JP6773058B2 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP6773058B2
JP6773058B2 JP2018020614A JP2018020614A JP6773058B2 JP 6773058 B2 JP6773058 B2 JP 6773058B2 JP 2018020614 A JP2018020614 A JP 2018020614A JP 2018020614 A JP2018020614 A JP 2018020614A JP 6773058 B2 JP6773058 B2 JP 6773058B2
Authority
JP
Japan
Prior art keywords
optical
housing
driver element
substrate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018020614A
Other languages
Japanese (ja)
Other versions
JP2018077545A (en
Inventor
加藤 圭
圭 加藤
徳一 宮崎
徳一 宮崎
清水 亮
亮 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2018020614A priority Critical patent/JP6773058B2/en
Publication of JP2018077545A publication Critical patent/JP2018077545A/en
Application granted granted Critical
Publication of JP6773058B2 publication Critical patent/JP6773058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光送信装置に関し、特に、2波長集積型などの高集積型変調器を備えた光送信装置に関する。 The present invention relates to an optical transmitter, and more particularly to an optical transmitter including a highly integrated modulator such as a two-wavelength integrated modulator.

光通信システムの高速化、大容量化が進む中で、それに使用される光変調器の高性能化、高密度化が進んでいる。また、光変調器の小型化の要請に伴い、光変調器を構成する基板の小型化も進められている。しかしながら、光変調器の高性能化と、高密度化及び小型化とは相反する要求であるため、これらを両立するための工夫が求められている。 As the speed and capacity of optical communication systems increase, the performance and density of the optical modulators used in them are increasing. Further, with the demand for miniaturization of the optical modulator, the miniaturization of the substrate constituting the optical modulator is also being promoted. However, since there are conflicting demands for high performance of optical modulators and high density and miniaturization, it is necessary to devise ways to achieve both of them.

このような光変調器に関し、以下のような発明が提案されている。
例えば、特許文献1には、基板上に第1の光変調部と第2の光変調部とを幅方向に並列に設け、該基板の一方の側部に隣接させて、変調用の電気信号を中継する中継基板を配置した構造の光変調器が開示されている。
The following inventions have been proposed with respect to such light modulators.
For example, in Patent Document 1, a first optical modulation unit and a second optical modulation unit are provided in parallel on a substrate in the width direction, and are adjacent to one side portion of the substrate to provide an electrical signal for modulation. An optical modulator having a structure in which a relay board for relaying the light is arranged is disclosed.

特開2015−172630号公報JP 2015-172630

近年、2波長集積型などの高集積型光変調器が開発されている。図1には、従来の2波長集積型DP−QPSK(Dual Polarization - Quadrature Phase Shift Keying)変調器を備えた光送信装置の構成例を示してある。同図の光変調器は、波長λ1の光波が入力される光変調領域M1と、波長λ1とは異なる波長λ2の光波が入力される光変調領域M2とを有し、これら光変調領域M1,M2は互いに独立して動作するように構成される。 In recent years, highly integrated optical modulators such as a two-wavelength integrated type have been developed. FIG. 1 shows a configuration example of an optical transmitter equipped with a conventional dual polarization-Quadrature Phase Shift Keying (DP-QPSK) modulator. The light modulator of the figure has an optical modulation region M1 in which a light wave having a wavelength λ1 is input and an optical modulation region M2 in which a light wave having a wavelength λ2 different from the wavelength λ1 is input. The M2s are configured to operate independently of each other.

光変調領域M1,M2の各々は、電気光学効果を有する基板1上に、光導波路2と、光導波路2を伝搬する光波を制御信号により制御するための制御電極3と、光導波路2を伝搬する光波を検出するための受光素子4とを備えている。制御電極3は、制御信号の一種であるRF信号(変調信号)が印加されるRF電極3aや、制御信号の一種であるDC信号(バイアス電圧)が印加されるDC電極3b,3cなどで構成される。 Each of the optical modulation regions M1 and M2 propagates on the substrate 1 having an electro-optical effect, the optical waveguide 2, the control electrode 3 for controlling the light wave propagating in the optical waveguide 2 by the control signal, and the optical waveguide 2. It is provided with a light receiving element 4 for detecting the light wave to be generated. The control electrode 3 is composed of an RF electrode 3a to which an RF signal (modulation signal) which is a kind of control signal is applied, and DC electrodes 3b and 3c to which a DC signal (bias voltage) which is a kind of control signal is applied. Will be done.

各光変調領域M1,M2の光導波路2は、マッハツェンダー型光導波路を入れ子型に多重に配置した構造となっており、これに相応して多数の制御電極3や受光素子4が設けられている。同図では、光変調領域M1,M2のそれぞれに、4つのRF電極3aと、6つのDC電極3b,3cと、2つの受光素子4を設けてある。
光変調領域M1の下流には偏波合成部(不図示)が配置され、メインとなるマッハツェンダー型光導波路の出力側アーム部を伝搬する光波を偏波合成部で合成して、光変調器に接続された光ファイバに出力する。光変調領域M2についても同様である。偏波合成部は、空間光学系を用いて偏波合成を行う構造のものや、光導波路を用いて偏波合成を行う構造のものなどがある。
The optical waveguide 2 in each of the optical modulation regions M1 and M2 has a structure in which Mach-Zehnder type optical waveguides are arranged in a plurality of nested manners, and a large number of control electrodes 3 and light receiving elements 4 are provided correspondingly. There is. In the figure, four RF electrodes 3a, six DC electrodes 3b and 3c, and two light receiving elements 4 are provided in each of the optical modulation regions M1 and M2.
A polarization synthesis unit (not shown) is arranged downstream of the optical modulation region M1, and the light waves propagating on the output side arm of the main Mach-Zehnder type optical waveguide are combined by the polarization synthesis unit to form an optical modulator. Output to the optical fiber connected to. The same applies to the optical modulation region M2. The polarization synthesizing unit includes a structure that performs polarization synthesis using a spatial optical system and a structure that performs polarization synthesis using an optical waveguide.

