JP6759989B2 - Laminated foam sheet and thermoformed body - Google Patents

Laminated foam sheet and thermoformed body Download PDF

Info

Publication number
JP6759989B2
JP6759989B2 JP2016216930A JP2016216930A JP6759989B2 JP 6759989 B2 JP6759989 B2 JP 6759989B2 JP 2016216930 A JP2016216930 A JP 2016216930A JP 2016216930 A JP2016216930 A JP 2016216930A JP 6759989 B2 JP6759989 B2 JP 6759989B2
Authority
JP
Japan
Prior art keywords
layer
laminated
sheet
thickness
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016216930A
Other languages
Japanese (ja)
Other versions
JP2017105171A (en
Inventor
義信 長岡
義信 長岡
幸治 山下
幸治 山下
耕 山口
耕 山口
英夫 栗原
英夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Publication of JP2017105171A publication Critical patent/JP2017105171A/en
Application granted granted Critical
Publication of JP6759989B2 publication Critical patent/JP6759989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

本発明は、β晶核剤を含む発泡層にスキン層を積層した積層発泡シート、及び発泡層とスキン層との間に中間層を積層した前記積層発泡シートの熱成形体に関し、より詳しくは、発泡成形性に優れ、軽量で断熱性と容器強度に優れた積層発泡シートと熱成形体に関する。 The present invention relates to a laminated foam sheet in which a skin layer is laminated on a foam layer containing a β crystal nucleating agent, and a thermoformed body of the laminated foam sheet in which an intermediate layer is laminated between the foam layer and the skin layer. The present invention relates to a laminated foam sheet and a thermoformed body having excellent foam moldability, light weight, heat insulation and container strength.

オレフィン系樹脂発泡シートは、軽量で且つ耐熱性や耐衝撃性に優れることから、自動車内装の芯材、建材、文具、食品容器等の用途に広く用いられている。
このような発泡シートは、例えば、押出機により溶融させたオレフィン系樹脂に各種発泡剤を加圧下にて混練した後、押出機先端に取り付けられたダイスより大気圧下に押出発泡することにより得られる。
Olefin-based resin foam sheets are lightweight and have excellent heat resistance and impact resistance, and are therefore widely used in applications such as core materials for automobile interiors, building materials, stationery, and food containers.
Such a foamed sheet can be obtained, for example, by kneading various foaming agents under pressure with an olefin resin melted by an extruder and then extrusion foaming under atmospheric pressure from a die attached to the tip of the extruder. Be done.

しかしながら、従来の多層構成の発泡シートでは、発泡層に積層された非発泡層の存在や発泡層の溶融温度が高いために、発泡層まで冷却されるのに時間がかかってしまい、連続気泡が多くなってしまう傾向があった。連続気泡が多くなると、得られる発泡シートの耐熱性や、耐衝撃性の機械的強度が低下する上、シート厚みが変動したり、火ぶくれやフローマーク発生等の外観形状が悪くなったり、容器成形や超音波シールなどの2次加工において不具合が生じる。具体的には、容器成形の場合は、発泡シートを再度加熱し半溶融状態で、金型にて賦形するが、その再加熱時に、連続気泡が多いと気泡が再度膨張し、破泡して容器の表面に凹凸が発生したり、穴あきが発生する。特に、特許文献1のような両面真空成形法では、両面からの真空引きに追随可能な程度に、発泡シート原反を加熱する必要があり、また、気泡の膨張による厚みの増加を利用するため、発泡シート原反において、より細かな独立した気泡の調整が必要である。特許文献2〜4は、両面真空成形法に関する発明であるが、用いる発泡シートの気泡形状が微細で独立した気泡が得られるポリスチレンを主眼としたものであり、ポリプロピレンを用いた気泡形状が微細で独立した気泡を有する発泡シートについては検討がされていない。また、ポリプロピレン樹脂にβ晶核剤を配合した組成物や発泡成形体が提案されているが、特許文献7は、射出成形時のシルバーストリーク削減に関わるものであり、特許文献8は、予備発泡粒子の製造に関わるものであり、両文献とも積層シートに関するものではない。
また、超高分子量成分を添加して溶融張力を高める方法(特許文献9参照)が提案されているが、一般に溶融張力の高い樹脂を用いると、セルの保持力は上昇するものの、粘度が高すぎて、添加する発泡剤の量に見合った発泡倍率が得られず、また、押出機での負荷が大きくなり、高生産性を維持しようとする場合には押出機にかかる負荷が増大し、押出成形性が低下し、更にはせん断発熱により樹脂の温度が高くなってしまい、セルの成長が冷却により抑制できず、連続気泡となってしまうという問題がある。
However, in the conventional multi-layered foam sheet, it takes time to cool down to the foam layer due to the presence of the non-foam layer laminated on the foam layer and the high melting temperature of the foam layer, resulting in open cells. It tended to increase. When the number of open cells increases, the heat resistance of the obtained foamed sheet and the mechanical strength of the impact resistance decrease, the sheet thickness fluctuates, and the appearance shape such as blisters and flow marks deteriorates. Problems occur in secondary processing such as container molding and ultrasonic sealing. Specifically, in the case of container molding, the foamed sheet is heated again and shaped in a semi-molten state with a mold. However, if there are many open bubbles during the reheating, the bubbles expand again and the bubbles burst. The surface of the container may be uneven or perforated. In particular, in the double-sided vacuum forming method as in Patent Document 1, it is necessary to heat the foam sheet raw material to the extent that it can follow the vacuum drawing from both sides, and the increase in thickness due to the expansion of bubbles is utilized. In the foam sheet raw fabric, finer independent air bubble adjustment is required. Patent Documents 2 to 4 are inventions relating to a double-sided vacuum forming method, which mainly focuses on polystyrene in which the bubble shape of the foam sheet used is fine and independent bubbles can be obtained, and the bubble shape using polypropylene is fine. Foam sheets with independent bubbles have not been investigated. Further, a composition or a foamed molded product in which a β crystal nucleating agent is mixed with a polypropylene resin has been proposed. However, Patent Document 7 relates to reduction of silver streak during injection molding, and Patent Document 8 describes pre-foaming. It is related to the production of particles, and neither document is related to laminated sheets.
Further, a method of increasing the melt tension by adding an ultra-high molecular weight component has been proposed (see Patent Document 9). Generally, when a resin having a high melt tension is used, the holding power of the cell is increased, but the viscosity is high. Too much, it is not possible to obtain a foaming ratio commensurate with the amount of foaming agent to be added, and the load on the extruder increases, and when trying to maintain high productivity, the load on the extruder increases. There is a problem that the extrudability is lowered, the temperature of the resin is raised due to the heat generated by shearing, the growth of the cell cannot be suppressed by cooling, and open cells are formed.

両面真空成形法に適したポリプロピレンを用いた発泡シートとしては、微細な気泡構造を持つ、連続気泡の少ない(独立気泡性に優れた)発泡シートを用いることが有効であり、用いるポリプロピレンの溶融張力を高くしてセルの保持力を高める様々な手段が実用的である。そして高溶融張力を特徴としたポリプロピレン系樹脂、例えば電子線架橋を行ったプロピレン系樹脂(特許文献5参照)、過酸化物などを用いて架橋処理したプロピレン系樹脂(特許文献6参照)が提案されている。ところが、これら架橋方法による溶融張力向上は、発泡シート成形時のシート端トリミング部分や容器成形時の不要部分を再度発泡シート成形に戻すときに、電子線架橋は溶融粘度の低下が著しくなったり、過酸化物架橋は、架橋部分の流動性低下による分散不良等で戻せなかったりする為、コスト面でも非常に不利であり、押出安定性や過酸化物による臭気の面からも満足のいくものではなかった。 As a foam sheet using polypropylene suitable for the double-sided vacuum forming method, it is effective to use a foam sheet having a fine cell structure and few open cells (excellent in closed cell properties), and the melt tension of the polypropylene to be used. Various means of increasing the holding power of the cell are practical. Then, a polypropylene-based resin characterized by high melt tension, for example, a propylene-based resin subjected to electron beam cross-linking (see Patent Document 5), a propylene-based resin cross-linked using a peroxide or the like (see Patent Document 6) is proposed. Has been done. However, the improvement of the melt tension by these cross-linking methods is that when the sheet edge trimming portion during foam sheet molding and the unnecessary portion during container molding are returned to foam sheet molding again, the melt viscosity of electron beam cross-linking is significantly reduced. Peroxide cross-linking is extremely disadvantageous in terms of cost because it cannot be restored due to poor dispersion due to a decrease in the fluidity of the cross-linked portion, and it is not satisfactory in terms of extrusion stability and odor due to peroxide. There wasn't.

発泡シートの熱成形では、過昇温が直ちに破泡、火膨れ、肉やせに繋がるため、ソリッドシートの場合に比べ熱成形の条件範囲が狭いという問題があった。こうした傾向は、発泡倍率が高くなるほど、又はシートの厚みが厚くなるほど強くなるため、結局は、高断熱の熱成形品ほど熱成形が難しいという問題を抱えていた。特に大面積の自動車用ドアパネルや多数個取り金型を使う食品容器などの製造においては、成形エリア内の加熱ムラを皆無にすることは難しく、成形条件の範囲が狭いシートでは、品質にバラツキが伴うため、不良率が上がりやすく、それを避けるためには緩加熱条件でシートを加熱しながらサイクルタイムを長くするため、生産性を落とさざるを得ないという問題があった。 In the thermoforming of the foam sheet, there is a problem that the condition range of the thermoforming is narrower than that of the solid sheet because the excessive temperature rise immediately leads to foaming, fire swelling, and thinning of the meat. Such a tendency becomes stronger as the foaming ratio becomes higher or the thickness of the sheet becomes thicker. Therefore, in the end, there is a problem that thermoforming is more difficult as the thermoformed product has high heat insulation. Especially in the manufacture of large-area automobile door panels and food containers that use multiple molds, it is difficult to eliminate uneven heating in the molding area, and the quality of sheets with a narrow range of molding conditions varies. Therefore, the defect rate tends to increase, and in order to avoid it, the cycle time is lengthened while heating the sheet under slow heating conditions, so that there is a problem that productivity must be lowered.

高倍率・高断熱の熱成形品を得る手法として、所望の形状、クリアランスを持った雌雄一対の金型を用い、加熱・軟化させたシートをその金型で挟み、金型両面から吸引してシート以上の発泡倍率、厚みを得る手法も提案されているが、このような手法では、通常の熱成形で必要な延び変形に加え、気泡を膨らませる拡厚(発泡倍率の向上)が必要になるため、成形条件幅は、やはり一般的な熱成形手法より狭くならざるを得ず、高断熱の熱成形品を安価に提供する手法が求められていた。 As a method for obtaining a thermoformed product with high magnification and high heat insulation, a pair of male and female dies with a desired shape and clearance are used, and the heated and softened sheet is sandwiched between the dies and sucked from both sides of the dies. A method for obtaining a foaming ratio and thickness higher than that of a sheet has also been proposed, but such a method requires thickening (improvement of foaming ratio) to inflate bubbles in addition to the elongation deformation required for normal thermoforming. Therefore, the range of molding conditions has to be narrower than that of a general thermoforming method, and a method of providing a highly heat-insulated thermoformed product at low cost has been required.

