JP6763131B2 - Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method - Google Patents

Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method Download PDF

Info

Publication number
JP6763131B2
JP6763131B2 JP2015238763A JP2015238763A JP6763131B2 JP 6763131 B2 JP6763131 B2 JP 6763131B2 JP 2015238763 A JP2015238763 A JP 2015238763A JP 2015238763 A JP2015238763 A JP 2015238763A JP 6763131 B2 JP6763131 B2 JP 6763131B2
Authority
JP
Japan
Prior art keywords
insulation
characteristic measuring
electrodes
insulator
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238763A
Other languages
Japanese (ja)
Other versions
JP2017106750A (en
Inventor
宏隆 華表
宏隆 華表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015238763A priority Critical patent/JP6763131B2/en
Publication of JP2017106750A publication Critical patent/JP2017106750A/en
Application granted granted Critical
Publication of JP6763131B2 publication Critical patent/JP6763131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、円筒形状絶縁物の絶縁特性を任意環境状態にて測定することが可能な絶縁特性測定装置、及びそれを用いた絶縁特性の測定方法、並びに、余寿命診断方法に関する。 The present invention relates to an insulation characteristic measuring device capable of measuring the insulation characteristics of a cylindrical insulator in an arbitrary environmental state, a method for measuring the insulation characteristics using the apparatus, and a method for diagnosing the remaining life.

高圧受配電機器は、高電圧構造物を一定サイズの盤に格納した装置である。配電盤内部の電位差が大きい箇所は、離隔距離を離したり、絶縁体を挟んだりして、所定の絶縁強度を確保している。この高電圧物体の保持や防壁に用いられるのが、ポリエステル樹脂やエポキシ樹脂といった固体絶縁物である。これらの絶縁物は経年使用により絶縁性能が劣化すると最終的には絶縁破壊故障に至るため、故障を未然に防ぐ絶縁物の劣化診断・余寿命診断技術が求められている。 A high-voltage power receiving and distributing device is a device in which a high-voltage structure is stored in a panel of a certain size. In places where the potential difference is large inside the switchboard, a predetermined dielectric strength is secured by separating the distances or sandwiching an insulator. Solid insulating materials such as polyester resin and epoxy resin are used for holding high-voltage objects and barriers. If the insulation performance of these insulators deteriorates due to long-term use, they will eventually lead to dielectric breakdown failure. Therefore, there is a demand for insulation deterioration diagnosis and remaining life diagnosis techniques to prevent failures.

下記特許文献1には、基板表面汚染の評価方法に関する発明が開示されている。具体的には特許文献1の図2に示すように、複数の電極を有する測定器本体を備え、電極を評価対象の基板上に接触させて表面抵抗率を測定している。このとき、測定器本体を湿度可変チャンバーに収納した状態にて測定を行っている(特許文献1の[0018]欄参照)。これにより、測定空気の湿度を連続的あるいは断片的に変化させながら表面抵抗率の測定を行うことができるので、表面抵抗率と湿度との関係を容易に把握できるとしている。 The following Patent Document 1 discloses an invention relating to a method for evaluating substrate surface contamination. Specifically, as shown in FIG. 2 of Patent Document 1, a measuring instrument main body having a plurality of electrodes is provided, and the electrodes are brought into contact with the substrate to be evaluated to measure the surface resistivity. At this time, the measurement is performed with the measuring instrument main body housed in the humidity variable chamber (see the [0018] column of Patent Document 1). As a result, the surface resistivity can be measured while continuously or fragmentarily changing the humidity of the measured air, so that the relationship between the surface resistivity and the humidity can be easily grasped.

また特許文献2には、受配電機器の余寿命診断方法に関する発明が記載されている。特許文献2には、受配電機器が備える診断対象の絶縁体と同じか同等の材質からなるセンサ絶縁体を予め受配電機器に設けておく(特許文献2の[0015]欄参照)。そして、受配電機器の使用開始と同時にセンサ絶縁体の使用を開始し、センサ絶縁体の表面における表面抵抗率とその表面付近における湿度とを逐次測定する。更に湿度と表面抵抗率との関係から使用年数と表面抵抗率との関係を導き出してデータベース化し、使用年数(余寿命)はセンサ絶縁体と受配電機器とで実質的に同じであると推測している(特許文献2の[0021]欄〜[0028]欄参照)。 Further, Patent Document 2 describes an invention relating to a method for diagnosing the remaining life of a power receiving and distributing device. In Patent Document 2, a sensor insulator made of the same or the same material as the insulator to be diagnosed provided in the power receiving and distribution device is provided in advance in the power receiving and distributing device (see [0015] column of Patent Document 2). Then, at the same time as the start of use of the power receiving and distribution device, the use of the sensor insulator is started, and the surface resistivity on the surface of the sensor insulator and the humidity in the vicinity of the surface are sequentially measured. Furthermore, the relationship between the number of years of use and the surface resistivity is derived from the relationship between humidity and surface resistivity and created into a database, and it is estimated that the number of years of use (remaining life) is substantially the same for sensor insulators and power receiving and distribution equipment. (See columns [0021] to [0028] of Patent Document 2).

特開2011−149771号公報Japanese Unexamined Patent Publication No. 2011-149771 特開2009−8427号公報JP-A-2009-8427

しかしながら特許文献1に記載された発明では、湿度可変チャンバーは測定対象の基板表面から浮いた状態にあり、基板表面を高湿度状態に安定保持することができない。また表面抵抗率を測定する測定器本体ごと湿度可変チャンバー内に収納するため、測定器本体自体が湿度の高い状態に曝されてしまい、測定器本体の劣化を招きやすい。また特許文献1の構成では、湿度可変チャンバー内で高電圧を発生させて表面抵抗率を測定することが課題とされる。 However, in the invention described in Patent Document 1, the humidity variable chamber is in a state of floating from the surface of the substrate to be measured, and the surface of the substrate cannot be stably maintained in a high humidity state. Further, since the measuring instrument body for measuring the surface resistivity is housed in the humidity variable chamber, the measuring instrument body itself is exposed to a high humidity state, which tends to cause deterioration of the measuring instrument body. Further, in the configuration of Patent Document 1, it is an object to measure the surface resistivity by generating a high voltage in the humidity variable chamber.

また特許文献1に記載された発明では、平板な基板上の絶縁表面を測定対象としており、例えば、配電盤に取付けられた絶縁がいしのように円筒形状絶縁物を測定対象とはしていない。そして特許文献1に示す構成では、平面ではない、曲面状の絶縁表面の絶縁特性を適切に測定することが出来ない。 Further, in the invention described in Patent Document 1, the insulating surface on the flat substrate is the measurement target, and the cylindrical insulator such as the insulator attached to the power distribution board is not the measurement target. With the configuration shown in Patent Document 1, the insulation characteristics of a curved insulating surface that is not a flat surface cannot be appropriately measured.

特許文献2では、センサ絶縁体により測定されたデータベースに基づいて受配電機器の余寿命を推定評価するものであり高い信頼性を得ることができない。すなわち、本来評価したい受配電機器の絶縁表面と、センサ絶縁体とでは、電圧印加状態等、使用環境が一致せず、劣化進展度も当然に異なる。したがって、特許文献2のように、受配電機器とは別のセンサ絶縁体の診断結果に基づいて高精度に絶縁表面の表面抵抗率を推測することは困難である。また特許文献2においても、特許文献1と同様に測定環境を高湿度に保持する構成、及び、円筒形状絶縁物を測定対象とする構成について開示がなされていない。 In Patent Document 2, the remaining life of the power receiving and distribution device is estimated and evaluated based on the database measured by the sensor insulator, and high reliability cannot be obtained. That is, the insulating surface of the power receiving and distributing device to be evaluated originally and the sensor insulator do not match the usage environment such as the voltage application state, and the degree of deterioration progress is naturally different. Therefore, as in Patent Document 2, it is difficult to estimate the surface resistivity of the insulating surface with high accuracy based on the diagnosis result of the sensor insulator different from the power receiving and distributing device. Further, Patent Document 2 does not disclose a configuration for maintaining the measurement environment at high humidity and a configuration for measuring a cylindrical insulator as in Patent Document 1.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、測定対象を円筒形状絶縁物とし、外部環境に依らずに前記円筒形状絶縁物に対して高湿度状態での絶縁特性を測定可能な絶縁特性測定装置を提供し、更には、それを用いた絶縁特性の測定方法、及び余寿命診断方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to use a cylindrical insulator as a measurement target and to measure the cylindrical insulator in a high humidity state regardless of the external environment. It is an object of the present invention to provide an insulation characteristic measuring device capable of measuring the insulation characteristics of the above, and further to provide a method for measuring the insulation characteristics using the apparatus and a method for diagnosing the remaining life.

本発明は、円筒形状絶縁物の絶縁特性を測定するための絶縁特性測定装置であって、前記円筒形状絶縁物の側面上に間隔を空けて配置される複数の電極と、前記複数の電極を覆い外部と隔絶された密閉空間を形成可能な密閉部材と、前記密閉空間を一定の湿度に保つことが可能な湿度調整手段と、前記複数の電極間に電圧を印加して前記円筒形状絶縁物の絶縁特性を測定するための測定手段を前記電極に接続する接続部と、を有し、前記密閉部材は軟質素材で形成されており、前記密閉空間は、前記円筒形状絶縁物の少なくとも2ヶ所の円周上で前記密閉部材が締め付けられ、前記複数の電極を内部に含包するように形成されることを特徴とする。 The present invention is an insulation characteristic measuring device for measuring the insulation characteristics of a cylindrical insulator, wherein a plurality of electrodes arranged at intervals on the side surface of the cylindrical insulator and the plurality of electrodes are provided. A sealing member capable of forming a sealed space isolated from the outside of the cover, a humidity adjusting means capable of maintaining the sealed space at a constant humidity, and a cylindrical insulator by applying a voltage between the plurality of electrodes. the measuring means for measuring the insulation characteristics have a, a connecting portion connected to the electrode, the sealing member is made of a soft material, wherein the enclosed space, at least two positions of the cylindrical insulator The sealing member is tightened on the circumference of the above-mentioned structure, and is formed so as to include the plurality of electrodes inside .

本発明では、前記複数の電極はそれぞれ、前記円筒形状絶縁物の異なる円周上に配置されることが好ましい。 In the present invention, it is preferable that the plurality of electrodes are arranged on different circumferences of the cylindrical insulator.

また本発明では、前記複数の電極のうち少なくとも1つは、前記円筒形状絶縁物の同一円周上において2点以上で接触することが好ましい。 Further, in the present invention, it is preferable that at least one of the plurality of electrodes is in contact with two or more points on the same circumference of the cylindrical insulator.

また本発明では、前記複数の電極のうち少なくとも1つは、前記円筒形状絶縁物の同一円周上において半周以上にわたって設けられることが好ましい。 Further, in the present invention, it is preferable that at least one of the plurality of electrodes is provided over half a circumference or more on the same circumference of the cylindrical insulator.

また本発明では、前記円筒形状絶縁物の側面と前記密閉部材との間に介在し前記密閉空間を保つためのスペーサを備えることが好ましい。 Further, in the present invention, it is preferable to provide a spacer that is interposed between the side surface of the cylindrical insulator and the sealing member to maintain the sealing space.

また本発明では、前記スペーサには、前記接続部、前記湿度調整手段と前記密閉空間との間で空気を循環させるための流路部のうち少なくとも1つが挿通されていることが好ましい。 Further, in the present invention, it is preferable that at least one of the connection portion, the flow path portion for circulating air between the humidity adjusting means and the closed space is inserted into the spacer.

また本発明では、前記複数の電極が前記密閉空間の内部と外部とを電気的に接続する複数の前記接続部にそれぞれ接続され、前記複数の接続部のうち少なくとも2つは、互いに、前記円筒形状絶縁物を介して反対側に配置されることが好ましい。 Further, in the present invention, the plurality of electrodes are connected to each of the plurality of connection portions that electrically connect the inside and the outside of the enclosed space, and at least two of the plurality of connection portions are connected to each other and the cylinder. It is preferably placed on the opposite side via a shape insulator.

また本発明では、前記複数の接続部のうち少なくとも2つは、前記電極との対向位置から前記接続部間の距離が遠ざかる方向に配置されていることが好ましい。 Further, in the present invention, it is preferable that at least two of the plurality of connecting portions are arranged in a direction in which the distance between the connecting portions is far from the position facing the electrodes.

また本発明は、上記に記載の絶縁特性測定装置を用いて、円筒形状絶縁物に対して絶縁特性を測定するための方法であって、前記円筒形状絶縁物の側面に密閉空間を形成し、前記密閉空間内を一定の湿度に調整し、前記密閉空間内で前記円筒形状絶縁物側面上に電圧を印加して絶縁特性を測定することを特徴とする。




Further, the present invention is a method for measuring the insulation characteristics of a cylindrical insulator by using the insulation characteristic measuring device described above , wherein a closed space is formed on the side surface of the cylindrical insulator. It is characterized in that the inside of the closed space is adjusted to a constant humidity, and a voltage is applied on the side surface of the cylindrical insulator in the closed space to measure the insulation characteristics.




また本発明における余寿命診断方法は、上記に記載された絶縁特性の測定により、前記円筒形状絶縁物の余寿命を診断することを特徴とする。 Further, the remaining life diagnosis method in the present invention is characterized in that the remaining life of the cylindrical insulator is diagnosed by measuring the insulation characteristics described above.

