JP2017115223A - Manufacturing method of l-cysteine mineral acid salt - Google Patents

Manufacturing method of l-cysteine mineral acid salt Download PDF

Info

Publication number
JP2017115223A
JP2017115223A JP2015254528A JP2015254528A JP2017115223A JP 2017115223 A JP2017115223 A JP 2017115223A JP 2015254528 A JP2015254528 A JP 2015254528A JP 2015254528 A JP2015254528 A JP 2015254528A JP 2017115223 A JP2017115223 A JP 2017115223A
Authority
JP
Japan
Prior art keywords
mineral acid
cysteine
cystine
acid salt
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015254528A
Other languages
Japanese (ja)
Other versions
JP6639224B2 (en
Inventor
勝之 瀬野
Katsuyuki Seno
勝之 瀬野
眞一郎 向畠
Shinichiro Mukohata
眞一郎 向畠
正明 田村
Masaaki Tamura
正明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Priority to JP2015254528A priority Critical patent/JP6639224B2/en
Publication of JP2017115223A publication Critical patent/JP2017115223A/en
Application granted granted Critical
Publication of JP6639224B2 publication Critical patent/JP6639224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a L-cysteine mineral acid salt by electroreduction with introducing a mineral acid solution of L-cystine into a cathode chamber by using an electrolytic bath separating an anode chamber and a cathode chamber with a separator, wherein current efficiency is enhanced by a reaction with containing zinc salt in the mineral acid solution and L-cysteine mineral acid salt with purity of 99.8% or more can be obtained by only electrolytic reaction through no purification process.SOLUTION: There is provided a manufacturing method of L-cysteine mineral acid salt by electroreduction with introducing a mineral acid solution of L-cystine into a cathode chamber by using an electrolytic bath separating an anode chamber and a cathode chamber with a separator, including reacting zinc salt to the mineral acid solution.SELECTED DRAWING: None

Description

本発明は電解還元によって、L−シスチンからL−システイン鉱酸塩を製造する方法に関する。   The present invention relates to a method for producing L-cysteine mineral acid salt from L-cystine by electrolytic reduction.

L−システイン鉱酸塩は、医薬品、食品添加物、化粧品等の用途に用いられている。L−システイン鉱酸塩を製造する方法としては、還元剤を用いて、L−シスチンを還元させてL−システイン鉱酸塩を製造する方法、L−シスチンの鉱酸水溶液をイオン交換樹脂で処理することでL−システイン鉱酸塩を製造する方法、L−シスチンの鉱酸水溶液に苛性アルカリを添加して中和しL−システイン鉱酸塩を製造する方法、L−シスチンの鉱酸水溶液を陰極液として、電解還元することでL−システイン鉱酸塩を製造する方法が挙げられる。   L-cysteine mineral acid salt is used for pharmaceuticals, food additives, cosmetics and the like. As a method for producing L-cysteine mineral acid salt, a method for producing L-cysteine mineral acid salt by reducing L-cystine using a reducing agent, and treating a mineral acid aqueous solution of L-cystine with an ion exchange resin A method for producing an L-cysteine mineral acid salt, a method for producing an L-cysteine mineral acid salt by adding a caustic alkali to an aqueous mineral acid solution for L-cystine, and an aqueous mineral acid solution for L-cystine Examples of the catholyte include a method of producing L-cysteine mineral acid salt by electrolytic reduction.

これらの中でもL−シスチンの鉱酸水溶液を陰極液として、電解還元することでL−システイン鉱酸塩を製造する方法が、以下の理由で好ましく挙げられる。
L−シスチンからL−システインへの化学反応では、水素化ホウ素ナトリウム等の還元剤が利用されるが、反応後に還元剤を除去する必要がある。
一方、電解還元の場合は、上記のような還元剤を必要とせず、さらに、反応後の精製工程が必要なく、コストを低減することが可能である。
また、電流量の制御は、化学反応の制御(温度、触媒量等)に比べ容易に管理することができ、選択還元が可能であることも利点である。
Among these, a method for producing L-cysteine mineral acid salt by electrolytic reduction using a mineral acid aqueous solution of L-cystine as a catholyte is preferred for the following reasons.
In the chemical reaction from L-cystine to L-cysteine, a reducing agent such as sodium borohydride is used, but it is necessary to remove the reducing agent after the reaction.
On the other hand, in the case of electrolytic reduction, the reducing agent as described above is not required, and further, a purification step after the reaction is not required, and the cost can be reduced.
In addition, the control of the amount of current can be easily managed as compared with the control of the chemical reaction (temperature, amount of catalyst, etc.), and it is advantageous in that selective reduction is possible.

