed polymerization.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic.

上記(メタ)アクリル粒子を形成するための原料となる単量体としては、単官能単量体を用いることができる。
上記単官能単量体としては、例えば、アルキルモノ(メタ)アクリレート、酸素原子含有モノ(メタ)アクリレート、ニトリル含有モノ(メタ)アクリル単量体、フッ素原子含有モノ(メタ)アクリレートが挙げられる。
上記アルキルモノ(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。
上記酸素原子含有モノ(メタ)アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。
ニトリル含有モノ(メタ)アクリル単量体としては、例えば、(メタ)アクリロニトリル等が挙げられる。
フッ素原子含有モノ(メタ)アクリレートとしては、例えば、トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等が挙げられる。
なかでも、単独重合体のガラス転移温度が低く、1g荷重を加えたときの変形量を大きくすることができることから、アルキルモノ(メタ)アクリレートが好ましい。
なお、本明細書において上記「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味する。
A monofunctional monomer can be used as the raw material for forming the (meth) acrylic particles.
Examples of the monofunctional monomer include alkyl mono (meth) acrylate, oxygen atom-containing mono (meth) acrylate, nitrile-containing mono (meth) acrylic monomer, and fluorine atom-containing mono (meth) acrylate.
Examples of the alkyl mono (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, and 2-. Examples thereof include ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
Examples of the oxygen atom-containing mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate.
Examples of the nitrile-containing mono (meth) acrylic monomer include (meth) acrylonitrile.
Examples of the fluorine atom-containing mono (meth) acrylate include trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate.
Among them, alkylmono (meth) acrylate is preferable because the glass transition temperature of the homopolymer is low and the amount of deformation when a 1 g load is applied can be increased.
In addition, in this specification, the said "(meth) acrylate" means acrylate or methacrylate.

また、架橋構造を持たせるため上記単量体として多官能単量体を用いてもよい。
上記多官能単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、イソシアヌル酸骨格トリ(メタ)アクリレート等が挙げられる。なかでも、架橋点間分子量が大きく、1g荷重を加えたときの変形量を大きくすることができることから、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレートが好ましい。
Further, a polyfunctional monomer may be used as the above-mentioned monomer in order to have a crosslinked structure.
Examples of the polyfunctional monomer include tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, and dipentaerythritol. Hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate , (Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid skeleton tri (meth) acrylate and the like. Among them, since the molecular weight between cross-linking points is large and the amount of deformation when a 1 g load is applied can be increased, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate are preferable.

上記単量体全体中における上記多官能単量体の使用量の好ましい下限は1重量%、好ましい上限は90重量%である。上記多官能単量体の使用量が1重量%以上であることにより、上記柔軟粒子の耐溶剤性が向上し、他のシール剤成分と混合した際に膨潤等の問題を引き起こさず、均一に分散しやすくなる。上記多官能単量体の使用量が90重量%以下であることにより、上記柔軟粒子の回復率を低くすることができ、スプリングバック等の問題が起こりにくくなる。上記多官能単量体の使用量のより好ましい下限は3重量%、より好ましい上限は80重量%である。 The preferable lower limit of the amount of the polyfunctional monomer used in the whole monomer is 1% by weight, and the preferable upper limit is 90% by weight. When the amount of the polyfunctional monomer used is 1% by weight or more, the solvent resistance of the flexible particles is improved, and when mixed with other sealant components, problems such as swelling are not caused and the particles are uniformly used. It becomes easier to disperse. When the amount of the polyfunctional monomer used is 90% by weight or less, the recovery rate of the flexible particles can be lowered, and problems such as springback are less likely to occur. The more preferable lower limit of the amount of the polyfunctional monomer used is 3% by weight, and the more preferable upper limit is 80% by weight.

