JP6773241B2 - High-concentration tin sulfonate aqueous solution and its manufacturing method - Google Patents

High-concentration tin sulfonate aqueous solution and its manufacturing method Download PDF

Info

Publication number
JP6773241B2
JP6773241B2 JP2020018835A JP2020018835A JP6773241B2 JP 6773241 B2 JP6773241 B2 JP 6773241B2 JP 2020018835 A JP2020018835 A JP 2020018835A JP 2020018835 A JP2020018835 A JP 2020018835A JP 6773241 B2 JP6773241 B2 JP 6773241B2
Authority
JP
Japan
Prior art keywords
concentration
aqueous solution
tin
methanesulfonic acid
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020018835A
Other languages
Japanese (ja)
Other versions
JP2020143366A (en
Inventor
康司 巽
康司 巽
恭平 峯尾
恭平 峯尾
広隆 平野
広隆 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2020/006991 priority Critical patent/WO2020175352A1/en
Priority to CN202080005424.0A priority patent/CN112789370B/en
Priority to US17/433,909 priority patent/US11525187B2/en
Priority to KR1020217008998A priority patent/KR102343152B1/en
Priority to EP20763523.6A priority patent/EP3916132A4/en
Priority to TW109106227A priority patent/TWI744807B/en
Publication of JP2020143366A publication Critical patent/JP2020143366A/en
Application granted granted Critical
Publication of JP6773241B2 publication Critical patent/JP6773241B2/en
Priority to US17/853,078 priority patent/US11692277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、電解錫めっき液の建浴又は補給のために用いられる高濃度スルホン酸錫水溶液及びその製造方法に関する。 The present invention relates to a high-concentration tin sulfonate aqueous solution used for bathing or replenishing an electrolytic tin plating solution and a method for producing the same.

従来、この種のメタンスルホン酸錫水溶液を製造する方法には、(1)酸化第一錫粉末とメタンスルホン酸とを中和反応させる方法(以下、中和法という。)と、(2)メタンスルホン酸中で錫金属を電解溶解させる方法(以下、電解法という。)が知られている。市販のメタンスルホン酸錫水溶液中には、錫が200g/L〜300g/Lの濃度で、また遊離のメタンスルホン酸(以下、単に遊離酸ということもある。)が40g/L〜140g/Lの濃度で含まれている。 Conventionally, methods for producing this kind of tin methanesulfonate aqueous solution include (1) a method of neutralizing stannous oxide powder and methanesulfonic acid (hereinafter referred to as a neutralization method), and (2). A method of electrolytically dissolving tin metal in methanesulfonic acid (hereinafter referred to as an electrolytic method) is known. In a commercially available aqueous solution of tin methanesulfonate, tin has a concentration of 200 g / L to 300 g / L, and free methanesulfonic acid (hereinafter, also simply referred to as free acid) is 40 g / L to 140 g / L. It is contained in the concentration of.

一般に、メタンスルホン酸錫水溶液の電解錫めっき浴に、不溶性電極を使用する場合には、めっきに消費された錫イオンを電解めっき浴に補給するか、又は電解によって生じた遊離のメタンスルホン酸濃度を低減させるために、電解めっき浴から液を抜き、新たなメタンスルホン酸錫水溶液を追加するブリードアンドフィード(Bleed & Feed)作業を行う。 In general, when an insoluble electrode is used in an electrolytic tin plating bath of an aqueous solution of tin methanesulfonic acid, the tin ions consumed for plating are replenished in the electrolytic plating bath, or the concentration of free methanesulfonic acid generated by electrolysis. Bleed & Feed work is performed to drain the liquid from the electroplating bath and add a new aqueous solution of tin methanesulfonate.

一方、電気錫めっき浴の調製方法として、金属錫粒子と酸性液との固液流動槽中に酸素含有気体を吹き込んで、金属錫粒子、電解錫めっき液および酸素含有気体の固液気の3相接触により、金属錫を化学的に酸性液に溶解する電気錫めっき液の調製に際して、前記錫溶解のための酸性液として、20g/L〜120g/Lの濃度のメタンスルホン酸液を用いて金属錫を化学溶解させる方法が開示されている(特許文献1参照。請求項1)。 On the other hand, as a method for preparing an electric tin plating bath, an oxygen-containing gas is blown into a solid-liquid flow tank of metal tin particles and an acidic liquid, and the solid-liquid gas of the metal tin particles, the electrolytic tin plating solution and the oxygen-containing gas 3 When preparing an electrotin plating solution that chemically dissolves metallic tin in an acidic solution by phase contact, a methanesulfonic acid solution having a concentration of 20 g / L to 120 g / L was used as the acidic solution for dissolving the tin. A method for chemically dissolving metallic tin is disclosed (see Patent Document 1, claim 1).

特開平7−41999号公報Japanese Unexamined Patent Publication No. 7-41999

特許文献1に示される方法では、酸性液として、20g/L〜120g/Lの濃度のメタンスルホン酸液を用いて、酸素含有気体を槽中に吹き込んで金属錫を化学溶解させているため、このメタンスルホン酸液による金属錫の溶解液は溶存酸素濃度が8ppm以上となり、これにより二価錫イオン(Sn2+)の酸化が促進され、四価錫イオン(Sn4+)濃度が高くなり、二酸化錫(SnO2)の生成により、液が懸濁化するおそれがあった。また前述したブリードアンドフィード作業を行った場合、メタンスルホン酸錫水溶液中の錫濃度が低いときには、或いは遊離のメタンスルホン酸濃度が高いときには、抜き取る液量(以下、液抜き量ということもある。)が多くなりプロセスコストが増大する問題があった。そのため、電解錫めっき液の建浴又は補給の用途には、錫濃度が高く、遊離のメタンスルホン酸濃度が低いメタンスルホン酸錫水溶液が望まれていた。 In the method shown in Patent Document 1, an oxygen-containing gas is blown into a tank using a methanesulfonic acid solution having a concentration of 20 g / L to 120 g / L as an acidic solution to chemically dissolve metallic tin. The solution of metallic tin with this methanesulfonic acid solution has a dissolved oxygen concentration of 8 ppm or more, which promotes the oxidation of divalent tin ions (Sn 2+ ) and increases the concentration of tetravalent tin ions (Sn 4+ ). , Tin dioxide (SnO 2 ) formation could cause the liquid to suspend. Further, when the above-mentioned bleed and feed operation is performed, when the tin concentration in the tin methanesulfonate aqueous solution is low or when the free methanesulfonic acid concentration is high, the amount of liquid to be withdrawn (hereinafter, also referred to as the amount of liquid to be withdrawn). ) Increased and the process cost increased. Therefore, an aqueous solution of tin methanesulfonate having a high tin concentration and a low concentration of free methanesulfonic acid has been desired for use in building a bath or replenishing an electrolytic tin plating solution.

しかし、上記用途のために、錫濃度を高くすると、前述した(1)の中和法では、四価錫イオン(Sn4+)濃度が高くなり、二酸化錫(SnO2)が生成することで液が懸濁化する課題があった。また前述した(2)の電解法では、錫金属の電解溶解効率を上げるために、遊離のメタンスルホン酸濃度を高くする必要があり、これによりメタンスルホン酸錫の溶解度が低下し、液を保管中にメタンスルホン酸錫の結晶が析出するおそれがあった。 However, for the above-mentioned applications, when the tin concentration is increased, the tetravalent tin ion (Sn 4+ ) concentration is increased in the neutralization method (1) described above, and tin dioxide (SnO 2 ) is generated. There was a problem that the liquid was suspended. Further, in the electrolytic method (2) described above, in order to increase the electrolytic dissolution efficiency of tin metal, it is necessary to increase the concentration of free methanesulfonic acid, which reduces the solubility of tin methanesulfonic acid and stores the liquid. There was a risk that tin methanesulfonate crystals would precipitate inside.

本発明の目的は、透明で、めっき性能を低下させず、補給液の場合に補給液量が少なくて済み、保管時にも結晶が析出しない保管安定性に優れた高濃度スルホン酸錫水溶液を提供することにある。本発明の別の目的は、こうした高濃度スルホン酸錫水溶液を製造する方法を提供することにある。 An object of the present invention is to provide a high-concentration tin sulfonate aqueous solution which is transparent, does not deteriorate the plating performance, requires a small amount of the replenisher solution in the case of a replenisher solution, and has excellent storage stability without crystal precipitation even during storage. To do. Another object of the present invention is to provide a method for producing such a high-concentration tin sulfonate aqueous solution.

本発明者は、前述した(1)の中和法を改良すべく鋭意検討した結果、液の懸濁は四価錫イオン(Sn4+)濃度が高くなることに起因し、酸化第一錫とメタンスルホン酸とを反応させたときに生じる中和熱を抑制すれば、二価錫イオン(Sn2+)の酸化が抑制され、四価錫イオン(Sn4+)濃度が低下して液が懸濁しないことに着目し、本発明に到達した。 As a result of diligent studies to improve the neutralization method of (1) described above, the present inventor has caused the suspension of the liquid to have a high concentration of tetravalent tin ions (Sn 4+ ), and thus stannous oxide. If the heat of neutralization generated when the methanesulfonic acid is reacted with methanesulfonic acid is suppressed, the oxidation of divalent tin ions (Sn 2+ ) is suppressed, and the concentration of tetravalent tin ions (Sn 4+ ) is lowered to reduce the liquid. We arrived at the present invention by focusing on the fact that

本発明の第1の観点は、二価錫イオン(Sn2+)濃度が360g/L〜420g/Lであり、四価錫イオン(Sn4+)濃度が10g/L以下であり、遊離のメタンスルホン酸濃度が40g/L以下であり、ハーゼン単位色数(APHA)が240以下であり、濁度が25FTU以下である高濃度スルホン酸錫水溶液である。 The first aspect of the present invention is that the divalent tin ion (Sn 2+ ) concentration is 360 g / L to 420 g / L, the tetravalent tin ion (Sn 4+ ) concentration is 10 g / L or less, and it is free. A high-concentration tin sulfonate aqueous solution having a methanesulfonic acid concentration of 40 g / L or less, a Hazen unit color number (APHA) of 240 or less, and a turbidity of 25 FTU or less.

本発明の第2の観点は、第1の観点に基づく発明であって、前記高濃度スルホン酸錫水溶液は複数種類の金属の不純物を含み、前記複数種類の金属の合計含有量が金属換算で30mg/L以下である高濃度スルホン酸錫水溶液である。 The second aspect of the present invention is an invention based on the first aspect, wherein the high-concentration tin sulfonate aqueous solution contains impurities of a plurality of types of metals, and the total content of the plurality of types of metals is converted into metals. It is a high-concentration tin sulfonate aqueous solution of 30 mg / L or less.

本発明の第3の観点は、第2の観点に基づく発明であって、前記複数種類の金属が、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムである高濃度スルホン酸錫水溶液である。 The third aspect of the present invention is an invention based on the second aspect, wherein the plurality of kinds of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver and bismuth. , Magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium and cadmium, which are high-concentration tin sulfonate aqueous solutions.

本発明の第4の観点は、第2の観点に基づく発明であって、前記複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下である高濃度スルホン酸錫水溶液である。 A fourth aspect of the present invention is an invention based on the second aspect, which is a high-concentration tin sulfonate aqueous solution in which the content of each of the plurality of types of metals is 10 mg / L or less in terms of metal.

本発明の第5の観点は、第1ないし第4の観点のいずれかの観点に基づく発明であって、前記高濃度スルホン酸錫水溶液は塩化物イオンを含み、前記塩化物イオンの含有量が10mg/L以下である高濃度スルホン酸錫水溶液である。 A fifth aspect of the present invention is an invention based on any one of the first to fourth aspects, wherein the high-concentration tin sulfonate aqueous solution contains chloride ions, and the content of the chloride ions is high. It is a high-concentration tin sulfonate aqueous solution of 10 mg / L or less.