また本発明では、前記円筒形状絶縁物の側面の清掃前後の絶縁特性を測定するステップと、前記清掃により回復可能な可逆的劣化成分及び前記清掃により回復不可能な不可逆的劣化成分を評価するステップと、前記可逆的劣化成分及び前記不可逆的劣化成分の評価結果に基づいて前記清掃の効果を考慮した余寿命を診断するステップとを含むことが好ましい。
Further, in the present invention, a step of measuring the insulation characteristics before and after cleaning the side surface of the cylindrical insulator, and a step of evaluating a reversible deterioration component that can be recovered by the cleaning and an irreversible deterioration component that cannot be recovered by the cleaning. It is preferable to include a step of diagnosing the remaining life in consideration of the effect of cleaning based on the evaluation results of the reversible deterioration component and the irreversible deterioration component .

本発明によれば、円筒形状絶縁物に対し、外部環境によらず、任意の湿度に保ったうえで絶縁特性の測定が可能となる。また本発明では、絶縁物が現地に取付けられた状態でも、円筒形状絶縁物の側面に対し適切に絶縁特性の測定を行うことが可能である。 According to the present invention, it is possible to measure the insulating characteristics of a cylindrical insulating material while maintaining an arbitrary humidity regardless of the external environment. Further, in the present invention, it is possible to appropriately measure the insulation characteristics of the side surface of the cylindrical insulation even when the insulation is attached to the site.

本発明の第1の実施の形態の絶縁特性測定装置の模式図(縦断面図)を示し、且つ絶縁特性測定方法の説明図である。It is the schematic (longitudinal sectional view) of the insulation characteristic measuring apparatus of 1st Embodiment of this invention, and is explanatory drawing of the insulation characteristic measuring method. 本実施の形態のリング状電極を示す模式図である。It is a schematic diagram which shows the ring-shaped electrode of this embodiment. 本実施の形態の密閉容器に測定対象としての絶縁がいしを収納した状態を示す模式図(斜視図)である。It is a schematic diagram (perspective view) which shows the state which the insulation insulator as a measurement target is stored in the closed container of this embodiment. 本発明の第2の実施の形態の絶縁特性測定装置の模式図(図5に示すB−B線に沿って切断し矢印方向から見た縦断面図)である。It is a schematic diagram of the insulation characteristic measuring apparatus of the 2nd Embodiment of this invention (vertical sectional view cut along the line BB shown in FIG. 5 and seen from the direction of an arrow). 本発明の第2の実施の形態の絶縁特性測定装置の模式図(図4に示すA−A線に沿って切断し矢印方向から見た横断面図)である。It is a schematic view (cross-sectional view which cut along the line AA shown in FIG. 4 and seen from the direction of an arrow) of the insulation characteristic measuring apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の絶縁特性測定装置の模式図(図7に示すD−D線に沿って切断し矢印方向から見た縦断面図)である。It is a schematic diagram of the insulation characteristic measuring apparatus of the 3rd Embodiment of this invention (vertical sectional view cut along the line DD shown in FIG. 7 and seen from the direction of an arrow). 本発明の第3の実施の形態の絶縁特性測定装置の模式図(図6に示すC−C線に沿って切断し矢印方向から見た横断面図)である。It is a schematic view (cross-sectional view which cut along the CC line shown in FIG. 6 and seen from the arrow direction) of the insulation characteristic measuring apparatus of 3rd Embodiment of this invention. 本発明の余寿命診断方法を説明するための余寿命診断グラフの概念図である。It is a conceptual diagram of the remaining life diagnosis graph for demonstrating the remaining life diagnosis method of this invention. 本発明の余寿命診断方法の具体的な一例を挙げて説明するための余寿命診断グラフである。It is a residual life diagnosis graph for demonstrating a specific example of the residual life diagnosis method of this invention.

以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。 Hereinafter, one embodiment of the present invention (hereinafter, abbreviated as “embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

本発明における絶縁特性の測定対象は、例えば、高圧受配電機器を構成する、円筒形状絶縁物の絶縁がいしである。高圧受配電機器は、高電圧構造物を一定サイズの盤に格納した装置である。配電盤内部の電位差が大きい箇所は、離隔距離を大きくしたり、絶縁物を挟むなどして、所定の絶縁強度を確保している。この高電圧物構造物の保持や防壁に用いられるのが、ポリエステル樹脂やエポキシ樹脂などの固体絶縁物である。これらの絶縁物は経年使用により絶縁性能が劣化すると最終的には絶縁破壊に至る。一旦、絶縁破壊が発生すると、高圧受配電機器の復旧に時間と費用が掛かり、社会的にも莫大な損失が発生する。 The object of measuring the insulation characteristics in the present invention is, for example, an insulator of a cylindrical insulator constituting a high-voltage power receiving and distribution device. A high-voltage power receiving and distributing device is a device in which a high-voltage structure is stored in a panel of a certain size. In places where the potential difference is large inside the switchboard, a predetermined dielectric strength is ensured by increasing the separation distance or sandwiching an insulator. Solid insulating materials such as polyester resin and epoxy resin are used for holding and barriering the high-voltage structure. If the insulation performance of these insulators deteriorates due to long-term use, the insulation will eventually break down. Once dielectric breakdown occurs, it takes time and money to restore high-voltage power receiving and distribution equipment, and enormous social loss occurs.

固体絶縁物は、絶縁物内部を貫通破壊するバルク絶縁性能が非常に高く、絶縁表面を沿面破壊する沿面絶縁性能が問題とされる。 Solid insulation has a very high bulk insulation performance that penetrates and breaks inside the insulator, and creepage insulation performance that breaks the insulating surface in a creeping manner is a problem.

ここで従来において、絶縁表面の表面抵抗率を測定して絶縁表面の汚染状況を、測定結果に基づいて評価することは知られていたが(特許文献1)、絶縁劣化進展過程には環境条件(特に湿度)が大きく影響する。このため、測定時の環境では絶縁異常がなくてもその後、高湿度条件下に曝されることで、劣化が進展する危険性があった。 Here, conventionally, it has been known to measure the surface resistivity of the insulating surface and evaluate the contamination state of the insulating surface based on the measurement result (Patent Document 1), but environmental conditions are involved in the process of progressing insulation deterioration. (Especially humidity) has a great effect. Therefore, even if there is no insulation abnormality in the environment at the time of measurement, there is a risk that deterioration will progress due to subsequent exposure to high humidity conditions.

また従来では、湿度に関係のない因子(例えばイオン量や色差)を測定して、絶縁物劣化サンプルのデータベースと統計学的処理により高湿度状態での絶縁特性を推定する手法も知られていた。しかしながらあくまでも絶縁特性の推定にすぎず、推定精度を物理的には保証できない。 In addition, conventionally, a method of measuring factors unrelated to humidity (for example, the amount of ions and color difference) and estimating the insulation characteristics in a high humidity state by a database of insulation deterioration samples and statistical processing has been known. .. However, this is merely an estimation of the insulation characteristics, and the estimation accuracy cannot be physically guaranteed.

また円筒形状絶縁物の絶縁がいしに対しては、側面以外の箇所では金属部が露出している等、適切に絶縁特性を測定することが困難である。このように構造上、円筒形状絶縁物の絶縁がいしに対しては、側面にて絶縁特性の測定を行うことが必要とされる。 Further, it is difficult to appropriately measure the insulation characteristics of the insulating insulator of the cylindrical insulator because the metal portion is exposed at a place other than the side surface. As described above, structurally, it is necessary to measure the insulation characteristics on the side surface of the insulator of the cylindrical insulator.

そこで本発明者は、円筒形状絶縁物に対して、高湿度下で絶縁特性を測定できる絶縁特性測定装置を構築するに至った。すなわち、本実施の形態における第1の目的は、外部環境によらずに測定対象としての円筒形状絶縁物の絶縁特性を高湿度状態にて直接測定可能な絶縁特性測定装置及び絶縁特性の測定方法を提供する点にある。 Therefore, the present inventor has constructed an insulation characteristic measuring device capable of measuring the insulation characteristics of a cylindrical insulator under high humidity. That is, the first object of the present embodiment is an insulation characteristic measuring device capable of directly measuring the insulation characteristics of a cylindrical insulator as a measurement target in a high humidity state regardless of the external environment, and a method for measuring the insulation characteristics. Is in the point of providing.

図1は、本発明の第1の実施の形態の絶縁特性測定装置の模式図(縦断面図)を示し、且つ絶縁特性測定方法の説明図である。 FIG. 1 shows a schematic view (longitudinal cross-sectional view) of the insulation characteristic measuring apparatus according to the first embodiment of the present invention, and is an explanatory diagram of an insulation characteristic measuring method.

図1に示すX方向、Y方向及びZ方向は互いに直交する方向を示し、Z方向は高さ方向、X方向及びY方向は、水平面を構成する2方向である。図1は、本実施の形態の絶縁特性測定装置及び絶縁がいしを、X−Z面に沿って切断した縦断面として示されている。 The X, Y, and Z directions shown in FIG. 1 indicate directions orthogonal to each other, the Z direction is the height direction, and the X and Y directions are two directions forming a horizontal plane. FIG. 1 shows a vertical cross section of the insulation characteristic measuring device and the insulator of the present embodiment cut along the XX plane.

図1に示す絶縁特性測定装置1は、密閉容器2と、複数のリング状電極3、4と、湿度調整手段5と、接続部6、7と、を有して構成される。ここで、絶縁特性を測定するための測定手段(絶縁測定器)8としては、例えば既存の測定器を用いて接続部6、7に後から接続したり測定手段8を変えたりすることができる。したがって絶縁測定器8は、絶縁特性を測定するために必要な構成であるが、少なくとも絶縁測定器8に対する接続部6、7を備える構成(測定手段を含まない)を絶縁特性測定装置1の最小単位とし、絶縁測定器8は付加的構成要件とした。 The insulation characteristic measuring device 1 shown in FIG. 1 includes a closed container 2, a plurality of ring-shaped electrodes 3 and 4, a humidity adjusting means 5, and connecting portions 6 and 7. Here, as the measuring means (insulation measuring instrument) 8 for measuring the insulation characteristics, for example, an existing measuring instrument can be used to connect to the connecting portions 6 and 7 later, or the measuring means 8 can be changed. .. Therefore, the insulation measuring instrument 8 has a configuration necessary for measuring the insulation characteristics, but at least a configuration (not including the measuring means) including the connection portions 6 and 7 to the insulation measuring instrument 8 is the minimum of the insulation characteristic measuring device 1. The unit was set, and the insulation measuring instrument 8 was set as an additional constituent requirement.

図1に示すように測定対象である円筒形状絶縁物の絶縁がいし10は、金属部11と絶縁性の樹脂部12とを有して構成される。絶縁がいし10の、X方向及びY方向からなる水平面方向と略平行な上面10a及び下面10bには、その中央に金属部11の一部が現れている。一方、絶縁がいし10の側面10cは、樹脂部12が露出している。また、本実施の形態における「円筒形状絶縁物」は、その側面にひだ部等の凸部を備えるが、本実施の形態においては側面の曲面形状を特に限定するものでなく、図1や図3に示す絶縁がいし形状のみならず、それ以外の絶縁がいし形状も「円筒形状」に含まれ、ひだ部などの凸部においては、全ての表面を「側面」として記載する。 As shown in FIG. 1, the insulator 10 of the cylindrical insulator to be measured includes a metal portion 11 and an insulating resin portion 12. A part of the metal portion 11 appears in the center of the upper surface 10a and the lower surface 10b of the insulating insulator 10 which are substantially parallel to the horizontal plane direction consisting of the X direction and the Y direction. On the other hand, the resin portion 12 is exposed on the side surface 10c of the insulating insulator 10. Further, the "cylindrical insulator" in the present embodiment is provided with a convex portion such as a fold portion on the side surface thereof, but the curved surface shape of the side surface is not particularly limited in the present embodiment, and FIGS. Not only the insulating insulator shape shown in 3 but also other insulating insulator shapes are included in the "cylindrical shape", and in the convex portion such as the fold portion, all the surfaces are described as "side surfaces".

図1に示すように、側面10cには、円周方向に沿って形成され、高さ方向(Z方向)に間隔を空けて形成された複数の凸部13が形成されている。したがって複数の凸部13の間は凹部15となっている。凸部13は、上面10aと及び下面10bから連続して形成され、側面10cの上下両側に配置される台座部13aと、各台座部13aの間に位置する複数のひだ部13bと、を備えて構成されている。 As shown in FIG. 1, a plurality of convex portions 13 formed along the circumferential direction and formed at intervals in the height direction (Z direction) are formed on the side surface 10c. Therefore, there is a concave portion 15 between the plurality of convex portions 13. The convex portion 13 includes a pedestal portion 13a formed continuously from the upper surface 10a and the lower surface 10b and arranged on both upper and lower sides of the side surface 10c, and a plurality of fold portions 13b located between the pedestal portions 13a. It is composed of.

なお、台座部13aとひだ部13bの各突出長さ(図1の縦断面におけるX方向への長さ)は同じであっても異なっていてもよい。また各凹部15の深さは同じであっても異なっていてもよい。また図1に示すように、台座部13aのほうがひだ部13bよりもZ方向への厚みが厚く形成されている。またひだ部13bは先細り形状とされているが特に形状を限定するものではない。 The protruding lengths of the pedestal portion 13a and the fold portions 13b (the lengths in the X direction in the vertical cross section of FIG. 1) may be the same or different. Further, the depth of each recess 15 may be the same or different. Further, as shown in FIG. 1, the pedestal portion 13a is formed to be thicker in the Z direction than the fold portion 13b. The fold portion 13b has a tapered shape, but the shape is not particularly limited.