特開2000−280334号公報Japanese Unexamined Patent Publication No. 2000-280334 特開平4−332623号公報Japanese Unexamined Patent Publication No. 4-332623 特開平8−52796号公報Japanese Unexamined Patent Publication No. 8-52796 特許第3142443号Patent No. 3142443 特表平5−506875号公報Special Table No. 5-506875 特開2005−146122号公報Japanese Unexamined Patent Publication No. 2005-146122 特開2008−255191号公報Japanese Unexamined Patent Publication No. 2008-255191 特開平8−67760号公報Japanese Unexamined Patent Publication No. 8-67760 特開平11−181178号公報Japanese Unexamined Patent Publication No. 11-181178

本発明は、このような事情のもとでなされたものであり、独立気泡性及び押出成形性、リサイクル性に優れたポリオレフィン系の積層発泡シートであり、しかも前記積層発泡シートは、容器成形性の成形時間幅が広い為、安定した品質の容器が得られ、又、厚みが薄くても拡厚の発泡成形性が得られる等、軽量で容器強度や断熱性に優れた発泡体を提供することを課題とするものである。 The present invention has been made under such circumstances, and is a polyolefin-based laminated foam sheet having excellent closed cell properties, extrusion moldability, and recyclability, and the laminated foam sheet has container moldability. Since the molding time width is wide, a container of stable quality can be obtained, and a foam having excellent container strength and heat insulating properties is provided, which is lightweight and has excellent foam moldability even if the thickness is thin. That is the subject.

本発明者らは、上記従来技術の問題点につき鋭意検討した結果、発泡層とスキン層の2種2層、及び2種3層、更にはスキン層と発泡層の間に中間層を積層した3種4層や3種5層以上のポリオレフィン系樹脂からなる積層発泡シートにおいて、発泡層にβ晶核剤を含有した積層発泡シートを得ることで、スキン層や中間層にβ晶核剤を含有しなくても積層発泡シートの真空成形時間が短くて成形時間幅が広くなることから両面真空成形で容器成形がしやすく、安定した品質の容器成形が出来、しかも積層発泡シートの厚みが薄くても拡厚の発泡容器が得られる等、軽量で剛性や断熱性のある発泡成形品が容易に成形でき、更に本積層発泡シートから得られた容器も剛性や断熱性に優れたことを見出し、本発明を完成させるに至った。 As a result of diligent studies on the problems of the above-mentioned prior art, the present inventors have laminated two types of two layers of a foam layer and a skin layer, two types of three layers, and an intermediate layer between the skin layer and the foam layer. In a laminated foam sheet made of a polyolefin resin of 3 types 4 layers or 3 types 5 layers or more, by obtaining a laminated foam sheet containing a β crystal nucleating agent in the foam layer, a β crystal nucleating agent can be applied to the skin layer and the intermediate layer. Even if it is not contained, the vacuum molding time of the laminated foam sheet is short and the molding time width is wide, so that container molding is easy by double-sided vacuum molding, stable quality container molding is possible, and the thickness of the laminated foam sheet is thin. However, it was found that a lightweight, rigid and heat-insulating foam-molded product can be easily molded, such as a thickened foam container, and that the container obtained from this laminated foam sheet also has excellent rigidity and heat-insulating properties. , The present invention has been completed.

すなわち、本発明の第1によれば、発泡層と発泡層の片面又は両面にスキン層を積層し、各スキン層の厚みが1μm以上で、且つスキン層の合計厚みがシート全体の厚みの50%以下であるポリオレフィン系の積層発泡シートであって、発泡層にβ晶核剤を含有することを特徴する積層発泡シートが提供される。 That is, according to the first aspect of the present invention, the skin layers are laminated on one side or both sides of the foam layer and the foam layer, the thickness of each skin layer is 1 μm or more, and the total thickness of the skin layers is 50, which is the thickness of the entire sheet. A polyolefin-based laminated foamed sheet having a percentage of% or less, wherein the foamed layer contains a β-crystal nucleating agent is provided.

また、本発明の第2によれば、スキン層と発泡層との層間のうちの少なくとも1つの層間に中間層を積層し、各スキン層と各中間層の厚みが1μm以上で、且つ各スキン層と各中間層との合計厚みがシート全体の厚みの50%以下である第1の発明に記載の積層発泡シートが提供される。
また、本発明の第3によれば、発泡層がポリプロピレン系樹脂(X)を20〜100重量%及び前記ポリプロピレン系樹脂(X)以外のポリオレフィン系樹脂(A)を80〜0重量%含有する発泡層用樹脂(Z)からなり、前記発泡層用樹脂(Z)の溶融張力YとMFR(メルトフローレート:温度230℃、2.16kg荷重)が以下の式を満たすことを特徴とする第1又は第2の発明に記載の積層発泡シートが提供される。
Y > 7.4446(MFR)-0.7419
Further, according to the second aspect of the present invention, an intermediate layer is laminated between at least one of the layers between the skin layer and the foam layer, the thickness of each skin layer and each intermediate layer is 1 μm or more, and each skin. The laminated foam sheet according to the first invention is provided, wherein the total thickness of the layer and each intermediate layer is 50% or less of the total thickness of the sheet.
Further, according to the third aspect of the present invention, the foamed layer contains 20 to 100% by weight of the polypropylene resin (X) and 80 to 0% by weight of the polyolefin resin (A) other than the polypropylene resin (X). It is made of a foam layer resin (Z), and the melt tension Y and MFR (melt flow rate: temperature 230 ° C., 2.16 kg load) of the foam layer resin (Z) satisfy the following formula. The laminated foam sheet according to the first or second invention is provided.
Y> 7.4446 (MFR) -0.7419

また、本発明の第4によれば、スキン層に用いるポリオレフィン系樹脂(B)の190℃で測定した溶融弾性率(以下MEと称す)が1.4以上であることを特徴とする第1〜第3の発明のいずれかに記載の積層発泡シートが提供される。
また、本発明の第5によれば、中間層は、中間層全体の重量に対して充填剤を5〜60重量%含有することを特徴とする第2〜第4の発明のいずれかに記載の積層発泡シートが提供される。
また、本発明の第6によれば、積層発泡シートの発泡倍率が1.3〜5倍、連続気泡率が50%以下及び厚みが0.1〜10mmであることを特徴とする第1〜第5の発明のいずれかに記載の積層発泡シートが提供される。
また、本発明の第7によれば、積層発泡シートのβ晶分率が12%以上であることを特徴とする第1〜第6の発明のいずれかに記載の積層発泡シートが提供される。
Further, according to the fourth aspect of the present invention, the polyolefin resin (B) used for the skin layer has a melt elastic modulus (hereinafter referred to as ME) measured at 190 ° C. of 1.4 or more. The laminated foam sheet according to any one of the third inventions is provided.
Further, according to the fifth aspect of the present invention, the intermediate layer is described in any one of the second to fourth inventions, characterized in that the intermediate layer contains 5 to 60% by weight of a filler with respect to the weight of the entire intermediate layer. Laminated foam sheets are provided.
Further, according to the sixth aspect of the present invention, the first to first steps are characterized in that the foaming ratio of the laminated foam sheet is 1.3 to 5 times, the open cell ratio is 50% or less, and the thickness is 0.1 to 10 mm. The laminated foam sheet according to any one of the fifth invention is provided.
Further, according to the seventh aspect of the present invention, there is provided the laminated foamed sheet according to any one of the first to sixth inventions, wherein the laminated foamed sheet has a β crystal fraction of 12% or more. ..

また、本発明の第8によれば、第1〜第7の発明のいずれかに記載の積層発泡シートを用いて、両面真空成形法によって得られることを特徴とする熱成形体が提供される。
また、本発明の第9によれば、両面真空成形法に用いる雄雌一対の金型の温度が40℃以上であることを特徴とする第8の発明の記載の熱成形体が提供される。
また、本発明の第10によれば、熱成形体のβ晶分率が40%以下であることを特徴とする第8又は第9の発明に記載の熱成形体が提供される。
Further, according to the eighth aspect of the present invention, there is provided a thermoformed body characterized by being obtained by a double-sided vacuum forming method using the laminated foam sheet according to any one of the first to seventh inventions. ..
Further, according to the ninth aspect of the present invention, there is provided the thermoformed body according to the eighth aspect of the invention, wherein the temperature of the pair of male and female dies used in the double-sided vacuum forming method is 40 ° C. or higher. ..
Further, according to the tenth aspect of the present invention, there is provided the thermoformed body according to the eighth or ninth invention, wherein the β crystal fraction of the thermoformed body is 40% or less.

本発明により、押出成形性及び独立気泡性に優れ、軽量且つ高剛性、寸法安定性、リサイクル性、薄肉でも容器成形性に優れた積層発泡シートを提供することができる。また、前記積層発泡シートを用いて、両面真空成形を行うことにより得られる熱成形体は、安定した品質の容器賦形性や断熱性に優れ、更に軽量且つ剛性のある成形体となる。
また、得られた熱成形体は、抜き刃などで所望の熱成形体の形に抜かれ、そのまま熱成形体として用いることができ、必要に応じて更に穴あけ加工、溶着加工など、更には塗装やコーティングなどの表面処理加工を施すことで、多種多様の熱成形体に仕上げることができる。
更に、得られた熱成形体は、食品や産業資材の包装材、自動車の内装、外装部品や工業部品など、軽量性が要求され、且つ剛性、耐熱性、寸法安定性、外観、ロス率削減などが要求される用途に利用できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a laminated foam sheet having excellent extrusion moldability and closed cell properties, light weight, high rigidity, dimensional stability, recyclability, and excellent container moldability even with a thin wall. Further, the thermoformed body obtained by performing double-sided vacuum forming using the laminated foam sheet is excellent in container shapeability and heat insulating property of stable quality, and is further lightweight and rigid.
Further, the obtained thermoformed body is punched into a desired thermoformed body shape by a punching blade or the like, and can be used as it is as a thermoformed body. If necessary, further drilling, welding, etc., and further painting By applying surface treatment such as coating, it is possible to finish a wide variety of thermoformed bodies.
Further, the obtained thermoformed body is required to be lightweight for packaging materials for foods and industrial materials, interior parts of automobiles, exterior parts and industrial parts, and has rigidity, heat resistance, dimensional stability, appearance, and reduction of loss rate. It can be used for applications that require such things.