基板1の光変調領域M2側の辺部に隣接させて、RF電極3aに対するRF信号を中継する高周波信号用の中継基板11と、DC電極3b,3cに対するDC信号や受光素子4で検出した受光信号を中継する低周波信号用の中継基板12が配置されている。また、基板1の光変調領域M1側の辺部には、光変調領域M1のRF電極3aに対するRF信号を終端する終端基板13が配置され、基板1の光変調領域M2側の辺部には、光変調領域M2のRF電極3aに対するRF信号を終端する終端基板14が配置されている。 A relay board 11 for a high frequency signal that relays an RF signal to the RF electrode 3a adjacent to the side portion of the substrate 1 on the optical modulation region M2 side, and a light receiving signal detected by the DC signal or the light receiving element 4 to the DC electrodes 3b and 3c. A relay board 12 for a low frequency signal that relays the signal is arranged. Further, a terminal substrate 13 for terminating the RF signal with respect to the RF electrode 3a of the optical modulation region M1 is arranged on the side portion of the substrate 1 on the optical modulation region M1 side, and on the side portion of the substrate 1 on the optical modulation region M2 side. , A termination board 14 for terminating the RF signal with respect to the RF electrode 3a in the optical modulation region M2 is arranged.

このような光変調器は、光送信装置を構成する部品の一つとして該光送信装置に内蔵して使用される。一般的に、光変調器は光送信装置のプリント基板21に搭載され、その搭載面と同一面上に配置されたドライバ素子22からの制御信号に基づいて動作する。すなわち、光変調器は、その外部(筐体6の外部)にあるドライバ素子22から制御信号の供給を受けて、制御信号に応じた光変調を行う。 Such an optical modulator is used by being incorporated in the optical transmitter as one of the components constituting the optical transmitter. Generally, the light modulator is mounted on a printed circuit board 21 of an optical transmitter and operates based on a control signal from a driver element 22 arranged on the same surface as the mounted surface. That is, the light modulator receives a control signal from the driver element 22 outside the driver element 22 (outside the housing 6), and performs optical modulation according to the control signal.

上記のように基板1の片側に中継基板11,12を配置する構造だと、高周波信号用の中継基板11や低周波信号用の中継基板12に接続される入出力端子(DCピンやRFコネクタなど)を筐体6の同一な側面に配置することができるので、光変調器を取り扱いやすくなるという利点がある。しかしながら、ドライバ素子22が筐体6の側方に並列させて配置されるため、これらの実装面積が大きくなるので、光送信装置の小型化が困難であった。 If the relay boards 11 and 12 are arranged on one side of the board 1 as described above, the input / output terminals (DC pins and RF connectors) connected to the relay board 11 for high frequency signals and the relay board 12 for low frequency signals are connected. Etc.) can be arranged on the same side surface of the housing 6, so that there is an advantage that the optical modulator can be easily handled. However, since the driver elements 22 are arranged in parallel on the side of the housing 6, the mounting area for these is large, and it is difficult to reduce the size of the optical transmitter.

また、上記のように多数の制御電極3(3a,3b,3c)や受光素子4を基板(チップ)に配置する構造だと、それらの部品に接続する信号線路(電気線)の配線の自由度が少ない。特に中継基板11,12に近い側の光変調領域M2は、光変調領域M2に対する信号線路だけでなく、光変調領域M1に対する信号線路の一部も配設されるとともに、信号線路が局所的に集中することになるため、信号線路の複雑化が顕著になる。その結果、制御電極3(3a,3b,3c)に対する信号線路の長さにバラツキが生じやすい。例えば、RF電極3aに対する信号線路5a,5bの各々で長さにバラツキが生じることで、各RF電極3aに対するRF信号にスキュー(時間遅延)が発生したり、各々の信号線路で伝搬損失差が生じる懸念がある。また、信号線路の長さが長くなると伝搬損失が増加したり、信号線路間でクロストークが発生する可能性があるという問題もある。 Further, if a structure in which a large number of control electrodes 3 (3a, 3b, 3c) and a light receiving element 4 are arranged on a substrate (chip) as described above, the signal line (electrical line) connected to these parts can be freely wired. The degree is low. In particular, in the optical modulation region M2 on the side close to the relay boards 11 and 12, not only the signal line for the optical modulation region M2 but also a part of the signal line for the optical modulation region M1 is arranged, and the signal line is locally arranged. Since it is concentrated, the complexity of the signal line becomes remarkable. As a result, the length of the signal line with respect to the control electrode 3 (3a, 3b, 3c) tends to vary. For example, when the lengths of the signal lines 5a and 5b with respect to the RF electrode 3a vary in length, skew (time delay) occurs in the RF signal for each RF electrode 3a, and the propagation loss difference occurs in each signal line. There are concerns that arise. Further, if the length of the signal line is increased, there is a problem that the propagation loss may increase and crosstalk may occur between the signal lines.

本発明が解決しようとする課題は、上記のような問題を解決し、光変調器及びドライバ素子の実装面積を抑えた光送信装置を提供することである。 An object to be solved by the present invention is to solve the above-mentioned problems and to provide an optical transmission device in which a mounting area of an optical modulator and a driver element is suppressed.

