JP6761998B2 - Method for manufacturing polymer protective material-free supported catalyst - Google Patents

Method for manufacturing polymer protective material-free supported catalyst Download PDF

Info

Publication number
JP6761998B2
JP6761998B2 JP2015039661A JP2015039661A JP6761998B2 JP 6761998 B2 JP6761998 B2 JP 6761998B2 JP 2015039661 A JP2015039661 A JP 2015039661A JP 2015039661 A JP2015039661 A JP 2015039661A JP 6761998 B2 JP6761998 B2 JP 6761998B2
Authority
JP
Japan
Prior art keywords
protective material
polymer protective
supported catalyst
nanoparticles
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039661A
Other languages
Japanese (ja)
Other versions
JP2016159222A (en
Inventor
康平 草田
康平 草田
北川 宏
宏 北川
池田 泰之
泰之 池田
丸子 智弘
智弘 丸子
竹内 正史
正史 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Furuya Metal Co Ltd
Original Assignee
Kyoto University
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Furuya Metal Co Ltd filed Critical Kyoto University
Priority to JP2015039661A priority Critical patent/JP6761998B2/en
Priority to PCT/JP2016/055791 priority patent/WO2016136938A1/en
Publication of JP2016159222A publication Critical patent/JP2016159222A/en
Application granted granted Critical
Publication of JP6761998B2 publication Critical patent/JP6761998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、ナノ粒子が担持体に担持され、高分子保護材を含有しない高分子保護材フリー担持触媒の製造方法に関する。 The present invention relates to a method for producing a polymer protective material-free supported catalyst in which nanoparticles are supported on a carrier and does not contain a polymer protective material.

従来、化学反応触媒又は燃料電池などでは、カーボン系の担体にナノ粒子を担持した不均一系触媒が用いられている。また、ボイラー又は排ガスの浄化などでは、セラミックス系の担体にナノ粒子を担持した不均一系触媒が用いられている。不均一系触媒に用いるナノ粒子として(fcc)Ruナノ粒子が開示されている(例えば、特許文献1、又は非特許文献1を参照。)。非特許文献1では、(fcc)Ruナノ粒子を担体に担持して不均一系触媒として使用する場合、ポリビニルピロリドンなどの高分子保護材を用いてナノ粒子を合成・精製した後に、得られたナノ粒子を担体に担持している。 Conventionally, in a chemical reaction catalyst, a fuel cell, or the like, a heterogeneous catalyst in which nanoparticles are supported on a carbon-based carrier has been used. Further, in the purification of boilers or exhaust gas, a heterogeneous catalyst in which nanoparticles are supported on a ceramic-based carrier is used. (Fcc) Ru nanoparticles are disclosed as nanoparticles used in a heterogeneous catalyst (see, for example, Patent Document 1 or Non-Patent Document 1). In Non-Patent Document 1, when (fcc) Ru nanoparticles are supported on a carrier and used as a heterogeneous catalyst, the nanoparticles are obtained after synthesizing and purifying the nanoparticles using a polymer protective material such as polyvinylpyrrolidone. Nanoparticles are supported on a carrier.

WO2013/038674号公報WO2013 / 038774

J.Am.Chem.Soc.,2013,135(15),pp5493−5496J. Am. Chem. Soc. , 2013, 135 (15), pp5493-5496

しかし、ナノ粒子の合成時に用いた高分子保護材が触媒中に残っていると、触媒の効果が十分に発揮されない場合がある。高分子保護材の除去を目的としてナノ粒子の精製を繰り返すと、精製回数が増加するにつれて得られるナノ粒子の収量が少なくなるという問題である。 However, if the polymer protective material used in the synthesis of nanoparticles remains in the catalyst, the effect of the catalyst may not be fully exhibited. When the purification of nanoparticles is repeated for the purpose of removing the polymer protective material, there is a problem that the yield of the obtained nanoparticles decreases as the number of purifications increases.

本発明の目的は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる高分子保護材フリー担持触媒を、従来の方法よりも効率的に得ることができる製造方法を提供することである。 An object of the present invention is to produce a polymer protective material-free supported catalyst capable of fully exerting the effect of the catalyst without using a polymer protective material that deteriorates the performance of the catalyst, more efficiently than the conventional method. To provide a method.