図1に示すように、各リング状電極3、4は、夫々、異なるひだ部13bの円周上に接して取り付けられ固定されている。各リング状電極3、4は、導電材料であれば特に材質を限定するものでないが、高湿度状態におかれるため、錆びにくい材質であることが好適である。 As shown in FIG. 1, the ring-shaped electrodes 3 and 4 are attached and fixed in contact with each other on the circumference of different folds 13b. The ring-shaped electrodes 3 and 4 are not particularly limited as long as they are conductive materials, but they are preferably made of a material that does not easily rust because they are placed in a high humidity state.

リング状電極3、4は、例えば、図2Aに示すようにクランプ型電極とすることができる。図2Aでは、リング状電極3、4は2つの半リング部14、15に分割されている。各半リング部14、15は各後端部14a、15aの位置で接続され、後端部14a、15aを中心として、各半リング部14、15の先端部14b、15bが近付いたり遠ざかる方向に回動可能に支持されている。また、各半リング部14、15の先端部14b、15bには留め具17が設けられており、留め具17にて各半リング部14、15の先端部14b、15b間を留めることで、各リング状電極3、4を、ひだ部13bの先端円周上に取付けることができる。図2Aに示すクランプ型のリング状電極3、4ではひだ部13bへの取付けを容易に行うことができるが、各リング状電極3、4の径は一定であるため、ひだ部13bの径に応じて専用のリング状電極3、4を必要とする。また、リング状電極3、4をそれぞれ弾性や伸縮性を持つ部材で作製した場合、同一円周上の2点以上で接触していれば、円周上に固定することができる。なお本実施の形態においては、リング状電極3、4の少なくともいずれか一方を、弾性や伸縮性を持つ部材で作製することが出来る。 The ring-shaped electrodes 3 and 4 can be, for example, clamp-type electrodes as shown in FIG. 2A. In FIG. 2A, the ring-shaped electrodes 3 and 4 are divided into two half ring portions 14 and 15. The half ring portions 14 and 15 are connected at the positions of the rear end portions 14a and 15a, and the front end portions 14b and 15b of the half ring portions 14 and 15 are approached or moved away from each other with the rear end portions 14a and 15a as the center. It is rotatably supported. Further, fasteners 17 are provided at the tips 14b and 15b of the half ring portions 14 and 15, and the fasteners 17 fasten between the tips 14b and 15b of the half ring portions 14 and 15. The ring-shaped electrodes 3 and 4 can be mounted on the circumference of the tip of the fold portion 13b. The clamp-type ring-shaped electrodes 3 and 4 shown in FIG. 2A can be easily attached to the folds 13b, but since the diameters of the ring-shaped electrodes 3 and 4 are constant, the diameter of the folds 13b can be adjusted. Dedicated ring-shaped electrodes 3 and 4 are required accordingly. Further, when the ring-shaped electrodes 3 and 4 are made of elastic or stretchable members, they can be fixed on the circumference as long as they are in contact with each other at two or more points on the same circumference. In the present embodiment, at least one of the ring-shaped electrodes 3 and 4 can be made of a member having elasticity or elasticity.

一方、図2Bに示すリング状電極3、4は、短冊状電極18と結束部19とを備える。そして、短冊状電極18の先端を結束部19に通し、その際、通す長さによってリング状電極3、4の円周長さを調整することができる。これにより図2Bに示す結束バンド型のリング状電極3、4であれば、ひだ部13bの径が変わってもリング状電極3、4を適切にひだ部13bの先端円周上に取り付けることができる。 On the other hand, the ring-shaped electrodes 3 and 4 shown in FIG. 2B include a strip-shaped electrode 18 and a binding portion 19. Then, the tip of the strip-shaped electrode 18 is passed through the binding portion 19, and at that time, the circumferential length of the ring-shaped electrodes 3 and 4 can be adjusted by the passing length. As a result, in the case of the binding band type ring-shaped electrodes 3 and 4 shown in FIG. 2B, the ring-shaped electrodes 3 and 4 can be appropriately attached on the circumference of the tip of the fold portion 13b even if the diameter of the fold portion 13b changes. it can.

また図示しないが、リング状電極3、4としては上記に代えて、金属テープを用いてもよい。金属テープも、ひだ部13bの先端円周長さに合わせて、長さを調整できるので、ひだ部13bの径が変わっても適切にひだ部13bの先端円周上に取り付けることができる。 Although not shown, metal tape may be used as the ring-shaped electrodes 3 and 4 instead of the above. Since the length of the metal tape can be adjusted according to the circumference of the tip of the fold 13b, it can be appropriately attached on the circumference of the tip of the fold 13b even if the diameter of the fold 13b changes.

図2に示すリング状電極3、4は、側面10cの絶縁特性を高精度に測定するためには、ひだ部13bの先端全周にわたって配置された構成であることが最も望ましいが、一部分が欠けた形状であってもほぼ同等の測定結果を得ることができる。ただし、内周への締付力を付加するために、リング状電極3、4のうち少なくとも1つは円周上の半周以上の長さであることが好ましい。 It is most desirable that the ring-shaped electrodes 3 and 4 shown in FIG. 2 are arranged over the entire circumference of the tip of the fold portion 13b in order to measure the insulation characteristics of the side surface 10c with high accuracy, but a part thereof is missing. Almost the same measurement result can be obtained even if the shape is different. However, in order to apply a tightening force to the inner circumference, it is preferable that at least one of the ring-shaped electrodes 3 and 4 has a length of half a circumference or more on the circumference.

図1に示すように各リング状電極3、4は、導体部28、29を介して各接続部6、7に電気的に接続されている。導体部28、29は導線とその周囲を絶縁被膜で覆ったケーブルである。 As shown in FIG. 1, the ring-shaped electrodes 3 and 4 are electrically connected to the connecting portions 6 and 7 via the conductor portions 28 and 29. The conductor portions 28 and 29 are cables in which the conducting wire and its periphery are covered with an insulating coating.

密閉容器2は、各リング状電極3、4上を非接触にて覆い、側面10cとの間で密閉空間9を形成している。 The closed container 2 covers each of the ring-shaped electrodes 3 and 4 in a non-contact manner, and forms a closed space 9 with the side surface 10c.

図1に示すように、密閉容器2の上下縁部2aは、封止材20を介して台座部13aの表面に当接し固定されている。このように、密閉容器2は、絶縁がいし10の外周曲面上に取り付けられ、上面10a及び下面10bに位置する金属部11には接触していない。封止材20は、密閉容器2内の密閉空間9から外部に空気が漏れ出ない構成及び材質であれば特に限定を加えるものではない。封止材20には例えばゴム等の弾性体を例示することができる。なお封止材20が無くても、密閉容器2を側面10c上に被せることで、外部と隔絶された密閉空間9を形成できる構成であれば、封止材20は設けられていなくてもよい。また、リング状電極3、4やひだ部13bに触れることなく密閉空間9を形成することができれば、密閉容器2の外観形状を特に限定するものではないが、図3に示すように、密閉容器2は、円筒形状であることが好適である。また密閉容器2を高さ方向(Z方向)に伸縮可能な蛇腹形状とすることもできる。これにより、絶縁がいし10の高さ方向の長さに合わせて密閉容器2を伸縮させることで、絶縁がいし10の側面10cとの間に適切に、外部と隔絶された密閉空間9を形成することができる。 As shown in FIG. 1, the upper and lower edge portions 2a of the closed container 2 are in contact with and fixed to the surface of the pedestal portion 13a via the sealing material 20. As described above, the closed container 2 is mounted on the outer peripheral curved surface of the insulating insulator 10 and does not come into contact with the metal portions 11 located on the upper surface 10a and the lower surface 10b. The sealing material 20 is not particularly limited as long as it has a structure and a material in which air does not leak to the outside from the closed space 9 in the closed container 2. An elastic body such as rubber can be exemplified as the sealing material 20. Even if the sealing material 20 is not provided, the sealing material 20 may not be provided as long as the sealed space 9 isolated from the outside can be formed by covering the side surface 10c with the sealed container 2. .. Further, if the closed space 9 can be formed without touching the ring-shaped electrodes 3 and 4 and the folds 13b, the appearance shape of the closed container 2 is not particularly limited, but as shown in FIG. 3, the closed container It is preferable that No. 2 has a cylindrical shape. Further, the closed container 2 may have a bellows shape that can be expanded and contracted in the height direction (Z direction). As a result, the closed container 2 is expanded and contracted according to the length of the insulating insulator 10 in the height direction, so that a closed space 9 appropriately isolated from the outside is formed between the insulated insulator 10 and the side surface 10c. Can be done.

ただし密閉空間9については、外気との間で空気の通過を一切許さない厳密な状態を意味するものでなく、多少の隙間が生じていても、密閉空間9を外気に対して高湿度に保つことができればよい。 However, the closed space 9 does not mean a strict state in which air does not allow passage to the outside air at all, and the closed space 9 is kept at a high humidity with respect to the outside air even if there is a slight gap. I wish I could.

図3に示す密閉容器2は、上下両側(Z方向の両側)に夫々、絶縁がいし10の台座部13aの円周に沿った開口2bを備え、上下開口2b間を高さ方向(Z方向)に分断した複数のパーツ22、23で構成される。そして、複数のパーツ22、23を絶縁がいし10の円周曲面状の側面10cと対向する横方向(Z方向に直交する方向)から組み合わせることで、側面10cとの間に密閉空間9を形成することができる。このように、絶縁がいし10の側面10cと対向する横方向から複数のパーツ22、23を組み合わせることで、絶縁がいし10の金属部11に触れることなく、密閉容器2を絶縁がいし10に取付けることが出来る。 The closed container 2 shown in FIG. 3 is provided with openings 2b along the circumference of the pedestal portion 13a of the insulating insulator 10 on both the upper and lower sides (both sides in the Z direction), and the space between the upper and lower openings 2b is in the height direction (Z direction). It is composed of a plurality of parts 22 and 23 divided into two parts. Then, by combining the plurality of parts 22 and 23 from the lateral direction (direction orthogonal to the Z direction) facing the circumferential curved side surface 10c of the insulating insulator 10, a closed space 9 is formed between the insulating insulator 10 and the side surface 10c. be able to. In this way, by combining the plurality of parts 22 and 23 from the lateral direction facing the side surface 10c of the insulating insulator 10, the airtight container 2 can be attached to the insulating insulator 10 without touching the metal portion 11 of the insulating insulator 10. You can.

密閉容器2は、樹脂材(ポリプロピレン、ポリアセタール、シリコンなど)、ガラス材、ステンレス鋼などで形成されるが、特に材質を限定するものではない。ただし容器2は、高湿度状態に曝されても錆びにくい等、劣化しにくい絶縁材料であることが好適である。 The closed container 2 is made of a resin material (polypropylene, polyacetal, silicon, etc.), a glass material, stainless steel, or the like, but the material is not particularly limited. However, it is preferable that the container 2 is an insulating material that does not easily deteriorate even when exposed to a high humidity state, such as being resistant to rust.

図1に示すように、湿度調整手段5は、加湿装置23と、加湿装置23からの加湿空気を密閉容器2の密閉空間9へ流入させる流入流路としてのエアーチューブ24と、加湿空気を密閉容器2の密閉空間9から加湿装置23へ流出させる流出流路としてのエアーチューブ25と、を有して構成される。流路としては、エアーチューブやエアーダクトといった空気を通すことができる管状のものであれば材質や太さ、管形状等を限定するものでない。 As shown in FIG. 1, the humidity adjusting means 5 seals the humidifying device 23, the air tube 24 as an inflow flow path for flowing the humidified air from the humidifying device 23 into the closed space 9 of the closed container 2, and the humidified air. It is configured to have an air tube 25 as an outflow flow path for flowing out from the closed space 9 of the container 2 to the humidifying device 23. The flow path is not limited to the material, thickness, tube shape, etc. as long as it is a tubular one such as an air tube or an air duct through which air can pass.

湿度調整手段5は、密閉空間9を一定の湿度に保つためのものである。一般的には密閉空間9を密閉容器2の外気よりも高い湿度に保つために用いられるが、密閉容器2の外気の湿度が100%近いなど結露が発生する恐れがある場合などには、結露が発生しない範囲の一定の高湿度で安定させることが可能である。ここで「一定」とは、厳密な一定を指すものでなく、測定誤差等を含む概念である。 The humidity adjusting means 5 is for keeping the closed space 9 at a constant humidity. Generally, it is used to keep the humidity of the closed space 9 higher than the outside air of the closed container 2, but when there is a risk of dew condensation occurring such as when the humidity of the outside air of the closed container 2 is close to 100%, dew condensation occurs. It is possible to stabilize at a constant high humidity within the range where Here, "constant" does not mean a strict constant, but is a concept including measurement error and the like.