L−システインの電解還元の反応機構を次に説明する。まず、電解槽にL−シスチンの鉱酸水溶液を導入し電流をかけ、電極表面にL−シスチンが接触し、電子の受け渡しを行うことで反応が進行する。よって反応初期は電流効率が高いが、反応終了付近では、シスチン濃度が極端に低くなるため、電極表面にシスチンが当たる確率が低くなり、反応の進行が遅くなる。最後は、シスチンよりも水が電気分解され、目的物が得られない状態になる。そのため、電解反応の途中で平衡状態となり、未反応の原料であるL−シスチンが残存してしまう問題があった。   Next, the reaction mechanism of the electroreduction of L-cysteine will be described. First, a mineral acid aqueous solution of L-cystine is introduced into an electrolytic cell, an electric current is applied, L-cystine comes into contact with the electrode surface, and the reaction proceeds by transferring electrons. Therefore, although the current efficiency is high at the beginning of the reaction, the cystine concentration becomes extremely low near the end of the reaction, so the probability that the cystine hits the electrode surface becomes low, and the progress of the reaction becomes slow. Finally, water is electrolyzed rather than cystine, and the target product cannot be obtained. For this reason, there has been a problem that L-cystine, which is an unreacted raw material, remains in an equilibrium state during the electrolytic reaction.

例えば、特許文献1には、電解反応によってL−シスチンをL−システインに還元させてL−システイン鉱酸塩を製造する方法が開示されている。なお、L−システイン鉱酸塩は、医薬品、食品添加物、化粧品用途として用いるためには、高い純度が求められ、具体的には純度99.8%以上にする必要がある。
該方法では、還元剤を含有させて還元させる方法よりも高い純度は得られるものの、まだ、電解還元のみでは十分な純度が得られるわけではなく、電解還元後に精製工程が必要となっていた。
For example, Patent Document 1 discloses a method for producing L-cysteine mineral acid salt by reducing L-cystine to L-cysteine by electrolytic reaction. In addition, in order to use L-cysteine mineral acid salt as a pharmaceutical, a food additive, and a cosmetics use, high purity is calculated | required, Specifically, it is necessary to make purity 99.8% or more.
In this method, although a higher purity is obtained than in the method of reducing by containing a reducing agent, sufficient purity is not yet obtained only by electrolytic reduction, and a purification step is necessary after electrolytic reduction.

また、特許文献2には、陽イオン交換樹脂を隔膜とし、交互に陰極室と陽極室とを複数設けた密閉型隔膜電解槽の各陰極室内へシステイン鉱酸塩水溶液を連続的に供給循環せしめると共に、各陽極室へは稀鉱酸を連続的に供給循環せしめつつ電解還元する高純度システイン鉱酸塩の製法が開示されている。システイン鉱酸塩水溶液を適度の流速で陰極室に循環せしめ、段階的に電解還元を進めていく方法で、高純度のシステイン鉱酸塩を製造する製法である。
しかしながら、該製法を用いても純度99.8%のシステイン鉱酸塩を得ることは困難であり、純度99.8%のシステイン鉱酸塩を得るには精製工程が必要となっていた。
Further, in Patent Document 2, a cation exchange resin is used as a diaphragm, and a cysteine mineral acid aqueous solution is continuously supplied and circulated into each cathode chamber of a sealed diaphragm electrolytic cell in which a plurality of cathode chambers and anode chambers are alternately provided. At the same time, a method for producing a high-purity cysteine mineral salt that is electrolytically reduced while continuously supplying and circulating a rare mineral acid to each anode chamber is disclosed. This is a method for producing high-purity cysteine mineral acid salt by circulating an aqueous cysteine mineral acid salt solution to the cathode chamber at an appropriate flow rate and proceeding electrolytic reduction step by step.
However, it was difficult to obtain a cysteine mineral acid salt having a purity of 99.8% even using this production method, and a purification step was required to obtain a cysteine mineral acid salt having a purity of 99.8%.

上述したように、L−システイン鉱酸塩の純度を99.8%以上にする必要があるが、これまでは電解反応後に精製工程を経なければ該純度に達することは不可能であった。煩雑な精製工程を必要とせず、電解反応のみで純度99.8%以上のL−システイン鉱酸塩が得られる製造方法が求められている。   As described above, the purity of the L-cysteine mineral salt needs to be 99.8% or more. However, until now, it has been impossible to reach the purity without a purification step after the electrolytic reaction. There is a need for a production method that does not require a complicated purification step and that can obtain an L-cysteine mineral acid salt having a purity of 99.8% or more only by an electrolytic reaction.

特公昭37−2022号公報Japanese Examined Patent Publication No. 37-2022 特開昭51−136620号公報JP 51-136620 A

本発明は、精製工程を必要とせず、電解反応のみで純度99.8%以上のシステイン鉱酸塩を得ることができる、L−シスチンを還元してL−システイン鉱酸塩を製造する方法の提供を課題とする。   The present invention provides a method for producing L-cysteine mineral acid salt by reducing L-cystine, which does not require a purification step and can obtain cysteine mineral acid salt having a purity of 99.8% or more only by electrolytic reaction. Offering is an issue.

本発明者らが鋭意検討した結果、以下の内容の本発明を完成した。   As a result of intensive studies by the present inventors, the present invention having the following contents was completed.