以下、本発明の実施の形態について、下記に詳細に説明する。
本発明のポリオレフィン系の積層発泡シートは、発泡層と発泡層の片面又は両面にスキン層を積層した積層発泡シート、及びスキン層と発泡層の層間のうちの少なくとも1つの層間に中間層を積層した積層発泡シートの各スキン層、又は各スキン層と各中間層の厚みが1μm以上で、且つ、各スキン層、又は各スキン層と各中間層の合計厚みがシート全体の厚みの50%以下であるポリオレフィン系の積層発泡シートであって、発泡層にβ晶核剤を含有した積層発泡シートであることを特徴とする。すなわち本発明は、β晶核剤を好ましくは発泡層に含有することで、スキン層やさらに中間層を積層してもコア層の発泡シート(発泡層)の融点が下がり、両面真空成形の加熱時間が短くなって成形時間の短縮ができ、しかも成形時間幅が広いことから温度のバラツキの解消が図られ、安定した品質が得られ、しかも好ましい態様として発泡層のみにβ晶核剤を含有しスキン層や中間層にはβ晶核剤を不要とした安価な熱成形体が得られるからである。
Hereinafter, embodiments of the present invention will be described in detail below.
The polyolefin-based laminated foam sheet of the present invention is a laminated foam sheet in which a skin layer is laminated on one side or both sides of a foam layer and a foam layer, and an intermediate layer is laminated in at least one of the layers of the skin layer and the foam layer. The thickness of each skin layer or each skin layer and each intermediate layer of the laminated foamed sheet is 1 μm or more, and the total thickness of each skin layer or each skin layer and each intermediate layer is 50% or less of the total thickness of the sheet. It is a polyolefin-based laminated foamed sheet, which is characterized by containing a β-crystal nucleating agent in a foamed layer. That is, in the present invention, by preferably containing the β crystal nucleating agent in the foam layer, the melting point of the foam sheet (foam layer) of the core layer is lowered even if the skin layer and the intermediate layer are laminated, and the heating of double-sided vacuum forming is performed. Since the time is shortened, the molding time can be shortened, and the molding time width is wide, the temperature variation can be eliminated, stable quality can be obtained, and the β crystal nucleating agent is contained only in the foam layer as a preferable embodiment. This is because an inexpensive thermoformed body that does not require a β crystal nucleating agent can be obtained in the skin layer and the intermediate layer.

β晶核剤(C)としては、ポリプロピレン樹脂中に含有させることでβ晶を選択的に形成させる結晶化核剤であれば、特に限定しないが、種々の顔料系化合物(キナクリドン等)やアミド系化合物を好ましく用いることができる。 The β crystal nucleating agent (C) is not particularly limited as long as it is a crystallization nucleating agent that selectively forms β crystals by being contained in a polypropylene resin, but various pigment compounds (quinacridone, etc.) and amides are used. A system compound can be preferably used.

β晶核剤(C)としては、特に下記一般式で表されるアミド系化合物が好ましい。下記一般式で表されるアミド系化合物を用いることで、高いβ晶形成能を達成することが容易になる。
−NHCO−R−CONH−R
ただし、式中、Rは、芳香環、脂環または炭素数2〜24の脂肪族炭化水素基を示し、R、及びRは脂環または芳香環を示す。好ましくは、Rは脂環族炭化水素基であり、具体的には、シクロへキサン環やシクロヘプタン環、シクロオクタン環を好ましく挙げることができる。また、R、及びRは好ましくは芳香環であり、具体例としてベンゼン環、ナフタレン環、アントラセン環を好ましく挙げることができる。
As the β-crystal nucleating agent (C), an amide compound represented by the following general formula is particularly preferable. By using an amide compound represented by the following general formula, it becomes easy to achieve high β crystal forming ability.
R 2- NHCO-R 1 -CONH-R 3
However, in the formula, R 1 represents an aromatic ring, an alicyclic or an aliphatic hydrocarbon group having 2 to 24 carbon atoms, and R 2 and R 3 represent an alicyclic or an aromatic ring. Preferably, R 1 is an alicyclic hydrocarbon group, and specific examples thereof include a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring. Further, R 2 and R 3 are preferably aromatic rings, and specific examples thereof include a benzene ring, a naphthalene ring, and an anthracene ring.

上記一般式で表されるアミド系化合物の好ましい具体例としては、N,N’−ジフェニルヘキサンジアミドや、N,N’−ジシクロヘキシルテレフタルアミド、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキサミドなどを挙げることができ、特にN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキサミドが好ましい。 Preferred specific examples of the amide compound represented by the above general formula are N, N'-diphenylhexanediamide, N, N'-dicyclohexylterephthalamide, N, N'-dicyclohexyl-2,6-naphthalenecarboxamide. Etc., and N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide is particularly preferable.

β晶核剤(C)の含有量は、好ましくは10〜10,000ppm(重量ppm)であり、100ppm以上3,000ppm以下がより好ましく、500ppm以上1,000ppm以下がさらに好ましい。
10ppm以上であれば、十分なβ晶形成活性が確保でき、10,000ppm以下であれば、β晶核剤の効果は十分であり、経済的にも有利になるほか、ブリ−ドも懸念されないため、好ましい。β晶核剤は1種のみで用いても、2種以上を組み合わせて用いることもできる。
The content of the β crystal nucleating agent (C) is preferably 10 to 10,000 ppm (weight ppm), more preferably 100 ppm or more and 3,000 ppm or less, and further preferably 500 ppm or more and 1,000 ppm or less.
If it is 10 ppm or more, sufficient β crystal forming activity can be secured, and if it is 10,000 ppm or less, the effect of the β crystal nucleating agent is sufficient, which is economically advantageous and there is no concern about the blade. Therefore, it is preferable. The β crystal nucleating agent may be used alone or in combination of two or more.

これらβ晶核剤(C)を積層発泡シートの発泡層、必要に応じてスキン層や中間層の各ポリオレフィン系樹脂に含有させるための混合方法は、例えばゲレーションミキサーやヘンシェルミキサーやスーパーミキサー等の高速撹拌機付混合機、リボンブレンダー、タンブラーなどの通常の混合装置が使用でき、さらに押出機やニーダー、カレンダーロール等も使用できる。これらの装置を単独機又は2機併用の混合機等で溶融分散させながら混練した後にペレット化することにより、ポリオレフィン系樹脂材料とすることができる。 The mixing method for incorporating these β crystal nucleating agents (C) into the foamed layer of the laminated foamed sheet and, if necessary, each polyolefin resin of the skin layer and the intermediate layer is, for example, a gelation mixer, a Henschel mixer, a super mixer or the like. A mixer with a high-speed stirrer, a ribbon blender, a tumbler, or other ordinary mixer can be used, and an extruder, kneader, calendar roll, etc. can also be used. A polyolefin-based resin material can be obtained by kneading these devices while melting and dispersing them in a single machine or a mixer in which two machines are used in combination, and then pelletizing them.

尚、積層発泡シートの各スキン層、又はスキン層と中間層の合計厚みは、1μm以上が必要であり、好ましくは5μm以上である。1μm以上であれば、得られる積層発泡シートに微細な発泡径が付与できたり、積層発泡シート表面の、気泡による凹凸を滑らかにできるため、外観がきれいで良好な積層発泡シートが得られ、しかも両面真空成形で金型面に接する側の刻印文字がきれいに転写できるからである。
また、各スキン層、又は各スキン層と各中間層の合計厚みは、シート全体の厚みの50%以下であり、好ましくは30%以下、更に好ましくは、25%以下である。この範囲内であれば積層発泡シートの成形性や軽量性、更には剛性が良好であり、しかも容器の賦形性や軽量性、剛性、断熱性が一段と優れるからである。
The total thickness of each skin layer or the skin layer and the intermediate layer of the laminated foam sheet needs to be 1 μm or more, preferably 5 μm or more. If it is 1 μm or more, a fine foam diameter can be imparted to the obtained laminated foam sheet, and unevenness due to air bubbles on the surface of the laminated foam sheet can be smoothed, so that a good laminated foam sheet with a beautiful appearance can be obtained. This is because the engraved characters on the side in contact with the mold surface can be transferred neatly by double-sided vacuum forming.
The total thickness of each skin layer or each skin layer and each intermediate layer is 50% or less, preferably 30% or less, and more preferably 25% or less of the total thickness of the sheet. This is because the laminated foam sheet has good moldability, light weight, and rigidity within this range, and the shapeability, light weight, rigidity, and heat insulation of the container are further excellent.