図1に示す加湿装置23は、溶液槽27内に所定の平衡湿度を有する飽和塩溶液26を収納した構成であることが好ましい。飽和塩溶液26の種類及び溶液槽27内の温度と平衡にある空気の相対湿度との関係は、JIS B7920:2000で定められているので、飽和塩溶液26の種類及び温度を規定することで、高湿度の定湿空気を加湿装置23にて生成でき、加湿装置23から密閉容器2の密閉空間9に定湿空気を送りこむことができる。飽和塩溶液26には、例えば、硫酸カリウム、塩化カリウム、臭化ナトリウム、炭酸カリウム及び塩化マグネシウムを選択し、また溶液槽27内の温度には10℃、20℃、30℃及び40℃を選択し、これらの組み合わせで、31%程度から99%程度までの一定の湿度を生成することが可能である。このような飽和塩溶液26を用いた場合には、数分間、加湿装置23と密閉容器2の間を、エアーチューブ24、25を介して加湿空気を循環させて、湿度が一定になってから絶縁特性の測定を行う。なお飽和塩溶液26を用いた飽和塩法では、定湿空気を生成できるので、湿度計を設けることが必要ではない。 The humidifying device 23 shown in FIG. 1 preferably has a configuration in which a saturated salt solution 26 having a predetermined equilibrium humidity is housed in the solution tank 27. The relationship between the type of saturated salt solution 26 and the temperature in the solution tank 27 and the relative humidity of the air in equilibrium is defined in JIS B7920: 2000. Therefore, by specifying the type and temperature of the saturated salt solution 26, , High humidity constant humidity air can be generated by the humidifying device 23, and constant humidity air can be sent from the humidifying device 23 to the closed space 9 of the closed container 2. For the saturated salt solution 26, for example, potassium sulfate, potassium chloride, sodium bromide, potassium carbonate and magnesium chloride are selected, and for the temperature in the solution tank 27, 10 ° C, 20 ° C, 30 ° C and 40 ° C are selected. However, with these combinations, it is possible to generate a constant humidity of about 31% to about 99%. When such a saturated salt solution 26 is used, the humidified air is circulated between the humidifying device 23 and the closed container 2 via the air tubes 24 and 25 for several minutes until the humidity becomes constant. Measure the insulation characteristics. In the saturated salt method using the saturated salt solution 26, constant humidity air can be generated, so that it is not necessary to provide a hygrometer.

なお図1に示すように加湿装置23に飽和塩溶液26を用いた構成では、飽和塩溶液26がエアーチューブ24を伝って密閉容器2の密閉空間9へ流れ出ないように構成することが必要である。 As shown in FIG. 1, in the configuration in which the saturated salt solution 26 is used for the humidifying device 23, it is necessary to configure the saturated salt solution 26 so as not to flow out to the closed space 9 of the closed container 2 through the air tube 24. is there.

あるいは、エアーチューブ24、25の夫々に、湿度センサ(湿度計)(図示しない)を取り付けることもできる。そして加湿装置23にて生成された加湿空気を、エアーチューブ24、25を介して流入、流出させ、各湿度センサが一定の湿度となったら、密閉空間9の湿度が一定になったと見做して、絶縁特性の測定を行う。 Alternatively, a humidity sensor (hygrometer) (not shown) can be attached to each of the air tubes 24 and 25. Then, the humidified air generated by the humidifying device 23 flows in and out through the air tubes 24 and 25, and when each humidity sensor reaches a constant humidity, it is considered that the humidity of the closed space 9 becomes constant. Then, the insulation characteristics are measured.

なお本実施の形態では、加湿装置23の構成を特に限定するものでないが、図1に示した飽和塩溶液26を用いた構成では定湿空気を生成することができるので、特に湿度センサを必要としない。したがって飽和塩溶液26以外を用いて加湿装置23を構成した場合に上記した湿度センサを用いる構成が好ましく適用される。 In the present embodiment, the configuration of the humidifying device 23 is not particularly limited, but the configuration using the saturated salt solution 26 shown in FIG. 1 can generate constant humidity air, so that a humidity sensor is particularly required. Do not. Therefore, when the humidifying device 23 is configured using a solution other than the saturated salt solution 26, the configuration using the humidity sensor described above is preferably applied.

ただし、加湿装置23から水蒸気を放出する構成では、平均湿度が高くなれば結露が生じる危険性があり、また相対湿度約85%以上の高湿度になると、密閉容器2内の湿度を一定に保つのが容易でない。したがって図1で示したように加湿装置23としては飽和塩溶液26を有する構成とすることが、安定して定湿空気を生成でき、しかも結露が生じる危険性がなく好適である。 However, in the configuration in which water vapor is discharged from the humidifying device 23, there is a risk of dew condensation when the average humidity is high, and when the relative humidity is about 85% or more, the humidity inside the closed container 2 is kept constant. Is not easy. Therefore, as shown in FIG. 1, it is preferable that the humidifying device 23 has a saturated salt solution 26 so that constant humidity air can be stably generated and there is no risk of dew condensation.

図1に示すように、エアーチューブ24、25の密閉容器2側の端部は、密閉容器2を密閉空間9方向に貫通した空気バルブ21に取付けられている。空気バルブ21は、エアーチューブ24、25を結合するための流路部として構成される。エアーチューブ24、25を密閉容器2に直接貫通させて差し込む構成では、その差し込んだ部分から加湿空気漏れが生じやすくなる。したがって空気バルブ21を密閉容器2に一体的に設け、エアーチューブ24、25を、空気バルブ21に結合させることで密閉容器2からの定湿空気漏れを適切に抑制することができる。空気バルブ21は空気量の調整を行うことができるが、密閉容器2に貫通させる流路部としては空気バルブ21に代えて継手等であってもよい。 As shown in FIG. 1, the ends of the air tubes 24 and 25 on the closed container 2 side are attached to an air valve 21 that penetrates the closed container 2 in the closed space 9 direction. The air valve 21 is configured as a flow path portion for connecting the air tubes 24 and 25. In the configuration in which the air tubes 24 and 25 are directly penetrated into the closed container 2 and inserted, humidified air leakage is likely to occur from the inserted portion. Therefore, by integrally providing the air valve 21 in the closed container 2 and connecting the air tubes 24 and 25 to the air valve 21, constant humidity air leakage from the closed container 2 can be appropriately suppressed. The air amount of the air valve 21 can be adjusted, but the flow path portion to penetrate the closed container 2 may be a joint or the like instead of the air valve 21.

図1に示すように、密閉容器2から加湿装置23への空気の流出路側にあたるエアーチューブ25には循環ポンプ32が取り付けられている。循環ポンプ32の動作により、加湿装置23と密閉容器2の密閉空間9との間でエアーチューブ24、25を介して、定湿空気を循環させることができる。このとき循環ポンプ32は図1のように、流出路側(循環ポンプ32の吸気側)のエアーチューブ25に取り付けることで、密閉容器2内を陰圧にでき、円滑かつ安定して定湿空気を加湿装置23と密閉容器2の密閉空間9との間で循環させることができる。また密閉容器2内が陰圧になることで密閉容器2内の密閉効果を高めることもできる。 As shown in FIG. 1, a circulation pump 32 is attached to an air tube 25 corresponding to an air outflow path side from the closed container 2 to the humidifying device 23. By the operation of the circulation pump 32, constant humidity air can be circulated between the humidifying device 23 and the closed space 9 of the closed container 2 via the air tubes 24 and 25. At this time, as shown in FIG. 1, by attaching the circulation pump 32 to the air tube 25 on the outflow path side (intake side of the circulation pump 32), the inside of the closed container 2 can have a negative pressure, and the constant humidity air can be smoothly and stably supplied. It can be circulated between the humidifying device 23 and the closed space 9 of the closed container 2. Further, the negative pressure inside the closed container 2 can enhance the sealing effect inside the closed container 2.

図1に示すように、絶縁特性測定装置1には、絶縁測定器8と各リング状電極3、4との間を、ケーブル30、31を介して接続する接続部6、7が設けられている。これにより、各リング状電極3、4が、密閉空間9の内部と外部とを電気的に接続する複数の接続部6、7にそれぞれ、接続された構成となる。ここで接続部6を高電圧端子、接続部7を接地端子として説明する。 As shown in FIG. 1, the insulation characteristic measuring device 1 is provided with connecting portions 6 and 7 for connecting the insulation measuring device 8 and the ring-shaped electrodes 3 and 4 via cables 30 and 31. There is. As a result, the ring-shaped electrodes 3 and 4 are connected to a plurality of connecting portions 6 and 7 that electrically connect the inside and the outside of the closed space 9, respectively. Here, the connection portion 6 will be described as a high voltage terminal, and the connection portion 7 will be described as a ground terminal.

絶縁測定器8には、既存の市販品を使用することができる。例えば絶縁測定器8として、部分放電測定装置(例えば、日本電計製 DAC−PD−7)を用いることができる。 An existing commercially available product can be used for the insulation measuring instrument 8. For example, as the insulation measuring device 8, a partial discharge measuring device (for example, DAC-PD-7 manufactured by Nihon Denki Co., Ltd.) can be used.

また図1に示すように、高電圧端子6及び接地端子7は、密閉容器2の位置で貫通するともに密閉容器2に接して固定されている。このように、高電圧端子6及び接地端子7は、密閉容器2に一体的に設けられている。また図1に示すように、高電圧端子6及び接地端子7は、互いに、絶縁がいし10を介して反対側に配置されている。図1では、高電圧端子6は絶縁がいし10の図示左側に位置し、接地端子7は絶縁がいし10の図示右側に位置している。更に、図1に示すように、高電圧端子6は、絶縁がいし10の上面10a側に位置するリング状電極3との対向位置よりも図示上方に位置し、一方、接地端子7は、絶縁がいし10の下面10b側に位置するリング状電極4との対向位置よりも図示下方に位置する。これにより、高電圧端子6と接地端子7との間の高さ方向(Z方向)の距離H1は、リング状電極3、4間の高さ方向(Z方向)の距離H2よりも大きくなっている。これにより、端子6、7を、密閉容器2内表面の沿面距離が出来るだけ離れた位置に配置でき、測定したい側面10cの絶縁特性よりも密閉容器2内表面の絶縁特性をできる限り高くすることができる。例えば、端子6、7間の沿面距離を、リング状電極3、5間の側面10cの沿面距離の2倍以上とすることが好ましい。この結果、リング状電極3、4の間に高電圧を印加した際、密閉容器2を伝って電流が流れる不具合をできる限り抑制でき、絶縁特性をより適切に測定することが出来る。 Further, as shown in FIG. 1, the high voltage terminal 6 and the ground terminal 7 penetrate at the position of the closed container 2 and are fixed in contact with the closed container 2. As described above, the high voltage terminal 6 and the ground terminal 7 are integrally provided in the closed container 2. Further, as shown in FIG. 1, the high voltage terminal 6 and the ground terminal 7 are arranged on opposite sides of each other via an insulator 10. In FIG. 1, the high voltage terminal 6 is located on the left side of the insulator 10 in the drawing, and the ground terminal 7 is located on the right side of the insulator 10 in the drawing. Further, as shown in FIG. 1, the high voltage terminal 6 is located above the drawing with respect to the ring-shaped electrode 3 located on the upper surface 10a side of the insulator 10, while the ground terminal 7 is the insulator. It is located below the drawing with respect to the position facing the ring-shaped electrode 4 located on the lower surface 10b side of the 10. As a result, the distance H1 in the height direction (Z direction) between the high voltage terminal 6 and the ground terminal 7 becomes larger than the distance H2 in the height direction (Z direction) between the ring-shaped electrodes 3 and 4. There is. As a result, the terminals 6 and 7 can be arranged at positions where the creepage distance of the inner surface of the closed container 2 is as far as possible, and the insulating characteristic of the inner surface of the closed container 2 is made as high as possible than the insulating characteristic of the side surface 10c to be measured. Can be done. For example, it is preferable that the creepage distance between the terminals 6 and 7 is twice or more the creepage distance between the side surfaces 10c between the ring-shaped electrodes 3 and 5. As a result, when a high voltage is applied between the ring-shaped electrodes 3 and 4, the problem of current flowing through the closed container 2 can be suppressed as much as possible, and the insulation characteristics can be measured more appropriately.

また図1に示すように、空気バルブ21は、互いに、絶縁がいし10を介して反対側に配置されている。また図1に示すように、絶縁がいし10の図示左側に配置された空気バルブ21は下方に、絶縁がいし10の図示右側に配置された空気バルブ21は上方に、夫々配置されており、各空気バルブ21は横方向(X方向)から高さ方向(Z方向)に互いに離れる方向に配置されている。これにより、空気バルブ21の密閉空間9内での距離ができる限り離れ、高湿度空気をできる限り効率的に循環させることが出来る。なお、高湿度空気が直接、リング状電極3、4に吹き付けられないように、空気バルブ21の空気の流入・流出口がリング状電極3、4と対向していないことが好適である。図1に示すように、一方の空気バルブ21は、絶縁がいし10の上方に取付けられたリング状電極3よりも更に上方に取付けられ、他方の空気バルブ21は、絶縁がいし10の下方に取付けられたリング状電極3よりも更に下方に取付けられ、これにより、の空気バルブ21間の距離を離すとともに、空気バルブ21の空気の流入・流出口がリング状電極3、4と対向しないようにしている。 Further, as shown in FIG. 1, the air valves 21 are arranged on opposite sides of each other via an insulator 10. Further, as shown in FIG. 1, the air valves 21 arranged on the left side of the insulator 10 are arranged on the lower side, and the air valves 21 arranged on the right side of the insulator 10 are arranged on the upper side, respectively. The valves 21 are arranged in a direction away from each other in the lateral direction (X direction) to the height direction (Z direction). As a result, the distance of the air valve 21 in the closed space 9 can be separated as much as possible, and high humidity air can be circulated as efficiently as possible. It is preferable that the inflow / outflow of air of the air valve 21 does not face the ring-shaped electrodes 3 and 4 so that the high-humidity air is not directly blown to the ring-shaped electrodes 3 and 4. As shown in FIG. 1, one air valve 21 is mounted further above the ring-shaped electrode 3 mounted above the insulator 10, and the other air valve 21 is mounted below the insulator 10. It is attached further below the insulator-shaped electrode 3, thereby increasing the distance between the air valves 21 and preventing the air inflow and outflow of the air valve 21 from facing the ring-shaped electrodes 3 and 4. There is.