第一の発明は、陽極室と陰極室とをセパレータで分離した電解槽を用い、該陰極室にL−シスチンの鉱酸水溶液を導入し電解還元させてL−システイン鉱酸塩を製造する方法において、該鉱酸水溶液に亜鉛塩を含有させて反応することを特徴とするL−システイン鉱酸塩の製造方法である。   A first invention uses an electrolytic cell in which an anode chamber and a cathode chamber are separated by a separator, and a method for producing an L-cysteine mineral acid salt by introducing a mineral acid aqueous solution of L-cystine into the cathode chamber and electrolytically reducing it. The method for producing an L-cysteine mineral acid salt comprising reacting the aqueous mineral acid solution with a zinc salt.

第二の発明は、鉱酸水溶液中の亜鉛塩の含有量が、0.1〜5.0質量%であることを特徴とする第一の発明に記載のL−システイン鉱酸塩の製造方法である。   The second invention is the method for producing an L-cysteine mineral acid salt according to the first invention, wherein the content of the zinc salt in the mineral acid aqueous solution is 0.1 to 5.0% by mass It is.

第三の発明は、鉱酸水溶液が、塩酸水溶液であることを特徴とする第一又は第二の発明に記載のL−システイン鉱酸塩の製造方法である。   A third invention is a method for producing an L-cysteine mineral acid salt according to the first or second invention, wherein the mineral acid aqueous solution is a hydrochloric acid aqueous solution.

第四の発明は、陰極室に用いる陰極が、カーボン電極であることを特徴とする第一から第三の発明のいずれか一項に記載のL−システイン鉱酸塩の製造方法である。   A fourth invention is the method for producing an L-cysteine mineral acid salt according to any one of the first to third inventions, wherein the cathode used in the cathode chamber is a carbon electrode.

本発明によれば、陽極室と陰極室とをセパレータで分離した電解槽を用い、該陰極室にL−シスチンの鉱酸水溶液を導入し電解還元させてL−システイン鉱酸塩を製造する方法において、該鉱酸水溶液に亜鉛塩を含有させて反応させることで電流効率が向上し、精製工程を経なくても電解反応のみで、純度が99.8%以上のL−システイン鉱酸塩を得ることができる方法である。   According to the present invention, an electrolytic cell in which an anode chamber and a cathode chamber are separated by a separator is used, and an aqueous L-cystine mineral acid solution is introduced into the cathode chamber and electrolytically reduced to produce an L-cysteine mineral acid salt. In this case, the current efficiency is improved by adding a zinc salt to the mineral acid aqueous solution, and the L-cysteine mineral acid salt having a purity of 99.8% or more is obtained only by an electrolytic reaction without going through a purification step. It is a method that can be obtained.

本発明において、L−システインとは、アミノ酸の1つで、2−アミノ−3−スルファニルプロピオン酸のことをいう。鉱酸とは無機酸のことであり、例えば、塩酸、硫酸、リン酸、硝酸、ホウ酸等が挙げられる。
L−システイン鉱酸塩とは、L−システインと鉱酸との塩のことをいう。本願の製造方法ではL−シスチンを原料として用いることで、L−システイン鉱酸塩を製造することができる。
In the present invention, L-cysteine is one of amino acids and refers to 2-amino-3-sulfanylpropionic acid. The mineral acid is an inorganic acid, and examples thereof include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and boric acid.
L-cysteine mineral acid salt refers to a salt of L-cysteine and a mineral acid. In the production method of the present application, L-cysteine mineral acid salt can be produced by using L-cystine as a raw material.

本願発明のL−システイン鉱酸塩の製造方法について説明する。   The manufacturing method of the L-cysteine mineral acid salt of this invention is demonstrated.

本願発明は、陽極室と陰極室とをセパレータで分離した電解槽を用い、該陰極室にL−シスチンの鉱酸水溶液を導入し電解還元させてL−システイン鉱酸塩を製造する方法において、該鉱酸水溶液に亜鉛塩を含有させて反応することを特徴とするL−システイン鉱酸塩の製造方法である。   The present invention uses an electrolytic cell in which an anode chamber and a cathode chamber are separated by a separator, and a method for producing an L-cysteine mineral acid salt by introducing a mineral acid aqueous solution of L-cystine into the cathode chamber and electrolytically reducing it. A method for producing an L-cysteine mineral acid salt comprising reacting a mineral acid aqueous solution with a zinc salt.

前記陽極室には、鉱酸水溶液を導入し、陽極を浸漬させて使用する。なお、陽極室に用いる無機酸又は有機酸は陰極室に用いる鉱酸水溶液と同一種類である必要はない。
陽極室に導入する鉱酸水溶液の鉱酸の濃度は、一般的に1〜30%であるのが好ましく挙げられる。
A mineral acid aqueous solution is introduced into the anode chamber, and the anode is immersed for use. Note that the inorganic acid or organic acid used in the anode chamber need not be the same type as the mineral acid aqueous solution used in the cathode chamber.
The concentration of the mineral acid in the aqueous mineral acid solution introduced into the anode chamber is preferably 1 to 30% in general.

前記無機酸としては、塩酸、硫酸、リン酸、ホウ酸等が挙げられる。前記有機酸としては、ギ酸、酢酸、シュウ酸等が挙げられる。   Examples of the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, boric acid and the like. Examples of the organic acid include formic acid, acetic acid, and oxalic acid.