本発明の第6の観点は、酸化第一錫粉末とメタンスルホン酸とを中和反応させてスルホン酸錫水溶液を製造する方法において、前記メタンスルホン酸を純水で希釈し、濃度60質量%〜90質量%のメタンスルホン酸水溶液を得る工程と、前記メタンスルホン酸水溶液を10℃以下の温度に保持した状態で循環させる工程と、前記循環するメタンスルホン酸水溶液に、10℃以下の温度に調整された酸化第一錫粉末を添加して前記酸化第一錫粉末を溶解する工程とを含む第1ないし第5の観点のいずれかの観点の高濃度スルホン酸錫水溶液を製造する方法である。 A sixth aspect of the present invention is a method for producing an aqueous solution of tin sulfonate by neutralizing stannous oxide powder and methanesulfonic acid, wherein the methanesulfonic acid is diluted with pure water and the concentration is 60% by mass. A step of obtaining an aqueous solution of methanesulfonic acid of ~ 90% by mass, a step of circulating the aqueous solution of methanesulfonic acid while holding it at a temperature of 10 ° C. or lower, and a step of circulating the aqueous solution of methanesulfonic acid at a temperature of 10 ° C. or lower. A method for producing a high-concentration tin sulfonate aqueous solution from any one of the first to fifth viewpoints, which comprises a step of adding a prepared stannous oxide powder to dissolve the stannous oxide powder. ..

本発明の第7の観点は、第6の観点に基づく発明であって、前記循環するメタンスルホン酸水溶液に窒素ガスをバブリングするか、及び/又は中空糸膜脱気モジュールで脱気処理を行う高濃度スルホン酸錫水溶液を製造する方法である。 A seventh aspect of the present invention is an invention based on the sixth aspect, in which nitrogen gas is bubbled into the circulating methanesulfonic acid aqueous solution and / or degassing is performed by a hollow fiber membrane degassing module. This is a method for producing a high-concentration tin sulfonate aqueous solution.

本発明の第8の観点は、第6又は第7の観点に基づく発明であって、前記酸化第一錫粉末は複数種類の金属の不純物を含み、前記複数種類の金属の合計含有量が金属換算で30mg/L以下である高濃度スルホン酸錫水溶液の製造方法である。 The eighth aspect of the present invention is an invention based on the sixth or seventh aspect, wherein the stannous oxide powder contains impurities of a plurality of types of metals, and the total content of the plurality of types of metals is a metal. This is a method for producing a high-concentration tin sulfonate aqueous solution having a conversion of 30 mg / L or less.

本発明の第9の観点は、第8の観点に基づく発明であって、前記複数種類の金属が、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムである高濃度スルホン酸錫水溶液の製造方法である。 The ninth aspect of the present invention is an invention based on the eighth aspect, wherein the plurality of kinds of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver and bismuth. , Magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium and cadmium, which is a method for producing a high-concentration tin sulfonate aqueous solution.

本発明の第10の観点は、第8の観点に基づく発明であって、前記複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下である高濃度スルホン酸錫水溶液の製造方法である。 The tenth aspect of the present invention is an invention based on the eighth aspect, which is a method for producing a high-concentration tin sulfonate aqueous solution in which the content of each of the plurality of types of metals is 10 mg / L or less in terms of metal. is there.

本発明の第11の観点は、第6ないし第10の観点のいずれかの観点に基づく発明であって、前記酸化第一錫粉末は塩化物イオンを含み、前記塩化物イオンの含有量が10mg/L以下である高濃度スルホン酸錫水溶液の製造方法である。 The eleventh aspect of the present invention is an invention based on any one of the sixth to tenth aspects, wherein the stannous oxide powder contains chloride ions and the content of the chloride ions is 10 mg. This is a method for producing a high-concentration tin sulfonate aqueous solution having a concentration of / L or less.

本発明の第1の観点の高濃度スルホン酸錫水溶液は、二価錫イオン(Sn2+)濃度が360g/L〜420g/Lであり、四価錫イオン(Sn4+)濃度が10g/L以下であり、かつ遊離のメタンスルホン酸濃度が40g/L以下であるため、この水溶液で電解錫めっき液の建浴をした後で、前述したブリードアンドフィード作業を行った場合、液抜き量が少なくて済む。これにより、補給液の場合に補給液量が少なくて済み、プロセスコストが増大しない。また四価錫イオン(Sn4+)濃度が10g/L以下と低いため、液が懸濁化せず、ハーゼン単位色数(APHA)が240以下でありかつ濁度が25FTU以下であり、液が透明である。また高濃度スルホン酸錫水溶液は、低温保管時にメタンスルホン酸錫の結晶が析出せず、保管安定性に優れる。更に二酸化錫(SnO2)の生成による液中パーティクルが少なく、半導体製品の品質を高める。 The high-concentration tin sulfonate aqueous solution according to the first aspect of the present invention has a divalent tin ion (Sn 2+ ) concentration of 360 g / L to 420 g / L and a tetravalent tin ion (Sn 4+ ) concentration of 10 g / L. Since it is L or less and the concentration of free methanesulfonic acid is 40 g / L or less, the amount of liquid drained when the above-mentioned bleed and feed operation is performed after the electrolytic tin plating solution is bathed in this aqueous solution. Is less. As a result, in the case of a replenisher, the amount of the replenisher can be small, and the process cost does not increase. Further, since the tetravalent tin ion (Sn 4+ ) concentration is as low as 10 g / L or less, the liquid does not suspend, the Hazen unit color number (APHA) is 240 or less, the turbidity is 25 FTU or less, and the liquid. Is transparent. Further, the high-concentration tin sulfonate aqueous solution is excellent in storage stability because crystals of tin methanesulfonate do not precipitate during low-temperature storage. Furthermore, there are few particles in the liquid due to the formation of tin dioxide (SnO 2 ), which enhances the quality of semiconductor products.

本発明の第2の観点の高濃度スルホン酸錫水溶液では、高濃度スルホン酸錫水溶液が複数種類の金属の不純物を含んだときにも、その合計含有量が金属換算で30mg/L以下と少ないため、また第4の観点の高濃度スルホン酸錫水溶液では、複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下と少ないため、いずれもめっき性能を低下させない利点がある。 In the high-concentration tin sulfonate aqueous solution according to the second aspect of the present invention, even when the high-concentration tin sulfonate aqueous solution contains impurities of a plurality of types of metals, the total content thereof is as small as 30 mg / L or less in terms of metal. Therefore, in the high-concentration tin sulfonate aqueous solution of the fourth aspect, since the content of each of the plurality of types of metals is as small as 10 mg / L or less in terms of metal, there is an advantage that the plating performance is not deteriorated.

本発明の第3の観点の高濃度スルホン酸錫水溶液では、複数種類の金属が半導体製品の品質に悪影響を及ぼすナトリウム等であっても、これらの金属の合計含有量が金属換算で30mg/L以下と僅かであるため、めっき性能を低下させず、またこの水溶液が半導体用途に供される場合、半導体製品の品質を高めるうえで好ましい。 In the high-concentration tin sulfonate aqueous solution according to the third aspect of the present invention, even if a plurality of kinds of metals are sodium and the like which adversely affect the quality of semiconductor products, the total content of these metals is 30 mg / L in terms of metal. Since the amount is as small as the following, it is preferable in order to improve the quality of the semiconductor product when the aqueous solution is used for semiconductor applications without deteriorating the plating performance.

本発明の第5の観点の高濃度スルホン酸錫水溶液では、高濃度スルホン酸錫水溶液が塩化物イオンを含んだときにも、その含有量が10mg/L以下と少ないため、めっき性能を低下させず、またこの水溶液が半導体用途に供される場合、半導体製品の品質を高めるうえで好ましい。 In the high-concentration tin sulfonate aqueous solution according to the fifth aspect of the present invention, even when the high-concentration tin sulfonate aqueous solution contains chloride ions, the content thereof is as low as 10 mg / L or less, so that the plating performance is deteriorated. However, when this aqueous solution is used for semiconductor applications, it is preferable for improving the quality of semiconductor products.

本発明の第6の観点の高濃度スルホン酸錫水溶液の製造方法では、メタンスルホン酸を純水で希釈し、濃度60質量%〜90質量%のメタンスルホン酸水溶液を得た後、この水溶液を10℃以下の温度で循環させた状態で10℃以下の温度に調整された酸化第一錫粉末を添加して、低温状態でメタンスルホン酸水溶液と酸化第一錫を中和反応をさせるため、中和熱を抑制することができる。これにより二価錫イオン(Sn2+)の酸化が抑制され、四価錫イオン(Sn4+)濃度が低下して、二酸化錫(SnO2)の生成が抑制されるため、液が懸濁化しない。 In the method for producing a high-concentration tin sulfonic acid aqueous solution according to the sixth aspect of the present invention, methanesulfonic acid is diluted with pure water to obtain a methanesulfonic acid aqueous solution having a concentration of 60% by mass to 90% by mass, and then this aqueous solution is used. In order to add a stannous oxide powder adjusted to a temperature of 10 ° C. or lower while circulating at a temperature of 10 ° C. or lower to neutralize the methanesulfonic acid aqueous solution and stannous oxide at a low temperature. The heat of neutralization can be suppressed. As a result, the oxidation of divalent tin ions (Sn 2+ ) is suppressed, the concentration of tetravalent tin ions (Sn 4+ ) is lowered, and the production of tin dioxide (SnO 2 ) is suppressed, so that the liquid is suspended. Does not turn into.

本発明の第7の観点の高濃度スルホン酸錫水溶液の製造方法では、循環するメタンスルホン酸水溶液に窒素ガスをバブリングするか、及び/又は中空糸膜脱気モジュールで脱気処理を行うことにより、液中の溶存酸素量を低減できる。これにより、二価錫イオン(Sn2+)の酸化がより一層抑制され、四価錫イオン(Sn4+)濃度がより低下し、二酸化錫(SnO2)の生成がより一層抑制されるため、液がより一層懸濁化しない。 In the method for producing a high-concentration tin sulfonic acid aqueous solution according to the seventh aspect of the present invention, nitrogen gas is bubbled into the circulating methanesulfonic acid aqueous solution, and / or degassing is performed by a hollow fiber membrane degassing module. , The amount of dissolved oxygen in the liquid can be reduced. As a result, the oxidation of divalent tin ions (Sn 2+ ) is further suppressed, the concentration of tetravalent tin ions (Sn 4+ ) is further reduced, and the production of tin dioxide (SnO 2 ) is further suppressed. , The liquid does not suspend further.

本発明の第8の観点の高濃度スルホン酸錫水溶液の製造方法では、酸化第一錫が複数種類の金属の不純物を合計で金属換算にして30mg/L以下と僅かしか含まず、また本発明の第10の観点の高濃度スルホン酸錫水溶液の製造方法では、複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下と僅かしか含まないため、得られる水溶液の不純物金属の含有量を低減して、めっき性能を低下させないスルホン酸錫水溶液を製造することができる。 In the method for producing a high-concentration tin sulfonate aqueous solution according to the eighth aspect of the present invention, stannous oxide contains only a small amount of impurities of a plurality of types of metals in terms of metals of 30 mg / L or less, and the present invention. In the method for producing a high-concentration tin sulfonate aqueous solution according to the tenth aspect of the above, since the content of each of the plurality of types of metals is as small as 10 mg / L or less in terms of metal, the content of the impurity metal in the obtained aqueous solution is small. It is possible to produce an aqueous solution of tin sulfonate that does not reduce the plating performance.