本発明に係る高分子保護材フリー担持触媒の製造方法は、ナノ粒子が担持体に担持され、高分子保護材を含有しない高分子保護材フリー担持触媒の製造方法であって、前記ナノ粒子の合成原料となる化合物と、前記担持体と、炭素数が2以上の還元性をもつ有機溶媒と、を含有し、かつ、前記高分子保護材を含有しない混合物を常圧下で加熱して、前記ナノ粒子を合成するとともに、該ナノ粒子を前記担持体に担持させる工程1を有し、該工程1における加熱温度は、100〜300℃であり、前記加熱温度で保持する時間は、10〜300分であり、前記ナノ粒子がRu粒子であり、該Ru粒子はfcc構造を有していることを特徴とする。 The method for producing a polymer protective material-free supported catalyst according to the present invention is a method for producing a polymer protective material-free supported catalyst in which nanoparticles are supported on a carrier and does not contain a polymer protective material. A mixture containing a compound as a synthetic raw material, the carrier, and a reducing organic solvent having 2 or more carbon atoms and not containing the polymer protective material is heated under normal pressure to obtain the above. It has a step 1 of synthesizing nanoparticles and supporting the nanoparticles on the carrier, the heating temperature in the step 1 is 100 to 300 ° C., and the holding time at the heating temperature is 10 to 300. Minutes, the nanoparticles are Ru particles, and the Ru particles have an fcc structure.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記有機溶媒の沸点は100℃以上であることが好ましい。取り扱い性に優れる。また、担持触媒をより安全に得ることができる。 In the method for producing a polymer protective material-free supported catalyst according to the present invention, the boiling point of the organic solvent is preferably 100 ° C. or higher. Excellent handleability. Moreover, the supported catalyst can be obtained more safely.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記有機溶媒は、多価アルコール、ブタノール、イソブタノール、エトキシエタノール、ジメチルホルムアミド、N−メチルピロリジノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、リエチレングリコールモノメチルエーテル及びポリエチレングリコールモノメチルエーテルの中から選ばれる1種以上であることが好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。 The method for producing a polymer protective material free supported catalyst according to the present invention, the organic solvent is a polyhydric alcohol, butanol, isobutanol, ethoxyethanol, dimethylformamidine de, N - methyl pyrrolidinopyridine down, profile propylene glycol monomethyl ether , ethylene glycol monomethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, di ethylene glycol monomethyl ether, collected by polypropylene glycol dimethyl ether, di ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, collected by Riechiren is preferably at least one selected from glycol monomethyl ether及beauty polyethylene glycol monomethyl ether. The supported catalyst can be obtained more safely and more efficiently.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記多価アルコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール及びブチレングリコールの中から選ばれる1種以上であることが好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。 In the method for producing a polymer protective material-free supported catalyst according to the present invention, the polyhydric alcohol is preferably one or more selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol. The supported catalyst can be obtained more safely and more efficiently.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記担持体は、カーボン若しくはセラミックスのいずれか一方又は両方である形態を包含する。 In the method for producing a polymer protective material-free carrier catalyst according to the present invention, the carrier includes a form in which either one or both of carbon and ceramics are used.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記担持体は、アルミナ、シリカ、シリカアルミナ、カルシア、マグネシア、チタニア、セリア、ジルコニア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト、ムライト、シリコンカーバイド、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ及びカーボンナノホーンの中から選ばれる1種以上である形態を包含する。 In the method for producing a polymer protective material-free carrier catalyst according to the present invention, the carrier is alumina, silica, silica alumina, calcia, magnesia, titania, ceria, zirconia, ceria zirconia, lanthana, lanthana alumina, tin oxide, and oxidation. Selected from tungsten, aluminosilicate, aluminophosphate, borosilicate, phosphotoxynic acid, hydroxyapatite, hydrotalcite, perovskite, cordierite, mulite, silicon carbide, activated carbon, carbon black, acetylene black, carbon nanotubes and carbon nanohorns. Includes one or more forms.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記ナノ粒子がRu粒子であり、前記ナノ粒子の合成原料となる化合物はRu有機化合物であることが好ましい。担持触媒をより効率的に得ることができる。 In the method for producing a polymer protective material-free supported catalyst according to the present invention, it is preferable that the nanoparticles are Ru particles and the compound used as a synthetic raw material for the nanoparticles is a Ru organic compound. The supported catalyst can be obtained more efficiently.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記Ru有機化合物は、ジケトナート又はアセテートを含有する化合物であることが好ましい。担持触媒をより効率的に得ることができる。 In the method for producing a polymer protective material-free supported catalyst according to the present invention, the Ru organic compound is preferably a compound containing diketonate or acetate. The supported catalyst can be obtained more efficiently.

本発明に係る高分子保護材フリー担持触媒の製造方法では、前記Ru有機化合物がRu(acac)又は酢酸Ruであることが好ましい。担持触媒をより効率的に得ることができる。 In the method for producing a polymer protective material-free supported catalyst according to the present invention, it is preferable that the Ru organic compound is Ru (acac) 3 or Ru acetate. The supported catalyst can be obtained more efficiently.

本発明は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる高分子保護材フリー担持触媒を、従来の方法よりも効率的に得ることができる製造方法を提供することができる。 The present invention provides a production method capable of more efficiently obtaining a polymer protective material-free supported catalyst capable of fully exerting the effect of the catalyst without using a polymer protective material that deteriorates the performance of the catalyst, as compared with the conventional method. Can be provided.

実施例1AのTEM像である。It is a TEM image of Example 1A. 実施例2AのTEM像である。It is a TEM image of Example 2A. 実施例1AのXRDパターンである。It is an XRD pattern of Example 1A. 実施例2AのXRDパターンである。It is an XRD pattern of Example 2A.

次に本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. The embodiments may be modified in various ways as long as the effects of the present invention are exhibited.