陽極の材質としては、酸化イリジウム、金、白金、パラジウム、銀、鉛等が挙げられる。これらの中でも特に酸化イリジウムが、酸素過電圧が低く、耐食性に優れるため好ましく挙げられる。   Examples of the material for the anode include iridium oxide, gold, platinum, palladium, silver, and lead. Among these, iridium oxide is particularly preferable because it has a low oxygen overvoltage and excellent corrosion resistance.

陰極室には、L−シスチンの鉱酸水溶液を導入し、陰極を浸漬させて使用する。   In the cathode chamber, a mineral acid aqueous solution of L-cystine is introduced and the cathode is immersed for use.

陰極の材料は、亜鉛、錫、カーボン、チタン等が挙げられる。水素過電圧の高いカーボン又はチタンを用いることが好ましく、カーボンを用いることが特に好ましく挙げられる。カーボン材料としては、グラファイト、カーボンペーパー、グラッシーカーボン、ダイヤモンドライクカーボン、等方性炭素等が挙げられる。
カーボン材料を用いたカーボン電極は特に水素過電圧が高いので、水の電気分解が起きづらく、電解還元に電力を効率よく使用することができるため、短時間でL−シスチンを還元させてL−システインを製造することができる。
Examples of the cathode material include zinc, tin, carbon, and titanium. It is preferable to use carbon or titanium having a high hydrogen overvoltage, and it is particularly preferable to use carbon. Examples of the carbon material include graphite, carbon paper, glassy carbon, diamond-like carbon, and isotropic carbon.
A carbon electrode using a carbon material has a particularly high hydrogen overvoltage, so that water electrolysis is difficult to occur and electric power can be efficiently used for electrolytic reduction. Therefore, L-cystine can be reduced in a short time to produce L-cysteine. Can be manufactured.

L−シスチンの鉱酸水溶液中に亜鉛塩を含有させて電解還元することで、亜鉛イオンが電子を受けとり、亜鉛金属となり、電極表面に析出する。
Zn2+ + 2e → Zn
析出した亜鉛金属は電子を放出することで溶解し、そのときの電子がL−シスチンをL−システインに還元するのに使われる。
Zn + CyCy + 2H → Zn2+ + 2CyH
(式中、CyCyはL−シスチン、CyHはL−システインを示す。)
このように、亜鉛が電子の受け渡し役(メディエータ)になることで、電流効率が上がり、反応終盤も、L−シスチンへの反応確率が上がるため、100%まで反応が進行する。また、反応完了後、不純物の亜鉛は電極表面に析出するため、反応液への混入もなく、後処理が不必要になる。
By carrying out electrolytic reduction by containing a zinc salt in a mineral acid aqueous solution of L-cystine, zinc ions receive electrons, become zinc metal, and deposit on the electrode surface.
Zn 2+ + 2e → Zn
The deposited zinc metal dissolves by releasing electrons, and the electrons at that time are used to reduce L-cystine to L-cysteine.
Zn + CyCy + 2H + → Zn 2+ + 2CyH
(In the formula, CyCy represents L-cystine and CyH represents L-cysteine.)
Thus, since zinc becomes an electron transfer function (mediator), the current efficiency is increased and the reaction probability at the end of the reaction is increased to L-cystine, so that the reaction proceeds to 100%. In addition, after completion of the reaction, impurity zinc is deposited on the electrode surface, so that it is not mixed into the reaction solution, and post-treatment is unnecessary.

陰極室に用いる鉱酸水溶液における鉱酸の濃度は、1〜30質量%が好ましく、5〜20質量%がより好ましく挙げられる。用いるL−シスチンの含有量に対し、0.1〜5倍mol含有させることが好ましく挙げられる。
L−シスチン自体は水への溶解度が低いため、反応効率を上げるため溶解度を上げる必要がある。L−シスチン鉱酸塩は溶解度が高く反応効率を上げることが出来る。
また、L−システイン自体は空気酸化して、容易にL−シスチンに戻る。L−システイン鉱酸塩は安定化であるため、鉱酸を加えることで、純度の低下を防ぐことができる。
1-30 mass% is preferable and, as for the density | concentration of the mineral acid in the mineral acid aqueous solution used for a cathode chamber, 5-20 mass% is mentioned more preferably. A preferred content is 0.1-5 times mol with respect to the content of L-cystine used.
Since L-cystine itself has low solubility in water, it is necessary to increase the solubility in order to increase the reaction efficiency. L-cystine mineral salt has high solubility and can increase the reaction efficiency.
In addition, L-cysteine itself is oxidized by air and easily returns to L-cystine. Since L-cysteine mineral acid salt is stabilized, a decrease in purity can be prevented by adding a mineral acid.