本発明の第9の観点の高濃度スルホン酸錫水溶液の製造方法では、酸化第一錫に含まれる複数種類の金属が半導体製品の品質に悪影響を及ぼすナトリウム等であっても、これらの金属の合計含有量が金属換算で30mg/L以下と僅かであるため、めっき性能を低下させないスルホン酸錫水溶液を製造することができる。 In the method for producing a high-concentration tin sulfonate aqueous solution according to the ninth aspect of the present invention, even if a plurality of types of metals contained in stannous oxide are sodium and the like which adversely affect the quality of semiconductor products, these metals can be used. Since the total content is as small as 30 mg / L or less in terms of metal, it is possible to produce an aqueous solution of tin sulfonate that does not deteriorate the plating performance.

本発明の第11の観点の高濃度スルホン酸錫水溶液の製造方法では、塩化物イオンを10mg/L以下と僅かしか含まない酸化第一錫を用いるため、得られる水溶液の塩化物イオン濃度を低減して、めっき性能を低下させないスルホン酸錫水溶液を製造することができる。 In the method for producing a high-concentration tin sulfonate aqueous solution according to the eleventh aspect of the present invention, stannous oxide containing only 10 mg / L or less of chloride ions is used, so that the chloride ion concentration of the obtained aqueous solution is reduced. Therefore, an aqueous solution of tin sulfonate that does not deteriorate the plating performance can be produced.

次に本発明を実施するための形態を説明する。 Next, a mode for carrying out the present invention will be described.

〔高濃度スルホン酸錫水溶液〕
本実施形態の高濃度スルホン酸錫水溶液は、二価錫イオン(Sn2+)濃度が360g/L〜420g/Lであり、四価錫イオン(Sn4+)濃度が10g/L以下であり、遊離のメタンスルホン酸濃度が40g/L以下である。
高濃度スルホン酸錫水溶液が複数種類の金属の不純物を含むとき、複数種類の金属の合計含有量が、好ましくは、金属換算で30mg/L以下である。より好ましくは、複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下である。また高濃度スルホン酸錫水溶液が塩化物イオンを含むとき、好ましくは、塩化物イオンの含有量が10mg/L以下である。二価錫イオン(Sn2+)濃度が360g/L未満では、この水溶液で電解錫めっき液の建浴をした後で、前述したブリードアンドフィード作業を行った場合、液抜き量が多くなる不具合がある。また420g/Lを超えると、酸化第一錫粉末が溶解せず、保存時に析出してしまう。二価錫イオン(Sn2+)濃度の好ましい範囲は、380g/L〜420g/Lであり、更に好ましい範囲は、400g/L〜420g/Lである。
[High-concentration tin sulfonate aqueous solution]
The high-concentration tin sulfonate aqueous solution of the present embodiment has a divalent tin ion (Sn 2+ ) concentration of 360 g / L to 420 g / L and a tetravalent tin ion (Sn 4+ ) concentration of 10 g / L or less. , The concentration of free methanesulfonic acid is 40 g / L or less.
When the high-concentration tin sulfonate aqueous solution contains impurities of a plurality of types of metals, the total content of the plurality of types of metals is preferably 30 mg / L or less in terms of metal. More preferably, the content of each of the plurality of types of metals is 10 mg / L or less in terms of metal. When the high-concentration tin sulfonate aqueous solution contains chloride ions, the chloride ion content is preferably 10 mg / L or less. If the divalent tin ion (Sn 2+ ) concentration is less than 360 g / L, the amount of liquid drained will increase if the above-mentioned bleed and feed operation is performed after the electrolytic tin plating solution is bathed in this aqueous solution. There is. If it exceeds 420 g / L, the stannous oxide powder will not dissolve and will precipitate during storage. The preferred range of divalent tin ion (Sn 2+ ) concentration is 380 g / L to 420 g / L, and the more preferred range is 400 g / L to 420 g / L.

またこの水溶液の四価錫イオン(Sn4+)濃度が10g/Lを超えると、水溶液が白濁化し、このような水溶液で建浴しためっき液や、このような水溶液を補給液としためっき液でめっきを行うと、めっき性能を低下させる。四価錫イオン(Sn4+)濃度の好ましい範囲は8g/L以下であり、更に好ましい範囲は5g/L以下である。また遊離のメタンスルホン酸濃度が40g/Lを超えると、この水溶液で電解錫めっき液の建浴をした後で、前述したブリードアンドフィード作業を行った場合、液抜き量が多くなる不具合があるとともに、メタンスルホン酸錫の溶解度が低下するため、この水溶液を保管(特に−10℃以下の低温での保管)している間にメタンスルホン酸錫が析出する不具合がある。遊離のメタンスルホン酸濃度の好ましい範囲は、0g/L〜30g/Lであり、更に好ましい範囲は、0g/L〜20g/Lである。 When the tetravalent tin ion (Sn 4+ ) concentration of this aqueous solution exceeds 10 g / L, the aqueous solution becomes cloudy, and a plating solution bathed with such an aqueous solution or a plating solution using such an aqueous solution as a supplement solution. When plating is performed with, the plating performance is deteriorated. The preferred range of the tetravalent tin ion (Sn 4+ ) concentration is 8 g / L or less, and the more preferable range is 5 g / L or less. Further, if the free methanesulfonic acid concentration exceeds 40 g / L, there is a problem that the amount of liquid drained increases when the above-mentioned bleed and feed operation is performed after the electrolytic tin plating solution is bathed in this aqueous solution. At the same time, since the solubility of tin methanesulfonate decreases, there is a problem that tin methanesulfonate precipitates while this aqueous solution is stored (particularly at a low temperature of −10 ° C. or lower). The preferred range of free methanesulfonic acid concentration is 0 g / L to 30 g / L, and the more preferred range is 0 g / L to 20 g / L.

更にこの水溶液の複数種類の金属の不純物の合計含有量が金属換算で30mg/Lを超えると、また塩化物イオンの含有量が10mg/Lを超えると、金属不純物及び塩化物イオンがめっき反応に関与するため、めっき性能を低下させるおそれがある。好ましい塩化物イオンの含有量は8mg/L以下である。 Furthermore, when the total content of impurities of a plurality of types of metals in this aqueous solution exceeds 30 mg / L in terms of metal, and when the content of chloride ions exceeds 10 mg / L, the metal impurities and chloride ions undergo a plating reaction. Since it is involved, the plating performance may be deteriorated. The preferred chloride ion content is 8 mg / L or less.

ここで、金属不純物を構成する複数種類の金属は、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムである。このような金属がめっき液に多く含まれると、めっき性能が低下するおそれがある。本実施形態の高濃度スルホン酸錫水溶液においては、上記のような複数種類の金属の合計含有量が30mg/L以下であることが好ましく、10mg/Lであることが更に好ましい。複数種類の金属の合計含有量がこのように少ない含有量であることにより、本実施形態の水溶液を、めっき液を建浴するための液、及び/又は、補給液として用いた場合、めっき性能がより一層低下しにくくなる。また、複数種類の金属のそれぞれの含有量は、金属換算で、上記のように、より好ましくは10mg/L以下であり、更に好ましくは5mg/Lである。複数種類の金属のそれぞれの含有量がこのように少ない含有量であることにより、本実施形態の水溶液を、めっき液を建浴するための液、及び/又は、補給液として用いた場合、めっき性能が更に一層低下しにくくなる。 Here, the plurality of types of metals constituting the metal impurities are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, cobalt, Indium, tungsten, thallium and cadmium. If a large amount of such a metal is contained in the plating solution, the plating performance may be deteriorated. In the high-concentration tin sulfonate aqueous solution of the present embodiment, the total content of the plurality of types of metals as described above is preferably 30 mg / L or less, and more preferably 10 mg / L. Since the total content of the plurality of types of metals is such a small content, when the aqueous solution of the present embodiment is used as a solution for bathing the plating solution and / or as a supplementary solution, the plating performance Is less likely to decrease. Further, the content of each of the plurality of types of metals is more preferably 10 mg / L or less, still more preferably 5 mg / L, as described above, in terms of metal. Since the content of each of the plurality of types of metals is such a small content, when the aqueous solution of the present embodiment is used as a liquid for forming a plating solution and / or as a supplementary solution, plating Performance is less likely to deteriorate.

本実施形態の高濃度スルホン酸錫水溶液は、二価錫イオン(Sn2+)濃度、四価錫イオン(Sn4+)濃度及び遊離のメタンスルホン酸濃度が上記の範囲であるため、JIS K0071−1(1998年)に準拠して測定されるハーゼン単位色数(APHA)が240以下である。また積分球式光電光度法を用いた濁度測定によるホルマジン濁度が25FTU以下である。 In the high-concentration tin sulfonate aqueous solution of the present embodiment, the divalent tin ion (Sn 2+ ) concentration, the tetravalent tin ion (Sn 4+ ) concentration, and the free methanesulfonic acid concentration are within the above ranges, and therefore JIS K0071. The number of Hazen unit colors (APHA) measured in accordance with -1 (1998) is 240 or less. Further, the formagine turbidity measured by turbidity measurement using the integrating sphere photoelectric photometry method is 25 FTU or less.

〔高濃度スルホン酸錫水溶液の製造方法〕
本実施形態の高濃度スルホン酸錫水溶液は、メタンスルホン酸を純水で希釈し、濃度60質量%〜90質量%のメタンスルホン酸水溶液を得る工程と、このメタンスルホン酸水溶液を10℃以下の温度に保持した状態で循環させる工程と、循環するメタンスルホン酸水溶液に、10℃以下の温度に調整された酸化第一錫粉末を添加して上記酸化第一錫粉末を溶解する工程とを含む。
[Manufacturing method of high-concentration tin sulfonate aqueous solution]
The high-concentration tin sulfonic acid aqueous solution of the present embodiment includes a step of diluting methanesulfonic acid with pure water to obtain a methanesulfonic acid aqueous solution having a concentration of 60% by mass to 90% by mass, and the methanesulfonic acid aqueous solution at 10 ° C. or lower. It includes a step of circulating while maintaining the temperature and a step of adding stannous oxide powder adjusted to a temperature of 10 ° C. or lower to the circulating methanesulfonic acid aqueous solution to dissolve the stannous oxide powder. ..

ここで、メタンスルホン酸水溶液中のメタンスルホン酸濃度を60質量%〜90質量%とするのは、この濃度範囲外では、最終的にメタンスルホン酸錫水溶液にしたときに、二価錫イオン(Sn2+)濃度が360g/L〜420g/Lにならない。メタンスルホン酸水溶液中のメタンスルホン酸濃度の調整は市販のメタンスルホン酸を純水で希釈することにより行われる。純水としては、イオン交換水や蒸留水などを用いることができる。好ましい濃度は60質量%〜80質量%であり、更に好ましい濃度は60質量%〜70質量%である。次に、このメタンスルホン酸水溶液を冷却装置を備えた中和槽に入れて、冷却装置により10℃以下の温度、好ましくは0℃以下の温度に保持した状態で循環させる。冷却装置としては、例えば、チラーを用いることができる。そして、10℃以下の温度で循環しているメタンスルホン酸水溶液に酸化第一錫を添加し、溶解させることにより、高濃度スルホン酸錫水溶液を得ることができる。酸化第一錫は粉末であることが望ましい。ここで、酸化第一錫は10℃以下の温度に調整されている。酸化第一錫を10℃以下で添加するので、メタンスルホン酸水溶液と酸化第一錫の中和反応時に生じる中和熱を抑制することができる。これにより二価錫イオン(Sn2+)の酸化が抑制され、四価錫イオン(Sn4+)濃度が低下して、二酸化錫(SnO2)の生成が抑制されるため、液が懸濁化しない。なお、溶解中もメタンスルホン酸水溶液の液温を10℃以下に保つことが好ましい。 Here, the methanesulfonic acid concentration in the methanesulfonic acid aqueous solution is set to 60% by mass to 90% by mass when the tin methanesulfonic acid aqueous solution is finally made into a divalent tin ion (outside this concentration range). Sn 2+ ) concentration does not reach 360 g / L to 420 g / L. The concentration of methanesulfonic acid in the aqueous solution of methanesulfonic acid is adjusted by diluting commercially available methanesulfonic acid with pure water. As the pure water, ion-exchanged water, distilled water, or the like can be used. The preferred concentration is 60% by mass to 80% by mass, and the more preferable concentration is 60% by mass to 70% by mass. Next, the methanesulfonic acid aqueous solution is placed in a neutralization tank equipped with a cooling device and circulated while being maintained at a temperature of 10 ° C. or lower, preferably 0 ° C. or lower by the cooling device. As the cooling device, for example, a chiller can be used. Then, a high-concentration tin sulfonate aqueous solution can be obtained by adding and dissolving stannous oxide to the methanesulfonic acid aqueous solution circulating at a temperature of 10 ° C. or lower. It is desirable that stannous oxide is a powder. Here, stannous oxide is adjusted to a temperature of 10 ° C. or lower. Since stannous oxide is added at 10 ° C. or lower, the heat of neutralization generated during the neutralization reaction between the aqueous methanesulfonic acid solution and stannous oxide can be suppressed. As a result, the oxidation of divalent tin ions (Sn 2+ ) is suppressed, the concentration of tetravalent tin ions (Sn 4+ ) is lowered, and the production of tin dioxide (SnO 2 ) is suppressed, so that the liquid is suspended. Does not turn into. It is preferable to keep the temperature of the aqueous methanesulfonic acid solution at 10 ° C. or lower even during dissolution.