本発明の一つの態様においては、発泡層がポリプロピレン系樹脂(X)を20〜100重量%及び前記ポリプロピレン系樹脂(X)以外のポリオレフィン系樹脂(A)を80〜0重量%含有する発泡層用樹脂(Z)からなり、前記発泡層用樹脂(Z)の溶融張力YとMFR(メルトフローレート:温度230℃、2.16kg荷重)が、Y > 7.4446(MFR)−0.7419を満たす。
Y > 7.4446(MFR)−0.7419の数式は、比較的広い分子量分布を有するポリプロピレン系樹脂(X)を含有する発泡層用樹脂(Z)のMFRと溶融張力の依存性を示した式である。この式の関係を満たすYの値が大きい発泡層用樹脂(Z)に含有されるポリプロピレン系樹脂(X)は、20重量%以上、好ましくは50重量%以上であれば、発泡に必要な溶融張力が維持されて微細な気泡保持や賦形維持ができて独立気泡率が高く表面に凹凸や膨れの発生のない外観がきれいな積層発泡シートが製出できる。また、20重量%以上であると、独立気泡率が高く、外観がきれいな積層発泡シートが製出できることから、両面真空成形法によって得られる熱成形体の容器品質(賦型性、剛性、断熱性)も良好である。
本発明に用いられるポリプロピレン系樹脂(X)とは、ポリプロピレンを電子線照射し、長鎖分岐を付与したり、パーオキサイドと架橋モノマーの存在下、押出機内で変性することによって長鎖分岐を付与したり、多段重合により高分子量の成分を付与して溶融張力を向上させるプロピレン単独重合体またはプロピレン−αオレフィン共重合体などである。プロピレン−αオレフィン共重合体は、プロピレン単位を50重量%以上含有するプロピレンとエチレン又は炭素数4〜12のαオレフィンとのプロピレン−αオレフィン共重合体が好ましく、より好ましくはプロピレン−エチレン共重合体、さらに好ましくはプロピレン−エチレンランダム共重合体又はプロピレン−エチレンブロック共重合体である。また、ポリプロピレン系樹脂(X)はこれらの2種類以上の混合物からなってもよい。さらに、ポリプロピレン系樹脂(X)には必要に応じて改質目的として、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、スチレン系などのエラストマー、石油樹脂やシクロオレフィン系樹脂など、ポリエチレンワックスや石油ワックス、エチレン−酢ビ共重合体、マレイン酸変性ポリプロピレン、エチレン−ビニルアルコール共重合体、PET、PS、ABSなどの異なる樹脂を、本願の効果を阻害しない範囲で配合することも出来、それ以外にもタルク、炭酸カルシウム、シリカなどの充填剤、必要に応じて一般的にポリオレフィンに用いられる補助添加成分、例えば、酸化防止剤、中和剤、熱安定剤、光安定剤、紫外線吸収剤、防曇剤、スリップ剤、アンチブロッキング剤、抗菌剤、着色剤、難燃剤等を配合することができる。
また、それ以外のポリオレフィン系樹脂(A)とは、ポリエチレン、ホモポリプロピレン、エチレン又は炭素数4以上のαオレフィンとプロピレンとのランダムコポリマー、エチレン又は炭素数4以上のαオレフィンとプロピレンとのブロックコポリマーなどである。また、ポリオレフィン系樹脂(A)はこれらの2種類以上の混合物からなってもよい。さらに、ポリオレフィン系樹脂(A)には本発明の積層発泡シート又は熱成形体を得る際に発生する耳ロス、スケルトンなどや、必要に応じて改質目的として、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、スチレン系などのエラストマー、石油樹脂やシクロオレフィン系樹脂など、ポリエチレンワックスや石油ワックス、エチレン−酢ビ共重合体、マレイン酸変性ポリプロピレン、エチレン−ビニルアルコール共重合体、PET、PS、ABSなどの異なる樹脂を、本願の効果を阻害しない範囲で配合することも出来、それ以外にもタルク、炭酸カルシウム、シリカなどの充填材、必要に応じて一般的にポリオレフィンに用いられる補助添加成分、例えば、酸化防止剤、中和剤、熱安定剤、光安定剤、紫外線吸収剤、防曇剤、スリップ剤、アンチブロッキング剤、抗菌剤、着色剤、難燃剤等を配合することができる
In one embodiment of the present invention, the foamed layer contains 20 to 100% by weight of a polypropylene resin (X) and 80 to 0% by weight of a polyolefin resin (A) other than the polypropylene resin (X). The melt tension Y and MFR (melt flow rate: temperature 230 ° C., 2.16 kg load) of the foamed layer resin (Z) are Y> 7.4446 (MFR) −0.7419. Meet.
The formula Y> 7.4446 (MFR) -0.7419 showed the dependence of the MFR and melt tension of the foamed layer resin (Z) containing the polypropylene resin (X) having a relatively wide molecular weight distribution. It is an expression. If the polypropylene-based resin (X) contained in the foamed layer resin (Z) satisfying the relationship of this formula and having a large Y value is 20% by weight or more, preferably 50% by weight or more, the melting required for foaming It is possible to produce a laminated foam sheet having a high closed cell ratio and a beautiful appearance without unevenness or swelling on the surface because the tension is maintained and fine bubbles can be retained and shaped. Further, when it is 20% by weight or more, the closed cell ratio is high and a laminated foam sheet having a beautiful appearance can be produced. Therefore, the container quality (formability, rigidity, heat insulating property) of the thermoformed body obtained by the double-sided vacuum forming method. ) Is also good.
The polypropylene-based resin (X) used in the present invention imparts long-chain branching by irradiating polypropylene with an electron beam to impart long-chain branching, or by modifying it in an extruder in the presence of peroxide and a crosslinked monomer. It is a propylene homopolymer or a propylene-α-olefin copolymer that improves the melt tension by imparting a high molecular weight component by multistage polymerization. The propylene-α-olefin copolymer is preferably a propylene-α-olefin copolymer containing propylene containing 50% by weight or more of propylene units and ethylene or an α-olefin having 4 to 12 carbon atoms, and more preferably a propylene-ethylene copolymer. A coalescence, more preferably a propylene-ethylene random copolymer or a propylene-ethylene block copolymer. Further, the polypropylene-based resin (X) may consist of a mixture of two or more of these. Further, the polypropylene-based resin (X) may be modified as necessary with ethylene propylene rubber, ethylene propylene diene rubber, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, styrene-based elastomers, and petroleum. Different resins such as polyethylene wax, petroleum wax, ethylene-vinegar vinyl copolymer, maleic acid-modified polypropylene, ethylene-vinyl alcohol copolymer, PET, PS, ABS, etc., such as resins and cycloolefin resins, can be used to achieve the effects of the present application. It can be blended in a range that does not inhibit it, and other fillers such as talc, calcium carbonate, silica, etc., and if necessary, auxiliary additives generally used for polyolefins, such as antioxidants and neutralizers, A heat stabilizer, a light stabilizer, an ultraviolet absorber, an antifogging agent, a slip agent, an antiblocking agent, an antibacterial agent, a coloring agent, a flame retardant, and the like can be blended.
The other polyolefin resin (A) is polyethylene, homopolypropylene, ethylene or a random copolymer of α-olefin having 4 or more carbon atoms and propylene, or a block copolymer of ethylene or α-olefin having 4 or more carbon atoms and propylene. And so on. Further, the polyolefin resin (A) may consist of a mixture of two or more of these. Further, the polyolefin resin (A) includes ear loss, skeleton, etc. generated when the laminated foam sheet or heat-molded product of the present invention is obtained, and ethylene propylene rubber and ethylene propylene diene rubber for modification purposes as necessary. , High-density polyethylene, low-density polyethylene, linear low-density polyethylene, styrene-based elastomers, petroleum resins and cycloolefin-based resins, polyethylene waxes and petroleum waxes, ethylene-vinegar vinyl copolymers, maleic acid-modified polypropylene, Different resins such as ethylene-vinyl alcohol copolymer, PET, PS, and ABS can be blended as long as the effects of the present application are not impaired. In addition, fillers such as talc, calcium carbonate, and silica are required. Auxiliary additives commonly used in polyolefins, such as antioxidants, neutralizers, heat stabilizers, light stabilizers, UV absorbers, antifogging agents, slip agents, antiblocking agents, antibacterial agents, coloring. Agents, flame retardants, etc. can be blended

本発明の一つの態様においては、スキン層に用いるポリオレフィン系樹脂(B)の190℃で測定したMEが1.4以上であり、好ましくは1.5以上である。MEの上限値は特に限定されるものではないが、通常5、好ましくは4、より好ましくは3である。MEが1.4以上であると、スキン層の厚みが発泡層の圧力に押されることがないため、発泡セルの凹凸形状を抑えることができ、表面がでこぼこ状態に荒れることもなく、また、Tダイ内でのスキン層の流動性が抑えられるので、幅方向の両端にスキン層が流れ過ぎることによる積層ムラによる偏肉不良のない、良好な積層発泡シートを得ることができる。尚、MEは、樹脂のMFRとの相関で評価されるが、発泡層の気泡成長や流動性を損なわない範囲であればよい。MFRが高いスキン層材料を用いると、流れ性が良く、発泡層の押出が阻害されることなく賦形性が良好で、また、積層発泡シートの表面にメルトフラクチャー(表面荒れ)が発生することもなく外観が良好である。
前記スキン層は、ポリオレフィン系樹脂(B)により得られる。ここでポリオレフィン系樹脂(B)とは、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ホモポリプロピレン、エチレン又は炭素数4以上のαオレフィンとプロピレンとのランダムコポリマー、エチレン又は炭素数4以上のαオレフィンとプロピレンとのブロックコポリマー、エチレン−酢酸ビニル共重合体、マレイン酸変性ポリプロピレン、エチレン−ビニルアルコール共重合体などが挙げられる。しかし、発泡層との接着が良いという点で、ポリプロピレン系樹脂を基本として構成されることが好ましい。さらに前記ポリプロピレン系樹脂(X)であっても構わない。また、ポリオレフィン系樹脂(B)はこれらの2種類以上の混合物からなってもよい。
また、これらは2種類以上の混合物からなってもよい。
ヒートシール性、ラミ接着性などを改良するためにはメタロセン触媒により重合されたプロピレンとエチレン若しくは炭素数4以上のαオレフィンとのランダムコポリマー又はブロックコポリマー、メタロセン触媒により重合されたエチレン単独重合体、エチレンと炭素数3以上のαオレフィンとのコポリマー又はターポリマーなど、更にはそのブレンド物が好ましい。
また、該スキン層には、必要に応じて一般的にポリオレフィンに用いられる補助添加成分、例えば、酸化防止剤、中和剤、熱安定剤、光安定剤、紫外線吸収剤、防曇剤、スリップ剤、アンチブロッキング剤、抗菌剤、着色剤、難燃剤等を配合することができる。また、充填剤として無機系、有機系の充填剤があるが、無機系の充填剤としては、タルク、炭酸カルシウム、シリカ、珪藻土、アルミナ、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、ガラスビーズ、ベントナイト、ガラスフレーク、ガラス繊維、カーボンファイバー、アルミニウム粉、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸カルシウム、ハイドロタルサイト、炭素繊維、軽石粉、雲母、リン酸カルシウム、リン酸アルミニウムなどが挙げられ、有機系の充填剤としてはPMMAビーズ、セルロース繊維、ポリアミド繊維、アラミド繊維、ポリエステル繊維、籾殻、木粉、おから、タピオカ粉末、米粉、ケナフ繊維などを添加することも出来、添加量としては、発泡層の幅方向に均一に積層でき、発泡層の拡幅を阻害しない範囲の流動性であれば特に限定しないが、好ましくは、10〜70重量%、更に好ましくは、20〜40重量%である。
In one aspect of the present invention, the ME of the polyolefin resin (B) used for the skin layer measured at 190 ° C. is 1.4 or more, preferably 1.5 or more. The upper limit of ME is not particularly limited, but is usually 5, preferably 4, and more preferably 3. When the ME is 1.4 or more, the thickness of the skin layer is not pushed by the pressure of the foam layer, so that the uneven shape of the foam cell can be suppressed, the surface is not roughened, and the surface is not roughened. Since the fluidity of the skin layer in the T-die is suppressed, it is possible to obtain a good laminated foam sheet without uneven thickness due to uneven lamination due to excessive flow of the skin layer at both ends in the width direction. The ME is evaluated by the correlation with the MFR of the resin, but it may be within a range that does not impair the bubble growth and fluidity of the foam layer. When a skin layer material having a high MFR is used, the flowability is good, the shapeability is good without hindering the extrusion of the foam layer, and melt fracture (rough surface) is generated on the surface of the laminated foam sheet. The appearance is good.
The skin layer is obtained from the polyolefin resin (B). Here, the polyolefin resin (B) is high-density polyethylene, low-density polyethylene, linear low-density polyethylene, homopolypropylene, ethylene or a random copolymer of α-olefin having 4 or more carbon atoms and propylene, ethylene or 4 carbon atoms. Examples thereof include a block copolymer of α-olefin and propylene, an ethylene-vinyl acetate copolymer, a maleic acid-modified polypropylene, and an ethylene-vinyl alcohol copolymer. However, it is preferable that the polypropylene-based resin is used as a basis because the adhesion to the foam layer is good. Further, the polypropylene resin (X) may be used. Further, the polyolefin resin (B) may consist of a mixture of two or more of these.
In addition, these may consist of a mixture of two or more kinds.
In order to improve heat sealability, Lami adhesion, etc., a random copolymer or block copolymer of propylene polymerized by a metallocene catalyst and ethylene or α-olefin having 4 or more carbon atoms, an ethylene homopolymer polymerized by a metallocene catalyst, Copolymers or terpolymers of ethylene with α-olefins having 3 or more carbon atoms, and further blends thereof are preferable.
Further, if necessary, the skin layer contains auxiliary additives generally used for polyolefins, such as antioxidants, neutralizers, heat stabilizers, light stabilizers, ultraviolet absorbers, antifogging agents, and slips. Agents, anti-blocking agents, antibacterial agents, colorants, flame retardants and the like can be blended. In addition, there are inorganic and organic fillers as fillers, but as inorganic fillers, talc, calcium carbonate, silica, diatomaceous soil, alumina, titanium oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, etc. Calcium silicate, glass beads, bentonite, glass flakes, glass fiber, carbon fiber, aluminum powder, molybdenum sulfide, boron fiber, potassium titanate, calcium titanate, hydrotalcite, carbon fiber, pomegranate powder, mica, calcium phosphate, phosphoric acid Examples of organic fillers include aluminum, and PMMA beads, cellulose fibers, polyamide fibers, aramid fibers, polyester fibers, paddy husks, wood flour, okara, tapioca powder, rice flour, kenaf fibers, etc. can be added. The amount added is not particularly limited as long as it can be uniformly laminated in the width direction of the foam layer and has a fluidity within a range that does not hinder the expansion of the foam layer, but is preferably 10 to 70% by weight, more preferably 20. ~ 40% by weight.