上記課題を解決するため、本発明の光送信装置は、以下のような技術的特徴を有する。
(1) 筐体と、該筐体の内部底面に配置される電気光学効果を有する基板と、該基板に形成された、光導波路及び該光導波路を伝搬する光波を制御信号により制御するための制御電極とを有する光変調器と、該制御信号を出力するドライバ素子とを備えた光送信装置において、該光変調器を平面視した際の該筐体の形状が長方形であり、該基板と、該長方形の長辺を形成する該筐体の2つの側壁との間の各々に、中継基板を配置し、該中継基板には、該制御電極に電気的に接続される中継信号線路が形成され、該中継信号線路に電気的に接続されるピンが該筐体の底面を貫通しており、該筐体が配置されるプリント基板を備え、該ドライバ素子は、該プリント基板の該筐体が搭載された面と反対側の面側(以下、「筐体外部の底面側」ともいう。)に配置され、ドライバ素子には、該制御信号を出力する出力端子が設けられ、該ドライバ素子を挟むように、該プリント基板に貫通孔が形成され、該貫通孔に該ピンを挿し通して、該ピンと該出力端子とを電気的に接続することを特徴とする。
In order to solve the above problems, the optical transmitter of the present invention has the following technical features.
(1) To control a housing, a substrate having an electro-optical effect arranged on the inner bottom surface of the housing, an optical waveguide formed on the substrate, and a light wave propagating in the optical waveguide by a control signal. In an optical transmission device including an optical modulator having a control electrode and a driver element for outputting the control signal, the shape of the housing when the optical modulator is viewed in a plan view is rectangular, and the substrate and the substrate. , A relay board is arranged between each of the two side walls of the housing forming the long side of the rectangle, and a relay signal line electrically connected to the control electrode is formed on the relay board. A pin electrically connected to the relay signal line penetrates the bottom surface of the housing, and includes a printed circuit board on which the housing is arranged, and the driver element is the housing of the printed circuit board. Is arranged on the surface side opposite to the surface on which the is mounted (hereinafter, also referred to as "bottom side outside the housing"), the driver element is provided with an output terminal for outputting the control signal, and the driver element is provided. so as to sandwich the formed the transmural hole in the printed circuit board, through inserting the pin into the through hole, characterized by electrically connecting the said pin and the output pin.

(2) 上記(1)に記載の光送信装置において、該光導波路は、並列に配置された複数のマッハツェンダー型光導波路を有し、各マッハツェンダー型光導波路に対して該制御電極が設けられていることを特徴とする。 (2) In the optical transmitter according to (1) above, the optical waveguide has a plurality of Mach-Zehnder-type optical waveguides arranged in parallel, and the control electrode is provided for each Mach-Zehnder-type optical waveguide. it shall be the feature of the being.

本発明の光送信装置は、筐体と、該筐体内部に配置される電気光学効果を有する基板と、該基板に形成された、光導波路及び該光導波路を伝搬する光波を制御信号により制御するための制御電極とを有する光変調器と、該制御信号を出力するドライバ素子とを備えた光送信装置において、該ドライバ素子は該筐体外部の底面側に配置され、該制御電極と電気的に接続されるため、光変調器及びドライバ素子の実装面積を抑えた光送信装置を提供することができる。 The optical transmission device of the present invention controls a housing, a substrate having an electro-optical effect arranged inside the housing, an optical waveguide formed on the substrate, and a light wave propagating in the optical waveguide by a control signal. In an optical transmission device including an optical modulator having a control electrode for controlling the light and a driver element for outputting the control signal, the driver element is arranged on the bottom surface side outside the housing, and the control electrode and electricity are provided. It is possible to provide an optical transmitter in which the mounting area of the light modulator and the driver element is reduced.

従来の2波長集積型DP−QPSK変調器を備えた光送信装置の構成例を示す平面図である。It is a top view which shows the structural example of the optical transmission apparatus provided with the conventional 2 wavelength integrated DP-QPSK modulator. 本発明の第1実施例に係る光送信装置を説明する平面図である。It is a top view explaining the optical transmission device which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る光送信装置を説明する断面図である。It is sectional drawing explaining the optical transmission apparatus which concerns on 1st Example of this invention. 本発明の第1実施例におけるドライバ素子の配置を説明する平面図である。It is a top view explaining the arrangement of the driver element in 1st Example of this invention. 本発明の第2実施例に係る光送信装置を説明する平面図である。It is a top view explaining the optical transmission device which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係る光送信装置を説明する断面図である。It is sectional drawing explaining the optical transmission apparatus which concerns on 2nd Embodiment of this invention.

以下、本発明に係る光送信装置について詳細に説明する。
本発明に係る光送信装置は、例えば図2や図3に示すように、筐体6と、該筐体内部に配置される電気光学効果を有する2つの基板1A,1Bと、2つの基板1A,1Bにそれぞれ形成された、光導波路2及び該光導波路を伝搬する光波を制御信号により制御するための制御電極3とを有する光変調器を備える。光送信装置は、更に、該制御信号を出力するドライバ素子22を備えており、該ドライバ素子22は該筐体外部の底面側に配置され、該制御電極3と電気的に接続される。
Hereinafter, the optical transmitter according to the present invention will be described in detail.
The optical transmission device according to the present invention includes, for example, as shown in FIGS. 2 and 3, a housing 6, two substrates 1A and 1B having an electro-optical effect arranged inside the housing, and two substrates 1A. A light modulator having an optical waveguide 2 and a control electrode 3 for controlling a light wave propagating through the optical waveguide by a control signal, which are formed in 1B and 1B, respectively, is provided. The optical transmission device further includes a driver element 22 that outputs the control signal, and the driver element 22 is arranged on the bottom surface side outside the housing and is electrically connected to the control electrode 3.

基板1A,1Bとしては、石英、半導体など光導波路を形成できる基板であれば良く、特に、電気光学効果を有する基板である、LiNbO(ニオブ酸リチウム),LiTaO(タンタル酸リチウム)又はPLZT(ジルコン酸チタン酸鉛ランタン)のいずれかの単結晶などを用いた基板が好適に利用可能である。 The substrates 1A and 1B may be any substrates such as quartz and semiconductors capable of forming an optical waveguide, and in particular, LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate) or PLZT, which are substrates having an electro-optical effect. A substrate using any single crystal of (lead lanthanate titanate zirconate) or the like can be preferably used.