メタンスルホン酸水溶液に添加する酸化第一錫は、メタンスルホン酸水溶液の金属不純物や塩化物イオンの各含有量を低下させ、めっき性能の低下を防ぐために、複数種類の金属の不純物又は塩化物イオンを含む場合、複数種類の金属の合計含有量が金属換算で30ppm以下であることが好ましく、10ppm以下であることが更に好ましい。また複数種類の金属のそれぞれの含有量が金属換算で10ppm以下であることがより好ましく、5ppm以下であることが更に好ましい。更に塩化物イオンが10ppm以下である酸化第一錫を用いることが好ましく、5ppm以下である酸化第一錫を用いることが更に好ましい。このような品質を備えた酸化第一錫は、例えば特開平11−310415号公報に記載された方法で入手することができる。この方法では、第一錫塩の酸性水溶液とアルカリ水溶液との中和反応によって水酸化第一錫を生成させ、脱水して酸化第一錫が製造される。具体的には、アルカリ水溶液としてアンモニア水と重炭酸アンモニウムとを同時に用い、pH6.0〜10.0及び液温50℃以下で、第一錫塩の酸性水溶液を中和して水酸化第一錫沈殿を生成させる中和工程と、生成した水酸化第一錫沈殿を加熱下で熟成し脱水させて酸化第一錫とする脱水工程と、該酸化第一錫を濾別して水洗し乾燥する回収工程により酸化第一錫が製造される。 Stannous oxide added to the methanesulfonic acid aqueous solution reduces the content of metal impurities and chloride ions in the methanesulfonic acid aqueous solution, and in order to prevent deterioration of plating performance, impurities or chloride ions of multiple types of metals. The total content of the plurality of types of metals is preferably 30 ppm or less in terms of metal, and more preferably 10 ppm or less. Further, the content of each of the plurality of types of metals is more preferably 10 ppm or less in terms of metal, and further preferably 5 ppm or less. Further, it is preferable to use stannous oxide having a chloride ion of 10 ppm or less, and further preferably to use stannous oxide having a chloride ion of 5 ppm or less. Stannous oxide having such quality can be obtained, for example, by the method described in JP-A-11-310415. In this method, stannous hydroxide is produced by a neutralization reaction between an acidic aqueous solution of a stannous salt and an alkaline aqueous solution, and dehydrated to produce stannous oxide. Specifically, aqueous ammonia and ammonium bicarbonate are used simultaneously as the alkaline aqueous solution, and the acidic aqueous solution of the first tin salt is neutralized at a pH of 6.0 to 10.0 and a liquid temperature of 50 ° C. or lower to obtain the first hydroxide. A neutralization step of producing a tin precipitate, a dehydration step of aging the produced stannous hydroxide precipitate under heating and dehydrating it to obtain stannous oxide, and recovering the stannous oxide by filtering, washing with water, and drying. Stannous oxide is produced by the process.

なお、酸化第一錫中の金属不純物量は、酸化第一錫に含まれるナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムの各量を誘導結合プラズマ発光分光(ICP−OES)で測定することにより求められる。
また、酸化第一錫中の塩化物イオン量は、酸化第一錫を塩化物イオンを含まない適当な溶媒に溶解し、イオンクロマトグラフィーにより測定した量である。
The amount of metal impurities in tin oxide is sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, and so on. It is determined by measuring the amounts of chromium, manganese, cobalt, indium, tungsten, thallium and cadmium by inductively coupled plasma atomic emission spectrometry (ICP-OES).
The amount of chloride ion in stannous oxide is an amount measured by ion chromatography in which stannous oxide is dissolved in an appropriate solvent containing no chloride ion.

本実施形態の高濃度スルホン酸錫水溶液の製造方法では、循環するメタンスルホン酸水溶液に窒素ガスをバブリングするか、及び/又は中空糸膜脱気モジュールで脱気処理を行うことが好ましい。こうすることにより、メタンスルホン酸水溶液中の溶存酸素濃度を低下させ、二価錫イオン(Sn2+)の酸化がより一層抑制され、四価錫イオン(Sn4+)濃度がより低下し、液がより一層懸濁化しない。なお、メタンスルホン酸水溶液中の溶存酸素濃度は、5ppm以下であることが好ましく、1ppm以下であることが更に好ましい。 In the method for producing a high-concentration tin sulfonic acid aqueous solution of the present embodiment, it is preferable to bubble the circulating methanesulfonic acid aqueous solution with nitrogen gas and / or perform degassing treatment with a hollow fiber membrane degassing module. By doing so, the concentration of dissolved oxygen in the aqueous solution of methanesulfonic acid is lowered, the oxidation of divalent tin ions (Sn 2+ ) is further suppressed, and the concentration of tetravalent tin ions (Sn 4+ ) is further lowered. The liquid does not suspend further. The dissolved oxygen concentration in the methanesulfonic acid aqueous solution is preferably 5 ppm or less, and more preferably 1 ppm or less.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
中和法によりメタンスルホン酸錫水溶液を製造した。先ず、冷却装置(チラー)を備え、窒素バブリング配管及び中空糸膜脱気モジュールを接続した中和槽を用意した。一方、市販のメタンスルホン酸を純水で希釈することにより濃度を90質量%に調整したメタンスルホン酸水溶液を得た。濃度調整したメタンスルホン酸水溶液1Lを中和槽に投入し、チラーにより温度10℃に保持した状態で中和槽内を循環させた。循環液に窒素ガスをバブリングし、かつ中空糸膜脱気モジュールで脱気処理を行って、溶存酸素濃度を1ppm以下とし、チラーにより液温を10℃に制御した。そこに10℃に調整された複数種類の金属の不純物の合計含有量が8ppmで塩化物イオン量が8ppmの酸化第一錫粉末を徐々に添加し、液を均一に撹拌して、メタンスルホン酸水溶液と酸化第一錫粉末とを中和反応させた。液中の遊離酸としてのメタンスルホン酸濃度を目標の5g/L、Sn2+濃度を目標の420g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、10℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて908g投入し、純水を希釈用と濃度調整用(5℃)とを合せて857g投入した。これによりメタンスルホン酸錫水溶液を製造した。
<Example 1>
An aqueous solution of tin methanesulfonate was produced by the neutralization method. First, a neutralization tank equipped with a cooling device (chiller) and connected to a nitrogen bubbling pipe and a hollow fiber membrane degassing module was prepared. On the other hand, a commercially available methanesulfonic acid aqueous solution was obtained by diluting it with pure water to adjust the concentration to 90% by mass. 1 L of the methanesulfonic acid aqueous solution whose concentration was adjusted was put into a neutralization tank, and the mixture was circulated in the neutralization tank while being maintained at a temperature of 10 ° C. by a chiller. Nitrogen gas was bubbled into the circulating fluid, and degassing was performed with a hollow fiber membrane degassing module to reduce the dissolved oxygen concentration to 1 ppm or less, and the liquid temperature was controlled to 10 ° C. by a chiller. Stannous oxide powder having a total content of impurities of multiple types of metals adjusted to 10 ° C. of 8 ppm and a chloride ion content of 8 ppm was gradually added thereto, and the solution was uniformly stirred to obtain methanesulfonic acid. The aqueous solution and stannous oxide powder were neutralized. Stannous oxide powder and pure water were added in order to bring the concentration of methanesulfonic acid as a free acid in the liquid to the target of 5 g / L and the Sn 2+ concentration to the target of 420 g / L. Specifically, 908 g of stannous oxide powder at 10 ° C. for neutralization reaction and concentration adjustment was added, and 857 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. As a result, an aqueous solution of tin methanesulfonate was produced.

<実施例2>
メタンスルホン酸水溶液の温度をチラーにより0℃に保持した状態で中和槽内で循環させ、0℃に調整された酸化第一錫粉末を用い、液中の遊離酸としてのメタンスルホン酸濃度を目標の15g/L、Sn2+濃度を目標の400g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、0℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて894g投入し、純水を希釈用と濃度調整用(5℃)とを合せて901g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 2>
The temperature of the methanesulfonic acid aqueous solution was maintained at 0 ° C by a chiller and circulated in the neutralization tank, and the stannous oxide powder adjusted to 0 ° C was used to adjust the concentration of methanesulfonic acid as a free acid in the solution. In order to achieve the target 15 g / L and Sn 2+ concentration of the target 400 g / L, stannous oxide powder and pure water were added. Specifically, 894 g of stannous oxide powder at 0 ° C. for neutralization reaction and concentration adjustment was added, and 901 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<実施例3>
メタンスルホン酸水溶液の温度をチラーにより−5℃に保持した状態で中和槽内で循環させ、−20℃に調整された酸化第一錫粉末を用い、液中の遊離酸としてのメタンスルホン酸濃度を目標の25g/L、Sn2+濃度を目標の360g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、−20℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて877g投入し、純水を希釈用と濃度調整用(5℃)と合せて1103g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 3>
Methanesulfonic acid as a free acid in the solution is circulated in a neutralization tank while the temperature of the aqueous methanesulfonic acid solution is maintained at -5 ° C by a chiller, and stannous oxide powder adjusted to -20 ° C is used. Stannous oxide powder and pure water were added to achieve the target concentration of 25 g / L and the target Sn 2+ concentration of 360 g / L. Specifically, 877 g of stannous oxide powder at −20 ° C. for neutralization reaction and concentration adjustment was added, and 1103 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<実施例4>
メタンスルホン酸水溶液の温度をチラーにより−5℃に保持した状態で中和槽内で循環させ、−20℃に調整された酸化第一錫粉末を用い、液中の遊離酸としてのメタンスルホン酸濃度を目標の40g/L、Sn2+濃度を目標の400g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、−20℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて861g投入し、純水を希釈用と濃度調整用(5℃)とを合せて816g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 4>
Methanesulfonic acid as a free acid in the solution is circulated in a neutralization tank while the temperature of the aqueous methanesulfonic acid solution is maintained at -5 ° C by a chiller, and stannous oxide powder adjusted to -20 ° C is used. Stannous oxide powder and pure water were added in order to achieve the target concentration of 40 g / L and the Sn 2+ concentration of the target of 400 g / L. Specifically, 861 g of stannous oxide powder at -20 ° C for neutralization reaction and concentration adjustment was added, and 816 g of pure water for dilution and concentration adjustment (5 ° C) was added. did. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<実施例5>
脱気処理を行わず、溶存酸素濃度を3ppmを超え5ppm以下とした以外、実施例2と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。但し、純水の投入量は希釈用と濃度調整用(5℃)とを合せて901gであった。
<Example 5>
An aqueous tin methanesulfonate solution was produced by the neutralization method in the same manner as in Example 2 except that the dissolved oxygen concentration was more than 3 ppm and 5 ppm or less without degassing. However, the amount of pure water input was 901 g in total for dilution and concentration adjustment (5 ° C.).