本発明の一つの態様においては、中間層の充填剤量は、中間層全体の重量に対して60重量%以下、好ましくは1〜60重量%、より好ましくは5〜60重量%であり、さらに好ましくは、10〜40重量%である。充填剤が5重量%以上であると、剛性向上や製品の物性が良好であり、充填剤が60重量%以下であると、中間層の押出負荷が小さくなり、また押出時のせん断発熱などの影響を発泡層に与えず、積層発泡シートの表面にメルトフラクチャー(表面荒れ)が発生することもなく外観が良好である。また、中間層に用いるポリオレフィン系樹脂は、前記ポリプロピレン系樹脂(X)及びポリオレフィン系樹脂(A)やポリオレフィン系樹脂(B)のいずれでもよく、これら2種類以上の混合物からなってもよく、発泡層やスキン層の流動性や発泡品質を阻害しないポリオレフィン系樹脂であれば特に制限をしない。さらに、前記ポリプロピレン系樹脂(X)、ポリオレフィン系樹脂(A)又はポリオレフィン系樹脂(B)には必要に応じて改質目的として、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、スチレン系などのエラストマー、石油樹脂やシクロオレフィン系樹脂など、ポリエチレンワックスや石油ワックス、エチレン−酢ビ共重合体、マレイン酸変性ポリプロピレン、エチレン−ビニルアルコール共重合体、PET、PS、ABSなどの異なる樹脂を、本願の効果を阻害しない範囲で配合することも出来、必要に応じて一般的にポリオレフィンに用いられる補助添加成分、例えば、酸化防止剤、中和剤、熱安定剤、光安定剤、紫外線吸収剤、防曇剤、スリップ剤、アンチブロッキング剤、抗菌剤、着色剤、難燃剤等を配合することができる。
また、充填剤とは、無機系、有機系の充填剤があるが、無機系の充填剤としては、タルク、炭酸カルシウム、シリカ、珪藻土、アルミナ、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、ガラスビーズ、ベントナイト、ガラスフレーク、ガラス繊維、カーボンファイバー、アルミニウム粉、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸カルシウム、ハイドロタルサイト、炭素繊維、軽石粉、雲母、リン酸カルシウム、リン酸アルミニウムなどが挙げられ、有機系の充填剤としてはPMMAビーズ、セルロース繊維、ポリアミド繊維、アラミド繊維、ポリエステル繊維、籾殻、木粉、おから、タピオカ粉末、米粉、ケナフ繊維などを添加することも出来、添加量としては、発泡層の幅方向に均一に積層でき、発泡層の拡幅を阻害しない範囲の流動性であれば特に限定しない。
In one aspect of the present invention, the amount of filler in the intermediate layer is 60% by weight or less, preferably 1 to 60% by weight, more preferably 5 to 60% by weight, based on the total weight of the intermediate layer. Preferably, it is 10 to 40% by weight. When the filler content is 5% by weight or more, the rigidity is improved and the physical properties of the product are good. When the filler content is 60% by weight or less, the extrusion load of the intermediate layer becomes small, and shear heat generation during extrusion occurs. The appearance is good without affecting the foam layer and without causing melt fracture (rough surface) on the surface of the laminated foam sheet. The polyolefin-based resin used for the intermediate layer may be any of the polypropylene-based resin (X), the polyolefin-based resin (A), and the polyolefin-based resin (B), and may consist of a mixture of two or more of these, and is foamed. There are no particular restrictions as long as it is a polyolefin resin that does not impair the fluidity and foaming quality of the layer or skin layer. Further, the polypropylene-based resin (X), the polyolefin-based resin (A), or the polyolefin-based resin (B) may be modified with ethylene propylene rubber, ethylene propylene diene rubber, high-density polyethylene, or low-density polyethylene, if necessary. , Linear low-density polyethylene, styrene-based elastomers, petroleum resins, cycloolefin-based resins, polyethylene waxes and petroleum waxes, ethylene-vinegar vinyl copolymers, maleic acid-modified polypropylene, ethylene-vinyl alcohol copolymers, Different resins such as PET, PS, and ABS can be blended within a range that does not impair the effects of the present application, and if necessary, auxiliary additives generally used for polyolefins, such as antioxidants and neutralizers, A heat stabilizer, a light stabilizer, an ultraviolet absorber, an antifogging agent, a slip agent, an antiblocking agent, an antibacterial agent, a coloring agent, a flame retardant, and the like can be blended.
The filler includes inorganic and organic fillers, and the inorganic fillers include talc, calcium carbonate, silica, diatomaceous earth, alumina, titanium oxide, magnesium oxide, aluminum hydroxide, and hydroxide. Magnesium, calcium silicate, glass beads, bentonite, glass flakes, glass fiber, carbon fiber, aluminum powder, molybdenum sulfide, boron fiber, potassium titanate, calcium titanate, hydrotalcite, carbon fiber, pebbles powder, mica, calcium phosphate, Examples of organic fillers include aluminum phosphate, and PMMA beads, cellulose fibers, polyamide fibers, aramid fibers, polyester fibers, rice husks, wood flour, okara, tapioca powder, rice flour, kenaf fibers, etc. are added. The amount of addition is not particularly limited as long as it can be uniformly laminated in the width direction of the foamed layer and has a fluidity within a range that does not hinder the widening of the foamed layer.

本発明の一つの態様においては、積層発泡シートの発泡倍率は、1.3〜5倍、好ましくは、1.3〜4倍である。発泡倍率が1.3倍以上であると、発泡シートとしての軽量性が損なわれることがなく、軽量化のメリットを得ることができる。また、発泡倍率が5倍以下であると、微細な気泡の状態が保持され賦形維持ができて独立気泡率が高く、表面に凹凸や膨れの発生のない外観がきれいな積層発泡シートを得ることができる。更に連続気泡率は、50%以下が必要であって、好ましくは30%以下、更に好ましくは20%以下である。連続気泡率が50%以下であると、気泡が連続している部分が窪むことによるシートの外観が悪化することを防ぐことができ、二次加工の再加熱による熱膨張が優先的に起こることもなく、容器の気泡破膜が発生せず、成形性や寸法精度が良好である。
該発泡層への発泡剤の添加量は、発泡剤の種類や設備、運転条件、製品の発泡倍率等によって異なるが、発泡倍率1.3〜5倍(発泡層密度0.14〜0.58g/cm3)の積層発泡シートを得るためには、ポリプロピレン系樹脂(X)を30〜100重量%とポリオレフィン系樹脂(A)を70〜0重量%混合した樹脂100重量%に対して、0.2〜10重量部を添加するのが好ましい。発泡に適した材料は、適切なガス量において、適度な発泡倍率を得ることができる。
また、積層発泡シートの厚みは、二次加工する成形品の形状や軽量性、剛性にもよるが、厚みは、0.1mm以上から10mm以下である。0.1mm以上であると、積層発泡シートの薄膜成形性や微細な気泡の賦形が良好で薄膜成形が可能であり、しかも二次成形時の賦形性や剛性が良好である。厚みが10mm以下であると、積層発泡シートの冷却効率が良好で、微細な気泡の状態が維持でき、連続した気泡が形成されて発泡層の中に巣が発生することもなく、シート表面に窪みの発生もなく、外観が良好であり、両面真空成形性も優れる。
In one aspect of the present invention, the foaming ratio of the laminated foamed sheet is 1.3 to 5 times, preferably 1.3 to 4 times. When the foaming ratio is 1.3 times or more, the lightness of the foamed sheet is not impaired, and the merit of weight reduction can be obtained. Further, when the foaming ratio is 5 times or less, a laminated foamed sheet having a beautiful appearance without unevenness or swelling on the surface can be obtained because the state of fine bubbles is maintained, the shape can be maintained, and the closed cell ratio is high. Can be done. Further, the open cell ratio needs to be 50% or less, preferably 30% or less, still more preferably 20% or less. When the coefficient of open cells is 50% or less, it is possible to prevent the appearance of the sheet from being deteriorated due to the denting of the portion where the bubbles are continuous, and thermal expansion due to reheating of the secondary processing occurs preferentially. No bubble rupture occurs in the container, and the moldability and dimensional accuracy are good.
The amount of the foaming agent added to the foaming layer varies depending on the type of foaming agent, equipment, operating conditions, foaming ratio of the product, etc., but the foaming ratio is 1.3 to 5 times (foaming layer density 0.14 to 0.58 g). / Cm 3 ) In order to obtain a laminated foamed sheet, it is 0 with respect to 100% by weight of a resin obtained by mixing 30 to 100% by weight of polypropylene resin (X) and 70 to 0% by weight of polyolefin resin (A). It is preferable to add 2 to 10 parts by weight. A material suitable for foaming can obtain an appropriate foaming ratio at an appropriate amount of gas.
The thickness of the laminated foam sheet depends on the shape, lightness, and rigidity of the molded product to be secondarily processed, but the thickness is 0.1 mm or more and 10 mm or less. When it is 0.1 mm or more, the thin film formability of the laminated foam sheet and the shaping of fine bubbles are good, and the thin film can be formed, and the formability and rigidity at the time of secondary molding are good. When the thickness is 10 mm or less, the cooling efficiency of the laminated foam sheet is good, the state of fine bubbles can be maintained, continuous bubbles are not formed, and nests are not generated in the foam layer, and the sheet surface is covered. There are no dents, the appearance is good, and the double-sided vacuum formability is also excellent.