基板1A,1Bに形成する光導波路2は、例えば、LiNbO基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散することにより形成される。また、光導波路となる部分の両側に溝を形成したリブ型光導波路や光導波路部分を凸状としたリッジ型導波路も利用可能である。また、PLC等の異なる導波路基板に光導波路を形成し、これらの導波路基板を貼り合せ集積した光回路にも、本発明を適用することが可能である。 The optical waveguide 2 formed on the substrates 1A and 1B is formed by, for example, thermally diffusing a high refractive index substance such as titanium (Ti) on a LiNbO 3 substrate (LN substrate). Further, a rib-type optical waveguide in which grooves are formed on both sides of a portion to be an optical waveguide and a ridge-type waveguide in which the optical waveguide portion is convex can also be used. Further, the present invention can be applied to an optical circuit in which an optical waveguide is formed on a different waveguide substrate such as a PLC and these waveguide substrates are laminated and integrated.

基板1A,1Bには、光導波路2を伝搬する光波を制御信号により制御するための制御電極3が設けられる。制御電極3としては、変調電極を構成するRF電極3aやこれを取り巻く接地電極(不図示)、DC信号を印加するDC電極3b、3cなどがある。これら制御電極3は、基板表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設けることも可能である。 The substrates 1A and 1B are provided with a control electrode 3 for controlling the light wave propagating in the optical waveguide 2 by a control signal. Examples of the control electrode 3 include an RF electrode 3a constituting a modulation electrode, a ground electrode (not shown) surrounding the RF electrode 3, DC electrodes 3b and 3c to which a DC signal is applied, and the like. These control electrodes 3 can be formed by forming a Ti / Au electrode pattern on the surface of the substrate and by a gold plating method or the like. Further, if necessary, a buffer layer such as a dielectric SiO 2 can be provided on the surface of the substrate after the optical waveguide is formed.

基板1A,1Bの各々の光変調領域を構成する光導波路2は、マッハツェンダー型導波路を入れ子型に多重に配置した構造となっており、これに相応して多数の制御電極3や受光素子4が設けられている。同図では、基板1A,1Bのそれぞれに、4つのRF電極31と、6つのDC電極3b,3cと、2つの受光素子4を設けてある。 The optical waveguide 2 that constitutes each of the optical modulation regions of the substrates 1A and 1B has a structure in which Mach-Zehnder type waveguides are arranged in a plurality of nested manners, and a large number of control electrodes 3 and light receiving elements are correspondingly arranged. 4 is provided. In the figure, four RF electrodes 31, six DC electrodes 3b and 3c, and two light receiving elements 4 are provided on the substrates 1A and 1B, respectively.

本発明に係る光送信装置の主な特徴は、制御電極3に対する制御信号を出力するドライバ素子22を、光変調器の筐体外部の底面側に配置したことである。本明細書では、基板の長さ方向を「X方向」とし、基板の幅方向を「Y方向」とし、基板の厚さ方向を「Z方向」とする。X方向は光波の進行方向(図中の矢印Xの方向)に対応し、これに基板平面で直交する方向(図中の矢印Yの方向)がY方向となり、基板を平面視する方向(図中の×印Zの方向)がZ方向となる。以下、実施例を参照して詳細に説明する。なお、光送信装置及び光変調器の概略的な構成は、図1を参照して説明した従来のものと同様である。 A main feature of the optical transmission device according to the present invention is that the driver element 22 that outputs a control signal to the control electrode 3 is arranged on the bottom surface side outside the housing of the optical modulator. In the present specification, the length direction of the substrate is the "X direction", the width direction of the substrate is the "Y direction", and the thickness direction of the substrate is the "Z direction". The X direction corresponds to the traveling direction of the light wave (the direction of the arrow X in the figure), and the direction orthogonal to this in the substrate plane (the direction of the arrow Y in the figure) is the Y direction, and the direction in which the substrate is viewed in a plan view (FIG. The direction of the x mark Z inside) is the Z direction. Hereinafter, a detailed description will be given with reference to examples. The schematic configuration of the optical transmitter and the optical modulator is the same as that of the conventional one described with reference to FIG.

図2は、本発明の第1実施例に係る光送信装置を説明する平面図であり、図3は、これをX方向に見た断面図である。また、図4は、ドライバ素子22の配置を説明する平面図である。なお、図3において、(a)は、光送信装置のプリント基板に光変調器を搭載する前の様子を示す図であり、図3は、光送信装置のプリント基板に光変調器を搭載した後の様子を示す図である。 FIG. 2 is a plan view illustrating the optical transmission device according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view of the optical transmission device as viewed in the X direction. Further, FIG. 4 is a plan view illustrating the arrangement of the driver element 22. Note that, in FIG. 3, FIG. 3A is a diagram showing a state before the optical modulator is mounted on the printed circuit board of the optical transmitter, and FIG. 3 is a diagram showing the state before the optical modulator is mounted on the printed circuit board of the optical transmitter. It is a figure which shows the later state.

本例の光送信装置における光変調器は、筐体6の内部底面(筐体外部の底面に対向する筐体内部の面)に、2つの基板1A,1BをY方向に並列に配置してある。基板1Aと基板1Bの間には、RF電極3aに対するRF信号を中継する高周波信号用の中継基板11と、DC電極3b,3cに対するDC信号を中継する低周波信号用の中継基板12が配置される。中継基板12は、受光素子4で検出した受光信号を外部に出力する際の中継に用いることもできる。 In the optical modulator in the optical transmitter of this example, two substrates 1A and 1B are arranged in parallel in the Y direction on the inner bottom surface of the housing 6 (the surface inside the housing facing the bottom surface outside the housing). is there. Between the substrate 1A and the substrate 1B, a relay board 11 for a high frequency signal that relays an RF signal to the RF electrode 3a and a relay board 12 for a low frequency signal that relays a DC signal to the DC electrodes 3b and 3c are arranged. To. The relay board 12 can also be used for relaying when the light receiving signal detected by the light receiving element 4 is output to the outside.