更に、上記単量体としては、これらのアクリル系の単量体に加えて、例えば、スチレン系単量体や、ビニルエーテル類や、ビニルエステル類や、不飽和炭化水素や、ハロゲン原子含有単量体や、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、3−(メタ)アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の単量体を用いてもよい。
上記スチレン系単量体としては、例えば、スチレン、α−メチルスチレン、トリメトキシシリルスチレン等が挙げられる。
上記ビニルエーテル類としては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等が挙げられる。
上記ビニルエステル類としては、例えば、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等が挙げられる。
上記不飽和炭化水素としては、例えば、エチレン、プロピレン、イソプレン、ブタジエン等が挙げられる。
上記ハロゲン原子含有単量体としては、例えば、塩化ビニル、フッ化ビニル、クロルスチレン等が挙げられる。
Further, as the above-mentioned monomer, in addition to these acrylic-based monomers, for example, a styrene-based monomer, vinyl ethers, vinyl esters, unsaturated hydrocarbons, and a single amount containing a halogen atom. Using the body and monomers such as triallyl (iso) cyanurate, triallyl trimerite, divinylbenzene, diallyl phthalate, diallyl acrylamide, diallyl ether, 3- (meth) acryloxypropyltrimethoxysilane, and vinyltrimethoxysilane. You may.
Examples of the styrene-based monomer include styrene, α-methylstyrene, trimethoxysilylstyrene and the like.
Examples of the vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether and the like.
Examples of the vinyl esters include vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate and the like.
Examples of the unsaturated hydrocarbon include ethylene, propylene, isoprene, and butadiene.
Examples of the halogen atom-containing monomer include vinyl chloride, vinyl fluoride, chlorostyrene and the like.

また、上記ビニル系粒子としては、例えば、ポリジビニルベンゼン粒子、ポリクロロプレン粒子、ブタジエンゴム粒子等を用いてもよい。 Further, as the vinyl-based particles, for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.

上記ウレタン系粒子のうち市販されているものとしては、例えば、アートパール(根上工業社製)、ダイミックビーズ(大日精化工業社製)等が挙げられ、これらを分級して用いることができる。 Examples of commercially available urethane particles include Art Pearl (manufactured by Negami Kogyo Co., Ltd.) and Dimic Beads (manufactured by Dainichiseika Kogyo Co., Ltd.), which can be classified and used. ..

上記柔軟粒子の硬度の好ましい下限は3、好ましい上限は50である。上記柔軟粒子の硬度がこの範囲であることにより、得られる液晶表示素子がギャップ保持性により優れるものとなる。上記柔軟粒子の硬度のより好ましい下限は10、より好ましい上限は40、更に好ましい下限は20である。
なお、本明細書において上記「柔軟粒子の硬度」は、JIS K 6253に準拠した方法により測定されるデュロメータA硬さを意味する。
The preferred lower limit of the hardness of the flexible particles is 3, and the preferred upper limit is 50. When the hardness of the flexible particles is in this range, the obtained liquid crystal display element becomes more excellent in gap retention. The more preferable lower limit of the hardness of the flexible particles is 10, the more preferable upper limit is 40, and the further preferable lower limit is 20.
In the present specification, the above-mentioned "hardness of flexible particles" means the hardness of Durometer A measured by a method according to JIS K 6253.

本発明の液晶表示素子用シール剤中における上記柔軟粒子の含有量の好ましい下限は5重量%、好ましい上限は60重量%である。上記柔軟粒子の含有量が5重量%以上であることにより、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果により優れるものとなる。上記柔軟粒子の含有量が60重量%以下であることにより、得られる液晶表示素子用シール剤が接着性により優れるものとなる。上記柔軟粒子の含有量のより好ましい下限は10重量%、より好ましい上限は50重量%、更に好ましい下限は20重量%、更に好ましい上限は40重量%である。 The preferable lower limit of the content of the soft particles in the sealant for a liquid crystal display element of the present invention is 5% by weight, and the preferable upper limit is 60% by weight. When the content of the flexible particles is 5% by weight or more, the effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant is more excellent. When the content of the flexible particles is 60% by weight or less, the obtained sealant for a liquid crystal display element becomes more excellent in adhesiveness. A more preferable lower limit of the content of the soft particles is 10% by weight, a more preferable upper limit is 50% by weight, a further preferable lower limit is 20% by weight, and a further preferable upper limit is 40% by weight.