<実施例6>
窒素ガスでバブリングを行わず、溶存酸素濃度を1ppmを超え3ppm以下とした以外、実施例2と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 6>
An aqueous tin methanesulfonate solution was produced by the neutralization method in the same manner as in Example 2 except that the dissolved oxygen concentration was more than 1 ppm and 3 ppm or less without bubbling with nitrogen gas.

<実施例7>
窒素ガスでバブリングを行わず、かつ脱気処理を行わず、溶存酸素濃度を5ppmを超え8ppm以下とした以外、実施例2と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。但し、純水の投入量は希釈用と濃度調整用(5℃)とを合せて901gであった。
<Example 7>
An aqueous tin methanesulfonate solution was produced by the neutralization method in the same manner as in Example 2 except that the dissolved oxygen concentration was more than 5 ppm and 8 ppm or less without bubbling with nitrogen gas and without degassing. However, the amount of pure water input was 901 g in total for dilution and concentration adjustment (5 ° C.).

<実施例8>
複数種類の金属の不純物の合計含有量が8ppmで塩化物イオン量が20ppmの酸化第一錫粉末を用いた以外、実施例6と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 8>
An aqueous tin methanesulfonate solution was produced by a neutralization method in the same manner as in Example 6 except that stannous oxide powder having a total content of impurities of a plurality of types of metals of 8 ppm and a chloride ion content of 20 ppm was used.

<実施例9>
複数種類の金属の不純物の合計含有量が32ppmで塩化物イオン量が8ppmの酸化第一錫粉末を用いた以外、実施例6と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Example 9>
An aqueous tin methanesulfonate solution was produced by a neutralization method in the same manner as in Example 6 except that stannous oxide powder having a total content of impurities of a plurality of types of metals of 32 ppm and a chloride ion content of 8 ppm was used.

<実施例10>
メタンスルホン酸水溶液の濃度を70質量%に調整し、液中の遊離酸としてのメタンスルホン酸濃度を目標の10g/L、Sn2+濃度を目標の400g/Lとした以外は、実施例2と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。但し、0℃の酸化第一錫の投入量は657gであり、純水の投入量は希釈用と濃度調整用(5℃)とを合せて378gであった。
<Example 10>
Example 2 except that the concentration of the methanesulfonic acid aqueous solution was adjusted to 70% by mass, the concentration of methanesulfonic acid as a free acid in the solution was set to the target of 10 g / L, and the Sn 2+ concentration was set to the target of 400 g / L. An aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in the above. However, the input amount of stannous oxide at 0 ° C. was 657 g, and the input amount of pure water was 378 g in total for dilution and concentration adjustment (5 ° C.).

<実施例11>
メタンスルホン酸水溶液の濃度を60質量%に調整し、液中の遊離酸としてのメタンスルホン酸濃度を目標の15g/L、Sn2+濃度を目標の400g/Lとした以外は、実施例2と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。但し、0℃の酸化第一錫の投入量は538gであり、純水の投入量は希釈用と濃度調整用(5℃)とを合せて116gであった。
<Example 11>
Example 2 except that the concentration of the methanesulfonic acid aqueous solution was adjusted to 60% by mass, the concentration of methanesulfonic acid as a free acid in the solution was set to the target of 15 g / L, and the Sn 2+ concentration was set to the target of 400 g / L. An aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in the above. However, the input amount of stannous oxide at 0 ° C. was 538 g, and the input amount of pure water was 116 g in total for dilution and concentration adjustment (5 ° C.).

<比較例1>
電解法によりメタンスルホン酸錫水溶液を製造した。先ず、電解槽の中に、アノード電極として金属Sn板、カソード電極としてPt/Ti電極を用意し、電極間に陰イオン交換膜を設置した。実施例1と同様に濃度調整した濃度が90質量%であるメタンスルホン酸溶液1Lを電解槽の中に投入し、温度を10℃に保持した状態で電解処理を行った。アノード側の電解液中の遊離酸としてのメタンスルホン酸濃度を目標の30g/L、Sn2+濃度を目標の300g/Lにするために、382Ah電解を継続し、純水を加えて濃度調整を行った。具体的には、純水の投入量は希釈用と濃度調整用(5℃)とを合せて1800gであった。これにより電解槽内でメタンスルホン酸錫水溶液を製造した。
<Comparative example 1>
An aqueous solution of tin methanesulfonate was produced by an electrolytic method. First, a metal Sn plate was prepared as an anode electrode and a Pt / Ti electrode was prepared as a cathode electrode in an electrolytic cell, and an anion exchange membrane was installed between the electrodes. In the same manner as in Example 1, 1 L of a methanesulfonic acid solution having a concentration adjusted to 90% by mass was put into an electrolytic cell, and the electrolysis treatment was performed while the temperature was maintained at 10 ° C. In order to set the target concentration of methanesulfonic acid as free acid in the electrolytic solution on the anode side to the target of 30 g / L and the Sn 2+ concentration to the target of 300 g / L, continue 382 Ah electrolysis and add pure water to adjust the concentration. Was done. Specifically, the amount of pure water input was 1800 g in total for dilution and concentration adjustment (5 ° C.). As a result, an aqueous solution of tin methanesulfonate was produced in the electrolytic cell.

<比較例2>
アノード側の電解液中の遊離酸としてのメタンスルホン酸濃度を目標の100g/L、Sn2+濃度を目標の400g/Lにするために、347Ah電解を継続し、純水を加えて濃度調整を行った。それ以外は比較例1と同様にして、電解槽内で電解法によりメタンスルホン酸錫水溶液を製造した。但し、純水の投入量は希釈用と濃度調整用(5℃)とを合せて915gであった。
<Comparative example 2>
In order to set the target concentration of methanesulfonic acid as free acid in the electrolyte on the anode side to the target of 100 g / L and the Sn 2+ concentration to the target of 400 g / L, continue 347 Ah electrolysis and add pure water to adjust the concentration. Was done. An aqueous solution of tin methanesulfonate was produced by an electrolysis method in an electrolytic cell in the same manner as in Comparative Example 1 except for the above. However, the amount of pure water input was 915 g in total for dilution and concentration adjustment (5 ° C.).

<比較例3>
中和法によりメタンスルホン酸錫水溶液を製造した。メタンスルホン酸水溶液の温度を25℃に保持した状態で中和槽内で循環させ、25℃に保持された酸化第一錫粉末を用いた。また窒素ガスでバブリングを行わず、かつ脱気処理を行わず、溶存酸素濃度を8ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の30g/L、Sn2+濃度を目標の300g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、25℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて861g投入し、純水を希釈用と濃度調整用(5℃)とを合せて1504g投入した。これ以外、実施例1と同様にしてメタンスルホン酸錫水溶液を製造した。
<Comparative example 3>
An aqueous solution of tin methanesulfonate was produced by the neutralization method. A stannous oxide powder kept at 25 ° C. was used by circulating the methanesulfonic acid aqueous solution in a neutralization tank while keeping the temperature at 25 ° C. In addition, no bubbling with nitrogen gas and no degassing treatment were performed, the dissolved oxygen concentration was set to 8 ppm or less, the methanesulfonic acid concentration as a free acid in the liquid was set to the target of 30 g / L, and the Sn 2+ concentration was set to the target. Stannous oxide powder and pure water were added to bring it to 300 g / L. Specifically, 861 g of stannous oxide powder at 25 ° C. for neutralization reaction and concentration adjustment was added, and 1504 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced in the same manner as in Example 1.

<比較例4>
メタンスルホン酸水溶液の温度を25℃に保持した状態で中和槽内で循環させた。25℃に保持されかつ塩化物イオン量が12ppmの酸化第一錫粉末を用いた。また窒素ガスでバブリングを行わず、かつ脱気処理を行わず、溶存酸素濃度を8ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の20g/L、Sn2+濃度を目標の400g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、25℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて887g投入し、純水を希釈用と濃度調整用(5℃)とを合せて883g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Comparative example 4>
The methanesulfonic acid aqueous solution was circulated in the neutralization tank while maintaining the temperature at 25 ° C. A stannous oxide powder maintained at 25 ° C. and having a chloride ion content of 12 ppm was used. In addition, bubbling with nitrogen gas is not performed, degassing is not performed, the dissolved oxygen concentration is 8 ppm or less, the methanesulfonic acid concentration as a free acid in the liquid is the target of 20 g / L, and the Sn 2+ concentration is the target. Stannous oxide powder and pure water were added to bring it to 400 g / L. Specifically, 887 g of stannous oxide powder at 25 ° C. for neutralization reaction and concentration adjustment was added, and 883 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<比較例5>
メタンスルホン酸水溶液の温度を10℃に保持した状態で中和槽内で循環させ、25℃に保持された酸化第一錫粉末を用いた。また窒素ガスでバブリングを行わず、かつ脱気処理を行わず、溶存酸素濃度を8ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の20g/L、Sn2+濃度を目標の400g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、25℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて887g投入し、純水を希釈用と濃度調整用(5℃)とを合せて883g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Comparative example 5>
A stannous oxide powder kept at 25 ° C. was used by circulating the aqueous methanesulfonic acid solution in a neutralization tank while keeping the temperature at 10 ° C. In addition, bubbling with nitrogen gas is not performed, degassing is not performed, the dissolved oxygen concentration is 8 ppm or less, the methanesulfonic acid concentration as a free acid in the liquid is the target of 20 g / L, and the Sn 2+ concentration is the target. Stannous oxide powder and pure water were added to bring it to 400 g / L. Specifically, 887 g of stannous oxide powder at 25 ° C. for neutralization reaction and concentration adjustment was added, and 883 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<比較例6>
メタンスルホン酸水溶液の温度を25℃に保持した状態で中和槽内で循環させ、10℃に調整された酸化第一錫粉末を用いた。また窒素ガスでバブリングを行わず、かつ脱気処理を行わず、溶存酸素濃度を8ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の20g/L、Sn2+濃度を目標の400g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、10℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて887g投入し、純水を希釈用と濃度調整用(5℃)とを合せて883g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Comparative Example 6>
A stannous oxide powder adjusted to 10 ° C. was used by circulating the methanesulfonic acid aqueous solution in a neutralization tank while maintaining the temperature at 25 ° C. In addition, bubbling with nitrogen gas is not performed, degassing is not performed, the dissolved oxygen concentration is 8 ppm or less, the methanesulfonic acid concentration as a free acid in the liquid is the target of 20 g / L, and the Sn 2+ concentration is the target. Stannous oxide powder and pure water were added to bring it to 400 g / L. Specifically, 887 g of stannous oxide powder at 10 ° C. for neutralization reaction and concentration adjustment was added, and 883 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<比較例7>
メタンスルホン酸水溶液の温度を0℃に保持した状態で中和槽内で循環させ、−10℃に調整された酸化第一錫粉末を用いた。また窒素ガスでバブリングを行い、かつ脱気処理を行って、溶存酸素濃度を1ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の50g/L、Sn2+濃度を目標の420g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、0℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて852g投入し、純水を希釈用と濃度調整用(5℃)とを合せて715g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Comparative Example 7>
A stannous oxide powder adjusted to −10 ° C. was used by circulating the aqueous solution of methanesulfonic acid in a neutralization tank while maintaining the temperature at 0 ° C. In addition, bubbling with nitrogen gas and degassing treatment are performed to reduce the dissolved oxygen concentration to 1 ppm or less, the methanesulfonic acid concentration as a free acid in the liquid is the target of 50 g / L, and the Sn 2+ concentration is the target of 420 g. Stannous oxide powder and pure water were added to give / L. Specifically, 852 g of stannous oxide powder at 0 ° C. for neutralization reaction and concentration adjustment was added, and 715 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

<比較例8>
メタンスルホン酸水溶液の温度を0℃に保持した状態で中和槽内で循環させ、0℃に調整された酸化第一錫粉末を用いた。また窒素ガスでバブリングを行い、かつ脱気処理を行って、溶存酸素濃度を1ppm以下とし、液中の遊離酸としてのメタンスルホン酸濃度を目標の40g/L、Sn2+濃度を目標の430g/Lにするために、酸化第一錫粉末と純水を添加した。具体的には、0℃の酸化第一錫粉末を中和反応用と濃度調整用とを合せて865g投入し、純水を希釈用と濃度調整用(5℃)とを合せて694g投入した。これ以外、実施例1と同様にして中和法によりメタンスルホン酸錫水溶液を製造した。
<Comparative Example 8>
A stannous oxide powder adjusted to 0 ° C. was used by circulating the methanesulfonic acid aqueous solution in a neutralization tank while maintaining the temperature at 0 ° C. Also carried out bubbling with nitrogen gas, and performing degassing treatment, the dissolved oxygen concentration of 1ppm or less, methanesulfonic acid concentration of the target 40 g / L as the free acid in the liquid, the goal Sn 2+ concentration 430g Stannous oxide powder and pure water were added to give / L. Specifically, 865 g of stannous oxide powder at 0 ° C. for neutralization reaction and concentration adjustment was added, and 694 g of pure water was added for dilution and concentration adjustment (5 ° C.). .. Other than this, an aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 1.