本例の光変調器は、光送信装置を構成する部品の一つとして該光送信装置に内蔵して使用される。具体的には、本例の光変調器は、光送信装置のプリント基板21上に搭載され、その搭載面(上面)とは反対側の面(下面)に配置されたドライバ素子22からの制御信号に基づいて動作する。すなわち、制御信号を出力するドライバ素子22を、光変調器の筐体外部の底面側に配置する構造となっている。 The light modulator of this example is used by being incorporated in the optical transmitter as one of the components constituting the optical transmitter. Specifically, the light modulator of this example is mounted on the printed circuit board 21 of the optical transmitter, and is controlled by the driver element 22 arranged on the surface (lower surface) opposite to the mounting surface (upper surface). It operates based on the signal. That is, the driver element 22 that outputs the control signal is arranged on the bottom surface side outside the housing of the optical modulator.

中継基板11,12には中継信号線路(不図示)が形成されている。中継信号線路の一方の端部は、基板1A,1Bの制御電極3に対する信号線路と電気的に接続され、他方の端部は、電気的接続手段の一例であるピン7a,7bと電気的に接続される。ピン7a,7bは、中継基板11,12から筐体6の底面を貫通するように形成されている。また、ピン7a,7bは、筐体6の底面から突出する部分の長さが、少なくともプリント基板21の厚さ以上になるようにしてある。 Relay signal lines (not shown) are formed on the relay boards 11 and 12. One end of the relay signal line is electrically connected to the signal line for the control electrode 3 of the substrates 1A and 1B, and the other end is electrically connected to pins 7a and 7b which are examples of the electrical connection means. Be connected. The pins 7a and 7b are formed so as to penetrate the bottom surface of the housing 6 from the relay boards 11 and 12. Further, the pins 7a and 7b are set so that the length of the portion protruding from the bottom surface of the housing 6 is at least the thickness of the printed circuit board 21 or more.

プリント基板21には、光変調器を搭載した際にピン7a,7bが位置することになる箇所に、ピン7a,7bを挿し通せる貫通孔23a,23bを形成してある。また、プリント基板21の下面には、ドライバ素子22から貫通孔23a,23bに向かって延びる出力端子24a,24bを設けてある。プリント基板21に光変調器を搭載すると、プリント基板21の貫通孔23a,23bからピン7a,7bの一部が突出する。この突出した部分と出力端子24a,24bとを半田等により接続することで、中継基板11,12の中継信号線路とプリント基板21の出力端子24a,24bとを電気的に接続することができる。なお、出力端子24a,24bと貫通孔23a,23bとの間隔を広げ、出力端子24a,24bと貫通孔23a,23bの間に信号線路を形成し、この信号線路を介してピン7a,7bと出力端子24a,24bとを電気的に接続する構成にしてもよい。 The printed circuit board 21 is formed with through holes 23a and 23b through which the pins 7a and 7b can be inserted at locations where the pins 7a and 7b will be located when the optical modulator is mounted. Further, on the lower surface of the printed circuit board 21, output terminals 24a and 24b extending from the driver element 22 toward the through holes 23a and 23b are provided. When the light modulator is mounted on the printed circuit board 21, a part of the pins 7a and 7b protrudes from the through holes 23a and 23b of the printed circuit board 21. By connecting the protruding portions and the output terminals 24a and 24b with solder or the like, the relay signal lines of the relay boards 11 and 12 and the output terminals 24a and 24b of the printed circuit board 21 can be electrically connected. The distance between the output terminals 24a and 24b and the through holes 23a and 23b is widened, a signal line is formed between the output terminals 24a and 24b and the through holes 23a and 23b, and the pins 7a and 7b pass through the signal line. The output terminals 24a and 24b may be electrically connected to each other.

出力端子24aは、ドライバ素子22から基板1A側に供給する制御信号を出力するための端子である。出力端子24bは、ドライバ素子22から基板1B側に供給する制御信号を出力するための端子である。すなわち、例えば基板1Aに対するRF信号が、ドライバ素子22から出力端子24a、ピン7a、信号線路5a等を通じて、基板1A側のRF電極3aに伝送される。また、例えば基板1Bに対するRF信号が、ドライバ素子22から出力端子24b、ピン7b、信号線路5b等を通じて、基板1B側のRF電極3bに伝送される。なお、図2では、基板1AのRF電極3aに対する信号線路5aと、基板1BのRF電極3aに対する信号線路5bを示しているが、他の信号線路は省略している。 The output terminal 24a is a terminal for outputting a control signal supplied from the driver element 22 to the substrate 1A side. The output terminal 24b is a terminal for outputting a control signal supplied from the driver element 22 to the substrate 1B side. That is, for example, the RF signal for the substrate 1A is transmitted from the driver element 22 to the RF electrode 3a on the substrate 1A side through the output terminal 24a, the pin 7a, the signal line 5a, and the like. Further, for example, the RF signal for the substrate 1B is transmitted from the driver element 22 to the RF electrode 3b on the substrate 1B side through the output terminal 24b, the pin 7b, the signal line 5b, and the like. Note that FIG. 2 shows a signal line 5a for the RF electrode 3a of the substrate 1A and a signal line 5b for the RF electrode 3a of the substrate 1B, but other signal lines are omitted.

このように、本例の光送信装置では、ドライバ素子22を光変調器の筐体外部の底面側に配置したので、従来構成と比較してプリント基板21のサイズを小さくすることができる。また、これにより、光変調器及びドライバ素子22の実装面積を抑えた光送信装置を提供することができる。 As described above, in the optical transmission device of this example, since the driver element 22 is arranged on the bottom surface side outside the housing of the optical modulator, the size of the printed circuit board 21 can be reduced as compared with the conventional configuration. Further, this makes it possible to provide an optical transmission device in which the mounting area of the optical modulator and the driver element 22 is suppressed.