本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。 The sealant for a liquid crystal display element of the present invention preferably contains a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, and the like.

上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
The above-mentioned filler may be used alone or in combination of two or more.

本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a liquid crystal display element of the present invention may contain a silane coupling agent. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the sealant and the substrate or the like.

上記シランカップリング剤としては、例えば、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanoxidetrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesiveness with the substrate and the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
The silane coupling agent may be used alone or in combination of two or more.

本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is in this range, the effect of improving the adhesiveness while suppressing the liquid crystal contamination becomes more excellent. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealant for a liquid crystal display element of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.

上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.

上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光ラジカル重合開始剤又は上記光カチオン重合開始剤として、上記チタンブラックの透過率の高くなる波長(370nm以上450nm以下)の光によって反応を開始可能なものを用いることで、本発明の液晶表示素子用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
The titanium black is a substance having a higher transmittance for light in the ultraviolet region, particularly for light having a wavelength of 370 nm or more and 450 nm or less, as compared with the average transmittance for light having a wavelength of 300 nm or more and 800 nm or less. That is, the titanium black has a property of imparting light-shielding property to the sealant for a liquid crystal display element of the present invention by sufficiently shielding light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent. Therefore, by using the photoradical polymerization initiator or the photocationic polymerization initiator capable of initiating the reaction with light having a wavelength (370 nm or more and 450 nm or less) at which the transmittance of titanium black is high, the present invention. The photocurability of the sealant for a liquid crystal display element can be further increased. On the other hand, as the light-shielding agent contained in the sealant for a liquid crystal display element of the present invention, a substance having a high insulating property is preferable, and as a light-shielding agent having a high insulating property, titanium black is preferable.
The titanium black has an optical density (OD value) per μm of preferably 3 or more, and more preferably 4 or more. The higher the light-shielding property of the titanium black, the better, and the OD value of the titanium black has no particular preferable upper limit, but is usually 5 or less.

上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを配合した本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the sealant for the liquid crystal display element of the present invention containing the above titanium black as a light shielding agent has sufficient light shielding property, so that there is no light leakage and the contrast is high. A liquid crystal display element having excellent image display quality can be realized.

上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M−C、13R−N、14M−C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials, titanium black manufactured by Ako Kasei Co., Ltd., and the like.
Examples of the titanium black manufactured by Mitsubishi Materials Corporation include 12S, 13M, 13M-C, 13RN, 14M-C and the like.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tirak D and the like.

上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
The preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.

上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle size of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5000 nm. When the primary particle size of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for the liquid crystal display element. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured by dispersing the light-shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).

本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性を大きく低下させることなく、より優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, more excellent light-shielding property is exhibited without significantly reducing the adhesiveness, the strength after curing, and the drawability of the obtained sealant for the liquid crystal display element. be able to. The more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the more preferable lower limit is 30 parts by weight, and the further preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等のその他の添加剤を含有してもよい。 The sealant for a liquid crystal display element of the present invention further comprises, if necessary, a stress relaxation agent, a reactive diluent, a rocking agent, a spacer, a curing accelerator, a defoaming agent, a leveling agent, a polymerization inhibitor and the like. May contain the additive of.

本発明の液晶表示素子用シール剤を製造する方法は特に限定されず、例えば、混合機を用いて、硬化性樹脂と、熱硬化剤と、柔軟粒子と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
The method for producing the sealant for a liquid crystal display element of the present invention is not particularly limited, and for example, a curable resin, a thermosetting agent, flexible particles, and silane coupling to be added as needed using a mixer are used. Examples thereof include a method of mixing with an additive such as an agent.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.

本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be produced. A vertically conductive material containing the sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.

上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, metal balls, those having a conductive metal layer formed on the surface of the resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.