次に絶縁特性の測定方法について説明する。本実施の形態における測定対象は、円筒形絶縁物である絶縁がいし10である。まず絶縁がいし10の側面10cに形成された異なるひだ部13bの先端円周上に各リング状電極3、4を取り付けて固定する。このとき、リング状電極3、4を台座部13aの円周上に取り付けることもできる。ただし送・配電線の電圧の大きさは、絶縁がいし10のひだ部13bの数によって規制されており、したがって寿命判断において、ひだ部13b間の絶縁特性が重要とされる。したがって、ひだ部13bの先端円周上に各リング状電極3、4を取り付けることが好ましい。 Next, a method for measuring the insulation characteristics will be described. The measurement target in the present embodiment is an insulator 10 which is a cylindrical insulator. First, the ring-shaped electrodes 3 and 4 are attached and fixed on the circumference of the tip of different folds 13b formed on the side surface 10c of the insulator 10. At this time, the ring-shaped electrodes 3 and 4 can be mounted on the circumference of the pedestal portion 13a. However, the magnitude of the voltage of the transmission / distribution line is regulated by the number of folds 13b of the insulating insulator 10, and therefore the insulation characteristics between the folds 13b are important in determining the life. Therefore, it is preferable to mount the ring-shaped electrodes 3 and 4 on the circumference of the tip of the fold portion 13b.

続いて、密閉容器2にて各リング状電極3、4上を非接触にて覆い、絶縁がいし10の側面10cと密閉容器2との間に密閉空間9を形成する。 Subsequently, the ring-shaped electrodes 3 and 4 are covered with the closed container 2 in a non-contact manner, and a closed space 9 is formed between the side surface 10c of the insulating insulator 10 and the closed container 2.

続いて、加湿装置23を動作させる。図1では、飽和塩溶液26を用いており、加湿装置23にて定湿空気を生成することができる。定湿空気は循環ポンプ32の作用によりエアーチューブ24、25を介して加湿装置23及び密閉容器2の密閉空間9を順に繰り返し循環する。最初、飽和塩溶液26から生成される定湿空気の湿度はやや不安定であるため、数分程度(例えば、3分から5分程度)、循環させた後、次の絶縁特性の測定に移行することが好ましい。これにより、密閉容器2内は、一定の高湿度状態に保たれる。なお一定の高湿度状態とは、密閉容器2の外気よりも高い湿度に保たれる状態である。上記したように、飽和塩溶液26を用いることで、JIS B7920:2000によれば、31%程度から99%程度までの高湿度の定湿空気を生成することが可能になる。例えば、硫酸カリウムでは相対湿度が97%、塩化カリウムでは相対湿度が85%に定まる。 Subsequently, the humidifying device 23 is operated. In FIG. 1, a saturated salt solution 26 is used, and constant humidity air can be generated by the humidifying device 23. The constant humidity air is repeatedly circulated through the air tubes 24 and 25 in the closed space 9 of the humidifying device 23 and the closed container 2 by the action of the circulation pump 32. Initially, the humidity of the constant humidity air generated from the saturated salt solution 26 is a little unstable, so after circulating for several minutes (for example, about 3 to 5 minutes), the next step is to measure the insulation characteristics. Is preferable. As a result, the inside of the closed container 2 is maintained in a constant high humidity state. The constant high humidity state is a state in which the humidity is maintained higher than the outside air of the closed container 2. As described above, by using the saturated salt solution 26, according to JIS B7920: 2000, it is possible to generate high humidity constant humidity air of about 31% to about 99%. For example, potassium sulfate has a relative humidity of 97%, and potassium chloride has a relative humidity of 85%.

密閉空間9の湿度が一定になった状態で、図1に示すように、高電圧端子6と接地端子7に任意の絶縁測定器8を取り付けて、絶縁特性を取得する。ここで、加湿装置23を動作させる前、あるいは、密閉空間9の湿度が一定になる前に、予め高電圧端子6と接地端子7に絶縁測定器8を取り付けておいてもよい。 In a state where the humidity of the closed space 9 is constant, as shown in FIG. 1, an arbitrary insulation measuring instrument 8 is attached to the high voltage terminal 6 and the ground terminal 7 to acquire the insulation characteristics. Here, the insulation measuring device 8 may be attached to the high voltage terminal 6 and the ground terminal 7 in advance before the humidifying device 23 is operated or before the humidity of the closed space 9 becomes constant.

ここで絶縁特性には、絶縁抵抗、部分放電電圧及び絶縁破壊電圧等があり、それぞれ測定装置や測定手法が異なる。絶縁抵抗は、高電圧端子6に所定の直流電圧(例えば、25〜2000V)を印加して、接地端子7に流れる電流から、絶縁抵抗値を算出する。具体的には、本実施の形態の絶縁特性測定装置1に市販のメガーを直接取り付けることで高湿度状態の絶縁抵抗値を測定できる。 Here, the insulation characteristics include insulation resistance, partial discharge voltage, insulation breakdown voltage, and the like, and the measuring device and the measuring method are different for each. For the insulation resistance, a predetermined DC voltage (for example, 25 to 2000 V) is applied to the high voltage terminal 6, and the insulation resistance value is calculated from the current flowing through the ground terminal 7. Specifically, the insulation resistance value in a high humidity state can be measured by directly attaching a commercially available megger to the insulation characteristic measuring device 1 of the present embodiment.

部分放電電圧の測定は、高電圧端子6に交流電圧を印加して、接地端子7側で部分放電電流を検出するまで電圧を上昇させ、部分放電電流を検出した電圧を部分放電電圧として評価する。具体的には、本実施の形態の絶縁特性測定装置1に市販の部分放電測定装置(例えば、日本電計製 DAC−PD−7)を直接取り付けることで、高湿度状態の部分放電電圧値を測定できる。もしくは簡易方式として、インパルス電圧を印加して部分放電発生の有無を判定する手法も考えられる。 To measure the partial discharge voltage, an AC voltage is applied to the high voltage terminal 6, the voltage is raised until the partial discharge current is detected on the ground terminal 7, and the voltage at which the partial discharge current is detected is evaluated as the partial discharge voltage. .. Specifically, by directly attaching a commercially available partial discharge measuring device (for example, DAC-PD-7 manufactured by Nihon Denkei) to the insulation characteristic measuring device 1 of the present embodiment, the partial discharge voltage value in a high humidity state can be obtained. Can be measured. Alternatively, as a simple method, a method of applying an impulse voltage to determine the presence or absence of partial discharge can be considered.

絶縁破壊電圧の測定は、高電圧端子6に交流電圧を印加して、絶縁破壊が生じるまで電圧を上昇させ、絶縁破壊が生じた電圧を絶縁破壊電圧として評価する。具体的には本実施の形態の絶縁特性測定装置1に、高圧交流電源を直接取り付けてリング状電極3、4間を沿面絶縁破壊させることで高湿度状態の絶縁破壊電圧値を測定できる。 In the measurement of the dielectric breakdown voltage, an AC voltage is applied to the high voltage terminal 6 to raise the voltage until the dielectric breakdown occurs, and the voltage at which the dielectric breakdown occurs is evaluated as the dielectric breakdown voltage. Specifically, the insulation breakdown voltage value in a high humidity state can be measured by directly attaching a high-voltage AC power supply to the insulation characteristic measuring device 1 of the present embodiment and causing creepage breakdown between the ring-shaped electrodes 3 and 4.

なお本実施の形態の絶縁特性測定装置は、例えば配電盤内の絶縁部位の絶縁特性を測定するために、約3.3kV以上の高圧での測定に用いることができる。ここで「高電圧」とは、具体的に何V以上と定義されるものでなく、上記した絶縁特性を測定するために印加される電圧は全て高電圧とされる。 The insulation characteristic measuring device of the present embodiment can be used for measurement at a high voltage of about 3.3 kV or more, for example, in order to measure the insulation characteristic of the insulating portion in the switchboard. Here, the "high voltage" is not specifically defined as a voltage of several V or more, and all the voltages applied to measure the above-mentioned insulation characteristics are high voltages.

なお上記した絶縁特性の測定において、湿度が一定であれば、温度が変化しても測定条件は同条件として取り扱うことができる。例えば、温度が20℃で湿度が90%の場合と、温度が10℃で湿度が90%では同条件下として絶縁特性の測定が行える。 In the above-mentioned measurement of insulation characteristics, if the humidity is constant, the measurement conditions can be treated as the same even if the temperature changes. For example, when the temperature is 20 ° C. and the humidity is 90%, and when the temperature is 10 ° C. and the humidity is 90%, the insulation characteristics can be measured under the same conditions.

また密閉容器2内の湿度をどの程度に保つかであるが、それは測定対象の絶縁物を備えた製品の使用条件による。例えば使用条件が95%以下であれば、上限値の95%の湿度に保って絶縁特性の測定を行い、使用条件が85%以下であれば、上限値の85%の湿度に保って絶縁特性の測定を行う。 The degree of humidity in the closed container 2 depends on the conditions of use of the product having the insulating material to be measured. For example, if the usage condition is 95% or less, the insulation characteristics are measured while keeping the humidity at 95% of the upper limit, and if the usage conditions are 85% or less, the insulation characteristics are kept at 85% of the upper limit. To measure.

本実施の形態の絶縁特性測定装置1及びそれを用いた絶縁特性の測定方法によれば、円筒形状絶縁物に対し、外部環境によらず、任意の湿度に保ったうえで絶縁特性の測定が可能となる。そして本実施の形態では、平面ではない、曲面状の側面の絶縁特性を適切かつ簡単に測定することができる。また本実施の形態では、絶縁物が現地に取付けられた状態でも、すなわち、図1に示す絶縁がいし10が、配電盤に取り付けられた状態にて、適切に絶縁特性の測定を行うことが可能である。 According to the insulation characteristic measuring device 1 of the present embodiment and the method for measuring the insulation characteristics using the same, it is possible to measure the insulation characteristics of a cylindrical insulator while maintaining an arbitrary humidity regardless of the external environment. It will be possible. Then, in the present embodiment, the insulation characteristics of the curved side surface, which is not a flat surface, can be appropriately and easily measured. Further, in the present embodiment, it is possible to appropriately measure the insulation characteristics even when the insulator is attached to the site, that is, when the insulator 10 shown in FIG. 1 is attached to the switchboard. is there.

図4は、本発明の第2の実施の形態の絶縁特性測定装置の模式図(図5に示すB−B線に沿って切断し矢印方向から見た縦断面図)である。図5は、本発明の第2の実施の形態の絶縁特性測定装置の模式図(図4に示すA−A線に沿って切断し矢印方向から見た横断面図)である。 FIG. 4 is a schematic view of the insulation characteristic measuring apparatus according to the second embodiment of the present invention (a vertical cross-sectional view cut along the line BB shown in FIG. 5 and viewed from the direction of the arrow). FIG. 5 is a schematic view of the insulation characteristic measuring device according to the second embodiment of the present invention (cross-sectional view taken along the line AA shown in FIG. 4 and viewed from the direction of the arrow).

図4、図5に示す実施の形態では、図1に示す実施の形態の密閉容器2に代わって、密閉部材としての軟質素材からなる絶縁性の密閉フィルム33が用いられる。密閉フィルム33の材質を特に限定するものではないが、高湿度状態に曝されても錆びにくい等、劣化しにくい軟質な絶縁材料あることが好適である。例えば、密閉フィルム33の軟質素材としては、ポリエチレン、ポリ塩化ビニル、PET等が挙げられる。「軟質素材」とは、例えば、図1に示す密閉容器2に比べて軟らかい素材であり、比較的弱い力で変形させることができる素材である。また材質そのものが軟質である場合の他、薄膜化することで軟らかくなるものも含む。 In the embodiment shown in FIGS. 4 and 5, an insulating sealing film 33 made of a soft material as a sealing member is used instead of the sealing container 2 of the embodiment shown in FIG. The material of the sealing film 33 is not particularly limited, but it is preferable that there is a soft insulating material that does not easily deteriorate, such as being resistant to rust even when exposed to a high humidity condition. For example, examples of the soft material of the sealing film 33 include polyethylene, polyvinyl chloride, PET and the like. The "soft material" is, for example, a material that is softer than the closed container 2 shown in FIG. 1 and can be deformed with a relatively weak force. In addition to the case where the material itself is soft, it also includes the case where the material itself becomes soft by thinning.

図4、図5に示す密閉フィルム33を絶縁がいし10の側面10c上に被せ、密閉フィルム33の上下縁部33a、33bを夫々、結束部材34にて絶縁がいし10の台座部13a上で縛る。このように、密閉フィルム33を、絶縁がいし10の少なくとも2か所の円周上で締め付ける。このとき、密閉フィルム33は、リング状電極3、4及び、ひだ部13bに接触しておらず離れており、これにより、密閉フィルム33と絶縁がいし10の側面10cとの間で適切に密閉空間9を形成することができる。結束部材34は、例えば結束ひもである。 The sealing film 33 shown in FIGS. 4 and 5 is placed on the side surface 10c of the insulating insulator 10, and the upper and lower edge portions 33a and 33b of the sealing film 33 are tied on the pedestal portion 13a of the insulating insulator 10 by the binding member 34, respectively. In this way, the sealing film 33 is tightened on at least two circumferences of the insulating insulator 10. At this time, the sealing film 33 is not in contact with the ring-shaped electrodes 3 and 4 and the folds 13b and is separated from each other, whereby the sealing space 33 and the side surface 10c of the insulating insulator 10 are appropriately sealed. 9 can be formed. The binding member 34 is, for example, a binding string.