上述した実施例1〜11及び比較例1〜8の各製造方法(種類、製造条件(窒化バブリングの有無、中空糸膜脱気の有無)、メタンスルホン酸水溶液の濃度、温度及び投入量、酸化第一錫の塩化物イオン濃度、金属不純物濃度及び投入量、純水の温度及び投入量)をそれぞれ下記の表1に示す。 Each production method of Examples 1 to 11 and Comparative Examples 1 to 8 described above (type, production conditions (presence or absence of bubbling nitride, presence or absence of hollow fiber membrane degassing), concentration, temperature and input amount of methanesulfonic acid aqueous solution, oxidation. Chloride ion concentration of ferrous tin, metal impurity concentration and input amount, pure water temperature and input amount) are shown in Table 1 below.

Figure 0006773241
Figure 0006773241

製造したメタンスルホン酸錫水溶液中の各成分の濃度(Sn2+濃度、Sn4+濃度、遊離酸濃度、塩化物イオン濃度、金属不純物濃度)を下記の表2に示す。製造したメタンスルホン酸錫水溶液中の各成分の濃度の測定又は算出方法は以下の通りである。 The concentrations of each component (Sn 2+ concentration, Sn 4+ concentration, free acid concentration, chloride ion concentration, metal impurity concentration) in the produced tin methanesulfonate aqueous solution are shown in Table 2 below. The method for measuring or calculating the concentration of each component in the produced tin aqueous solution of methanesulfonate is as follows.

(a)Sn2+濃度は、得られたメタンスルホン酸錫水溶液をヨウ素滴定することにより測定した。
(b)Sn4+濃度は、全Sn濃度から(a)で測定したSn2+濃度を差し引くことにより算出した。全Sn濃度は、得られたメタンスルホン酸錫水溶液中の固形Sn濃度と溶存Sn濃度をそれぞれ測定し、それらの合計とした。具体的には、先ず、得られたメタンスルホン酸錫水溶液を採取し、メンブレンフィルタにより濾過し、メンブレンフィルタ上に残った二酸化錫(SnO2)の重量を測定し、固形Sn濃度を算出した。続いて、誘導結合プラズマ発光分光(ICP−OES)装置を用いてフィルタリング後の濾液中の溶存Sn濃度を測定した。そして固形Sn濃度と溶存Sn濃度の合計を全Sn濃度とし、全Sn濃度から(a)で測定したSn2+濃度を差し引くことにより、Sn4+濃度を算出した。
(c)遊離のメタンスルホン酸濃度は、得られたメタンスルホン酸錫水溶液に対してNaOH水溶液を用いて中和滴定を行い、算出した。
(d)塩化物イオン濃度は、得られたメタンスルホン酸錫水溶液をイオンクロマトグラフィーで測定することにより求めた。
(e)金属不純物濃度は、得られたメタンスルホン酸錫水溶液をICP−OESを用いて測定した。測定対象の金属は、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムとした。表2に記載の値はこれら金属の含有量の合計である。
(A) The Sn 2+ concentration was measured by iodine titration of the obtained tin methanesulfonate aqueous solution.
(B) The Sn 4+ concentration was calculated by subtracting the Sn 2+ concentration measured in (a) from the total Sn concentration. The total Sn concentration was calculated by measuring the solid Sn concentration and the dissolved Sn concentration in the obtained tin methanesulfonate aqueous solution, respectively, and taking the total of them. Specifically, first, the obtained tin methanesulfonate aqueous solution was collected, filtered through a membrane filter, the weight of tin dioxide (SnO 2 ) remaining on the membrane filter was measured, and the solid Sn concentration was calculated. Subsequently, the dissolved Sn concentration in the filtered filtrate was measured using an inductively coupled plasma atomic emission spectroscopic (ICP-OES) apparatus. Then, the total of the solid Sn concentration and the dissolved Sn concentration was taken as the total Sn concentration, and the Sn 4+ concentration was calculated by subtracting the Sn 2+ concentration measured in (a) from the total Sn concentration.
(C) The concentration of free methanesulfonic acid was calculated by neutralizing and titrating the obtained aqueous solution of tin methanesulfonic acid with an aqueous NaOH solution.
(D) The chloride ion concentration was determined by measuring the obtained tin methanesulfonate aqueous solution by ion chromatography.
(E) The metal impurity concentration was measured by using ICP-OES on the obtained tin methanesulfonate aqueous solution. The metals to be measured are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium and cadmium. did. The values shown in Table 2 are the total contents of these metals.

Figure 0006773241
Figure 0006773241

上述した実施例1〜11及び比較例1〜8の各製造方法(種類、製造条件等)及び製造したメタンスルホン酸錫水溶液(以下、単に錫液ということもある。)を評価するために、(1)JIS K0071−1(1998年)に準拠して測定されるハーゼン単位色数(APHA)、(2)積分球式光電光度法を用いた濁度測定によるホルマジン濁度、及び(3)この水溶液の低温時の析出状況を上記表2に示すとともに、(4)この水溶液を電解錫めっき液に補給したときの補給する錫液量の割合を上記表2及び下記表3にそれぞれ示す。これらの評価項目は次の方法により評価した。 In order to evaluate each of the production methods (type, production conditions, etc.) of Examples 1 to 11 and Comparative Examples 1 to 8 and the produced tin aqueous solution of methanesulfonate (hereinafter, may be simply referred to as tin solution). (1) Hazen unit color number (APHA) measured in accordance with JIS K0071-1 (1998), (2) formazine turbidity measured by turbidity measurement using the integrating sphere photoelectric photometric method, and (3). The precipitation state of this aqueous solution at low temperature is shown in Table 2 above, and (4) the ratio of the amount of tin liquid to be replenished when this aqueous solution is replenished to the electrolytic tin plating solution is shown in Table 2 above and Table 3 below, respectively. These evaluation items were evaluated by the following methods.

(1)ハーゼン単位色数(APHA)
製造したメタンスルホン酸錫水溶液をガラスセルに分取し、日本電色工業株式会社製のTZ6000を用いて色彩測定からAPHAを測定した。
(1) Hazen unit color number (APHA)
The produced tin aqueous solution of methanesulfonate was separated into a glass cell, and APHA was measured from color measurement using TZ6000 manufactured by Nippon Denshoku Industries Co., Ltd.

(2)ホルマジン濁度(全光線透過率)
製造したメタンスルホン酸錫水溶液をガラスセルに分取し、三菱ケミカルアナリテック社製のPT−2000とホルマジン標準液を用い、JIS K 0101−1998に準拠した方法で濁度測定を行った。
(2) Formazine turbidity (total light transmittance)
The produced tin aqueous solution of methanesulfonate was separated into a glass cell, and the turbidity was measured by a method according to JIS K 0101-1998 using PT-2000 manufactured by Mitsubishi Chemical Analytech Co., Ltd. and a formagine standard solution.

(3)液の低温保管時の析出状況
−10℃に設定した冷蔵庫内に製造したメタンスルホン酸錫水溶液を容量1リットルのガラス容器に24時間保管したときの容器底部に析出するメタンスルホン酸錫の結晶の有無を目視で確認した。
(3) Precipitation status of liquid during low-temperature storage Tin methanesulfonate deposited on the bottom of a glass container with a capacity of 1 liter for 24 hours when an aqueous solution of tin methanesulfonate produced in a refrigerator set at -10 ° C was stored. The presence or absence of crystals was visually confirmed.

(4)メタンスルホン酸錫水溶液を電解錫めっき液に補給する際の使用量の割合
メタンスルホン酸錫水溶液を電解錫めっき液の補給のために使用した液量、即ち補給する錫液量の割合は次の方法により算出した。
(4) Ratio of the amount used when replenishing the tin methanesulfonate aqueous solution to the electrolytic tin plating solution The amount of the tin solution used for replenishing the electrolytic tin plating solution, that is, the ratio of the tin solution to be replenished. Was calculated by the following method.

先ず、以下の純錫めっき液を建浴した。めっき液中にアノードとして不溶性のPt/Ti板を、カソードとして表面にCu導通層をスパッタリング法により形成したシリコンウエハをそれぞれ配置し、浴温30℃、カソード電流密度5ASDで10Ah/Lまで電解した。電解による水の電気分解、及び揮発により、めっき液の量が減少するので、めっき液をめっき装置内で正常に循環させるため、電解中は液面レベルセンサーにより、純水を自動補給して浴量を一定に保った。添加剤として市販の純錫めっき液用添加剤を用いた。 First, the following pure tin plating solution was bathed. An insoluble Pt / Ti plate was placed in the plating solution as an anode, and a silicon wafer having a Cu conductive layer formed on the surface as a cathode by a sputtering method was placed, and electrolyzed to 10 Ah / L at a bath temperature of 30 ° C. and a cathode current density of 5 ASD. .. Since the amount of plating solution decreases due to electrolysis and volatilization of water by electrolysis, in order to circulate the plating solution normally in the plating equipment, pure water is automatically replenished by the liquid level sensor during electrolysis to take a bath. The amount was kept constant. A commercially available additive for a pure tin plating solution was used as an additive.

(建浴時のSnめっき液の組成)
Sn2+濃度:100g/L
遊離酸(メタンスルホン酸)濃度:50g/L
添加剤濃度:50mL/L
浴量:100L
(Composition of Sn plating solution at the time of bathing)
Sn 2+ concentration: 100 g / L
Free acid (methanesulfonic acid) concentration: 50 g / L
Additive concentration: 50 mL / L
Bath amount: 100L

(電解後のSnめっき液の組成)
電解後のSnめっき液の組成は以下の通りであった。
Sn2+濃度:78g/L
遊離酸(メタンスルホン酸)濃度:82g/L
添加剤濃度:50mL/L
浴量:100L
(Composition of Sn plating solution after electrolysis)
The composition of the Sn plating solution after electrolysis was as follows.
Sn 2+ concentration: 78 g / L
Free acid (methanesulfonic acid) concentration: 82 g / L
Additive concentration: 50 mL / L
Bath amount: 100L

次に、電解後のめっき液を初期濃度に戻すために、比較例1のスルホン酸錫水溶液を用いてブリードアンドフィード(Bleed & Feed)作業を行った。ブリードアンドフィード作業とは、装置内の液量を一定に保つため、電解後のめっき液の一部を抜いて(Bleed)、補給液を補給する(Feed)操作のことである。その際に必要であった液量は以下の通りであった。これらの液量は表3にも示した。 Next, in order to return the plating solution after electrolysis to the initial concentration, a bleed & feed operation was performed using the tin sulfonate aqueous solution of Comparative Example 1. The bleed-and-feed operation is an operation of removing a part of the plating solution after electrolysis (Bleed) and replenishing the replenisher solution (Feed) in order to keep the amount of the liquid in the apparatus constant. The amount of liquid required at that time was as follows. The amounts of these liquids are also shown in Table 3.