本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子としては、狭額縁設計の液晶表示素子が好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の液晶表示素子を製造する際の本発明の液晶表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
A liquid crystal display element made of the sealant for a liquid crystal display element of the present invention or the vertically conductive material of the present invention is also one of the present inventions.
As the liquid crystal display element of the present invention, a liquid crystal display element having a narrow frame design is preferable. Specifically, the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
Further, when the liquid crystal display element of the present invention is manufactured, the coating width of the sealant for the liquid crystal display element of the present invention is preferably 1 mm or less.

本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極及び配向膜を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で重合性化合物を含有する液晶組成物の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、加熱により本発明の液晶表示素子用シール剤を硬化させる工程を行う。更に、電圧印加状態にて、光照射等により液晶組成物中の重合性化合物を重合させ、基板上に凹凸形状を形成する工程を行う方法により、PSA型液晶表示素子を得ることができる。また、上記加熱により本発明の液晶表示素子用シール剤を硬化させる工程の前に、光照射によりシール剤を仮硬化させる工程を行ってもよいが、本発明の液晶表示素子用シール剤における、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制する効果は、シール剤を熱のみによって硬化させる場合に特に顕著となる。
As a method for manufacturing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps.
First, a step of applying the sealant for a liquid crystal display element of the present invention to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing, dispenser application, or the like to form a frame-shaped seal pattern. I do. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of a liquid crystal composition containing a polymerizable compound are dropped and applied into the frame of the seal pattern of the substrate, and the other transparent substrate is coated under vacuum. Perform the step of superimposing. Then, a step of curing the sealant for a liquid crystal display element of the present invention by heating is performed. Further, a PSA type liquid crystal display element can be obtained by a method of polymerizing a polymerizable compound in a liquid crystal composition by light irradiation or the like in a voltage-applied state to form an uneven shape on a substrate. Further, before the step of curing the sealant for the liquid crystal display element of the present invention by the above heating, the step of temporarily curing the sealant by light irradiation may be performed, but in the sealant for the liquid crystal display element of the present invention. The effect of suppressing the insertion of the liquid crystal into the sealant and the contamination of the liquid crystal by the sealant becomes particularly remarkable when the sealant is cured only by heat.

本発明によれば、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制でき、接着性に優れ、かつ、表示性能に優れる液晶表示素子を得ることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, there is provided a sealant for a liquid crystal display element, which can suppress insertion of a liquid crystal into a sealant and contamination of the liquid crystal by the sealant, and can obtain a liquid crystal display element having excellent adhesiveness and display performance. can do. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(部分アクリル変性ビフェニルエーテル型エポキシ樹脂の合成)
ビフェニルエーテル型エポキシ樹脂(日鉄ケミカル&マテリアル社製、「YSLV80DE」)1000重量部、重合禁止剤としてp−メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸229重量部を、空気を送り込みながら90℃で還流撹拌し、5時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、部分アクリル変性ビフェニルエーテル型エポキシ樹脂を得た。
(Synthesis of partially acrylic modified biphenyl ether type epoxy resin)
1000 parts by weight of biphenyl ether type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., "YSLV80DE"), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 229 parts by weight of acrylic acid. , While feeding air, the mixture was refluxed and stirred at 90 ° C. and reacted for 5 hours. 100 parts by weight of the obtained resin is filtered through a column packed with 10 parts by weight of a natural bond of quartz and kaolin (“Silitin V85” manufactured by Hoffman Mineral Co., Ltd.) in order to adsorb ionic impurities in the reaction product. , A partially acrylic modified biphenyl ether type epoxy resin was obtained.

(レゾルシノール型エポキシアクリレートの合成)
レゾルシノール型エポキシ樹脂(ナガセケムテックス社製、「デナコールEX−201」)1000重量部、重合禁止剤としてp−メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸649重量部を、空気を送り込みながら90℃で5時間還流撹拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、レゾルシノール型エポキシアクリレートを得た。
(Synthesis of resorcinol type epoxy acrylate)
1000 parts by weight of resorcinol type epoxy resin (manufactured by Nagase ChemteX Corporation, "Denacol EX-201"), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 649 parts by weight of acrylic acid. The reaction was carried out by refluxing and stirring at 90 ° C. for 5 hours while feeding air. 100 parts by weight of the obtained resin is filtered through a column packed with 10 parts by weight of a natural bond of quartz and kaolin (“Silitin V85” manufactured by Hoffman Mineral Co., Ltd.) in order to adsorb ionic impurities in the reaction product. , Resorcinol type epoxy acrylate was obtained.