本実施形態に係る高分子保護材フリー担持触媒の製造方法は、ナノ粒子が担持体に担持され、高分子保護材を含有しない高分子保護材フリー担持触媒の製造方法であって、ナノ粒子の合成原料となる化合物と、担持体と、炭素数が2以上の還元性をもつ有機溶媒と、を含有し、かつ、高分子保護材を含有しない混合物を加熱して、ナノ粒子を合成するとともに、該ノ粒子を前記担持体に担持させる工程1を有する。 The method for producing a polymer protective material-free supported catalyst according to the present embodiment is a method for producing a polymer protective material-free supported catalyst in which nanoparticles are supported on a carrier and does not contain a polymer protective material. Nanoparticles are synthesized by heating a mixture containing a compound as a synthetic raw material, a carrier, and a reducing organic solvent having 2 or more carbon atoms and not containing a polymer protective material. , a step 1 for supporting the nanoparticles on the carrier.

本実施形態に係る担持触媒の製造方法は、高分子保護材を用いずにナノ粒子を合成する点、及びナノ粒子の合成とナノ粒子の担持体への担持とを同時に行う点が、例えば非特許文献1に記載されたような従来の製造方法と異なる点である。高分子保護材を用いないことで、触媒の作用を十分の発揮させることができる担持触媒を製造することができる。また、ナノ粒子の合成とナノ粒子の担持体への担持とを同時に行うことで、従来の製造方法と比較して製造工程を少なくすることができる。本明細書において、ナノ粒子とは、平均粒子径が100nm以下の微細粒子をいう。ナノ粒子の平均粒子径は、透過型電子顕微鏡(TEM)によって得られた粒子像から少なくとも100個以上の粒子の粒子径を計測し、その平均を求めることによって算出した値である。TEMの観察倍率は、例えば、120000倍又は150000倍であることが好ましい。ナノ粒子は、例えば、Ru粒子、Pd粒子、Pt粒子、Ir粒子、Au粒子である。ナノ粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。 The method for producing a supported catalyst according to the present embodiment is not characterized in that nanoparticles are synthesized without using a polymer protective material, and that nanoparticles are synthesized and nanoparticles are supported on a carrier at the same time, for example. This is a difference from the conventional manufacturing method as described in Patent Document 1. By not using the polymer protective material, it is possible to produce a supported catalyst capable of fully exerting the action of the catalyst. Further, by simultaneously synthesizing the nanoparticles and supporting the nanoparticles on the carrier, the number of manufacturing steps can be reduced as compared with the conventional manufacturing method. In the present specification, nanoparticles refer to fine particles having an average particle diameter of 100 nm or less. The average particle size of nanoparticles is a value calculated by measuring the particle size of at least 100 or more particles from a particle image obtained by a transmission electron microscope (TEM) and calculating the average. The observation magnification of the TEM is preferably, for example, 120,000 times or 150,000 times. The nanoparticles are, for example, Ru particles, Pd particles, Pt particles, Ir particles, and Au particles. The lower limit of the average particle size of the nanoparticles is not particularly limited, but is preferably 1 nm or more.

次に、工程1で用いる各物質について説明する。 Next, each substance used in step 1 will be described.

(ナノ粒子の合成原料となる化合物)
本実施形態に係る高分子保護材フリー担持触媒の製造方法では、ナノ粒子がRu粒子であるとき、合成原料はRu化合物である。Ru化合物はRu有機化合物であることが好ましい。担持触媒をより効率的に得ることができる。Ru有機化合物は、ジケトナート又はアセテートを含有する化合物であることが好ましい。ジケトナートを含有するRu有機化合物は、例えば、トリス(アセチルアセナト)ルテニウム(III)(以降、Ru(acac)という。)である。アセテートを含有するRu有機化合物は、例えば、酢酸ルテニウム(以降、酢酸Ruという。)である。
(Compounds used as raw materials for synthesizing nanoparticles)
In the method for producing a polymer protective material-free supported catalyst according to the present embodiment, when the nanoparticles are Ru particles, the synthetic raw material is a Ru compound. The Ru compound is preferably a Ru organic compound. The supported catalyst can be obtained more efficiently. The Ru organic compound is preferably a compound containing diketonate or acetate. Ru organic compounds containing diketonate is, for example, tris (Asechiruase preparative isocyanatomethyl) ruthenium (III) (hereinafter, Ru (acac) 3 that.). The Ru organic compound containing acetate is, for example, ruthenium acetate (hereinafter referred to as Ru acetate).

(担持体)
担持体は、カーボン若しくはセラミックスのいずれか一方又は両方である形態を包含する。セラミックスは、例えば、アルミナ、シリカ、シリカアルミナ、カルシア、マグネシア、チタニア、セリア、ジルコニア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト、ムライト又はシリコンカーバイドである。カーボンは、例えば、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ又はカーボンナノホーンである。本実施形態では、これらの担持体の中から1種だけを使用するか、又は2種以上を併用してもよい。2種以上を併用する場合は、セラミックスから2種以上を組合せて用いるか、カーボンから2種以上を組合せて用いるか、又はセラミックスから1種以上及びカーボンから1種以上を組合せて用いてもよい。より好ましくは、アルミナ、シリカ、チタニア、セリア、ジルコニア、活性炭及びカーボンブラックの中から選ばれる1種以上を用いる。
(Supporter)
The carrier includes a form in which either one or both of carbon and ceramics are used. Ceramics include, for example, alumina, silica, silica alumina, calcia, magnesia, titania, ceria, zirconia, ceria zirconia, lanthana, lanthana alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstic acid, hydroxy. Apatite, hydrotalcite, perovskite, corgerite, mullite or silicon carbide. The carbon is, for example, activated carbon, carbon black, acetylene black, carbon nanotubes or carbon nanohorns. In the present embodiment, only one of these carriers may be used, or two or more thereof may be used in combination. When two or more types are used in combination, two or more types of ceramics may be used in combination, two or more types of carbon may be used in combination, or one or more types of ceramics and one or more types of carbon may be used in combination. .. More preferably, one or more selected from alumina, silica, titania, ceria, zirconia, activated carbon and carbon black are used.