図4に示す実施の形態のように、特に軟質素材の密閉フィルム33を用い、このとき密閉フィルム33をリング状電極3、4及び、ひだ部13bに接触させることなく密閉空間9を形成するために、絶縁がいし10の側面10cと密閉フィルム33との間にスペーサ35を設けることが好適である。 As in the embodiment shown in FIG. 4, a sealing film 33 made of a particularly soft material is used, and at this time, the sealing space 9 is formed without contacting the sealing film 33 with the ring-shaped electrodes 3 and 4 and the folds 13b. It is preferable to provide a spacer 35 between the side surface 10c of the insulating insulator 10 and the sealing film 33.

スペーサ35を設ける位置を特に限定するものではないが、スペーサ35は、リング状電極3、4間の上下外側の両側円周上に位置する絶縁がいし10の台座部13aの円周上に配置されることが好ましい。これにより、リング状電極3、4の設置を邪魔せずに、適切に絶縁がいし10の側面10cとの間で密閉空間9を形成することが出来る。スペーサ35の材質を限定するものでないが、スペーサ35は、絶縁性であり、高湿度状態でも錆びにくく、密閉フィルム33を結束部材34にて結束したときスペーサ形状を保持可能な剛性を有している。 The position where the spacer 35 is provided is not particularly limited, but the spacer 35 is arranged on the circumference of the pedestal portion 13a of the insulating insulator 10 located on both the upper and lower outer circumferences between the ring-shaped electrodes 3 and 4. Is preferable. As a result, the sealed space 9 can be appropriately formed between the ring-shaped electrodes 3 and 4 and the side surface 10c of the insulating insulator 10 without interfering with the installation. Although the material of the spacer 35 is not limited, the spacer 35 is insulating, does not easily rust even in a high humidity state, and has rigidity capable of holding the spacer shape when the sealing film 33 is bound by the binding member 34. There is.

図5に示すように、スペーサ35は、台座部13aの円周上に所定の間隔を空けて複数配置される。このとき、各スペーサ35は、例えば図5に示すような矩形状で形成される。 As shown in FIG. 5, a plurality of spacers 35 are arranged on the circumference of the pedestal portion 13a at predetermined intervals. At this time, each spacer 35 is formed in a rectangular shape as shown in FIG. 5, for example.

図5に示すように、各スペーサ35は、結束バンド36にて繋がっている。結束バンド36は、各スペーサ35に設けられた貫通孔穴に通されている。結束バンド36の長さ調整により、各スペーサ35を台座部13a上の所定位置に保持した状態で締付けることができる。このように、複数のスペーサ35を結束バンド36にて絶縁がいし10に取付ける構成とすることで、絶縁がいし10の径が変わっても、その径に応じて複数のスペーサ35を絶縁がいし10に取付けることが出来る。あるいは、例えば、図2Aに準じたクランプ型でスペーサ35を形成することも可能であるが、このとき、絶縁がいし10の径ごとに対応するスペーサ35が必要となる。 As shown in FIG. 5, each spacer 35 is connected by a binding band 36. The binding band 36 is passed through a through hole provided in each spacer 35. By adjusting the length of the binding band 36, each spacer 35 can be tightened while being held at a predetermined position on the pedestal portion 13a. In this way, by configuring the plurality of spacers 35 to be attached to the insulating insulator 10 with the binding band 36, even if the diameter of the insulating insulator 10 changes, the plurality of spacers 35 are attached to the insulating insulator 10 according to the diameter. Can be done. Alternatively, for example, it is possible to form the spacer 35 with a clamp type according to FIG. 2A, but at this time, a spacer 35 corresponding to each diameter of the insulating insulator 10 is required.

スペーサ35の数を限定するものでないが、3以上であることが好ましい。図4、図5に示すようにスペーサ35を4個とすれば設置も簡単なうえに、密閉空間9も安定して形成することができ好適である。 The number of spacers 35 is not limited, but is preferably 3 or more. As shown in FIGS. 4 and 5, if the number of spacers 35 is four, the installation is easy and the closed space 9 can be stably formed, which is preferable.

図4、図5に示すように、結束バンド36は、各スペーサ35の絶縁がいし10の側面10cに近い側の内側縁部付近に設けられた貫通孔に通される。一方、各スペーサ35の前記側面10cから離れた側の外側縁部には凹溝が設けられ、凹溝内にひも状の梁部37が通されている。図5に示すように、梁部37は、各スペーサ35の凹溝を通して一周巻かれた円環状にて保持される。このため梁部37は、円環状に丸めたときにその形状を保持できる絶縁素材で形成される。 As shown in FIGS. 4 and 5, the binding band 36 is passed through a through hole provided near the inner edge portion of each spacer 35 on the side close to the side surface 10c of the insulating insulator 10. On the other hand, a concave groove is provided on the outer edge portion of each spacer 35 on the side away from the side surface 10c, and a string-shaped beam portion 37 is passed through the concave groove. As shown in FIG. 5, the beam portion 37 is held in an annular shape wound around the concave groove of each spacer 35. Therefore, the beam portion 37 is formed of an insulating material that can retain its shape when rolled into an annular shape.

また図4に示すように、リング状電極3、4の厚さ断面は、図1に示すリング状電極3、4と異なって平板状である。リング状電極3、4の厚さ断面を平板状とすることで、安定してひだ部13bの先端円周上に配置することができる。すなわち図1のような厚さ断面が円形状であるとき、リング状電極3、4が、ひだ部13bの先端円周上から凹部15方向にずれやすいが、本実施の形態では、このような不具合を抑制することができ、ひだ部13b間の絶縁特性を安定して測定することが出来る。図2Aのクランプ型、図2Bの結束型のどちらのリング状電極3、4でも、図4に示す厚さ断面が平板状の電極とすることができる。リング状電極3、4の厚さ断面は平板状に限定されず、例えば、ひだ部13bの形状に合わせてV字状やU字状となるようにすることで、より安定した測定が可能になる。 Further, as shown in FIG. 4, the thickness cross section of the ring-shaped electrodes 3 and 4 is flat unlike the ring-shaped electrodes 3 and 4 shown in FIG. By making the thickness cross section of the ring-shaped electrodes 3 and 4 flat, it can be stably arranged on the circumference of the tip of the fold portion 13b. That is, when the thickness cross section as shown in FIG. 1 is circular, the ring-shaped electrodes 3 and 4 are likely to be displaced from the circumference of the tip of the fold portion 13b toward the concave portion 15, but in the present embodiment, this is the case. Defects can be suppressed, and the insulation characteristics between the folds 13b can be stably measured. Both the clamp type and the binding type ring-shaped electrodes 3 and 4 of FIG. 2A can be electrodes having a flat plate-shaped thickness cross section shown in FIG. The thickness cross section of the ring-shaped electrodes 3 and 4 is not limited to a flat plate shape, and for example, by making the ring-shaped electrodes 3 and 4 V-shaped or U-shaped according to the shape of the fold portion 13b, more stable measurement is possible. Become.

図6は、本発明の第3の実施の形態の絶縁特性測定装置の模式図(図7に示すD−D線に沿って切断し矢印方向から見た縦断面図)である。図7は、本発明の第3の実施の形態の絶縁特性測定装置の模式図(図6に示すC−C線に沿って切断し矢印方向から見た横断面図)である。 FIG. 6 is a schematic view of the insulation characteristic measuring device according to the third embodiment of the present invention (a vertical cross-sectional view taken along the line DD shown in FIG. 7 and viewed from the direction of the arrow). FIG. 7 is a schematic view of the insulation characteristic measuring device according to the third embodiment of the present invention (cross-sectional view taken along the line CC shown in FIG. 6 and viewed from the direction of the arrow).

図6、図7に示す実施の形態は、図4、図5に示す実施の形態の一部を変更したものであり、図4、図5と異なってスペーサ35の位置で各端子6、7及び空気バルブ21が挿通されている。そして各端子6、7及び空気バルブ21は密閉フィルム33を貫通し、密閉フィルム33の上下端に設けられた貫通部ではゴムリング等の封止材40により各端子6、7と密閉フィルム33間、及び空気バルブ21と密閉フィルム33間が封止されている。 The embodiment shown in FIGS. 6 and 7 is a modification of a part of the embodiment shown in FIGS. 4 and 5, and unlike FIGS. 4 and 5, the terminals 6 and 7 are located at the spacer 35. And the air valve 21 is inserted. The terminals 6 and 7 and the air valve 21 penetrate the sealing film 33, and at the penetrating portions provided at the upper and lower ends of the sealing film 33, a sealing material 40 such as a rubber ring is used between the terminals 6 and 7 and the sealing film 33. , And the space between the air valve 21 and the sealing film 33 is sealed.

このように端子6、7及び空気バルブ21をスペーサ35にて安定して保持することが出来、密閉部材が密閉フィルム33のように軟質素材であるときに特に有効である。また各端子6、7をスペーサ35に通すことで、高電圧端子6と接地端子7との間の距離を十分に離すことができる。これにより、リング状電極3、4の間に高電圧を印加して絶縁特性の測定の際に、密閉フィルム33を伝って電流が流れる不具合をできる限り抑制でき、絶縁特性をより適切に測定することが出来る。なお本実施の形態においては、端子6、7及び空気バルブ21の少なくとも一方をスペーサ35に挿通させることが出来る。 In this way, the terminals 6 and 7 and the air valve 21 can be stably held by the spacer 35, which is particularly effective when the sealing member is a soft material such as the sealing film 33. Further, by passing the terminals 6 and 7 through the spacer 35, the distance between the high voltage terminal 6 and the ground terminal 7 can be sufficiently separated. As a result, when a high voltage is applied between the ring-shaped electrodes 3 and 4 to measure the insulation characteristics, the problem of current flowing through the sealing film 33 can be suppressed as much as possible, and the insulation characteristics can be measured more appropriately. Can be done. In the present embodiment, at least one of the terminals 6 and 7 and the air valve 21 can be inserted into the spacer 35.

図4、図5のいずれの実施の形態でも、密閉フィルム33の上下縁部33a、33bを絶縁がいし10の台座部13aの位置で締付けており、このため、密閉フィルム33が金属部11と接触する状態を避けることが出来る。 In any of the embodiments of FIGS. 4 and 5, the upper and lower edge portions 33a and 33b of the sealing film 33 are tightened at the positions of the pedestal portions 13a of the insulating insulator 10, so that the sealing film 33 comes into contact with the metal portion 11. You can avoid the situation of doing.

上記に示す絶縁特性測定装置では、測定手段8が、密閉空間9外に設けられた構成であったが、測定手段8が、密閉空間9内に設けられていても良い。このとき、端子6、7も密閉空間9内に配置される。 In the insulation characteristic measuring device shown above, the measuring means 8 is provided outside the closed space 9, but the measuring means 8 may be provided inside the closed space 9. At this time, the terminals 6 and 7 are also arranged in the closed space 9.

また上記の実施の形態では、電極数及び接続部(端子数)が2であるが、3以上とすることもできる。このとき、複数の接続部のうち少なくとも2つは、互いに、円筒形状絶縁物を介して反対側に配置されることが好適である。また、複数の接続部のうち少なくとも2つは、電極との対向位置から端子間の距離が遠ざかる方向に配置されていることが好適である。 Further, in the above embodiment, the number of electrodes and the number of connecting portions (number of terminals) are 2, but it can be 3 or more. At this time, it is preferable that at least two of the plurality of connecting portions are arranged on opposite sides of each other via a cylindrical insulator. Further, it is preferable that at least two of the plurality of connecting portions are arranged in a direction in which the distance between the terminals is far from the position facing the electrode.

次に、余寿命診断方法について説明する。上記したように本実施の形態における絶縁特性装置を用いることで、外部環境によらずに円筒形状絶縁物に対する絶縁特性を高湿度状態にて直接測定することが可能である。そして本発明における第2の目的は、密閉容器内を一定の湿度に保ったうえで絶縁物の余寿命を診断する点にある。 Next, the remaining life diagnosis method will be described. As described above, by using the insulation characteristic device of the present embodiment, it is possible to directly measure the insulation characteristics of a cylindrical insulator in a high humidity state regardless of the external environment. A second object of the present invention is to diagnose the remaining life of the insulating material while keeping the inside of the closed container at a constant humidity.

ここで放電発生を絶縁寿命と見做すことができるが、従来では、高湿度状態に保持して部分放電検出を行っていなかったため、診断時に放電が未発生でも、表面抵抗が低下する高湿度状態では放電が発生する危険があり、余寿命を精度よく診断することができなかった。あるいは従来では、診断された余寿命の精度が不明であった。 Here, the occurrence of discharge can be regarded as the insulation life, but in the past, partial discharge detection was not performed by maintaining the high humidity state, so even if no discharge occurs at the time of diagnosis, the surface resistance decreases. In this state, there is a risk of discharge, and the remaining life could not be diagnosed accurately. Alternatively, in the past, the accuracy of the diagnosed remaining life was unknown.

そこで本実施の形態では、任意の高湿度状態に保持しながら円筒形状絶縁物の側面を測定対象として、従来に比べて高精度な余寿命診断を行うことを可能としたものである。 Therefore, in the present embodiment, it is possible to perform a highly accurate remaining life diagnosis as compared with the conventional case by targeting the side surface of the cylindrical insulator while maintaining it in an arbitrary high humidity state.

まず余寿命診断の事前準備として、測定対象とされる円筒形状絶縁物を備えた製品の定格運転時の絶縁責務から、側面の単位面積当たりで必要となる絶縁抵抗値・部分放電電圧値・絶縁破壊電圧値を絶縁寿命値と定義する。 First, as a preliminary preparation for the remaining life diagnosis, the insulation resistance value, partial discharge voltage value, and insulation required per unit area of the side surface are required from the insulation duty during the rated operation of the product equipped with the cylindrical insulator to be measured. The breakdown voltage value is defined as the insulation life value.