(シリコーンゴム粒子の分級)
シリコーンゴム粒子(信越化学工業社製、「KMP−601」)をメタノール中に分散させ、8μmの目開きの篩と5μmの目開きの篩とで粒子径が5〜8μmの範囲となるように湿式篩分級した。分級した粒子を回収して乾燥し、シリコーンゴム粒子の分級処理品を得た。篩はポリイミドフィルムにレーザーで超高精度微細加工を施して得た極めて精度の高い穴を有するものを用いた。
得られたシリコーンゴム粒子の分級処理品について、レーザー回折式粒度分布測定装置(マルバーン社製、「マスターサイザー2000」)を用いて測定した最大粒子径は8μmであった。
また、6μmの目開きの篩と3μmの目開きの篩とで粒子径が3〜6μmの範囲となるように湿式篩分級したこと以外は同様にして、シリコーンゴム粒子の分級処理品(最大粒子径6μm)を得た。
更に、3μmの目開きの篩で粒子径が3μm以下の範囲となるように湿式篩分級したこと以外は同様にして、シリコーンゴム粒子の分級処理品(最大粒子径3μm)を得た。
(Classification of silicone rubber particles)
Silicone rubber particles (manufactured by Shin-Etsu Chemical Co., Ltd., "KMP-601") are dispersed in methanol so that the particle size is in the range of 5 to 8 μm with an 8 μm open sieve and a 5 μm open sieve. Wet sieve classification. The classified particles were collected and dried to obtain a classified product of silicone rubber particles. As the sieve, a polyimide film having extremely high-precision holes obtained by performing ultra-high-precision microfabrication with a laser was used.
The maximum particle diameter of the obtained classification-treated silicone rubber particles was 8 μm, which was measured using a laser diffraction type particle size distribution measuring device (“Mastersizer 2000” manufactured by Malvern).
Further, the silicone rubber particles are classified in the same manner (maximum particles) except that the sieves having a 6 μm opening and the sieves having a 3 μm opening are wet sieved so that the particle diameter is in the range of 3 to 6 μm. Diameter 6 μm) was obtained.
Further, a silicone rubber particle classification-treated product (maximum particle diameter of 3 μm) was obtained in the same manner except that the wet sieve was classified with a sieve having a mesh size of 3 μm so that the particle diameter was in the range of 3 μm or less.

(実施例1〜10、比較例1〜3)
表1に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1〜10、比較例1〜3の液晶表示素子用シール剤を調製した。
(Examples 1 to 10, Comparative Examples 1 to 3)
Examples are obtained by mixing each material using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Rentaro”) according to the compounding ratios shown in Table 1, and then further mixing using three rolls. Sealing agents for liquid crystal display elements 1 to 10 and Comparative Examples 1 to 3 were prepared.

<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluations were performed on the sealants for each liquid crystal display element obtained in Examples and Comparative Examples. The results are shown in Table 1.