(有機溶媒)
有機溶媒は、炭素数が2以上であり、還元性をもつ。有機溶媒の炭素数は、4以上であることがより好ましい。有機溶媒の炭素数の上限は、特に限定されないが、常温において液体であることが望ましい。
(Organic solvent)
The organic solvent has 2 or more carbon atoms and has reducing property. The organic solvent preferably has 4 or more carbon atoms. The upper limit of the number of carbon atoms of the organic solvent is not particularly limited, but it is desirable that the organic solvent be liquid at room temperature.

有機溶媒の沸点は100℃以上であることが好ましい。取り扱い性に優れる。また、担持触媒をより安全に得ることができる。有機溶媒の沸点は、160℃以上であることがより好ましい。有機溶媒の沸点の上限は、特に限定されないが、担持触媒から溶媒をより容易に除去できる点で、300℃以下であることが好ましく、290℃以下であることがより好ましい。 The boiling point of the organic solvent is preferably 100 ° C. or higher. Excellent handleability. Moreover, the supported catalyst can be obtained more safely. The boiling point of the organic solvent is more preferably 160 ° C. or higher. The upper limit of the boiling point of the organic solvent is not particularly limited, but is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, in that the solvent can be more easily removed from the supported catalyst.

有機溶媒は多価アルコール、ブタノール、イソブタノール、エトキシエタノール、ジメチルホルムアミド、N−メチルピロリジノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、リエチレングリコールモノメチルエーテル及びポリエチレングリコールモノメチルエーテルの中から選ばれる1種以上であることが好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。このうち、多価アルコールがより好ましい。 The organic solvent is a polyhydric alcohol, butanol, isobutanol, ethoxyethanol, dimethylformamidine de, N - methyl pyrrolidinopyridine down, profile propylene glycol monomethyl ether, ethylene glycol monomethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, di ethylene glycol monomethyl ether, collected by polypropylene glycol dimethyl ether, di ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, 1 or more selected from among preparative triethylene glycol monomethyl ether及beauty polyethylene glycol monomethyl ether Is preferable. The supported catalyst can be obtained more safely and more efficiently. Of these, polyhydric alcohols are more preferable.

多価アルコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール及びブチレングリコールの中から選ばれる1種以上であることが好ましい。このうち、トリエチレングリコールがより好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。 The polyhydric alcohol is preferably one or more selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol. Of these, triethylene glycol is more preferable. The supported catalyst can be obtained more safely and more efficiently.

(高分子保護材)
本実施形態では、高分子保護材を用いない。高分子保護材は、例えば、ポリビニルピロリドン(PVP)である。
(Polymer protective material)
In this embodiment, the polymer protective material is not used. The polymer protective material is, for example, polyvinylpyrrolidone (PVP).

次に、工程1について、ナノ粒子がRu粒子である形態を例にとって説明する。 Next, step 1 will be described by taking a form in which the nanoparticles are Ru particles as an example.

本実施形態に係る担持触媒の製造方法では、ナノ粒子がRu粒子であり、工程1が、Ru化合物と、担持体と、有機溶媒と、を含有し、高分子保護材を含有しない混合物を作製した後に加熱する工程であることが好ましい。 In the method for producing a carrier catalyst according to the present embodiment, the nanoparticles are Ru particles, and step 1 prepares a mixture containing a Ru compound, a carrier, and an organic solvent, and does not contain a polymer protective material. It is preferable that the step is to heat the particles.

工程1では、まず、Ru化合物と、担持体と、有機溶媒と、を含有する混合物を作製する。混合物中のRu化合物の濃度は、125mM(mmol/l)以下であることが好ましく、100mM(mmol/l)以下であることがより好ましい。また、Ru化合物と担持体との割合は、担持触媒中のRu粒子の担持量が所定の範囲となるように調整する。担持触媒中のRu粒子の担持量は、0.001〜60質量%であることが好ましい。ここで、担持量は、乾燥状態の担持触媒の質量に対するナノ粒子の質量の割合であり、例えば周波誘導結合プラズマ発光分光分析、原子吸光分光光度分析で測定することができる。 In step 1, first, a mixture containing a Ru compound, a carrier, and an organic solvent is prepared. The concentration of the Ru compound in the mixture is preferably 125 mM (mmol / l) or less, more preferably 100 mM (mmol / l) or less. Further, the ratio of the Ru compound and the carrier is adjusted so that the amount of Ru particles supported in the supported catalyst is within a predetermined range. The amount of Ru particles supported in the supported catalyst is preferably 0.001 to 60% by mass. Here, the supported amount is the ratio of the mass of the nanoparticles to the mass of the supported catalyst in the dry state, such as high-frequency inductively coupled plasma emission spectroscopy, it can be measured by atomic absorption spectrophotometric analysis.