そして、本実施の形態の絶縁特性測定装置を用いて製品の出荷前に初期の絶縁特性を取得し、製品の運転先では定期保守点検等が行われるタイミングで絶縁特性を測定する。本実施の形態の絶縁特性測定装置を用いた絶縁特性の測定方法はすでに記載した通りである。なお同じ製品であれば一度、出荷前の初期の絶縁特性を取得すれば、そのデータを、その後の製品についての初期データとして用いることもできる。 Then, the initial insulation characteristic is acquired before the product is shipped by using the insulation characteristic measuring device of the present embodiment, and the insulation characteristic is measured at the timing of periodic maintenance and inspection at the operation destination of the product. The method for measuring the insulation characteristics using the insulation characteristic measuring device of the present embodiment has already been described. If the same product is used, once the initial insulation characteristics before shipment are acquired, the data can be used as the initial data for subsequent products.

図8は、本発明の余寿命診断方法を説明するための余寿命診断グラフの概念図である。図8に示すように、出荷時に絶縁特性の初期値Aを本実施の形態の絶縁特性測定装置を用いて取得する。また出荷時に、公称電圧で放電発生する絶縁特性の下限値(絶縁寿命ライン)を取得する。 FIG. 8 is a conceptual diagram of a remaining life diagnosis graph for explaining the remaining life diagnosis method of the present invention. As shown in FIG. 8, it is obtained using an insulating characteristic measuring apparatus of this embodiment the initial value A 0 of the insulating properties at the time of shipment. Also, at the time of shipment, the lower limit of the insulation characteristic (insulation life line) that discharges at the nominal voltage is acquired.

次に出荷後、任意の期間が経過した測定時(上記のように定期保守点検等のタイミング)、に、測定対象としての絶縁物に対して特に清掃をせずに(未清掃状態で)、本実施の形態の絶縁特性測定装置を用いて絶縁特性を測定して現測定値(未清掃)Aを得る。その後も清掃をしないと仮定すれば、初期値Aと現測定値(未清掃)Aとから導き出される余寿命推定線Cと絶縁寿命ラインとが交わる位置Tを寿命と診断することができる。なお余寿命推定線Cについては、常に直線で近似するわけではなく、付着物質や表面変質状態を鑑みて実際の物理現象に則した近似曲線としてグラフ化する。寿命時期は余寿命推定線が絶縁寿命ラインに達する年度であり、測定時点から寿命時期までの時間を余寿命として評価する。なお余寿命推定線は直線化しないと考えられる。後述する清掃の有無にかかわらず、例えば同じスピードで劣化が進んでも、絶縁特性に与える影響は一定とならない。劣化の度合いが進むほど、絶縁特性の数値変動は小さくなるからである。また、余寿命推定線の具体的な算出方法については後述するが、例えば、直近の2点の測定点の傾きから推定したり、3回以上の近似直線や曲線から推定することも可能である。 Next, at the time of measurement after an arbitrary period has passed after shipment (timing of periodic maintenance and inspection as described above), the insulation to be measured is not particularly cleaned (in an uncleaned state). obtaining measured current measured value of (uncleaned) a 1 insulating properties of an insulating characteristic measuring apparatus of this embodiment. If thereafter assuming that no cleaning, to diagnose the initial value A 0 and the current measured value (uncleaned) A 1 Metropolitan from residual life estimation line C 1 and insulation life line and the position T 1 intersects lifetime derived Can be done. The remaining life estimation line C 1 is not always approximated by a straight line, but is graphed as an approximate curve according to an actual physical phenomenon in consideration of adherent substances and surface deterioration state. The life period is the year when the estimated remaining life line reaches the insulation life line, and the time from the measurement point to the life period is evaluated as the remaining life. It is considered that the remaining life estimation line is not straightened. Regardless of the presence or absence of cleaning described later, for example, even if deterioration progresses at the same speed, the effect on the insulation characteristics is not constant. This is because as the degree of deterioration increases, the numerical fluctuation of the insulation characteristics becomes smaller. The specific calculation method of the remaining life estimation line will be described later, but for example, it can be estimated from the slopes of the two most recent measurement points, or can be estimated from three or more approximate straight lines or curves. ..

本実施の形態の絶縁特性測定装置を用いることで、測定対象としての円筒形状絶縁物に対する絶縁特性の測定の際、絶縁物を有する製品の使用条件に合わせて湿度を調整した状態で、絶縁特性の測定を行うことができる。すなわち使用条件が95%以下であれば、上限値の95%の湿度に保って絶縁特性の測定を行う。一方、従来では、使用条件下の上限値の湿度に保って絶縁特性の測定を行うことはしていないため、実際、絶縁物が使用条件下の上限湿度の環境におかれた場合の余寿命を適切に判断できなかった。あるいは従来ではデータベース上から余寿命を推定していたにすぎなかった。これに対して本実施の形態では、実際に、使用条件下の上限値の湿度に保って絶縁特性の測定を行うことが可能であるため、従来に比べて精度の高い余寿命診断を行うことが可能である。 By using the insulation characteristic measuring device of the present embodiment, when measuring the insulation characteristic of a cylindrical insulator as a measurement target, the insulation characteristic is adjusted according to the usage conditions of the product having the insulator. Can be measured. That is, if the usage conditions are 95% or less, the insulation characteristics are measured while maintaining the humidity at 95% of the upper limit. On the other hand, in the past, the insulation characteristics were not measured while maintaining the humidity at the upper limit of the usage conditions. Therefore, in fact, the remaining life when the insulation is placed in the environment of the upper limit humidity under the usage conditions. Could not be judged properly. Alternatively, in the past, the remaining life was only estimated from the database. On the other hand, in the present embodiment, since it is possible to actually measure the insulation characteristics while maintaining the humidity of the upper limit value under the usage conditions, the remaining life diagnosis with higher accuracy than before is performed. Is possible.

ところで湿度条件を固定した場合、側面抵抗の低下因子は、汚損堆積物と母材変質に絞られる。汚損堆積物は側面の清掃により除去可能な可逆劣化成分であり、母材変質は樹脂表面に生じた化学反応生成物で清掃では除去不可能な不可逆劣化成分である。母材変質が起こると、表面抵抗が低下し漏れ電流による発熱が生じることで、絶縁劣化反応が進展する。なお本実施の形態では清掃方法を限定するものでないが、例えば側面の拭き取りやブローなどが一般的である。また清掃には洗浄の概念も含まれる。 By the way, when the humidity condition is fixed, the factors that reduce the lateral resistance are narrowed down to the fouling deposits and the alteration of the base metal. The fouling deposit is a reversible deterioration component that can be removed by cleaning the side surface, and the alteration of the base metal is a chemical reaction product generated on the resin surface and is an irreversible deterioration component that cannot be removed by cleaning. When the base metal deteriorates, the surface resistance decreases and heat is generated due to the leakage current, so that the insulation deterioration reaction progresses. Although the cleaning method is not limited in this embodiment, for example, wiping or blowing the side surface is common. Cleaning also includes the concept of cleaning.

そこで、出荷後の現測定時のステップとして、上記のように未清掃状態での絶縁特性を測定するとともに、清掃後の絶縁特性も測定する。上記したように、汚損堆積物は除去可能な可逆劣化に分類されるため、清掃により汚損堆積物を除去できると、絶縁特性をある程度回復させることができる。 Therefore, as a step at the time of the current measurement after shipment, the insulation characteristics in the uncleaned state are measured as described above, and the insulation characteristics after cleaning are also measured. As described above, the fouled deposits are classified as reversible deterioration that can be removed. Therefore, if the fouled deposits can be removed by cleaning, the insulating properties can be restored to some extent.

図8に示す余寿命診断方法では、側面を清掃した後に、本実施の形態の絶縁特性測定装置を用いて、清掃された側面の絶縁特性を測定する。そのとき測定対象としての円筒形状絶縁物を有する製品の使用条件に合わせて湿度を調整した状態で、絶縁特性の測定を行う。これにより絶縁特性の現測定値(清掃後)Aを得ることができる。図8に示すように、定期的に製品の清掃を行い、その都度、側面の清掃前後の絶縁特性を測定する。図8に示すように、清掃を全く行わない場合に得られる余寿命推定線Cに対して、得られる測定値は清掃前後を問わず、ずれていくことがわかるが、絶縁特性が徐々に絶縁寿命ラインに近づいていくこともわかる。これは、絶縁特性に清掃により回復可能な可逆的な劣化成分と、清掃により回復不可能な不可逆的な劣化成分とが存在するからである。なお測定時に清掃前後の絶縁特性を測定するのは、例えば清掃後の絶縁特性だけを測定しても清掃により回復可能な可逆的な劣化成分と清掃により回復不可能な不可逆的な劣化成分とがどの程度存在し、その後どのように変化していくのかを適切に評価できず、精度の高い余寿命推定線を作製することができないためである。 In the remaining life diagnosis method shown in FIG. 8, after cleaning the side surface, the insulation characteristic of the cleaned side surface is measured by using the insulation characteristic measuring device of the present embodiment. At that time, the insulation characteristics are measured in a state where the humidity is adjusted according to the usage conditions of the product having the cylindrical insulator as the measurement target. As a result, the current measured value (after cleaning) A 2 of the insulation characteristic can be obtained. As shown in FIG. 8, the product is cleaned periodically, and the insulation characteristics before and after cleaning the side surface are measured each time. As shown in FIG. 8, relative to the remaining service life estimation line C 1 obtained in the case of not performing any cleaning, resulting measurement either before or after cleaning, it can be seen that going displaced, insulation characteristics gradually It can also be seen that it is approaching the insulation life line. This is because there are reversible deterioration components that can be recovered by cleaning and irreversible deterioration components that cannot be recovered by cleaning in the insulation characteristics. In addition, when measuring the insulation characteristics before and after cleaning, for example, there are reversible deterioration components that can be recovered by cleaning and irreversible deterioration components that cannot be recovered by cleaning even if only the insulation characteristics after cleaning are measured. This is because it is not possible to properly evaluate how much it exists and how it changes thereafter, and it is not possible to produce a highly accurate remaining life estimation line.

すなわち本実施の形態では、清掃により回復可能な可逆的な劣化成分と清掃により回復不可能な不可逆的な劣化成分との双方を評価するステップと、これらの劣化成分の評価結果に基づいて余寿命推定線Cを作製し余寿命を診断するステップとを備える。これにより、精度の高い余寿命推定線Cを得ることができる。 That is, in the present embodiment, the step of evaluating both the reversible deterioration component that can be recovered by cleaning and the irreversible deterioration component that cannot be recovered by cleaning, and the remaining life based on the evaluation result of these deterioration components. It includes a step of preparing an estimation line C 2 and diagnosing the remaining life. As a result, the remaining life estimation line C 2 with high accuracy can be obtained.

このように本実施の形態の余寿命診断方法によれば、清掃効果を含んだ余寿命を診断することができる。そして清掃による絶縁性能回復を加味することで、従来よりもきめの細かい余寿命判断が可能となり、どの程度の延命が可能かを精度よく診断できるので従来よりも製品の交換時期等を事前に判断しやすく、また延命させるための清掃管理計画も適切に図ることが可能である。 As described above, according to the remaining life diagnosis method of the present embodiment, it is possible to diagnose the remaining life including the cleaning effect. By taking into account the recovery of insulation performance by cleaning, it is possible to judge the remaining life more finely than before, and it is possible to accurately diagnose how much life can be extended, so it is possible to judge in advance when to replace the product than before. It is easy to do, and it is possible to appropriately plan a cleaning management plan to prolong the life.

本実施の形態における余寿命診断方法をより具体的に説明する。まず出荷時の事前準備として、対象絶縁物に対する高湿度下の表面抵抗率の初期値ρと公称電圧で放電発生する使用下限値ρを取得する。 The remaining life diagnosis method in the present embodiment will be described more specifically. First, as a preliminary preparation at the time of shipment, the initial value ρ 0 of the surface resistivity of the target insulator under high humidity and the lower limit value ρ n of use that discharges at a nominal voltage are acquired.

続いて上記絶縁物を含む製品が出荷された後、現地測定を行う。図9では、例えば15年後に現地測定を行ったと過程した。現地測定では、清掃効果を反映するために高湿度下の清掃前値ρ1aと清掃後値ρ1bを測定する。これらの値を用いた余寿命推定線を図9に示す。 Subsequently, after the product containing the above-mentioned insulation is shipped, on-site measurement is performed. In FIG. 9, for example, it was a process that the on-site measurement was performed 15 years later. In the on-site measurement, the pre-cleaning value ρ 1a and the post-cleaning value ρ 1b under high humidity are measured in order to reflect the cleaning effect. The remaining life estimation line using these values is shown in FIG.

清掃不可の場合には、時間経過∝汚損堆積量∝等価塩分付着密度∝高湿潤時の表面導電率=1/表面抵抗率となり、表面抵抗は一様に低下し続けると仮定した。汚損試験では表面抵抗値に下限値があることから、未清掃時の表面抵抗率ρと経過時間tの関係式として以下の式(1)を用いた。
ρ(t)=A/tα・・・(1)
When cleaning is not possible, it is assumed that the passage of time ∝ dirt accumulation amount ∝ equivalent salinity adhesion density ∝ surface conductivity at high wetness = 1 / surface resistivity, and the surface resistivity continues to decrease uniformly. Since the surface resistance value has a lower limit in the fouling test, the following equation (1) was used as the relational expression between the surface resistivity ρ a when not cleaned and the elapsed time t.
ρ a (t) = A / t α ... (1)

式(1)では、ρ(1)=ρからA=ρ、ρ(t)=ρ1aからフィッティング係数αを求めることができる。 In the equation (1), the fitting coefficient α can be obtained from ρ a (1) = ρ 0 to A = ρ 0 and ρ a (t 1 ) = ρ 1 a .