(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSP−2050」)1重量部を遊星式撹拌装置によって均一に分散させた。スペーサー粒子を分散させたシール剤の極微量をガラス基板(20mm×50mm×厚さ0.7mm)の中央部に取り、同型のガラス基板をその上に重ね合わせた。液晶表示素子用シール剤を押し広げ、120℃で1時間加熱してシール剤を硬化させ、接着試験片を得た。
得られた接着試験片について、テンションゲージを用いて接着強度を測定した。接着強度が200N/cm以上であった場合を「○」、接着強度が150N/cm以上200N/cm未満であった場合を「△」、接着強度が150N/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
1 part by weight of spacer particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl SP-2050") having an average particle diameter of 5 μm with respect to 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples is a planetary type. It was uniformly dispersed by a stirrer. A very small amount of the sealant in which the spacer particles were dispersed was taken in the center of a glass substrate (20 mm × 50 mm × 0.7 mm in thickness), and a glass substrate of the same type was superposed on the central portion. The sealant for the liquid crystal display element was spread out and heated at 120 ° C. for 1 hour to cure the sealant to obtain an adhesion test piece.
The adhesive strength of the obtained adhesive test piece was measured using a tension gauge. When the adhesive strength was 200 N / cm 2 or more, it was "○", when the adhesive strength was 150 N / cm 2 or more and less than 200 N / cm 2, it was "Δ", and the adhesive strength was less than 150 N / cm 2 . Adhesion was evaluated with the case as "x".

(差し込み防止性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSP−2050」)1重量部を遊星式撹拌装置によって均一に分散させた。スペーサー粒子を分散させたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY−10E」)に充填し、脱泡処理を行った。脱泡処理を行ったシール剤を、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にてITO薄膜及び配向膜を有するガラス基板に長方形の枠を描く様に塗布した。続いて、重合性化合物を含有する液晶組成物(MLC−6883(メルク社製)にビフェニル4,4’−ジイルビス(2−メチルアクリレート)を1重量%添加したもの)の微小滴を液晶滴下装置にて滴下塗布した。液晶組成物を滴下塗布したガラス基板に本発明の液晶表示素子用シール剤を介してITO薄膜及び配向膜を有する別のガラス基板を重ね合わせた後、真空貼り合わせ装置にて5Paの真空下にて貼り合わせ、セルを得た。得られたセルを120℃で1時間加熱してシール剤を硬化させた。次いで、電圧印加状態にて、水銀ランプを用いて100mW/cmの紫外線(波長313nm)を50秒照射して液晶組成物中の重合性化合物を重合させ、凹凸形状を形成することにより液晶表示素子(セルギャップ5μm)を得た。
得られた各液晶表示素子について、シールパターンの形状観察を行った。内部の液晶によりシールパターンの形状が乱されていなかったものを「◎」、シールパターンの形状が僅かに乱されていたものを「○」、シールパターンの形状が大きく乱されているが液晶がシールパターンを突き破ってはいなかったものを「△」、液晶がシールパターンを突き破って外部に漏れ出していたものを「×」として差し込み防止性を評価した。
(Insight prevention)
1 part by weight of spacer particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl SP-2050") having an average particle diameter of 5 μm with respect to 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples is a planetary type. It was uniformly dispersed by a stirrer. The sealant in which the spacer particles were dispersed was filled in a syringe for dispensing (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and defoamed. The defoamed sealant was applied to a glass substrate having an ITO thin film and an alignment film by a dispenser (manufactured by Musashi Engineering Co., Ltd., "SHOTMASTER300") so as to draw a rectangular frame. Subsequently, a fine droplet of a liquid crystal composition containing a polymerizable compound (MLC-6883 (manufactured by Merck) supplemented with 1% by weight of biphenyl 4,4'-diylbis (2-methylacrylate)) is added to the liquid crystal dropping device. It was dropped and applied in. After overlaying another glass substrate having an ITO thin film and an alignment film on a glass substrate on which the liquid crystal composition is dropped and coated via the sealant for a liquid crystal display element of the present invention, a vacuum bonding device is used to create a vacuum of 5 Pa. And pasted together to obtain a cell. The obtained cell was heated at 120 ° C. for 1 hour to cure the sealant. Next, in a voltage-applied state, a mercury lamp is used to irradiate 100 mW / cm 2 ultraviolet rays (wavelength 313 nm) for 50 seconds to polymerize the polymerizable compound in the liquid crystal composition, thereby forming a liquid crystal display. An element (cell gap 5 μm) was obtained.
The shape of the seal pattern was observed for each of the obtained liquid crystal display elements. The one in which the shape of the seal pattern was not disturbed by the liquid crystal inside is "◎", the one in which the shape of the seal pattern is slightly disturbed is "○", and the shape of the seal pattern is greatly disturbed, but the liquid crystal is The one that did not break through the seal pattern was evaluated as "Δ", and the one that the liquid crystal broke through the seal pattern and leaked to the outside was evaluated as "x" to evaluate the insertion prevention property.