また、本例の光送信装置では、基板1Aと基板1Bの間に配置した中継基板11,12に、ドライバ素子22と制御電極3とを電気的に接続するための中継信号線路を形成したので、従来技術のように信号線路が局所的に集中することを抑制できる。すなわち、一方の光変調領域(M2)に、他方の光変調領域(M1)に対する信号線路の一部を配設させずに済むようになる。また、信号線路の長さは、中継基板11,12上の中継信号線路の配設の仕方により調整できる。このため、信号線路の長さを揃えやすくなり、信号線路の長さのバラツキによる制御信号のスキュー(時間遅延)を抑制できる。 Further, in the optical transmission device of this example, the relay signal lines for electrically connecting the driver element 22 and the control electrode 3 are formed on the relay boards 11 and 12 arranged between the boards 1A and the boards 1B. , It is possible to suppress the local concentration of signal lines as in the prior art. That is, it is not necessary to dispose a part of the signal line with respect to the other optical modulation region (M1) in one optical modulation region (M2). Further, the length of the signal line can be adjusted by the method of arranging the relay signal line on the relay boards 11 and 12. Therefore, it becomes easy to make the lengths of the signal lines uniform, and it is possible to suppress skew (time delay) of the control signal due to variations in the lengths of the signal lines.

また、信号線路の長さの調整は中継基板11,12上の中継信号線路やプリント基板21上の信号線路で行えるので、伝搬損失が大きい基板1A,1B上の信号線路をなるべく短くすることで、信号線路全体での伝搬損失を抑え、また信号線路間でクロストークの発生を抑制することが可能となる。更に、1枚の基板(チップ)に多数の光変調領域を形成するのではなく、本例のようにチップを分離した構造にすることで、1チップに搭載する導波路や電極の微細パターンが少なくなるため、パターの欠陥等によるチップ製造の歩留りを改善する効果も得られる。 Further, since the length of the signal line can be adjusted by the relay signal line on the relay boards 11 and 12 and the signal line on the printed circuit board 21, the signal line on the boards 1A and 1B having a large propagation loss can be shortened as much as possible. , It is possible to suppress the propagation loss in the entire signal line and suppress the occurrence of cross talk between the signal lines. Furthermore, instead of forming a large number of optical modulation regions on one substrate (chip), by making the chip a separate structure as in this example, the fine pattern of the waveguide and electrodes mounted on one chip can be obtained. Since the number is reduced, the effect of improving the yield of chip production due to defects in the putter or the like can be obtained.

また、本例の光送信装置では、基板1Aと基板1Bの間の中心線(図中の一点鎖線C)から見て筐体外部の底面側に配置されたドライバ素子22と接続できる位置に、ピン7a,7bを設けている。このため、ドライバ素子22から制御電極3に至る信号線路の長さを効率的に短縮できる。このため、制御信号の伝搬損失の更なる低減を実現することができる。基板1A,1Bの各制御電極3に対する信号線路の配線を最適化するには、図3や図4(a)のようにZ方向に見たときドライバ素子22の中心と中心線Cとが合う位置にドライバ素子22が配置されるように構成することが望ましい。 Further, in the optical transmitter of this example, at a position where it can be connected to the driver element 22 arranged on the bottom surface side outside the housing when viewed from the center line (dotted chain line C in the figure) between the substrates 1A and the substrate 1B. Pins 7a and 7b are provided. Therefore, the length of the signal line from the driver element 22 to the control electrode 3 can be efficiently shortened. Therefore, it is possible to further reduce the propagation loss of the control signal. In order to optimize the wiring of the signal line to the control electrodes 3 of the substrates 1A and 1B, the center of the driver element 22 and the center line C are aligned when viewed in the Z direction as shown in FIGS. 3 and 4A. It is desirable that the driver element 22 is arranged at the position.

ここで、制御信号の伝搬損失の低減を図る上では、上記のようにドライバ素子22の中心と中心線CとがZ方向で合っていることが好ましいが、実用上問題ない範囲であれば、ドライバ素子22が中心線Cから基板1A側または基板1B側にずれた位置に配置する構成にしても構わない。但し、信号線路の長さのバラツキを抑えるという観点から、Z方向に見たとき、プリント基板7の一方の面側にある中継基板11,12とプリント基板7の他方の面側にあるドライバ素子22とが重なる位置に配置されるずらし量とすることが望ましい。 Here, in order to reduce the propagation loss of the control signal, it is preferable that the center of the driver element 22 and the center line C are aligned in the Z direction as described above, but if there is no problem in practical use, it is preferable. The driver element 22 may be arranged at a position shifted from the center line C to the substrate 1A side or the substrate 1B side. However, from the viewpoint of suppressing variations in the length of the signal line, when viewed in the Z direction, the relay boards 11 and 12 on one side of the printed circuit board 7 and the driver element on the other side of the printed circuit board 7. It is desirable that the shift amount is arranged at a position where the 22 overlaps.

図4(a)におけるドライバ素子22では、制御信号の出力端子24a,24bが左右に配置されており、基板1A側の貫通孔23aに延びる出力端子24aと基板1B側の貫通孔23bに延びる出力端子24bとが中心線Cに対して線対称に配置されている。また、図4(b)のようにドライバ素子22の片側にのみ出力端子24a,24bが配置されている場合も同様に、基板1A側の貫通孔23aに延びる出力端子24aと基板1B側の貫通孔23bに延びる出力端子24bとが中心線Cに対して線対称に配置されるようにしてもよい。
ドライバ素子22に関するこれらの配置については、後述の第2実施例においても同様に採用できることはいうまでもない。
なお、筐体外部の底面側にドライバ素子22を配置する構造は、制御信号が20Gbps以上である場合に適用することが好ましい。
In the driver element 22 in FIG. 4A, the output terminals 24a and 24b of the control signal are arranged on the left and right, and the output terminals 24a extending to the through hole 23a on the substrate 1A side and the output extending to the through hole 23b on the substrate 1B side. The terminals 24b are arranged line-symmetrically with respect to the center line C. Similarly, when the output terminals 24a and 24b are arranged only on one side of the driver element 22 as shown in FIG. 4B, the output terminals 24a extending into the through holes 23a on the substrate 1A side and the through holes on the substrate 1B side are similarly arranged. The output terminal 24b extending to the hole 23b may be arranged line-symmetrically with respect to the center line C.
Needless to say, these arrangements of the driver element 22 can be similarly adopted in the second embodiment described later.
The structure in which the driver element 22 is arranged on the bottom surface side outside the housing is preferably applied when the control signal is 20 Gbps or more.