そして未清掃時の余寿命年数をtraとおくと、式(1)よりρ(t+tra)=ρを解くことで余寿命年数traを算出することができる。 Then, assuming that the remaining life years when not cleaned is tra , the remaining life years tra can be calculated by solving ρ a (t 1 + tra ) = ρ n from the equation (1).

続いて清掃が可能な場合には、清掃により汚損堆積物を除去でき、図9に示すρ1b値は母材変質による不可逆な表面抵抗低下分と仮定した。この清掃後の状態を新たな初期状態とし、現在までと同じ傾向で汚損堆積物により表面抵抗が低下し続けると考えた。よって、上記の式(1)をベースとして清掃後の表面抵抗率ρと経過時間tの関係を以下の式(2)とした。
ρ(t)=ρ1b/(t−tα・・・(2)
If cleaning is possible, the soiled deposits can be removed by cleaning, and the ρ 1b value shown in FIG. 9 is assumed to be the irreversible decrease in surface resistance due to alteration of the base metal. The state after cleaning was set as a new initial state, and it was considered that the surface resistance would continue to decrease due to the fouling deposits in the same tendency as before. Therefore, based on the above equation (1), the relationship between the surface resistivity ρ b after cleaning and the elapsed time t is set to the following equation (2).
ρ b (t) = ρ 1b / (t−t 1 ) α・ ・ ・ (2)

式(2)のα値は式(1)と同じとし、清掃後の寿命年数trbはρ(t+trb)=ρを解いて算出できる。 The α value of the equation (2) is the same as that of the equation (1), and the service life t rb after cleaning can be calculated by solving ρ b (t 1 + tr rb ) = ρ n .

以上により、清掃可能な設備に対しては、余寿命年数trbに至る前に設備清掃を実施して、設備寿命を延命させることも計画できることがわかった。 From the above, it was found that for equipment that can be cleaned, it is possible to plan to extend the life of the equipment by cleaning the equipment before it reaches the remaining life of trb .

本発明の絶縁特性測定装置によれば、円筒形状絶縁物の側面に対し、外部環境によらず、任意の湿度に保ったうえで前記側面の絶縁特性の測定が可能となる。そして現有設備をできるだけ長期運用したいというニーズがある受配電設備等に対して、本発明の絶縁特性測定装置を用いることで、余寿命診断を精度よく行うことができ、故障が生じない適切な更新時期を見極めることが可能になる。 According to the insulation characteristic measuring apparatus of the present invention, it is possible to measure the insulation characteristics of the side surface of a cylindrical insulator while maintaining an arbitrary humidity regardless of the external environment. By using the insulation characteristic measuring device of the present invention for power receiving and distribution equipment that needs to operate the existing equipment for as long as possible, the remaining life can be diagnosed accurately and appropriate update without failure. It becomes possible to determine the time.

1 絶縁特性測定装置
2 密閉容器
3、4 リング状電極
5 湿度調整手段
6 接続部(高電圧端子)
7 接続部(接地端子)
8 測定手段(絶縁測定器)
9 密閉空間
10c 側面
11 金属部
12 樹脂部
13a 台座部
13b ひだ部
20、40 封止材
21 空気バルブ
23 加湿装置
24、25 エアーチューブ
32 循環ポンプ
33 密閉フィルム
34 結束部材
35 スペーサ
36 結束バンド
37 梁部
1 Insulation characteristic measuring device 2 Sealed container 3, 4 Ring-shaped electrode 5 Humidity adjusting means 6 Connection part (high voltage terminal)
7 Connection (ground terminal)
8 Measuring means (insulation measuring instrument)
9 Sealed space 10c Side surface 11 Metal part 12 Resin part 13a Pedestal part 13b Fold part 20, 40 Sealing material 21 Air valve 23 Humidifying device 24, 25 Air tube 32 Circulation pump 33 Sealing film 34 Binding member 35 Spacer 36 Binding band 37 Beam Department

Claims (11)

円筒形状絶縁物の絶縁特性を測定するための絶縁特性測定装置であって、
前記円筒形状絶縁物の側面上に間隔を空けて配置される複数の電極と、
前記複数の電極を覆い外部と隔絶された密閉空間を形成可能な密閉部材と、
前記密閉空間を一定の湿度に保つことが可能な湿度調整手段と、
前記複数の電極間に電圧を印加して前記円筒形状絶縁物の絶縁特性を測定するための測定手段を前記電極に接続する接続部と、
を有し、
前記密閉部材は軟質素材で形成されており、前記密閉空間は、前記円筒形状絶縁物の少なくとも2ヶ所の円周上で前記密閉部材が締め付けられ、前記複数の電極を内部に含包するように形成されることを特徴とする絶縁特性測定装置。
An insulation characteristic measuring device for measuring the insulation characteristics of cylindrical insulators.
A plurality of electrodes arranged at intervals on the side surface of the cylindrical insulator,
A sealing member capable of forming a closed space isolated from the outside by covering the plurality of electrodes,
Humidity adjusting means that can keep the enclosed space at a constant humidity,
A connection portion for connecting a measuring means for measuring the insulating characteristics of the cylindrical insulator by applying a voltage between the plurality of electrodes to the electrodes, and
Have,
The sealing member is made of a soft material, and in the sealing space, the sealing member is tightened on at least two circumferences of the cylindrical insulator so as to include the plurality of electrodes inside. An insulation characteristic measuring device characterized in that it is formed.
前記複数の電極はそれぞれ、前記円筒形状絶縁物の異なる円周上に配置されることを特徴とする請求項1に記載の絶縁特性測定装置。 The insulation characteristic measuring apparatus according to claim 1, wherein each of the plurality of electrodes is arranged on different circumferences of the cylindrical insulator. 前記複数の電極のうち少なくとも1つは、前記円筒形状絶縁物の同一円周上において2点以上で接触することを特徴とする請求項2に記載の絶縁特性測定装置。 The insulation characteristic measuring apparatus according to claim 2, wherein at least one of the plurality of electrodes is in contact with each other at two or more points on the same circumference of the cylindrical insulator. 前記複数の電極のうち少なくとも1つは、前記円筒形状絶縁物の同一円周上において半周以上にわたって設けられることを特徴とする請求項3に記載の絶縁特性測定装置。 The insulation characteristic measuring apparatus according to claim 3, wherein at least one of the plurality of electrodes is provided on the same circumference of the cylindrical insulator over half a circumference or more. 前記円筒形状絶縁物の側面と前記密閉部材との間に介在し前記密閉空間を保つためのスペーサを備えることを特徴とする請求項1から請求項4のいずれかに記載の絶縁特性測定装置。 The insulation characteristic measuring apparatus according to any one of claims 1 to 4, wherein a spacer is provided between the side surface of the cylindrical insulator and the sealing member to maintain the sealed space. 前記スペーサには、前記接続部、前記湿度調整手段と前記密閉空間との間で空気を循環させるための流路部のうち少なくとも1つが挿通されていることを特徴とする請求項5に記載の絶縁特性測定装置。 The fifth aspect of claim 5, wherein at least one of the connection portion, the flow path portion for circulating air between the humidity adjusting means and the closed space is inserted into the spacer. Insulation characteristic measuring device. 前記複数の電極が前記密閉空間の内部と外部とを電気的に接続する複数の前記接続部にそれぞれ接続され、前記複数の接続部のうち少なくとも2つは、互いに、前記円筒形状絶縁物を介して反対側に配置されることを特徴とする請求項1から請求項6のいずれかに記載の絶縁特性測定装置。 The plurality of electrodes are respectively connected to the plurality of connecting portions that electrically connect the inside and the outside of the enclosed space, and at least two of the plurality of connecting portions are connected to each other via the cylindrical insulator. The insulation characteristic measuring apparatus according to any one of claims 1 to 6, wherein the insulation characteristic measuring apparatus is arranged on the opposite side. 前記複数の接続部のうち少なくとも2つは、前記電極との対向位置から前記接続部間の距離が遠ざかる方向に配置されていることを特徴とする請求項7に記載の絶縁特性測定装置。 The insulation characteristic measuring apparatus according to claim 7, wherein at least two of the plurality of connecting portions are arranged in a direction in which the distance between the connecting portions is away from the position facing the electrodes. 請求項1から請求項8のいずれかに記載の絶縁特性測定装置を用いて、円筒形状絶縁物に対して絶縁特性を測定するための方法であって、
前記円筒形状絶縁物の側面に密閉空間を形成し、
前記密閉空間内を一定の湿度に調整し、
前記密閉空間内で前記円筒形状絶縁物の側面上に電圧を印加して絶縁特性を測定することを特徴とする絶縁特性の測定方法。
A method for measuring the insulation characteristics of a cylindrical insulating material by using the insulation characteristic measuring device according to any one of claims 1 to 8.
A closed space is formed on the side surface of the cylindrical insulator to form a closed space.
Adjust the humidity inside the enclosed space to a constant humidity,
A method for measuring insulation characteristics, which comprises applying a voltage on the side surface of the cylindrical insulator in the enclosed space to measure the insulation characteristics.
請求項9に記載された絶縁特性の測定により、前記円筒形状絶縁物の余寿命を診断することを特徴とする余寿命診断方法。 A method for diagnosing the remaining life of a cylindrical insulator by measuring the insulating characteristics according to claim 9. 前記円筒形状絶縁物の側面の清掃前後の絶縁特性を測定するステップと、前記清掃により回復可能な可逆的劣化成分及び前記清掃により回復不可能な不可逆的劣化成分を評価するステップと、前記可逆的劣化成分及び前記不可逆的劣化成分の評価結果に基づいて前記清掃の効果を考慮した余寿命を診断するステップとを含むことを特徴とする請求項10に記載の余寿命診断方法。 The step of measuring the insulation characteristics before and after cleaning the side surface of the cylindrical insulator, the step of evaluating the reversible deterioration component recoverable by the cleaning and the irreversible deterioration component irrecoverable by the cleaning, and the reversible The remaining life diagnosis method according to claim 10, further comprising a step of diagnosing the remaining life in consideration of the effect of cleaning based on the evaluation results of the deteriorated component and the irreversible deteriorated component .
JP2015238763A 2015-12-07 2015-12-07 Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method Active JP6763131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238763A JP6763131B2 (en) 2015-12-07 2015-12-07 Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238763A JP6763131B2 (en) 2015-12-07 2015-12-07 Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method

Publications (2)

Publication Number Publication Date
JP2017106750A JP2017106750A (en) 2017-06-15
JP6763131B2 true JP6763131B2 (en) 2020-09-30

Family

ID=59060643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238763A Active JP6763131B2 (en) 2015-12-07 2015-12-07 Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method

Country Status (1)

Country Link
JP (1) JP6763131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241476B2 (en) * 2018-06-27 2023-03-17 三菱電機株式会社 Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment
CN115032512B (en) * 2022-08-15 2022-10-28 国网天津市电力公司电力科学研究院 GIS basin-type insulator on-line detection sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178270A (en) * 1982-04-13 1983-10-19 Tokyo Electric Power Co Inc:The Apparatus for measuring contamination level of insulator ceramics
JP2003021662A (en) * 2001-07-09 2003-01-24 Canon Inc Cdm testing device
JP5836904B2 (en) * 2012-09-10 2015-12-24 株式会社東芝 Insulation material degradation diagnosis method and apparatus

Also Published As

Publication number Publication date
JP2017106750A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP4937012B2 (en) Remaining life diagnosis method for power distribution equipment
JP6763131B2 (en) Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method
JP5972764B2 (en) How to use and measure the probe for remaining life diagnosis
CN108089101B (en) A kind of appraisal procedure of scene casing insulation ag(e)ing state
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP6439486B2 (en) Insulation characteristic measuring apparatus, insulation characteristic measuring method using the same, and remaining life diagnosis method
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
KR101390130B1 (en) Air Ion Measuring Device
JP5944773B2 (en) Method for diagnosing remaining life of insulators in substation equipment
US20200378884A1 (en) Corrosion measurement device
CN104297299B (en) A kind of outer wall is the quality determining method of the non-conductive coated inside of lining pipe of metal
Peng et al. Distributed temperature system applied in cable temperature measurement.
WO2005050186A1 (en) Actual environment polarization measuring instrument and actual environment polarization resistance/polarization curve measuring method
JP2019105557A (en) Method and device for diagnosing deterioration of insulator
JP5903029B2 (en) Insulation inspection equipment
JP2007271540A (en) Corrosion estimation apparatus and corrosion estimation method
Ghassemi et al. Potential and electric field calculation along a FRP live-line tool under cold and icing conditions
JP5836895B2 (en) Insulation resistance estimation method of insulation material and degradation diagnosis method thereof
Judd et al. Partial discharges under HVDC conditions
RU2017131799A (en) Method and device for continuous monitoring of pitting corrosion of the inner walls of metal structures
JPH10213559A (en) Method and device for judging sticking of scale
RU139574U1 (en) DKI INSULATION CONTROL SENSOR
JP7202924B2 (en) Method for diagnosing deterioration of paint film and probe for measurement
JP2019032251A (en) Insulation characteristic measuring apparatus and method of fixing insulation characteristic measuring apparatus
JP2021148687A (en) Fouling substance detection sensor, fouling substance quantity measuring device, and fouling substance quantity measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6763131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250