L−シスチンの鉱酸水溶液におけるL−シスチンの含有量は、1〜30質量%が好ましく、5〜20質量%が特に好ましく挙げられる。
L−シスチンの濃度を濃くすると結晶が析出し、デットスペースへの結晶析出で未反応が残るなどし、L−システイン鉱酸塩の純度に悪影響を及ぼす。また、複雑な加温機能を持つ生産設備によりこの結晶析出を防止することは可能であるが、工業的規模の生産においては現実的ではない。そのため、L−シスチン鉱酸塩及びL−システイン鉱酸塩が溶解する濃度範囲として、上記濃度範囲が特に好ましく挙げられる。
ただし、L−シスチンの鉱酸水溶液におけるL−シスチンは完全に鉱酸水溶液に溶解している必要はなく、電解反応中に溶解すればよい。
1-30 mass% is preferable and, as for content of L-cystine in the mineral acid aqueous solution of L-cystine, 5-20 mass% is mentioned especially preferably.
When the concentration of L-cystine is increased, crystals are precipitated and unreacted by crystal precipitation in the dead space, which adversely affects the purity of the L-cysteine mineral acid salt. In addition, although it is possible to prevent this crystal precipitation by using a production facility having a complicated heating function, it is not practical in industrial scale production. Therefore, the above-mentioned concentration range is particularly preferably mentioned as the concentration range in which L-cystine mineral acid salt and L-cysteine mineral acid salt are dissolved.
However, L-cystine in the mineral acid aqueous solution of L-cystine does not need to be completely dissolved in the mineral acid aqueous solution, and may be dissolved during the electrolytic reaction.

該鉱酸水溶液に含有させる亜鉛塩としては、塩化亜鉛、硫酸亜鉛、リン酸亜鉛等が挙げられる。   Examples of the zinc salt contained in the mineral acid aqueous solution include zinc chloride, zinc sulfate, and zinc phosphate.

該鉱酸水溶液における亜鉛塩の含有量は、0.1〜5.0質量%であることが好ましく、0.5〜4.0質量%であることがより好ましく挙げられる。
反応中盤では、亜鉛は電子を運ぶ役割(メディエータ)を担うため、反応効率を上げる目的で、ある程度の添加量は必要になるが、コンタミの原因になるため、多量に加えるのは得策ではない。
亜鉛は、反応終盤の追い切りに必要であるため、本発明は少量でも効果が期待できる。また、最後に電極表面に亜鉛を析出させ、反応溶液から除去する必要があるため、電極面積との兼ね合いで亜鉛塩の添加量を設定する必要がある。
The content of the zinc salt in the aqueous mineral acid solution is preferably 0.1 to 5.0% by mass, and more preferably 0.5 to 4.0% by mass.
In the middle of the reaction, since zinc plays a role of transporting electrons (mediator), a certain amount of addition is necessary for the purpose of increasing the reaction efficiency, but it is not a good idea to add a large amount because it causes contamination.
Since zinc is necessary for the end of the reaction, the present invention can be expected to be effective even in a small amount. Moreover, since it is necessary to finally deposit zinc on the electrode surface and remove it from the reaction solution, it is necessary to set the amount of zinc salt added in consideration of the electrode area.

亜鉛塩を含有させて還元反応を行うことで、電流効率が向上するため、L−シスチンからL−システインへ完全に還元させることが可能であり、その結果、純度99.8%以上でシステイン鉱酸塩を製造することができる。   Since the current efficiency is improved by carrying out the reduction reaction by containing the zinc salt, it is possible to completely reduce L-cystine to L-cysteine, and as a result, the cysteine ore has a purity of 99.8% or more. Acid salts can be produced.

また、鉛塩、チタン塩、銅塩、スズ塩、クロム塩等の金属塩を用いても、上述したようなメディエータの役割がほぼ機能しないため、電流効率の向上はほとんど見られず、完全にL−シスチンをL−システインに還元させることができない問題がある。   In addition, even when using metal salts such as lead salts, titanium salts, copper salts, tin salts, chromium salts, the role of the mediator as described above hardly functions, so there is almost no improvement in current efficiency, and it is completely There is a problem that L-cystine cannot be reduced to L-cysteine.

セパレータとしては、ポリ塩化ビニル製やポリテトラフルオロエチレン(PTFE)製隔膜、ショ糖脂肪酸エステル製隔膜、又は陽イオン交換膜を用いることができる。陽イオン交換膜を用いることが好ましく挙げられ、陽イオン交換膜の中でも炭素−フッ素からなる疎水性テフロン(登録商標)骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である膜(例えば、ナフィオン(登録商標)膜、デュポン社製)が好ましく挙げられる。
セパレータを設けることによって、電解還元したL−システインが陽極で酸化により再びL−シスチンへ戻ることを防止することができる。
As the separator, a polyvinyl chloride or polytetrafluoroethylene (PTFE) diaphragm, a sucrose fatty acid ester diaphragm, or a cation exchange membrane can be used. It is preferable to use a cation exchange membrane, and among the cation exchange membranes, it is a perfluorocarbon material composed of a hydrophobic Teflon (registered trademark) skeleton composed of carbon-fluorine and a perfluoro side chain having a sulfonic acid group. A membrane (for example, Nafion (registered trademark) membrane, manufactured by DuPont) is preferably mentioned.
By providing the separator, electrolytically reduced L-cysteine can be prevented from returning to L-cystine again by oxidation at the anode.