図5は、本発明の第2実施例に係る光送信装置を説明する断面図であり、図6は、これをX方向に見た断面図である。
本例の光送信装置における光変調器は、筐体6の内部底面(筐体外部の底面に対向する筐体内部の面)に、2つの基板1A,1BをY方向に並列に配置してある。基板1Aの基板1Bとは反対側の側辺には、基板1Aに対する高周波信号用の中継基板11Aが基板1Aに隣接させて配置される。また、基板1Bの基板1Aとは反対側の側辺には、基板1Bに対する高周波信号用の中継基板11Bが基板1Bに隣接させて配置される。
FIG. 5 is a cross-sectional view illustrating the optical transmission device according to the second embodiment of the present invention, and FIG. 6 is a cross-sectional view of the optical transmission device as viewed in the X direction.
In the optical modulator in the optical transmitter of this example, two substrates 1A and 1B are arranged in parallel in the Y direction on the inner bottom surface of the housing 6 (the surface inside the housing facing the bottom surface outside the housing). is there. On the side of the substrate 1A opposite to the substrate 1B, a relay substrate 11A for a high frequency signal with respect to the substrate 1A is arranged adjacent to the substrate 1A. Further, on the side of the substrate 1B opposite to the substrate 1A, a relay substrate 11B for a high frequency signal with respect to the substrate 1B is arranged adjacent to the substrate 1B.

本例の光変調器も第1実施例と同様に、光送信装置を構成する部品の一つとして該光送信装置に内蔵して使用される。具体的には、本例の光変調器は、光送信装置のプリント基板21上に搭載され、その搭載面(上面)とは反対側の面(下面)に配置されたドライバ素子22からの制御信号に基づいて動作する。すなわち、制御信号を出力するドライバ素子2を光変調器の筐体外部の底面側に配置する構造となっている。
なお、低周波信号用の中継基板は図示を省略しているが、高周波信号用の中継基板と同様に、基板1Aの基板1Bとは反対側の側辺、及び、基板1Bの基板1Aとは反対側の側辺の両方に個別に設けてもよく、その一方の側辺だけに共用の中継基板を設けてもよい。
Similar to the first embodiment, the light modulator of this example is also used by being incorporated in the optical transmitter as one of the components constituting the optical transmitter. Specifically, the light modulator of this example is mounted on the printed circuit board 21 of the optical transmitter, and is controlled by the driver element 22 arranged on the surface (lower surface) opposite to the mounting surface (upper surface). It operates based on the signal. That is, the driver element 2 that outputs the control signal is arranged on the bottom surface side outside the housing of the optical modulator.
Although the relay board for low frequency signals is not shown, the side side of the board 1A opposite to the board 1B and the board 1A of the board 1B are the same as the relay board for high frequency signals. Both side sides on the opposite side may be provided individually, or a shared relay board may be provided only on one side side.

このような構成によっても、ドライバ素子22を光変調器の筐体外部の底面側に配置できるので、光変調器及びドライバ素子22の実装面積を抑えた光送信装置を提供することができる。また、第1実施例と同様に、信号線路の局所的な集中の回避、信号線路の長さのバラツキによる制御信号のスキュー(位相ずれ)の抑制、信号線路全体での伝搬損失の改善などの効果も得ることができる。 Even with such a configuration, since the driver element 22 can be arranged on the bottom surface side outside the housing of the optical modulator, it is possible to provide an optical transmitter in which the mounting area of the optical modulator and the driver element 22 is suppressed. Further, as in the first embodiment, avoidance of local concentration of signal lines, suppression of skew (phase shift) of control signals due to variation in signal line length, improvement of propagation loss in the entire signal line, etc. The effect can also be obtained.

以上、実施例に基づいて本発明を説明したが、本発明は上述した内容に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更可能であることはいうまでもない。
例えば、上記の説明では、プリント基板21の上側に光変調器を搭載し、下側にドライバ素子22を搭載する例について説明したが、これら全体を逆さにしても構わない。
また、上記の説明では、ドライバ素子22を事後的に接続可能に構成された光変調器について説明したが、ドライバ素子22を光変調器に予め接続しておく構成とすることもできる。この場合には、プリント基板21に、光変調器を配置した際にドライバ素子22が位置することになる領域部分に開口部を設けておけばよい。これにより、光変調器をプリント基板21に配置すると開口部からドライバ素子22が現れるので、開口部にあるドライバ素子22にプリント基板21の他の回路素子を電気的に接続することができる。
Although the present invention has been described above based on the examples, it goes without saying that the present invention is not limited to the above-mentioned contents, and the design can be appropriately changed without departing from the spirit of the present invention.
For example, in the above description, an example in which the optical modulator is mounted on the upper side of the printed circuit board 21 and the driver element 22 is mounted on the lower side may be described, but all of them may be inverted.
Further, in the above description, the optical modulator configured so that the driver element 22 can be connected after the fact has been described, but the driver element 22 may be configured to be connected to the optical modulator in advance. In this case, the printed circuit board 21 may be provided with an opening in a region portion where the driver element 22 will be located when the optical modulator is arranged. As a result, when the light modulator is arranged on the printed circuit board 21, the driver element 22 appears from the opening, so that another circuit element of the printed circuit board 21 can be electrically connected to the driver element 22 in the opening.

以上、説明したように、本発明によれば、光変調器及びドライバ素子の実装面積を抑えた光送信装置を提供することができる。 As described above, according to the present invention, it is possible to provide an optical transmission device in which the mounting area of the optical modulator and the driver element is suppressed.