液抜き量:47L
比較例1の錫液:19.6L
添加剤:2.4L
純水:25.0L
Drainage amount: 47L
Tin solution of Comparative Example 1: 19.6 L
Additive: 2.4L
Pure water: 25.0L

より具体的に述べる。電解めっき後のめっき液100Lから、47Lのめっき液を抜き取る。この抜き取った後に、装置内に残った53Lのめっき液に、比較例1の錫液を19.6L、添加剤を2.4L、純水25Lを入れ、めっき液の液量を元の100Lに戻した。 More specifically. 47L of the plating solution is extracted from 100L of the plating solution after the electrolytic plating. After this extraction, 19.6 L of the tin solution of Comparative Example 1, 2.4 L of the additive, and 25 L of pure water were added to the 53 L of the plating solution remaining in the apparatus, and the amount of the plating solution was returned to the original 100 L. I put it back.

この比較例1のスルホン酸錫水溶液を電解錫めっき液に補給したときの補給する錫液量は、従来のめっきにおける通常の補給量である。他の実施例、比較例での補給量が従来に比べてどの程度減少したかを評価するため、比較例1の補給量:19.6Lに対する、他の例での補給量の割合(%)を算出した。その結果を上記の表2及び下記の表3に示す。20%以上、錫液の使用量が減る濃度、即ち補給する錫液量が80%未満である場合をコスト削減効果ありと判定した。なお、実施例1〜11及び比較例2〜8についての上記液抜き量及び補給量(錫液、添加剤、及び純水)を表3に示す。 The amount of tin liquid to be replenished when the tin sulfonate aqueous solution of Comparative Example 1 is replenished to the electrolytic tin plating liquid is a normal replenishment amount in conventional plating. In order to evaluate how much the replenishment amount in the other examples and the comparative examples decreased as compared with the conventional case, the ratio of the replenishment amount in the other examples (%) to the replenishment amount in the comparative example 1: 19.6 L. Was calculated. The results are shown in Table 2 above and Table 3 below. It was determined that the cost reduction effect was obtained when the concentration at which the amount of tin liquid used was reduced by 20% or more, that is, the amount of tin liquid to be replenished was less than 80%. Table 3 shows the amount of drainage and the amount of replenishment (tin solution, additives, and pure water) of Examples 1 to 11 and Comparative Examples 2 to 8.

Figure 0006773241
Figure 0006773241

上記表2及び表3から明らかなように、比較例1では、APHA及び濁度が低く透明であり、低温保管時のメタンスルホン酸錫の結晶の析出は「無し」であったが、Sn2+濃度が300g/Lと低かったため、補給する錫液量の割合が100%であり、補給する錫液量の削減効果がなかった。 As is clear from Tables 2 and 3, in Comparative Example 1, APHA and turbidity were low and transparent, and the precipitation of tin methanesulfonate crystals during low-temperature storage was "none", but Sn 2 Since the + concentration was as low as 300 g / L, the ratio of the amount of tin liquid to be replenished was 100%, and there was no effect of reducing the amount of tin liquid to be replenished.

比較例2では、APHA及び濁度が低く、液は透明であったが、遊離酸濃度が100g/Lと高かったため、低温保管時にメタンスルホン酸錫の結晶の析出が見られ、また液抜き量が多く、補給するスルホン酸錫水溶液の割合が88%であり、補給する錫液量の削減効果があまりなかった。 In Comparative Example 2, APHA and turbidity were low, and the liquid was transparent, but since the free acid concentration was as high as 100 g / L, precipitation of tin methanesulfonate crystals was observed during low-temperature storage, and the amount of liquid drained. The ratio of the tin sulfonate aqueous solution to be replenished was 88%, and the effect of reducing the amount of tin liquid to be replenished was not so great.

比較例3では、低温保管時のメタンスルホン酸錫の結晶の析出は「無し」であったが、スルホン酸錫水溶液の製造時において、メタンスルホン酸の温度が25℃と高く、また酸化第一錫の温度も25℃と高かった。このため、Sn4+濃度が16g/Lと高く、APHA及び濁度が比較的高く、濁りが生じていた。またSn2+濃度が300g/Lと低かったため、補給する錫液量の割合が100%であり、補給する錫液量の削減効果がなかった。 In Comparative Example 3, the precipitation of tin methanesulfonate crystals during low-temperature storage was “none”, but the temperature of methanesulfonic acid was as high as 25 ° C. during the production of the tin sulfonate aqueous solution, and the oxidation first The temperature of tin was as high as 25 ° C. Therefore, the Sn 4+ concentration was as high as 16 g / L, the APHA and turbidity were relatively high, and turbidity was generated. Further, since the Sn 2+ concentration was as low as 300 g / L, the ratio of the amount of tin liquid to be replenished was 100%, and there was no effect of reducing the amount of tin liquid to be replenished.

比較例4では、低温保管時のメタンスルホン酸錫の結晶の析出は「無し」であったが、スルホン酸錫水溶液の製造時において、メタンスルホン酸の温度が25℃と高く、また酸化第一錫の温度も25℃と高かった。このため、Sn4+濃度が24g/Lと高く、APHA及び濁度が高くなり、液は白濁しており、液の補給は行わなかった。 In Comparative Example 4, the precipitation of tin methanesulfonate crystals during low-temperature storage was "none", but the temperature of methanesulfonic acid was as high as 25 ° C. during the production of the tin sulfonate aqueous solution, and the oxidation first The temperature of tin was as high as 25 ° C. Therefore, the Sn 4+ concentration was as high as 24 g / L, the APHA and turbidity were high, the liquid was cloudy, and the liquid was not replenished.

比較例5では、低温保管時のメタンスルホン酸錫の結晶の析出は「無し」であり、補給する錫液量の割合が71%であり、補給する錫液量の削減効果はあったが、スルホン酸錫水溶液の製造時において、酸化第一錫の温度が25℃と高かった。このため、Sn4+濃度が15g/Lと高く、APHA及び濁度が比較的高く、液に濁りが生じていた。 In Comparative Example 5, the precipitation of tin methanesulfonate crystals during low-temperature storage was "none", and the ratio of the amount of tin solution to be replenished was 71%, which had the effect of reducing the amount of tin solution to be replenished. At the time of producing the tin sulfonate aqueous solution, the temperature of stannous oxide was as high as 25 ° C. Therefore, the Sn 4+ concentration was as high as 15 g / L, the APHA and turbidity were relatively high, and the liquid was turbid.

比較例6では、低温保管時のメタンスルホン酸錫の結晶の析出は「無し」であり、補給する錫液量の割合が71%であり、補給する錫液量の削減効果はあったが、スルホン酸錫水溶液の製造時において、メタンスルホン酸の温度が25℃と高かった。このため、Sn4+濃度が14g/Lと高く、APHA及び濁度が比較的高く、液に濁りが生じていた。 In Comparative Example 6, the precipitation of tin methanesulfonate crystals during low-temperature storage was "none", and the ratio of the amount of tin solution to be replenished was 71%, which had the effect of reducing the amount of tin solution to be replenished. At the time of producing the tin sulfonate aqueous solution, the temperature of methanesulfonic acid was as high as 25 ° C. Therefore, the Sn 4+ concentration was as high as 14 g / L, the APHA and turbidity were relatively high, and the liquid was turbid.

比較例7では、APHA及び濁度が低く、液は透明であり、補給する錫液量の割合が72%であり、補給する錫液量の削減効果はあったが、錫液の遊離酸濃度が50g/Lと高かったため、メタンスルホン酸錫の溶解度が低下し、低温保管時にメタンスルホン酸錫の結晶の析出が見られた。 In Comparative Example 7, APHA and turbidity were low, the liquid was transparent, the ratio of the amount of tin liquid to be replenished was 72%, and there was an effect of reducing the amount of tin liquid to be replenished, but the free acid concentration of the tin liquid was obtained. As high as 50 g / L, the solubility of tin methanesulfonate decreased, and precipitation of tin methanesulfonate crystals was observed during storage at low temperature.

比較例8では、APHA及び濁度が低く、液は透明であり、補給する錫液量の割合が69%であり、補給する錫液量の削減効果はあったが、錫液のSn2+濃度が430g/Lと高かったため、低温保管時にメタンスルホン酸錫の結晶の析出が見られた。 In Comparative Example 8, APHA and turbidity were low, the liquid was transparent, the ratio of the amount of tin liquid to be replenished was 69%, and there was an effect of reducing the amount of tin liquid to be replenished, but Sn 2+ of the tin liquid was obtained. Since the concentration was as high as 430 g / L, precipitation of tin methanesulfonate crystals was observed during storage at low temperature.

これに対して、実施例1〜11では、Sn2+濃度が360〜420g/Lであり、Sn4+濃度が10g/L以下であり、遊離のメタンスルホン酸濃度が40g/L以下であったため、比較例1〜8の場合と比較して、補給する錫液量を20%以上の削減することができた。また、錫液のAPHA及び濁度が低く、液は透明であり、低温保管時のメタンスルホン酸錫の結晶の析出も見られなかった。 On the other hand, in Examples 1 to 11, the Sn 2+ concentration was 360 to 420 g / L, the Sn 4+ concentration was 10 g / L or less, and the free methanesulfonic acid concentration was 40 g / L or less. Therefore, the amount of tin liquid to be replenished could be reduced by 20% or more as compared with the cases of Comparative Examples 1 to 8. In addition, the APHA and turbidity of the tin solution were low, the solution was transparent, and no precipitation of tin methanesulfonate crystals was observed during storage at low temperature.

なお、表2に示すように、実施例8において、メタンスルホン酸錫水溶液中の塩化物イオン濃度が18mg/Lと実施例1〜7及び9〜11より多くなったのは、原料の酸化第一錫中の塩化物イオン濃度が20ppm(表1)と実施例1〜7及び9〜11より多かったためである。また、表2に示すように、実施例9において、メタンスルホン酸錫水溶液中の金属不純物濃度が29mg/Lと実施例1〜8、10及び11より多くなったのは、原料の酸化第一錫中の金属不純物濃度が32ppm(表1)と実施例1〜8、10及び11より多かったためである。更に、表2に示すように、比較例4において、メタンスルホン酸錫水溶液中の塩化物イオン濃度が11mg/Lと比較例3及び5〜8より多くなったのは、原料の酸化第一錫中の塩化物イオン濃度が12ppm(表1)と比較例3及び5〜8より多かったためである。 As shown in Table 2, in Example 8, the chloride ion concentration in the tin methanesulfonate aqueous solution was 18 mg / L, which was higher than that in Examples 1 to 7 and 9 to 11, because the oxidation number of the raw material was higher. This is because the chloride ion concentration in one tin was 20 ppm (Table 1), which was higher than in Examples 1 to 7 and 9 to 11. Further, as shown in Table 2, in Example 9, the concentration of metal impurities in the tin methanesulfonate aqueous solution was 29 mg / L, which was higher than in Examples 1 to 8, 10 and 11, because the raw material was oxidized first. This is because the concentration of metal impurities in tin was 32 ppm (Table 1), which was higher than in Examples 1 to 8, 10 and 11. Further, as shown in Table 2, in Comparative Example 4, the chloride ion concentration in the tin methanesulfonate aqueous solution was 11 mg / L, which was higher than that of Comparative Examples 3 and 5-8 because the raw material was stannous oxide. This is because the chloride ion concentration in the mixture was 12 ppm (Table 1), which was higher than that of Comparative Examples 3 and 5-8.