(液晶表示素子の表示性能)
上記「(差し込み防止性)」の評価と同様にして得られた各液晶表示素子について、60℃、90%RHの環境下で100時間電圧印加状態とした後のシール剤付近の液晶配向乱れ(表示むら)を目視にて確認した。
液晶表示素子に表示むらが全く見られなかった場合を「○」、液晶表示素子のシール剤付近(周辺部)に表示むらが見えた場合を「△」、表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
なお、評価が「○」の液晶表示素子は実用に全く問題のないレベルであり、「△」の液晶表示素子は表示設計によっては問題になる可能性があるレベルであり、「×」の液晶表示素子は実用に耐えないレベルである。
(Display performance of liquid crystal display element)
For each liquid crystal display element obtained in the same manner as in the above evaluation of "(insertion prevention)", the liquid crystal orientation in the vicinity of the sealant was disturbed after the voltage was applied for 100 hours in an environment of 60 ° C. and 90% RH. The display unevenness) was visually confirmed.
"○" indicates that there is no display unevenness on the liquid crystal display element, "△" indicates that display unevenness is visible near the sealant (peripheral part) of the liquid crystal display element, and the display unevenness is not limited to the peripheral part. The display performance of the liquid crystal display element was evaluated as "x" when it extended to the central part.
The liquid crystal display element with an evaluation of "○" is at a level where there is no problem in practical use, and the liquid crystal display element with an evaluation of "△" is at a level where there is a possibility of a problem depending on the display design. The display element is at a level that cannot withstand practical use.

Figure 0006773907
Figure 0006773907

本発明によれば、液晶によるシール剤への差し込みやシール剤による液晶汚染を抑制でき、接着性に優れ、かつ、表示性能に優れる液晶表示素子を得ることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, there is provided a sealant for a liquid crystal display element, which can suppress insertion of a liquid crystal into a sealant and contamination of the liquid crystal by the sealant, and can obtain a liquid crystal display element having excellent adhesiveness and display performance. can do. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (5)

硬化性樹脂と、熱硬化剤と、最大粒子径が前記液晶表示素子のセルギャップの100%以上の柔軟粒子とを含有し、
前記硬化性樹脂は、1分子中に3つ以上のエポキシ基を有する化合物を含み、
前記1分子中に3つ以上のエポキシ基を有する化合物は、1分子中に3つ以上のエポキシ基とイソシアヌル骨格とを有する化合物、及び/又は、1分子中に3つ以上のエポキシ基を有するグリシジルアミン型エポキシ化合物であり、
PSA型液晶表示素子の基板間における液晶の封止に用いられる
ことを特徴とする液晶滴下工法用シール剤。
It contains a curable resin, a thermosetting agent, and flexible particles having a maximum particle diameter of 100% or more of the cell gap of the liquid crystal display element.
The curable resin contains a compound having three or more epoxy groups in one molecule.
The compound having three or more epoxy groups in one molecule has a compound having three or more epoxy groups and an isocyanul skeleton in one molecule, and / or has three or more epoxy groups in one molecule. It is a glycidylamine type epoxy compound.
A sealant for a liquid crystal dropping method, which is used for sealing liquid crystals between substrates of a PSA type liquid crystal display element.
前記硬化性樹脂は、エポキシ基を有さない(メタ)アクリル化合物を含有しない請求項1記載の液晶滴下工法用シール剤。 The sealant for a liquid crystal dropping method according to claim 1, wherein the curable resin does not contain a (meth) acrylic compound having no epoxy group. 前記1分子中に3つ以上のエポキシ基を有する化合物は、前記1分子中に3つ以上のエポキシ基とイソシアヌル骨格とを有する化合物である請求項1又は2記載の液晶滴下工法用シール剤。 The sealant for a liquid crystal dropping method according to claim 1 or 2 , wherein the compound having three or more epoxy groups in one molecule is a compound having three or more epoxy groups and an isocyanul skeleton in the one molecule. 請求項1、2又は3記載の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料。 A vertically conductive material containing the sealant for the liquid crystal dropping method according to claim 1, 2 or 3 and conductive fine particles. 請求項1、2若しくは3記載の液晶滴下工法用シール剤又は請求項記載の上下導通材料を用いてなる液晶表示素子。 A liquid crystal display element using the sealant for the liquid crystal dropping method according to claim 1, 2 or 3 , or the vertically conductive material according to claim 4 .
JP2019529280A 2018-05-17 2019-05-10 Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element Active JP6773907B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018095397 2018-05-17
JP2018095397 2018-05-17
PCT/JP2019/018764 WO2019221027A1 (en) 2018-05-17 2019-05-10 Liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2019221027A1 JPWO2019221027A1 (en) 2020-05-28
JP6773907B2 true JP6773907B2 (en) 2020-10-21