1 基板
2 光導波路
3 制御電極
3a RF電極
3b,3c DC電極
4 受光素子
5a,5b 信号線路
6 筐体
7a,7b ピン
11,11A,11B,12 中継基板
13,14 終端基板
21 プリント基板
22 ドライバ素子
23a,23b 貫通孔
24a,24b 出力端子
1 Substrate 2 Optical waveguide 3 Control electrode 3a RF electrode 3b, 3c DC electrode 4 Light receiving element 5a, 5b Signal line 6 Housing 7a, 7b Pin 11, 11A, 11B, 12 Relay board 13, 14 Termination board 21 Printed circuit board 22 Driver Elements 23a, 23b Through holes 24a, 24b Output terminals

Claims (2)

筐体と、該筐体の内部底面に配置される電気光学効果を有する基板と、該基板に形成された、光導波路及び該光導波路を伝搬する光波を制御信号により制御するための制御電極とを有する光変調器と、
該制御信号を出力するドライバ素子とを備えた光送信装置において、
該光変調器を平面視した際の該筐体の形状が長方形であり、
該基板と、該長方形の長辺を形成する該筐体の2つの側壁との間の各々に、中継基板を配置し、
該中継基板には、該制御電極に電気的に接続される中継信号線路が形成され、
該中継信号線路に電気的に接続されるピンが該筐体の底面を貫通しており、
該筐体が搭載されるプリント基板を備え、
該ドライバ素子は、該プリント基板の該筐体が搭載された面と反対側の面側に配置され、
該ドライバ素子には、該制御信号を出力する出力端子が設けられ、
該ドライバ素子を挟むように、該プリント基板に貫通孔が形成され
該貫通孔に該ピンを挿し通して、該ピンと該出力端子とを電気的に接続することを特徴とする光送信装置。
A housing, a substrate having an electro-optical effect arranged on the inner bottom surface of the housing, an optical waveguide formed on the substrate, and a control electrode for controlling a light wave propagating through the optical waveguide by a control signal. With an optical modulator with
In an optical transmission device including a driver element that outputs the control signal,
The shape of the housing when the light modulator is viewed in a plan view is rectangular.
A relay board is placed between each of the board and the two side walls of the housing forming the long side of the rectangle.
A relay signal line electrically connected to the control electrode is formed on the relay board.
A pin electrically connected to the relay signal line penetrates the bottom surface of the housing.
A printed circuit board on which the housing is mounted is provided.
The driver element is arranged on the surface side of the printed circuit board opposite to the surface on which the housing is mounted.
The driver element is provided with an output terminal for outputting the control signal.
So as to sandwich the driver element, transmural hole is formed on said printed circuit board,
An optical transmission device characterized in that the pin is inserted through the through hole to electrically connect the pin and the output terminal.
請求項1に記載の光送信装置において、
該光導波路は、並列に配置された複数のマッハツェンダー型光導波路を有し、
各マッハツェンダー型光導波路に対して該制御電極が設けられていることを特徴とする光送信装置。
In the optical transmitter according to claim 1,
The optical waveguide has a plurality of Mach-Zehnder-type optical waveguides arranged in parallel.
An optical transmission device characterized in that the control electrode is provided for each Mach-Zehnder type optical waveguide.
JP2018020614A 2018-02-08 2018-02-08 Optical transmitter Active JP6773058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018020614A JP6773058B2 (en) 2018-02-08 2018-02-08 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018020614A JP6773058B2 (en) 2018-02-08 2018-02-08 Optical transmitter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016091089A Division JP6290971B2 (en) 2016-04-28 2016-04-28 Optical transmitter and optical modulator

Publications (2)

Publication Number Publication Date
JP2018077545A JP2018077545A (en) 2018-05-17
JP6773058B2 true JP6773058B2 (en) 2020-10-21

Family

ID=62149077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018020614A Active JP6773058B2 (en) 2018-02-08 2018-02-08 Optical transmitter

Country Status (1)

Country Link
JP (1) JP6773058B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212531A (en) * 2006-02-07 2007-08-23 Ricoh Co Ltd Optical module and image forming apparatus using same
JP6119191B2 (en) * 2012-10-30 2017-04-26 富士通オプティカルコンポーネンツ株式会社 Optical modulator and optical transmitter
JP2014197054A (en) * 2013-03-29 2014-10-16 住友大阪セメント株式会社 Optical modulator
JP6268883B2 (en) * 2013-09-30 2018-01-31 住友大阪セメント株式会社 Light modulator
JP6467781B2 (en) * 2014-03-31 2019-02-13 住友大阪セメント株式会社 Light modulator
WO2015154813A1 (en) * 2014-04-10 2015-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mach-zehnder modulator and method for operating a mach-zehnder modulator
JP6229607B2 (en) * 2014-07-11 2017-11-15 富士通オプティカルコンポーネンツ株式会社 Optical module and transmitter

Also Published As

Publication number Publication date
JP2018077545A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP7056236B2 (en) Optical modulators and optical transceiver modules using them
JP7069558B2 (en) Optical communication module and optical modulator used for it
US10088699B2 (en) Optical modulator
JP5991339B2 (en) Light control element
WO2014157456A1 (en) Optical modulator
JP6327197B2 (en) Light modulator
JP6290971B2 (en) Optical transmitter and optical modulator
CN108780238B (en) Optical modulator
WO2017188295A1 (en) Optical modulator
US9740077B2 (en) Optical modulator module that includes a plurality of optical modulators
JP6773058B2 (en) Optical transmitter
US11397364B2 (en) Optical modulator and optical transmission apparatus
US11156857B2 (en) Optical modulator and optical transmission apparatus using same
WO2022163724A1 (en) Optical modulator and optical transmission device using same
JP5691747B2 (en) Traveling wave type light modulator
JP6288153B2 (en) Light modulator
US20220334415A1 (en) Optical modulator and optical transmission apparatus using same
CN115943339A (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP6638515B2 (en) Light modulator
US20220342241A1 (en) Optical modulator and optical transmission apparatus using same
JP6915706B2 (en) Light modulator
JP4420202B2 (en) Light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150