L−システイン鉱酸塩としては、L−システイン塩酸塩、L−システイン硫酸塩、L−システインリン酸塩等が挙げられ、本願発明の製造方法によって製造することができる。
陰極室に用いる鉱酸水溶液によって、L−システイン鉱酸塩が決まり、例えば、塩酸水溶液を用いることで、L−システイン塩酸塩を得ることができる。
Examples of L-cysteine mineral salts include L-cysteine hydrochloride, L-cysteine sulfate, L-cysteine phosphate, and the like, and can be produced by the production method of the present invention.
The L-cysteine mineral acid salt is determined by the aqueous mineral acid solution used in the cathode chamber. For example, L-cysteine hydrochloride can be obtained by using an aqueous hydrochloric acid solution.

これらのL−システイン鉱酸塩の中でもL−システイン塩酸塩は、他のL−システイン硫酸塩やL−システインリン酸塩等よりも融点が高いため、室温で固体であり、取り扱いが容易であるため好ましく挙げられる。   Among these L-cysteine mineral salts, L-cysteine hydrochloride has a higher melting point than other L-cysteine sulfates, L-cysteine phosphates, etc., and is therefore solid at room temperature and easy to handle. Therefore, it is preferable.

次に電解還元方法について説明する。電解還元するときの電流量は、0.1〜20A/dmの電流量で電解反応するのが好ましく、1〜10A/dmで電解反応させるのがより好ましく挙げられる。電流値を上げたほうが反応速度は速くなるが、電流値を上げると電圧が高くなり、副反応の水の電気分解が起こり、反応効率を低下させるため好ましくない。そのため、前記電流量で電解還元することで、効率よくL−シスチンからL−システインに還元させることができる。 Next, the electrolytic reduction method will be described. Current amount at the time of electrolytic reduction, it is preferable to electrolytic reaction at a current amount of 0.1~20A / dm 2, and the like and more preferably is an electrolytic reaction at 1 to 10 A / dm 2. Increasing the current value increases the reaction rate, but increasing the current value increases the voltage, causing side reaction water electrolysis and reducing the reaction efficiency. Therefore, it is possible to efficiently reduce L-cystine to L-cysteine by electrolytic reduction with the amount of current.

次に電流効率の算出方法について説明する。下記反応式から、L−シスチン1molが2電子を消費し、L−システイン2molが生成するため、1電子1mol反応になる。
CyCy + 2H + 2e → 2CyH
(式中、CyCyはL−シスチン、CyHはL−システインを示す。)
したがって、電流効率(%)はファラデーの法則に基づいて、以下の計算式により算出することができる。

Figure 2017115223
Next, a method for calculating current efficiency will be described. From the following reaction formula, 1 mol of L-cystine consumes 2 electrons and 2 mol of L-cysteine is produced, so that 1 mol of 1 electron is obtained.
CyCy + 2H + + 2e → 2CyH
(In the formula, CyCy represents L-cystine and CyH represents L-cysteine.)
Therefore, the current efficiency (%) can be calculated by the following formula based on Faraday's law.
Figure 2017115223

本発明の製造方法において、陰極室に導入されるL−シスチンの鉱酸水溶液及び亜鉛塩以外に他の添加剤を一切含有させる必要はないため、高純度のL−システイン鉱酸塩が得られるとともに、不必要な物質の電析もないため、高収率高純度で目的物を容易な操作で得ることができる。   In the production method of the present invention, since it is not necessary to contain any other additive other than the mineral acid aqueous solution and zinc salt of L-cystine introduced into the cathode chamber, a highly pure L-cysteine mineral salt can be obtained. In addition, since there is no electrodeposition of unnecessary substances, the target product can be obtained with high yield and high purity by an easy operation.

L−システイン鉱酸塩は空気中で安定であり、L−システインのように空気中で酸化してL−シスチンに戻ることはない特徴を有している。   L-cysteine mineral acid salt is stable in the air and has a characteristic that it does not oxidize in the air and returns to L-cystine like L-cysteine.

また必要に応じて、本願発明により得られたL−システイン鉱酸塩を、脱酸させてL−システインとすることができる。   If necessary, the L-cysteine mineral acid salt obtained by the present invention can be deoxidized to give L-cysteine.

以下に実施例を挙げることによって本発明をさらに詳しく説明する。本発明はこれら実施例に限定されるわけではない。   Hereinafter, the present invention will be described in more detail by giving examples. The present invention is not limited to these examples.