本発明において発泡層を構成する発泡剤としては、例えば、無機系発泡剤、揮発性発泡剤、分解型発泡剤が用いられ、これらは併用して用いることもできる。無機系発泡剤としては、例えば、二酸化炭素、空気、窒素等が挙げられる。揮発性発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、シクロブタン、シクロペンタン等の脂肪族炭化水素類及び環式脂肪族炭化水素類が、モノクロロジフロロメタン、トリクロロフロロメタン、ジクロロジフロロメタン、ジクロロテトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素類が挙げられる。分解型発泡剤としては、例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、p,p′−オキシビスベンゼンスルホニルヒドラジド、クエン酸、炭酸水素ナトリウム(重炭酸ナトリウム、重曹)等が挙げられる。 As the foaming agent constituting the foam layer in the present invention, for example, an inorganic foaming agent, a volatile foaming agent, and a split-type foaming agent are used, and these can also be used in combination. Examples of the inorganic foaming agent include carbon dioxide, air, nitrogen and the like. Examples of the volatile foaming agent include aliphatic hydrocarbons such as propane, butane, pentane, hexane, cyclobutane, and cyclopentane, and cyclic aliphatic hydrocarbons, such as monochlorochloromethane, trichlorofluoromethane, and dichlorodifluoromethane. Examples thereof include halogenated hydrocarbons such as methane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride and methylene chloride. Examples of the decomposition foaming agent include azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, p, p'-oxybisbenzenesulfonylhydrazide, citric acid, and sodium hydrogen carbonate (sodium bicarbonate, baking soda). And so on.

(積層発泡シートのβ晶分率)
本発明の一つの態様においては、積層発泡シートのβ晶分率は、12%以上、好ましくは20〜90%であり、更に好ましくは30〜70%である。積層発泡シート内のβ晶率が12%以上であると、積層発泡シートを両面真空成形で加熱溶融する時の加熱時間が短くなり、しかも加熱時間の幅も広くて成形性が良好である。なお、β晶分率は、積層発泡シートの中心部分より試験片を切り出し、切り出した試験片をX線回折により測定して求めた。その具体的な方法は、後記実施例に記載した。
(Β crystal fraction of laminated foam sheet)
In one aspect of the present invention, the β crystal fraction of the laminated foam sheet is 12% or more, preferably 20 to 90%, and more preferably 30 to 70%. When the β crystal ratio in the laminated foamed sheet is 12% or more, the heating time when the laminated foamed sheet is heated and melted by double-sided vacuum forming is shortened, and the heating time is wide and the moldability is good. The β crystal fraction was determined by cutting out a test piece from the central portion of the laminated foam sheet and measuring the cut out test piece by X-ray diffraction. The specific method is described in Examples described later.

(積層発泡シートの組合せ)
本積層発泡シートの組合せを下記に表す。
表側 裏側
(1)スキン層/発泡層/スキン層
(2)スキン層/発泡層
(3)発泡層/スキン層
(4)スキン層/中間層/発泡層
(5)発泡層/中間層/スキン層
(6)スキン層/中間層/発泡層/中間層/スキン層
(7)スキン層/中間層/発泡層/スキン層
(8)スキン層/発泡層/中間層/スキン層
本発明の積層発泡シートの表側は、両面真空成形法において雌型面の金型面に接して刻印文字が容器外側に成形表示されて外観判断の目安となり、前記層構成の組合せの中では、(1)と(6)が対称構成品であり、品質や強度面からも特に好ましい。
(Combination of laminated foam sheets)
The combination of the laminated foam sheets is shown below.
Front side Back side (1) Skin layer / Foam layer / Skin layer (2) Skin layer / Foam layer (3) Foam layer / Skin layer (4) Skin layer / Intermediate layer / Foam layer (5) Foam layer / Intermediate layer / Skin Layer (6) Skin layer / Intermediate layer / Foam layer / Intermediate layer / Skin layer (7) Skin layer / Intermediate layer / Foam layer / Skin layer (8) Skin layer / Foam layer / Intermediate layer / Skin layer Lamination of the present invention In the double-sided vacuum forming method, the front side of the foam sheet is in contact with the mold surface of the female mold surface, and the engraved characters are molded and displayed on the outside of the container to serve as a guide for appearance judgment. Among the combinations of the layer configurations, (1) and (6) is a symmetrical component, which is particularly preferable in terms of quality and strength.

(積層発泡シートの製造方法)
本発明の熱成形体に用いられる積層発泡シートは、任意の積層方法にて積層できるが、スキン層と発泡層を一度に共押出しする事によって得る方法が、コスト面、溶剤などを使わないという環境面から好ましい。
(Manufacturing method of laminated foam sheet)
The laminated foam sheet used in the thermoformed body of the present invention can be laminated by any laminating method, but the method obtained by co-extruding the skin layer and the foam layer at the same time is said to be cost-effective and does not use a solvent. Environmentally preferable.

本発明において積層発泡シートを共押出しによって得る方法(以下、共押出法という。)は、各層用に割り当てられた押出機により、スキン層と発泡層をダイスより押し出す直前に、これらの層を溶融状態で積層する方法であればいずれの手法を用いてもよい。例えば、押出機で溶融混練された後、ダイス内で積層するマルチマニホールド方式や、ダイスに流入させる直前に積層するフィードブロック方式(コンバイニングアダプター方式)等を挙げることができる。各押出機はタンデム型でもシングル型でも可能であり、必要に応じてギヤポンプなどの押出安定性のための補助装置が設置されてもかまわない。
ダイスの形状は、T型ダイス、コートハンガー型、環状ダイス(好ましくはサーキュラーダイ)のいずれをも使用できる。次いで、ダイスより押出された積層発泡シートは、公知の方法、例えばポリシングロール、エアーナイフ、マンドレルなどにより冷却固化され、その後巻き取り機にて巻き取られるか、又は裁断機にて所定の寸法にカットされる。冷却固化後の後処理に関しては、特に制限は無く、例えばコロナ処理、火炎処理、フレーム処理、プラズマ処理などの極性基付与処理工程、コーターロールによる帯電防止剤などのコーティング処理工程、フィルム貼合、印刷、塗装などが使用可能である。
In the present invention, the method of obtaining a laminated foam sheet by coextrusion (hereinafter referred to as a coextrusion method) melts the skin layer and the foam layer immediately before extruding the skin layer and the foam layer from the die by an extruder assigned to each layer. Any method may be used as long as it is a method of laminating in a state. For example, a multi-manifold method in which the mixture is melt-kneaded by an extruder and then laminated in the die, a feed block method (combining adapter method) in which the layers are laminated immediately before flowing into the die, and the like can be mentioned. Each extruder can be a tandem type or a single type, and an auxiliary device for extrusion stability such as a gear pump may be installed if necessary.
As the shape of the die, any of a T-shaped die, a coat hanger type, and an annular die (preferably a circular die) can be used. The laminated foam sheet extruded from the die is then cooled and solidified by a known method, for example, a polishing roll, an air knife, a mandrel, etc., and then wound by a winder or a predetermined size by a cutting machine. It will be cut. The post-treatment after cooling and solidification is not particularly limited, for example, a polar group-imparting treatment step such as corona treatment, flame treatment, frame treatment, plasma treatment, coating treatment step such as antistatic agent by coater roll, film bonding, etc. Printing, painting, etc. can be used.

特に、フィルム貼合は、両面真空成形時の前に貼合する熱成形前ラミ法、積層発泡シート成形時の冷却時に貼合する熱ラミ法、いったん積層発泡シートを冷却した後、再度加熱ロールなどで加温して貼合する方法などがあるが、いずれの公知の方法によっても貼合することができる。
貼り合わせるフィルムの種類も、CPPフィルム、BOPPフィルム、PETフィルム及びそれらの印刷フィルム、EVOHなどを積層したバリアフィルムなど、特に限定はないが、ポリオレフィン系樹脂と接着しやすい、貼合面にポリオレフィン系樹脂を配したフィルム、又は塩素化ポリプロピレンや低分子量のポリオレフィンを混合したインク、接着剤などを塗布したフィルムを用いることが好ましい。
In particular, the film bonding is performed by a pre-thermoforming laminating method in which the film is bonded before vacuum forming on both sides, a thermal laminating method in which the laminated foam sheet is bonded during cooling during molding, and a heating roll after cooling the laminated foam sheet. There is a method of heating and laminating with or the like, but any known method can be used for laminating.
The type of film to be bonded is also not particularly limited, such as a CPP film, BOPP film, PET film and its printing film, and a barrier film in which EVOH and the like are laminated, but it is easy to adhere to a polyolefin-based resin, and the bonding surface is polyolefin-based. It is preferable to use a film on which a resin is arranged, or a film coated with an ink or an adhesive mixed with chlorinated polypropylene or low molecular weight polyolefin.

また、本発明においては、非発泡層を積層発泡シートの表面と裏面に、顔料を変えるなど異なる配合で積層する、非発泡層を複数層に分割し、バリア層、接着層を設ける、発泡層を2層に分割し、中心層に他の層を設けるなどして、多様なバリエーションの非発泡層を配してもよい。 Further, in the present invention, the non-foaming layer is laminated on the front surface and the back surface of the laminated foam sheet with different formulations such as changing pigments, the non-foaming layer is divided into a plurality of layers, and a barrier layer and an adhesive layer are provided. May be divided into two layers, and another layer may be provided in the central layer, so that various variations of non-foaming layers may be arranged.

熱成形体(両面真空成形法による製造)
本発明のもう一つの実施態様は、本発明の積層発泡シートを用いて両面真空成形法によって得られる熱成形体である。かかる熱成形体は、積層発泡シートを、エルスタインヒーターやセラミックヒーター、近赤外線ヒーターなどで半溶融に加熱した積層発泡シートを、雌雄金型の間に挿入して雌雄両金型を型締めし、両面から真空引きすることにより、両方の負圧にて金型形状を雌雄両面から転写して得られる。熱成形体の厚みは、積層発泡シートの厚みに対して、0.8〜3倍であることが好ましい。
Thermoformed body (manufactured by double-sided vacuum forming method)
Another embodiment of the present invention is a thermoformed body obtained by a double-sided vacuum forming method using the laminated foam sheet of the present invention. In such a thermoformed body, a laminated foam sheet heated semi-melted by an Elstein heater, a ceramic heater, a near-infrared heater, or the like is inserted between male and female molds to mold both male and female molds. By vacuuming from both sides, the mold shape can be transferred from both male and female sides with both negative pressures. The thickness of the thermoformed body is preferably 0.8 to 3 times the thickness of the laminated foam sheet.