混合物の作製にあたり、Ru化合物及び担持体を有機溶媒中に懸濁させた後、例えば超音波などの分散機を用いて分散させることが好ましい。本発明は、各物質の添加順は特に限定されない。 In preparing the mixture, it is preferable that the Ru compound and the carrier are suspended in an organic solvent and then dispersed using a disperser such as ultrasonic waves. In the present invention, the order of addition of each substance is not particularly limited.

次いで、混合物を加熱する。加熱方法は、特に限定されず、例えば、オイルバス、マントルヒーター、ブロックヒーター若しくは熱媒循環式ジャケットなどの外部加熱方式、又はマイクロ波照射方式である。加熱温度は、100〜300℃であることが好ましく、180〜230℃であることがより好ましい。目的とする加熱温度に到達させるまでの昇温速度は、4℃/分以上であることが好ましく、6℃/分以上であることがより好ましい。昇温速度を所定の範囲とすることで、fcc構造を有するRu粒子を形成することができる。また、目的とする加熱温度で保持する時間は、使用する化合物の種類、混合物の液量又は加熱温度などに依存するが、例えば、10〜300分であることが好ましく、120〜240分であることがより好ましい。 The mixture is then heated. The heating method is not particularly limited, and is, for example, an external heating method such as an oil bath, a mantle heater, a block heater, or a heat medium circulation jacket, or a microwave irradiation method. The heating temperature is preferably 100 to 300 ° C, more preferably 180 to 230 ° C. The rate of temperature rise until the target heating temperature is reached is preferably 4 ° C./min or more, and more preferably 6 ° C./min or more. By setting the heating rate within a predetermined range, Ru particles having an fcc structure can be formed. The time for holding at the target heating temperature depends on the type of the compound used, the amount of the mixture, the heating temperature, and the like, but is preferably 10 to 300 minutes, preferably 120 to 240 minutes, for example. Is more preferable.

工程1では、Ru化合物が有機溶媒によって還元され、担持体の表面でRu粒子の核生成及び粒成長が起こる。そして、Ru粒子が担持体に担持された担持触媒が得られる。このRu粒子はfcc構造を有している。Ru粒子がfcc構造を有することで、hcp構造を有するRu粒子を担持させた触媒と比較し、異なる触媒活性を得ることができる。Ru粒子の結晶構造は、例えば、X線回折パターン(XRDパターン)によって確認できる。Ru粒子の平均粒子径は、30nm以下であることが好ましく、10nm以下であることがより好ましい。Ru粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。 In step 1, the Ru compound is reduced by an organic solvent, causing nucleation and grain growth of Ru particles on the surface of the carrier. Then, a supported catalyst in which Ru particles are supported on the carrier is obtained. The Ru particles have an fcc structure. Since the Ru particles have an fcc structure, different catalytic activities can be obtained as compared with a catalyst supporting Ru particles having a hcp structure. The crystal structure of Ru particles can be confirmed by, for example, an X-ray diffraction pattern (XRD pattern). The average particle size of the Ru particles is preferably 30 nm or less, and more preferably 10 nm or less. The lower limit of the average particle size of Ru particles is not particularly limited, but is preferably 1 nm or more.

工程1の後、担持触媒を溶媒から分離精製することが好ましい。担持触媒を分離精製する方法は、特に限定されないが、例えば、温度が下がった混合物をろ過し、洗浄・乾燥する方法である。 After step 1, it is preferable to separate and purify the supported catalyst from the solvent. The method for separating and purifying the supported catalyst is not particularly limited, and is, for example, a method of filtering, washing, and drying a mixture whose temperature has dropped.

本実施形態に係る製造方法で得られた担持触媒は、担持触媒の外表面に高分子保護材が存在しない。また、ナノ粒子と担持体との間に高分子保護材が介在しないことが好ましい。担持触媒が高分子保護材を含有するか否かは、例えば、X線回折パターン(XRDパターン)によって確認できる。例えば高分子保護材がPVPであるとき、室温でλ=CuKαの測定条件で測定したXRDパターンにおいて、10°付近にPVP由来のパターンの有無によって確認することができる。 The supported catalyst obtained by the production method according to the present embodiment does not have a polymer protective material on the outer surface of the supported catalyst. Further, it is preferable that the polymer protective material does not intervene between the nanoparticles and the carrier. Whether or not the supported catalyst contains a polymer protective material can be confirmed by, for example, an X-ray diffraction pattern (XRD pattern). For example, when the polymer protective material is PVP, it can be confirmed by the presence or absence of a PVP-derived pattern in the vicinity of 10 ° in the XRD pattern measured under the measurement condition of λ = CuKα at room temperature.

以降、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention will not be construed as being limited to Examples.