一方、表2に示すように、実施例6、8及び9において、APHAがそれぞれ130と実施例1〜4、10及び11より高くなったのは、表1に示すように、中空糸膜脱気を行ったけれども、窒素バブリングを行わなかったためである。また、表2に示すように、実施例5において、APHAが150と実施例1〜4、10及び11より高くなったのは、表1に示すように、窒素バブリングを行ったけれども、中空糸膜脱気を行わなかったためである。更に、表2に示すように、実施例7において、APHAが240及び濁度が25と実施例1〜4、10及び11より高くなったのは、表1に示すように、窒素バブリング及び中空糸膜脱気のいずれも行わなかったためである。 On the other hand, as shown in Table 2, in Examples 6, 8 and 9, APHA was higher than 130 and Examples 1 to 4, 10 and 11, respectively, as shown in Table 1, and the hollow fiber membrane was removed. This is because I did not do nitrogen bubbling though I was careful. Further, as shown in Table 2, in Example 5, APHA was 150 and higher than in Examples 1 to 4, 10 and 11, although nitrogen bubbling was performed as shown in Table 1, the hollow fiber membrane was formed. This is because the membrane was not degassed. Further, as shown in Table 2, in Example 7, APHA was 240 and the turbidity was 25, which was higher than in Examples 1 to 4, 10 and 11, as shown in Table 1, nitrogen bubbling and hollow. This is because neither the degassing of the filament membrane was performed.

本発明の高濃度スルホン酸錫水溶液は、電解錫めっき液の建浴又は補給のために利用することができる。 The high-concentration tin sulfonate aqueous solution of the present invention can be used for bathing or replenishing the electrolytic tin plating solution.

Claims (11)

二価錫イオン(Sn2+)濃度が360g/L〜420g/Lであり、四価錫イオン(Sn4+)濃度が10g/L以下であり、遊離のメタンスルホン酸濃度が40g/L以下であり、ハーゼン単位色数(APHA)が240以下であり、濁度が25FTU以下である高濃度スルホン酸錫水溶液。 The divalent tin ion (Sn 2+ ) concentration is 360 g / L to 420 g / L, the tetravalent tin ion (Sn 4+ ) concentration is 10 g / L or less, and the free methanesulfonic acid concentration is 40 g / L or less. A high-concentration tin sulfonate aqueous solution having a Hazen unit color number (APHA) of 240 or less and a turbidity of 25 FTU or less. 前記高濃度スルホン酸錫水溶液は複数種類の金属の不純物を含み、前記複数種類の金属の合計含有量が金属換算で30mg/L以下である請求項1記載の高濃度スルホン酸錫水溶液。 The high-concentration tin sulfonate aqueous solution according to claim 1, wherein the high-concentration tin sulfonate aqueous solution contains impurities of a plurality of types of metals, and the total content of the plurality of types of metals is 30 mg / L or less in terms of metal. 前記複数種類の金属が、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムである請求項2記載の高濃度スルホン酸錫水溶液。 The plurality of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium and cadmium. The high-concentration tin sulfonate aqueous solution according to claim 2. 前記複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下である請求項2記載の高濃度スルホン酸錫水溶液。 The high-concentration tin sulfonate aqueous solution according to claim 2, wherein the content of each of the plurality of types of metals is 10 mg / L or less in terms of metal. 前記高濃度スルホン酸錫水溶液は塩化物イオンを含み、
前記塩化物イオンの含有量が10mg/L以下である請求項1ないし4いずれか1項に記載の高濃度スルホン酸錫水溶液。
The high-concentration tin sulfonate aqueous solution contains chloride ions and contains chloride ions.
The high-concentration tin sulfonate aqueous solution according to any one of claims 1 to 4, wherein the chloride ion content is 10 mg / L or less.
酸化第一錫粉末とメタンスルホン酸とを中和反応させてスルホン酸錫水溶液を製造する方法において、
前記メタンスルホン酸を純水で希釈し、濃度60質量%〜90質量%のメタンスルホン酸水溶液を得る工程と、
前記メタンスルホン酸水溶液を10℃以下の温度に保持した状態で循環させる工程と、
前記循環するメタンスルホン酸水溶液に、10℃以下の温度に調整された酸化第一錫粉末を添加して前記酸化第一錫粉末を溶解する工程と
を含む請求項1ないし5いずれか1項に記載の高濃度スルホン酸錫水溶液を製造する方法。
In a method for producing an aqueous tin sulfonate solution by neutralizing stannous oxide powder and methanesulfonic acid.
A step of diluting the methanesulfonic acid with pure water to obtain an aqueous solution of methanesulfonic acid having a concentration of 60% by mass to 90% by mass.
A step of circulating the methanesulfonic acid aqueous solution while maintaining the temperature at 10 ° C. or lower, and
The item according to any one of claims 1 to 5, which comprises a step of adding stannous oxide powder adjusted to a temperature of 10 ° C. or lower to the circulating methanesulfonic acid aqueous solution to dissolve the stannous oxide powder. The method for producing the above-mentioned high-concentration tin sulfonate aqueous solution.
前記循環するメタンスルホン酸水溶液に窒素ガスをバブリングするか、及び/又は中空糸膜脱気モジュールで脱気処理を行う請求項6記載の高濃度スルホン酸錫水溶液の製造方法。 The method for producing a high-concentration tin sulfonic acid aqueous solution according to claim 6, wherein nitrogen gas is bubbled into the circulating methanesulfonic acid aqueous solution and / or degassing treatment is performed with a hollow fiber membrane degassing module. 前記酸化第一錫粉末は複数種類の金属の不純物を含み、前記複数種類の金属の合計含有量が金属換算で30mg/L以下である請求項6又は7記載の高濃度スルホン酸錫水溶液の製造方法。 The production of the high-concentration tin sulfonate aqueous solution according to claim 6 or 7, wherein the stannous oxide powder contains impurities of a plurality of types of metals, and the total content of the plurality of types of metals is 30 mg / L or less in terms of metal. Method. 前記複数種類の金属が、ナトリウム、カリウム、鉛、鉄、ニッケル、銅、亜鉛、ヒ素、アンチモン、アルミニウム、銀、ビスマス、マグネシウム、カルシウム、チタン、クロム、マンガン、コバルト、インジウム、タングステン、タリウム及びカドミウムである請求項8記載の高濃度スルホン酸錫水溶液の製造方法。 The plurality of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium and cadmium. The method for producing a high-concentration tin sulfonate aqueous solution according to claim 8. 前記複数種類の金属のそれぞれの含有量が金属換算で10mg/L以下である請求項8記載の高濃度スルホン酸錫水溶液の製造方法。 The method for producing a high-concentration tin sulfonate aqueous solution according to claim 8, wherein the content of each of the plurality of types of metals is 10 mg / L or less in terms of metal. 前記酸化第一錫粉末は塩化物イオンを含み、前記塩化物イオンの含有量が10mg/L以下である請求項6ないし10いずれか1項に記載の高濃度スルホン酸錫水溶液の製造方法。 The method for producing a high-concentration tin sulfonate aqueous solution according to any one of claims 6 to 10, wherein the stannous oxide powder contains chloride ions and the content of the chloride ions is 10 mg / L or less.
JP2020018835A 2019-02-28 2020-02-06 High-concentration tin sulfonate aqueous solution and its manufacturing method Active JP6773241B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080005424.0A CN112789370B (en) 2019-02-28 2020-02-21 High concentration tin sulfonate aqueous solution and method for producing same
US17/433,909 US11525187B2 (en) 2019-02-28 2020-02-21 High-concentration tin sulfonate aqueous solution and method for producing same
KR1020217008998A KR102343152B1 (en) 2019-02-28 2020-02-21 High-concentration tin sulfonate aqueous solution and method for producing the same
EP20763523.6A EP3916132A4 (en) 2019-02-28 2020-02-21 High-concentration aqueous tin sulfonate solution and method for producing same
PCT/JP2020/006991 WO2020175352A1 (en) 2019-02-28 2020-02-21 High-concentration aqueous tin sulfonate solution and method for producing same
TW109106227A TWI744807B (en) 2019-02-28 2020-02-26 High-concentration tin sulfonate aqueous solution and manufacturing method thereof
US17/853,078 US11692277B2 (en) 2019-02-28 2022-06-29 High-concentration tin sulfonate aqueous solution and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035186 2019-02-28
JP2019035186 2019-02-28

Publications (2)

Publication Number Publication Date
JP2020143366A JP2020143366A (en) 2020-09-10
JP6773241B2 true JP6773241B2 (en) 2020-10-21

Family

ID=72353409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018835A Active JP6773241B2 (en) 2019-02-28 2020-02-06 High-concentration tin sulfonate aqueous solution and its manufacturing method

Country Status (3)

Country Link
EP (1) EP3916132A4 (en)
JP (1) JP6773241B2 (en)
CN (1) CN112789370B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291223B2 (en) * 2019-08-01 2023-06-14 Jx金属株式会社 Method for dissolving stannous oxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741999A (en) * 1993-07-23 1995-02-10 Nippon Steel Corp Preparation of tin electroplating bath
JP3425645B2 (en) * 1997-11-19 2003-07-14 石原薬品株式会社 Tin and tin alloy plating baths, methods for managing and preparing the plating baths
CN101671838A (en) * 2009-10-28 2010-03-17 广东光华化学厂有限公司 Method for preparing electronic-grade high-purity stannous methanesulfonate solution
TWI464117B (en) * 2011-09-30 2014-12-11 Dow Global Technologies Llc Plurality of sno flakes
EP2586746B1 (en) * 2011-10-31 2016-09-14 Dow Global Technologies LLC Process for treating crusty SnO
JP6089164B2 (en) * 2012-03-30 2017-03-08 石原ケミカル株式会社 Replenishment method for tin plating solution
JP6047714B2 (en) * 2012-08-08 2016-12-21 石原ケミカル株式会社 Paste tin replenisher and replenishment method for electroless tin plating solution
CN105899714B (en) * 2013-12-05 2018-09-21 霍尼韦尔国际公司 Stannous methanesulfonate solution with pH after the adjustment
CN106283103B (en) * 2016-08-30 2018-01-23 广东光华科技股份有限公司 A kind of preparation method of electron level stannous methanesulfonate

Also Published As

Publication number Publication date
JP2020143366A (en) 2020-09-10
CN112789370A (en) 2021-05-11
EP3916132A4 (en) 2022-11-09
EP3916132A1 (en) 2021-12-01
CN112789370B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
KR101329459B1 (en) High-purity aqueous copper sulfonate solution and method for producing same
US9657403B2 (en) Method for preparing tin-silver alloy plating solution and plating solution prepared by same
JP5104253B2 (en) Stannous oxide powder for Sn component replenishment to Sn alloy plating solution
JP6773241B2 (en) High-concentration tin sulfonate aqueous solution and its manufacturing method
TWI662158B (en) Improved metal refining process using mixed electrolyte
US11692277B2 (en) High-concentration tin sulfonate aqueous solution and method for producing same
JP4515804B2 (en) Method for recovering metallic indium by electrowinning
Kekesi Electrorefining in aqueous chloride media for recovering tin from waste materials
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
KR101766607B1 (en) High purity cobalt chloride and manufacturing method therefor
US3755111A (en) Elimination of floating slime during electrolytic refining of copper
US2316750A (en) Purification of manganese electrolyte solutions
Paunović Electrometallurgy: electrochemical, economic and environmental (3E) aspects
CN106480473B (en) A kind of method of electrolytic acid copper chloride
WO2021099556A1 (en) An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
JP6543516B2 (en) Lead electrolyte recycling method
NO127405B (en)
JP2023168652A (en) Electrolytic gold plating solution, production method thereof, and plating method using the plating solution
Dreisinger et al. Electrochemical Refining
JP2017115223A (en) Manufacturing method of l-cysteine mineral acid salt
JP2015190053A (en) Tin plating method which suppresses oxidation without mixing of impurity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150