熱成形体を両面真空成形法により製造するには、通常、従来公知の成形条件を適用できるが、具体的には、雄雌一対になった形状の金型を用い、その雄雌金型のクリアランスが最終的に所望の成形品厚みに調整される。その金型のクリアランス設定は、積層発泡シートに対して0.8〜3倍、好ましくは0.9〜2倍である。0.8倍以上であると、既存の成形法に対する両面真空成形法の特徴を出すことができる。また、3倍以下では、賦形時に発泡のセルが追随できるため、セル膜が両面真空の引き延ばしで破れることがなく、巣の入った発泡構造が形成されず、強度などの機械物性が保持でき、また、引き残しが生じず、金型再現性が良好で、安定した品質を得ることができる。
また、両面真空成形時の積層発泡シートの加熱温度は、200〜500℃、好ましくは220〜400℃が最適である。また、雄雌一対の金型の締め付け圧力は、200〜4000MPa程度であり、両面から真空吸引する真空度は、26.7kPa以上である。
In order to manufacture a thermoformed product by a double-sided vacuum forming method, conventionally known molding conditions can be usually applied. Specifically, a mold having a pair of male and female shapes is used, and the male and female molds are used. The clearance is finally adjusted to the desired part thickness. The clearance setting of the mold is 0.8 to 3 times, preferably 0.9 to 2 times, that of the laminated foam sheet. When it is 0.8 times or more, the characteristics of the double-sided vacuum forming method with respect to the existing forming method can be exhibited. In addition, if it is 3 times or less, the foamed cells can follow during shaping, so that the cell membrane is not torn by stretching the double-sided vacuum, a foamed structure with nests is not formed, and mechanical properties such as strength can be maintained. In addition, there is no leftover, the mold reproducibility is good, and stable quality can be obtained.
The optimum heating temperature of the laminated foam sheet during double-sided vacuum forming is 200 to 500 ° C., preferably 220 to 400 ° C. The tightening pressure of the pair of male and female molds is about 200 to 4000 MPa, and the degree of vacuum for vacuum suction from both sides is 26.7 kPa or more.

また、本発明の一つの態様においては、両面真空成形法における金型温度は、40℃以上、好ましくは40〜110℃、更に好ましくは50〜90℃である。金型温度が40℃以上であると金型と積層発泡シートの滑りが良好で、離形性や収縮率が小さくなる。金型の加熱温調は、公知の方法いずれでもよく、特に制限されない。
尚、金型への追随性を保持するためには、雌雄両金型を加熱することが好ましく、加熱温度は、40℃以上かつ使用材料の融点以下が好ましく、50℃以上かつ表面層樹脂の融点以下に加熱すると尚好ましい。一般的に温度設定は、オス型の金型温度>メス型の金型温度 のバランスで調整される。これはオス型に先ず積層発泡シートが接触するために、積層発泡シートの温度が過冷却になり金型追随性が低下するのを防ぐためである。
雌雄の金型形状は、食品の丼物やスープ容器等に賦形するデザインや自動車内装材や産業資材に最適な、上下ボード状になるように加工された一対の金型を用いるデザインなど多様なデザインに適用できる。金型表面はディンプル形状、皮シボなどの形状にシボ加工することも可能である。
Further, in one aspect of the present invention, the mold temperature in the double-sided vacuum forming method is 40 ° C. or higher, preferably 40 to 110 ° C., and more preferably 50 to 90 ° C. When the mold temperature is 40 ° C. or higher, the mold and the laminated foam sheet slide well, and the releasability and shrinkage rate become small. The heating temperature control of the mold may be any known method and is not particularly limited.
In order to maintain the followability to the mold, it is preferable to heat both male and female molds, and the heating temperature is preferably 40 ° C. or higher and the melting point or lower of the material used, 50 ° C. or higher and the surface layer resin. It is even more preferable to heat it below the melting point. Generally, the temperature setting is adjusted by the balance of male mold temperature> female mold temperature. This is to prevent the temperature of the laminated foamed sheet from being overcooled and the mold followability from being lowered because the laminated foamed sheet first comes into contact with the male mold.
There are various mold shapes for males and females, such as designs that shape food bowls and soup containers, and designs that use a pair of molds that are processed into upper and lower boards, which is ideal for automobile interior materials and industrial materials. It can be applied to various designs. The surface of the mold can be textured into a dimple shape or a textured skin.

本発明の一つの態様においては、熱成形体のβ晶分率は、40%以下、好ましくは、3%以下、更に好ましくは1%以下である。β晶分率が40%以下であると、両面真空成形後のMD方向とTD方向の収縮率が異なることがなく、嵌合や平滑性に不具合が生じない。なお、β晶分率は、熱成形体の底面のMD方向中心部分より試験片を切り出し、切り出した試験片をX線回折により測定して求めた。その具体的な方法は、積層発泡シートと同様に実施例に記載した。 In one aspect of the present invention, the β crystal fraction of the thermoformed product is 40% or less, preferably 3% or less, and more preferably 1% or less. When the β crystal fraction is 40% or less, the shrinkage ratios in the MD direction and the TD direction after double-sided vacuum forming do not differ, and there is no problem in fitting and smoothness. The β crystal fraction was determined by cutting out a test piece from the center portion of the bottom surface of the thermoformed body in the MD direction and measuring the cut out test piece by X-ray diffraction. The specific method is described in Examples as in the case of the laminated foam sheet.

得られた熱成形体は、抜き刃などで所望の熱成形体の形に抜かれ、そのまま熱成形体として用いられ、必要に応じて更に穴あけ加工、溶着加工など、更には塗装やコーティングなどの表面処理加工を施すことで、目的の熱成形体に仕上がる。
得られた熱成形体は、食品容器や産業資材の包装材、自動車の内装、外層部品や工業部品など、軽量性や断熱性が要求され、かつ剛性、耐熱性、寸法安定性、外観の良さなどが要求される多様な用途に利用される。
The obtained thermoformed body is punched into a desired thermoformed body shape by a punching blade or the like, and is used as it is as a thermoformed body. If necessary, further drilling, welding, etc., and surface coating or coating By applying the treatment process, the desired thermoformed body is finished.
The obtained thermoformed material is required to be lightweight and heat-insulating, such as packaging materials for food containers and industrial materials, automobile interiors, outer layer parts and industrial parts, and has rigidity, heat resistance, dimensional stability, and good appearance. It is used for various purposes that require such things.

以下、本発明の実施例を記載して、より具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, examples of the present invention will be described and described in more detail, but the present invention is not limited to these examples.

(測定項目)
(1)溶融張力:東洋精機社製キャピラリーレオメーターを用い、バレル温度230℃、ダイ内径2.095mm、長さ8mmを用い、ピストン速度10mm/分(剪断速度13.221/sec.)、ストランドの引取速度4m/分、予熱10分にてストランドを押出し、引き取っているストランドにかかる荷重を測定の平均値を求めて溶融張力値とした。
(2)溶融弾性率:立山科学工業製メルトインデクサーを用い、シリンダー温度190℃、内径1.00mm、長さ8mmのノズルを用い、シリンダーにピストンを挿入して6分後に規定押出速度0.1g/分でストランドを押出し、その1分間後のストランドをエチルアルコールに浸漬し、固化したストランドの直径を測定して溶融弾性率(ME=(ストランドの直径)/(ノズル内径))とした。
(3)連続気泡率(単位:%)と独立気泡率(単位:%):測定装置としてエアーピクノメーター(東芝ベックマン製、型式930)を用いて、空気密度を測定し、多層による非発泡層の堆積を除外し、以下の式により連続気泡率、独立気泡率を測定した。
連続気泡率=(見掛発泡層体積−測定値)×100/見掛発泡層体積
独立気泡率=(測定値−発泡層重量/0.9)/見掛発泡層体積×100
(4)プロピレン系樹脂層のβ晶分率:
プロピレン系樹脂層のβ晶分率は、特開平6−64038号公報、特開平6−287369号公報、特開平7−118429号公報、特開平7−126409号公報等に示される様にターナー・ジョーンズらの「Makromol.Chem 75、135〜137(1964)」に記載された方法に準じて以下の式を用いて算出した。X線回折は熱成形容器の高さ方向中心部分を切り出し、容器円周方向を透過法にて測定した。測定はRigaku社製X−ray diffractmater SmartLabを用い、波長1.54Å、出力40kV 30mAで、2θスキャン範囲5〜40°を0.1°ステップ、スキャン速度10°/minの条件で測定した。
β晶分率=(hβ)/(hβ+hα+hα+hα)×100
但し、hβはβ晶(300)面による回折強度(高さ)、hα1はα晶(110)面による回折強度(高さ)、hαはα晶(040)面による回折強度(高さ)、hαはα晶(130)面による回折強度(高さ)を表す。
(5)密度の測定
サンプルを適当なサイズに切り出し、アルファミラージュ 比重計 MDー300Sを使用し(アルキメデスの原理を利用した比重計、媒体は水)、空気中と水中でのサンプル重量をそれぞれ測定し、両者から体積を求めて密度を算出した(自動算出)。
(6)発泡倍率の算出
発泡倍率は次式により求めた。

発泡倍率 = 0.9/発泡体の密度

発泡体とは、特に限定はしないが発泡シート(多層含む)や発泡容器を指し、また、発泡シートや発泡容器の発泡層のみを指すこともある。
(Measurement item)
(1) Melt tension: Using a capillary rheometer manufactured by Toyo Seiki Co., Ltd., using a barrel temperature of 230 ° C., a die inner diameter of 2.095 mm, and a length of 8 mm, a piston speed of 10 mm / min (shear rate 13.221 / sec.), Strands The strands were extruded at a take-up speed of 4 m / min and preheating for 10 minutes, and the load applied to the take-up strands was calculated as the average value of the measurements and used as the melt tension value.
(2) Melt elastic modulus : Using a melt indexer manufactured by Tateyama Kagaku Kogyo, using a nozzle with a cylinder temperature of 190 ° C., an inner diameter of 1.00 mm, and a length of 8 mm, the specified extrusion speed was 0. 6 minutes after the piston was inserted into the cylinder. The strands were extruded at 1 g / min, and the strands 1 minute later were immersed in ethyl alcohol, and the diameter of the solidified strands was measured to obtain a melt elastic modulus (ME = (strand diameter) / (nozzle inner diameter)).
(3) Open cell ratio (unit:%) and closed cell ratio (unit:%): An air density is measured using an air pycnometer (manufactured by Toshiba Beckman, model 930) as a measuring device, and a non-foamed layer made of multiple layers. The open cell ratio and closed cell ratio were measured by the following formulas.
Open cell ratio = (apparent foam layer volume-measured value) x 100 / apparent foam layer volume closed cell ratio = (measured value-foam layer weight / 0.9) / apparent foam layer volume x 100
(4) β crystal fraction of propylene resin layer:
The β crystal fraction of the propylene-based resin layer is as shown in JP-A-6-64038, JP-A-6-287369, JP-A-7-118429, JP-A-7-126409 and the like. It was calculated using the following formula according to the method described in "Makromol. Chem 75, 135-137 (1964)" by Jones et al. For X-ray diffraction, the central portion in the height direction of the thermoformed container was cut out, and the circumferential direction of the container was measured by the transmission method. The measurement was performed using an X-ray differentialmater SmartLab manufactured by Rigaku, with a wavelength of 1.54Å, an output of 40 kV and 30 mA, a 2θ scan range of 5 to 40 ° in 0.1 ° steps, and a scan speed of 10 ° / min.
β crystal fraction = (hβ) / (hβ + hα 1 + hα 2 + hα 3 ) × 100
However, hβ is the diffraction intensity (height) due to the β crystal (300) plane, hα1 is the diffraction intensity (height) due to the α crystal (110) plane, and hα 2 is the diffraction intensity (height) due to the α crystal (040) plane. , Hα 3 represent the diffraction intensity (height) due to the α crystal (130) plane.
(5) Density measurement A sample is cut out to an appropriate size, and the sample weights in air and water are measured using the Alpha Mirage Hydrometer MD-300S (Archimedes' principle hydrometer, medium is water). Then, the volume was calculated from both, and the density was calculated (automatic calculation).
(6) Calculation of foaming ratio The foaming ratio was calculated by the following formula.