(実施例1A)
フラスコにトリエチレングリコール(以下、TEG)を125mL投入した。トリス(アセチルアセトナト)ルテニウム(III)(以下、Ru(acac))を1.9918g(5mmol)と活性炭(FAM−50、日本エンバイロケミカルズ社製)を4.5031gとを秤とり前記TEG中に添加し、超音波で30min分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。
(Example 1A)
125 mL of triethylene glycol (hereinafter, TEG) was put into the flask. Weigh 1.9918 g (5 mmol) of tris (acetylacetonato) ruthenium (III) (hereinafter, Ru (acac) 3 ) and 4.5031 g of activated carbon (FAM-50, manufactured by Japan Enviro Chemicals) in the TEG. And dispersed by ultrasonic waves for 30 minutes to prepare a mixed solution. No polymer protective material was added to the mixture. The mixed solution was heated to 200 ° C. at a heating rate of 6 ° C./min, heated and stirred at 200 ° C. for 3 hr, and then cooled. The cooled mixed solution was filtered under reduced pressure, the solid component (filter) was thoroughly washed with ethanol, and then dried under reduced pressure to obtain a supported catalyst.

(実施例2A)
フラスコにTEGを40mL投入した。Ru(acac)を1.9920g(5mmol)と活性炭(FAM−50)を4.5022gとを秤とり前記TEG中に添加し、超音波で30min分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。
(Example 2A)
40 mL of TEG was put into the flask. 1.9920 g (5 mmol) of Ru (acac) 3 and 4.5022 g of activated carbon (FAM-50) were weighed and added to the TEG, and the mixture was dispersed by ultrasonic waves for 30 minutes to prepare a mixed solution. No polymer protective material was added to the mixture. The mixed solution was heated to 200 ° C. at a heating rate of 6 ° C./min, heated and stirred at 200 ° C. for 3 hr, and then cooled. The cooled mixed solution was filtered under reduced pressure, the solid component (filter) was thoroughly washed with ethanol, and then dried under reduced pressure to obtain a supported catalyst.

(実施例3A)
フラスコにTEGを185mL投入した。Ru(acac)を5.9056g(14.8mmol)とケッチェンブラック(EC300J、ライオン社製)とを4.5022g秤とり前記TEG中に添加し、超音波で30minの間分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。
(Example 3A)
185 mL of TEG was put into the flask. 5.9056 g (14.8 mmol) of Ru (acac) 3 and 4.5022 g of Ketchen Black (EC300J, manufactured by Lion) were weighed and added to the TEG, and the mixture was dispersed by ultrasonic waves for 30 minutes. Was produced. No polymer protective material was added to the mixture. The mixed solution was heated to 200 ° C. at a heating rate of 6 ° C./min, heated and stirred at 200 ° C. for 3 hr, and then cooled. The cooled mixed solution was filtered under reduced pressure, the solid component (filter) was thoroughly washed with ethanol, and then dried under reduced pressure to obtain a supported catalyst.

(実施例4A)
フラスコにTEGを125mL投入した。Ru(acac)を0.9869g(2.5mmol)と活性炭(FAM−50)を4.7496gとを秤とり前記TEG中に添加し、超音波で30minの間分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。遠心分離を用いて冷却後の混合液から固体成分を沈降させ上澄みを除去し、固体成分をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。
(Example 4A)
125 mL of TEG was put into the flask. 0.9869 g (2.5 mmol) of Ru (acac) 3 and 4.7496 g of activated carbon (FAM-50) were weighed and added to the TEG, and the mixture was dispersed by ultrasonic waves for 30 minutes to prepare a mixed solution. .. No polymer protective material was added to the mixture. The mixed solution was heated to 200 ° C. at a heating rate of 6 ° C./min, heated and stirred at 200 ° C. for 3 hr, and then cooled. The solid component was precipitated from the cooled mixed solution by centrifugation to remove the supernatant, and the solid component was thoroughly washed with ethanol and then dried under reduced pressure to obtain a supported catalyst.

(Ru粒子の平均粒子径)
実施例1A及び実施例2Aの担持触媒をTEMでそれぞれ倍率150000倍、200000倍で観察し、得られた粒子像から100個の粒子の粒子径を計測し、その平均を求め、Ru粒子の平均粒子径とした。図1に実施例1AのTEM像を、図2に実施例2AのTEM像を示す。実施例1Aの平均粒子径は3.34nm、実施例2Aの平均粒子径は3.14nmであった。また、図1及び図2から、凝集した粒子の存在は確認されなかった。
(Average particle size of Ru particles)
The supported catalysts of Examples 1A and 2A were observed with TEM at magnifications of 150,000 times and 200,000 times, respectively, the particle diameters of 100 particles were measured from the obtained particle images, the average was calculated, and the average of Ru particles was obtained. The particle size was used. FIG. 1 shows a TEM image of Example 1A, and FIG. 2 shows a TEM image of Example 2A. The average particle size of Example 1A was 3.34 nm, and the average particle size of Example 2A was 3.14 nm. Further, from FIGS. 1 and 2, the presence of agglomerated particles was not confirmed.