Family

ID=68540255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529280A Active JP6773907B2 (en) 2018-05-17 2019-05-10 Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP6773907B2 (en)
TW (1) TWI813685B (en)
WO (1) WO2019221027A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220133967A (en) 2020-05-29 2022-10-05 미쓰이 가가쿠 가부시키가이샤 Sealing agent for display devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108790A1 (en) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
JP2005227366A (en) * 2004-02-10 2005-08-25 Sekisui Chem Co Ltd Sealant for liquid crystal display element, above and below conducting material and liquid crystal display element
CN101054505A (en) * 2007-05-30 2007-10-17 友达光电股份有限公司 Single hot set property frame gum
JP5493422B2 (en) * 2008-05-16 2014-05-14 Jsr株式会社 Curable composition for liquid crystal sealant and liquid crystal display element
JP2009275166A (en) * 2008-05-16 2009-11-26 Jsr Corp Sealing agent for liquid crystal display and liquid crystal display
KR101618397B1 (en) * 2009-07-01 2016-05-04 니폰 가야꾸 가부시끼가이샤 Liquid crystal sealing agent for liquid crystal dropping method and liquid crystal display cell using same
CN102612521B (en) * 2009-11-17 2015-10-07 日本化药株式会社 Novel hot free-radical generating agent, its manufacture method, liquid crystal sealing agent and liquid crystal display
CN104246592B (en) * 2013-03-07 2016-01-27 日本化药株式会社 The manufacture method of liquid crystal display and the liquid crystal display obtained with it
JP6666682B2 (en) * 2014-10-14 2020-03-18 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6683429B2 (en) * 2015-05-20 2020-04-22 積水化学工業株式会社 Curable resin particles used in a sealing agent for a liquid crystal dropping method, a sealing agent for a liquid crystal dropping method, and a liquid crystal display element
DE102016011898A1 (en) * 2015-10-23 2017-04-27 Merck Patent Gmbh Benzylmonoketals and their use
JP2017227826A (en) * 2016-06-24 2017-12-28 積水化学工業株式会社 Sealant particle, sealant and liquid crystal display device

Also Published As

Publication number Publication date
TW201947000A (en) 2019-12-16
WO2019221027A1 (en) 2019-11-21
TWI813685B (en) 2023-09-01
JPWO2019221027A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6574704B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6228710B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6773907B2 (en) Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2014189110A1 (en) Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
JP6666682B2 (en) Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6667042B2 (en) Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7053471B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6835980B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6783972B1 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JPWO2018062168A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6114892B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7007196B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2019221026A1 (en) Liquid crystal display element sealant, liquid crystal display element, and method for manufacturing liquid crystal display element
WO2021251291A1 (en) Sealant for display element, vertically electroconductive material, and display element
WO2016021628A1 (en) Sealant for one-drop fill process, vertically conducting material, and liquid crystal display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R151 Written notification of patent or utility model registration

Ref document number: 6773907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250