(実施例1)
セパレータとして疎水性テフロン(登録商標)骨格とスルホン酸基を持つナフィオン(登録商標)424(デュポン社製)を用いた隔膜電解槽(陽極室及び陰極室の容量が各々100mL)で、陽極として酸化イリジウム電極(面積:0.025dm)、陰極室としてカーボン電極(面積:0.025dm)を、また陽極液として10wt%硫酸50ml、陰極液としてL−シスチン5g、塩化亜鉛0.1gを加えた5.3wt%塩酸溶液50mlを用いた。陽極、陰極両方にテフロン(登録商標)製撹拌子を導入し、循環させながら電解を行った。陰極電流密度を5A/dm、電解温度を20℃として電解し、23時間、30時間通電した後の陰極液を高速液体クロマトグラフにより分析しL−システインの純度を求めた。電流効率(%)は30時間後のL−システインの純度と通電した電気量から算出した。
Example 1
Separation electrolytic cell (capacity of anode chamber and cathode chamber is 100 mL each) using Nafion (registered trademark) 424 (manufactured by DuPont) having hydrophobic Teflon (registered trademark) skeleton and sulfonic acid group as separator, and oxidizing as anode Add an iridium electrode (area: 0.025 dm 2 ), a carbon electrode (area: 0.025 dm 2 ) as the cathode chamber, 50 ml of 10 wt% sulfuric acid as the anolyte, 5 g of L-cystine as the catholyte, and 0.1 g of zinc chloride. In addition, 50 ml of 5.3 wt% hydrochloric acid solution was used. A Teflon (registered trademark) stirrer was introduced into both the anode and cathode, and electrolysis was performed while circulating. Electrolysis was performed at a cathode current density of 5 A / dm 2 and an electrolysis temperature of 20 ° C., and the catholyte after energization for 23 hours and 30 hours was analyzed by high performance liquid chromatography to determine the purity of L-cysteine. The current efficiency (%) was calculated from the purity of L-cysteine after 30 hours and the amount of electricity supplied.

高速液体クロマトグラフの測定条件を以下に示し、検量線を作成して純度(%)を算出した。結果を表1に示す。
使用装置:SHISEIDO NANOSPACE Sl−1
カラム:TOSOH ODS−100V 5μm 4.6mmID 25センチ
温度:40℃
溶離液:A) アセトニトリル
B) 50mMNaHPO、5mMKHPO(pH2.2;HPO
A/B = 2.5/97.5 (w/w)
流量:0.4mL/min
注入量:10μL
検出波長:210nm
検量線作成は、シスチン及びシステインそれぞれを100、200、300ppmに調整、高速液体クロマトグラフで測定し、シスチンとシステインのwtとAREAの検量線を作成した。
The measurement conditions of the high performance liquid chromatograph are shown below, and a calibration curve was created to calculate the purity (%). The results are shown in Table 1.
Equipment used: SHISEIDO NANOSPACE S1-1
Column: TOSOH ODS-100V 5 μm 4.6 mm ID 25 cm Temperature: 40 ° C.
Eluent: A) Acetonitrile B) 50 mM NaH 2 PO 4 , 5 mM KH 2 PO 4 (pH 2.2; H 3 PO 4 )
A / B = 2.5 / 97.5 (w / w)
Flow rate: 0.4 mL / min
Injection volume: 10 μL
Detection wavelength: 210 nm
Calibration curves were prepared by adjusting cystine and cysteine to 100, 200, and 300 ppm, respectively, and measuring them with a high performance liquid chromatograph to prepare calibration curves for cystine and cysteine wt and AREA.

(実施例2)
実施例1に記載の塩化亜鉛の代わりに硫酸亜鉛を0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Example 2)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of zinc sulfate was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(実施例3)
実施例1に記載の塩化亜鉛の代わりにリン酸亜鉛を0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Example 3)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of zinc phosphate was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例1)
実施例1に記載の塩化亜鉛を加えない点を除き実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 1)
Electrolysis was carried out in the same manner as in Example 1 except that zinc chloride described in Example 1 was not added, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例2)
実施例1に記載の塩化亜鉛の代わりに塩化銅を0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 2)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of copper chloride was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例3)
実施例1に記載の塩化亜鉛の代わりに硫酸銅を0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 3)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of copper sulfate was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例4)
実施例1に記載の塩化亜鉛の代わりに塩化スズを0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 4)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of tin chloride was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例5)
実施例1に記載の塩化亜鉛の代わりに塩化チタンを0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 5)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of titanium chloride was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

(比較例6)
実施例1に記載の塩化亜鉛の代わりに塩化鉛を0.1g加えた以外は、実施例1と同様に電解し、電流効率及び純度を求め、その結果を表1に示す。
(Comparative Example 6)
Electrolysis was performed in the same manner as in Example 1 except that 0.1 g of lead chloride was added instead of zinc chloride described in Example 1, and the current efficiency and purity were determined. The results are shown in Table 1.

Figure 2017115223
Figure 2017115223

実施例1〜6よりも実施例1〜3の方が、電流効率が高く、30時間後では純度100%のL−システイン鉱酸塩が得られることがわかる。実施の中でも特に実施例1に用いた塩化亜鉛は、他の亜鉛塩よりも解離しやすいため亜鉛イオンになりやすく、メディエータの効果が高いので、短時間で反応が早く進行することが確認できた。
比較例2、3の結果を見ると、水素よりイオン化傾向の低い銅では、金属の析出と溶解を繰り返すことができないため、電子のメディエータの効果が得られず、電流効率、純度の向上は見られない。
比較例4〜6のように、水素よりイオン化傾向が高く、金属が析出と溶解を繰り返すことの出来る金属塩では、若干電子のメディエータの効果が得られるが、亜鉛塩には及ばないものであった。
It can be seen that Examples 1 to 3 have higher current efficiency than Examples 1 to 6, and an L-cysteine mineral acid salt having a purity of 100% can be obtained after 30 hours. In particular, the zinc chloride used in Example 1 was more likely to be dissociated than other zinc salts, so that it was likely to be zinc ions, and the mediator effect was high, so that the reaction proceeded quickly in a short time. .
From the results of Comparative Examples 2 and 3, copper, which has a lower ionization tendency than hydrogen, cannot repeat the deposition and dissolution of the metal, so the effect of the electron mediator cannot be obtained, and the improvement in current efficiency and purity is observed. I can't.
As in Comparative Examples 4 to 6, a metal salt having a higher ionization tendency than hydrogen and capable of repeating the precipitation and dissolution of the metal provides a slight electron mediator effect, but does not reach the zinc salt. It was.