(結晶状態)
実施例1A及び実施例2Aの担持触媒について、XRD測定を行った。XRD測定条件は、室温でλ=CuKαである。図3に実施例1AのXRDパターンを、図4に実施例2AのXRDパターンを示す。図3において、Ruのパターンは(fcc)Ruのパターンを示しており、Ru粒子がfcc構造を有することが確認できた。図4において、Ruのパターンは(fcc)Ruのパターン及び(hcp)Ruのパターンを含むことが示されていた。
(Crystal state)
XRD measurements were performed on the supported catalysts of Examples 1A and 2A. The XRD measurement condition is λ = CuKα at room temperature. FIG. 3 shows the XRD pattern of Example 1A, and FIG. 4 shows the XRD pattern of Example 2A. In FIG. 3, the Ru pattern shows the (fcc) Ru pattern, and it was confirmed that the Ru particles have an fcc structure. In FIG. 4, it was shown that the Ru pattern included a (fcc) Ru pattern and a (hcp) Ru pattern.

Claims (9)

ナノ粒子が担持体に担持され、高分子保護材を含有しない高分子保護材フリー担持触媒の製造方法であって、
前記ナノ粒子の合成原料となる化合物と、前記担持体と、炭素数が2以上の還元性をもつ有機溶媒と、を含有し、かつ、前記高分子保護材を含有しない混合物を常圧下で加熱して、前記ナノ粒子を合成するとともに、該ナノ粒子を前記担持体に担持させる工程1を有し、
該工程1における加熱温度は、100〜300℃であり、前記加熱温度で保持する時間は、10〜300分であり、
前記ナノ粒子がRu粒子であり、該Ru粒子はfcc構造を有していることを特徴とする高分子保護材フリー担持触媒の製造方法。
A method for producing a polymer protective material-free carrier catalyst in which nanoparticles are supported on a carrier and does not contain a polymer protective material.
A mixture containing the compound as a raw material for synthesizing the nanoparticles, the carrier, and a reducing organic solvent having 2 or more carbon atoms and not containing the polymer protective material is heated under normal pressure. The step 1 is to synthesize the nanoparticles and to support the nanoparticles on the carrier.
The heating temperature in the step 1 is 100 to 300 ° C., and the holding time at the heating temperature is 10 to 300 minutes.
A method for producing a polymer protective material-free supported catalyst, wherein the nanoparticles are Ru particles, and the Ru particles have an fcc structure.
前記有機溶媒の沸点は100℃以上であることを特徴とする請求項1に記載の高分子保護材フリー担持触媒の製造方法。 The method for producing a polymer protective material-free supported catalyst according to claim 1, wherein the organic solvent has a boiling point of 100 ° C. or higher. 前記有機溶媒は、多価アルコール、ブタノール、イソブタノール、エトキシエタノール、ジメチルホルムアミド、N−メチルピロリジノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、リエチレングリコールモノメチルエーテル及びポリエチレングリコールモノメチルエーテルの中から選ばれる1種以上であることを特徴とする請求項1又は2に記載の高分子保護材フリー担持触媒の製造方法。 The organic solvent is a polyhydric alcohol, butanol, isobutanol, ethoxyethanol, dimethylformamidine de, N - methyl pyrrolidinopyridine down, profile propylene glycol monomethyl ether, ethylene glycol monomethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, di ethylene glycol monomethyl ether, collected by polypropylene glycol dimethyl ether, 1 selected from among di-ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, collected by triethylene glycol monomethyl ether及beauty polyethylene glycol monomethyl ether The method for producing a polymer protective material-free carrying catalyst according to claim 1 or 2, wherein the number is more than one species. 前記多価アルコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール及びブチレングリコールの中から選ばれる1種以上であることを特徴とする請求項3に記載の高分子保護材フリー担持触媒の製造方法。 The production of the polymer protective material-free supported catalyst according to claim 3, wherein the polyhydric alcohol is at least one selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol. Method. 前記担持体は、カーボン若しくはセラミックスのいずれか一方又は両方であることを特徴とする請求項1〜4のいずれか一つに記載の高分子保護材フリー担持触媒の製造方法。 The method for producing a polymer protective material-free supported catalyst according to any one of claims 1 to 4, wherein the carrier is either one or both of carbon and ceramics. 前記担持体は、アルミナ、シリカ、シリカアルミナ、カルシア、マグネシア、チタニア、セリア、ジルコニア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト、ムライト、シリコンカーバイド、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ及びカーボンナノホーンの中から選ばれる1種以上であることを特徴とする請求項1〜5のいずれか一つに記載の高分子保護材フリー担持触媒の製造方法。 The carriers include alumina, silica, silica alumina, calcia, magnesia, titania, ceria, zirconia, ceria zirconia, lanthana, lanthana alumina, tin oxide, tungsten oxide, aluminosilicate, aluminophosphate, borosilicate, phosphotungstate, and hydroxy. 3. The method for producing a polymer protective material-free supported catalyst according to any one of them. 前記ナノ粒子がRu粒子であり、前記ナノ粒子の合成原料となる化合物はRu有機化合物であることを特徴とする請求項1〜のいずれか一つに記載の高分子保護材フリー担持触媒の製造方法。 The polymer protective material-free supported catalyst according to any one of claims 1 to 6 , wherein the nanoparticles are Ru particles, and the compound used as a synthetic raw material for the nanoparticles is a Ru organic compound. Production method. 前記Ru有機化合物は、ジケトナート又はアセテートを含有する化合物であることを特徴とする請求項に記載の高分子保護材フリー担持触媒の製造方法。 The method for producing a polymer protective material-free supported catalyst according to claim 7 , wherein the Ru organic compound is a compound containing diketonate or acetate. 前記Ru有機化合物がRu(acac)又は酢酸Ruであることを特徴とする請求項に記載の高分子保護材フリー担持触媒の製造方法。 The method for producing a polymer protective material-free supported catalyst according to claim 7 , wherein the Ru organic compound is Ru (acac) 3 or Ru acetate.
JP2015039661A 2015-02-28 2015-02-28 Method for manufacturing polymer protective material-free supported catalyst Active JP6761998B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015039661A JP6761998B2 (en) 2015-02-28 2015-02-28 Method for manufacturing polymer protective material-free supported catalyst
PCT/JP2016/055791 WO2016136938A1 (en) 2015-02-28 2016-02-26 Production method of producing supported catalyst free of protective polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039661A JP6761998B2 (en) 2015-02-28 2015-02-28 Method for manufacturing polymer protective material-free supported catalyst