本願発明のL−システイン鉱酸塩の製造方法により得られるL−システイン鉱酸塩は、純度が99.8%以上であるので、医薬品、食品添加物、化粧品等の様々な用途で使用することができる。   Since the purity of the L-cysteine mineral acid salt obtained by the method for producing L-cysteine mineral acid salt of the present invention is 99.8% or more, it should be used for various uses such as pharmaceuticals, food additives, cosmetics and the like. Can do.

Claims (4)

陽極室と陰極室とをセパレータで分離した電解槽を用い、該陰極室にL−シスチンの鉱酸水溶液を導入し電解還元させてL−システイン鉱酸塩を製造する方法において、
該鉱酸水溶液に亜鉛塩を含有させて反応することを特徴とするL−システイン鉱酸塩の製造方法。
In the method of producing an L-cysteine mineral acid salt by using an electrolytic cell in which an anode chamber and a cathode chamber are separated by a separator, introducing an aqueous mineral acid solution of L-cystine into the cathode chamber and electrolytically reducing it,
A method for producing an L-cysteine mineral acid salt, comprising reacting the aqueous mineral acid solution with a zinc salt.
鉱酸水溶液中の亜鉛塩の含有量が、0.1〜5.0質量%であることを特徴とする請求項1に記載のL−システイン鉱酸塩の製造方法。   Content of zinc salt in mineral acid aqueous solution is 0.1-5.0 mass%, The manufacturing method of the L-cysteine mineral acid salt of Claim 1 characterized by the above-mentioned. 鉱酸水溶液が、塩酸水溶液であることを特徴とする請求項1又は2に記載のL−システイン鉱酸塩の製造方法。   The method for producing an L-cysteine mineral acid salt according to claim 1 or 2, wherein the aqueous mineral acid solution is an aqueous hydrochloric acid solution. 陰極室に用いる陰極が、カーボン電極であることを特徴とする請求項1から3のいずれか一項に記載のL−システイン鉱酸塩の製造方法。   The method for producing an L-cysteine mineral acid salt according to any one of claims 1 to 3, wherein the cathode used in the cathode chamber is a carbon electrode.
JP2015254528A 2015-12-25 2015-12-25 Method for producing L-cysteine mineral salt Active JP6639224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254528A JP6639224B2 (en) 2015-12-25 2015-12-25 Method for producing L-cysteine mineral salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254528A JP6639224B2 (en) 2015-12-25 2015-12-25 Method for producing L-cysteine mineral salt

Publications (2)

Publication Number Publication Date
JP2017115223A true JP2017115223A (en) 2017-06-29
JP6639224B2 JP6639224B2 (en) 2020-02-05

Family

ID=59233650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254528A Active JP6639224B2 (en) 2015-12-25 2015-12-25 Method for producing L-cysteine mineral salt

Country Status (1)

Country Link
JP (1) JP6639224B2 (en)

Also Published As

Publication number Publication date
JP6639224B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10094031B2 (en) Method for manufacturing reduced glutathione
JP5570627B2 (en) Method for producing peroxodisulfate
JP2648313B2 (en) Electrolysis method
JPWO2012137824A1 (en) Method for producing reduced glutathione
RU2059023C1 (en) Quaternary ammonium hydroxides solutions purification method
CN101457368B (en) Technical method for synthesizing 4-fluoroaniline by electrochemistry method
US4235684A (en) Process for producing glyoxalic acid by electrolytic oxidation
JP6639224B2 (en) Method for producing L-cysteine mineral salt
Babu et al. A homogeneous redox catalytic process for the paired synthesis of l-cysteine and l-cysteic acid from l-cystine
KR100926358B1 (en) Method for preparing organic acid salt
KR102054248B1 (en) Composite process of carbon dioxide reduction with preparing of formic acid and potasium sulfate, and apparatus for the same
CN103290427B (en) A kind of method preparing potassium fluotitanate
CN115003860A (en) Preparation method of periodate
WO2013054341A4 (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JP5344278B2 (en) Indium metal production method and apparatus
JP3645636B2 (en) 3-chamber electrolytic cell
US4402805A (en) Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA
JP2004099914A (en) Method for producing peroxodisulfate
US6294070B1 (en) Process for electrolytically producing metal-amalgam
CA1062195A (en) Method and apparatus for electrolytic production of persulfates
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JP5649948B2 (en) Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
WO2018212007A1 (en) Method for electrochemically producing germane
RU2202002C2 (en) Process of production of arsenic acid by electrochemical oxidation of aqueous suspension of arsenic oxide (iii)
CN108751356A (en) A kind of highest absolute value negative potential aqueous solution manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250