Publications (2)

Publication Number Publication Date
JP2016159222A JP2016159222A (en) 2016-09-05
JP6761998B2 true JP6761998B2 (en) 2020-09-30

Family

ID=56789436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039661A Active JP6761998B2 (en) 2015-02-28 2015-02-28 Method for manufacturing polymer protective material-free supported catalyst

Country Status (2)

Country Link
JP (1) JP6761998B2 (en)
WO (1) WO2016136938A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127449A (en) * 1981-01-29 1982-08-07 Agency Of Ind Science & Technol Manufacture of solid catalyst carried in a colloidal form
JPH01307445A (en) * 1988-06-02 1989-12-12 Matsushita Electric Ind Co Ltd Preparation of catalyst
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
JP2008049336A (en) * 2006-07-26 2008-03-06 Nippon Shokubai Co Ltd Manufacturing method of metal supported catalyst
JP2008273807A (en) * 2007-05-02 2008-11-13 Shinshu Univ Method for generating temperature controlled reaction field by heat generating material having high absorption of microwave and method for synthesizing functional nanoparticle and nano-carbon material
WO2013038674A1 (en) * 2011-09-16 2013-03-21 独立行政法人科学技術振興機構 Ruthenium microparticles having essentially face-centered cubic structure and method for producing same
US10195590B2 (en) * 2012-07-06 2019-02-05 Teknologisk Institut Method of preparing a catalytic structure
JP6369848B2 (en) * 2013-11-07 2018-08-08 国立大学法人北陸先端科学技術大学院大学 Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material

Also Published As

Publication number Publication date
WO2016136938A1 (en) 2016-09-01
JP2016159222A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6989856B2 (en) Method for manufacturing a supported catalyst
Francisco et al. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts
Strunk et al. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48
Deori et al. (100) surface-exposed CeO 2 nanocubes as an efficient heterogeneous catalyst in the tandem oxidation of benzyl alcohol, para-chlorobenzyl alcohol and toluene to the corresponding aldehydes selectively
Slimen et al. Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light
Parayil et al. Modulating the textural properties and photocatalytic hydrogen production activity of TiO2 by high temperature supercritical drying
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
Nam et al. Study on photocatalysis of TiO 2 nanotubes prepared by methanol-thermal synthesis at low temperature
JP6709494B2 (en) Supported catalyst
Herrera et al. Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition
Tayebee et al. A new inorganic–organic hybrid material Al-SBA-15-TPI/H 6 P 2 W 18 O 62 catalyzed one-pot, three-component synthesis of 2 H-indazolo [2, 1-b] phthalazine-triones
Yahyazadehfar et al. Microwave‐associate synthesis of Co3O4 nanoparticles as an effcient nanocatalyst for the synthesis of arylidene barbituric and Meldrum's acid derivatives in green media
JP6709557B2 (en) Supported catalyst
JP6481998B2 (en) Supported catalyst
Oliveira et al. Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts
Manjumol et al. An ‘Eco-friendly’all aqueous sol gel process for multi functional ultrafiltration membrane on porous tubular alumina substrate
Baranowska et al. Bifunctional catalyst based on molecular structure: spherical mesoporous TiO2 and gCN for photocatalysis
JP6761998B2 (en) Method for manufacturing polymer protective material-free supported catalyst
JP6481997B2 (en) Supported catalyst
JP6864300B2 (en) Supported catalyst
KR101484362B1 (en) Method for Preparing Homogeneous Supported Catalyst for CNT, and an Apparatus for Preparing Thereof
JP6675614B2 (en) Method for producing supported catalyst free of polymer protective material
CN109331819B (en) Titanium dioxide supported Pt-Pd bimetallic photocatalyst and preparation method and application thereof
Nakano et al. Thermo-photocatalytic decomposition of acetaldehyde over Pt-TiO2/SiO2
Varga et al. CuIBiOI is an efficient novel catalyst in Ullmann-type CN couplings with wide scope—A rare non-photocatalyic application

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200827

R150 Certificate of patent or registration of utility model

Ref document number: 6761998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250