Foaming ratio = 0.9 / Foam density

The foam material is not particularly limited, but refers to a foam sheet (including multiple layers) or a foam container, and may also refer only to a foam sheet or a foam layer of a foam container.

1.材料
材料は以下の組成で重合し、添加剤としてフェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010、チバスペシャリティーケミカルズ社製)0.1重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168、チバスペシャリティーケミカルズ株式会社製)0.1重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト、日本油脂株式会社製)0.1重量部を重合パウダーに添加し、200℃の2軸押出機にて溶融混練してそれぞれのペレットを得た。
1. 1. Material The material is polymerized with the following composition, and as an additive, tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, which is a phenolic antioxidant. ] Methane (trade name: IRGANOX1010, manufactured by Ciba Speciality Chemicals) 0.1 part by weight, tris (2,4-di-t-butylphenyl) phosphite (trade name: IRGAFOS 168), which is a phosphite-based antioxidant. , Ciba Speciality Chemicals Co., Ltd.) 0.1 parts by weight, and calcium stearate (trade name: Calcium Steareto, manufactured by Nippon Oil & Fats Co., Ltd.) 0.1 part by weight, which is a neutralizing agent, are added to the polymer powder. , 200 ° C., melt-kneaded with a twin-screw extruder to obtain each pellet.

製造例1(PP1の製造)
ポリオレフィン系樹脂(B)としてPP1の製造を行った。
(i)固体触媒成分cの製造
充分に窒素置換した内容積50リットルの攪拌機付槽に、脱水および脱酸素したn−ヘプタン、20リットルを導入し、次いでMgClを10モル、Ti(O−n−Cを20モル導入し、95℃で2時間反応させた。反応終了後、40℃に温度を下げ、次いでメチルヒドロポリシロキサン(20センチストークスのもの)を12リットル導入し、3時間反応させた。生成した固体成分をn−ヘプタンで洗浄した。
次いで、前記攪拌機付槽を用いて該槽に、上記と同様に精製したn−ヘプタンを5リットル導入し、上記で合成した固体成分をMg原子換算で3モル導入した。次いでn−ヘプタン2.5リットルにSiCl5モルを混合して30℃、30分間でフラスコへ導入し、70℃で3時間反応させた。反応終了後、n−ヘプタンで洗浄した。
次いで前記攪拌機付槽へn−ヘプタン2.5リットル導入し、フタル酸クロライド0.3モルを混合して、70℃、30分間で導入し、90℃で1時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いでTiCl2リットルを導入して110℃で3時間反応させた。反応終了後、n−ヘプタンで洗浄して固体触媒成分cを製造するための固体成分c1を得た。この固体成分のチタン含量は2.0重量%であった。
次いで、窒素置換した前記攪拌機付槽にn−ヘプタンを8リットル、上記で合成した固体成分c1を400グラム導入し、成分c2としてSiCl0.6リットルを導入して90℃で2時間反応させた。反応終了後、さらに成分c3として(CH=CH)Si(CH0.54モル、成分c4として(t−C)(CH)Si(OCH0.27モルおよび成分c5としてAl(C1.5モルを順次導入して30℃で2時間接触させた。接触終了後、n−ヘプタンで充分に洗浄し、塩化マグネシウムを主体とする触媒成分c390gを得た。このもののチタン含量は、1.8重量%であった。
(ii)プロピレン系ブロック共重合体の製造
内容積400リットルの攪拌機付きステンレス鋼製オートクレーブをプロピレンガスで充分に置換し、重合溶媒として脱水及び脱酸素したn−ヘプタン120リットルを入れた。次に温度70℃の条件下、トリエチルアルミニウム30g、水素12リットル、および前記触媒cを10g加えた。オートクレーブを内温75℃に昇温した後、プロピレンを20.7kg/Hr、水素を20.6L/Hrで供給した。200分後にプロピレン、水素の供給を停止した。プロピレン、水素の供給の間、器内の圧力は徐々に上昇し、最終的に0.46MPaG(ゲージ圧、以下同様)まで上昇した。その後、残重合を行い、器内の圧力が0.35MPaGになった時点で、反応器内のガスを0.03MPaGまでパージしプロピレン重合体を得た(前段重合工程)。
次いで、オートクレーブを内温65℃にセットした後、n−ブタノールを16.0mI導入、次いで、プロピレンを2.4kg/Hr、エチレンを1.6kg/Hrで供給した。90分後エチレン、プロピレンの供給を停止し、重合を終了した。圧力はエチレン、プロピレン供給開始時0.03MPaGであったが、供給停止時0.09MPaGであった(後段重合工程)。
得られたスラリーは、次の攪拌機付き槽に移送し、ブタノールを2.5リットル加え、70℃で3時間処理し、更に次の攪拌機付き槽に移送、水酸化ナトリウム20gを溶解した純水100リットルを加え、1時間処理した後、水層を静置後分離、触媒残渣を除去した。スラリーは遠心分離機で処理し、ヘプタンを除去、80℃の乾燥機で3時間処理しヘプタンを完全に除去、59.7kgのY14を得た。
チーグラー系触媒で重合され、プロピレン−αオレフィン共重合体部分の全体に対する割合が6.6重量%、αオレフィンとしてエチレンの44.7重量%、固有粘度ηが14.8dl/g、重量平均分子量と数平均分子量の比、Mw/Mnが13.3、プロピレン単独重合体の部分の全体に対する割合が93.4重量%、ポリオレフィン系樹脂(プロピレン系ブロック共重合体)のMFR(230℃、2.16kg荷重)が12g/10分、MEが1.8、180℃伸張粘度測定において歪硬化性を示し(歪硬化性「有」)、その歪硬化度(λmax(10))が2.07のポリオレフィン系樹脂であった。
Production Example 1 (Production of PP1)
PP1 was produced as a polyolefin resin (B).
(I) Production of solid catalyst component c 20 liters of dehydrated and deoxidized n-heptane was introduced into a tank with a stirrer having an internal volume of 50 liters sufficiently substituted with nitrogen, and then 10 mol of MgCl 2 and Ti (O-) were introduced. 20 mol of n-C 4 H 9 ) 4 was introduced and reacted at 95 ° C. for 2 hours. After completion of the reaction, the temperature was lowered to 40 ° C., and then 12 liters of methylhydropolysiloxane (20 cm Stokes) was introduced and reacted for 3 hours. The solid component produced was washed with n-heptane.
Next, using the tank with a stirrer, 5 liters of n-heptane purified in the same manner as above was introduced into the tank, and 3 mol of the solid component synthesized above was introduced in terms of Mg atoms. Then n- heptane 2.5 liters to SiCl 4 5 moles of mixture to 30 ° C., was introduced into the flask for 30 minutes, allowed to react for 3 hours at 70 ° C.. After completion of the reaction, the mixture was washed with n-heptane.
Next, 2.5 liters of n-heptane was introduced into the tank with a stirrer, 0.3 mol of phthalate chloride was mixed, introduced at 70 ° C. for 30 minutes, and reacted at 90 ° C. for 1 hour. After completion of the reaction, the mixture was washed with n-heptane. Then allowed to react for 3 hours at 110 ° C. by introducing TiCl 4 2 liters. After completion of the reaction, the solid component c1 for producing the solid catalyst component c was obtained by washing with n-heptane. The titanium content of this solid component was 2.0% by weight.
Next, 8 liters of n-heptane and 400 g of the solid component c1 synthesized above were introduced into the nitrogen-substituted tank with a stirrer, and 0.6 liters of SiCl 4 as a component c2 was introduced and reacted at 90 ° C. for 2 hours. It was. After completion of the reaction, the component c3 was (CH 2 = CH) Si (CH 3 ) 3 0.54 mol, and the component c4 was (t-C 4 H 9 ) (CH 3 ) Si (OCH 3 ) 2 0.27 mol. And 3 1.5 mol of Al (C 2 H 5 ) as component c5 was sequentially introduced and contacted at 30 ° C. for 2 hours. After the contact was completed, the contact was thoroughly washed with n-heptane to obtain 390 g of a catalyst component c mainly composed of magnesium chloride. The titanium content of this product was 1.8% by weight.
(Ii) Production of propylene-based block copolymer A stainless steel autoclave with an internal volume of 400 liters with a stirrer was sufficiently replaced with propylene gas, and 120 liters of dehydrated and deoxidized n-heptane was added as a polymerization solvent. Next, under the condition of a temperature of 70 ° C., 30 g of triethylaluminum, 12 liters of hydrogen, and 10 g of the catalyst c were added. After raising the temperature of the autoclave to an internal temperature of 75 ° C., propylene was supplied at 20.7 kg / Hr and hydrogen was supplied at 20.6 L / Hr. After 200 minutes, the supply of propylene and hydrogen was stopped. During the supply of propylene and hydrogen, the pressure inside the vessel gradually increased, and finally increased to 0.46 MPaG (gauge pressure, the same applies hereinafter). Then, residual polymerization was carried out, and when the pressure in the vessel reached 0.35 MPaG, the gas in the reactor was purged to 0.03 MPaG to obtain a propylene polymer (pre-stage polymerization step).
Then, after setting the autoclave at an internal temperature of 65 ° C., n-butanol was introduced at 16.0 mI, and then propylene was supplied at 2.4 kg / Hr and ethylene at 1.6 kg / Hr. After 90 minutes, the supply of ethylene and propylene was stopped to complete the polymerization. The pressure was 0.03 MPaG when the supply of ethylene and propylene was started, but was 0.09 MPaG when the supply was stopped (post-stage polymerization step).
The obtained slurry was transferred to the next tank with a stirrer, 2.5 liters of butanol was added, treated at 70 ° C. for 3 hours, and further transferred to the next tank with a stirrer, pure water 100 in which 20 g of sodium hydroxide was dissolved. After adding liters and treating for 1 hour, the aqueous layer was allowed to stand and then separated, and the catalyst residue was removed. The slurry was treated with a centrifuge to remove heptane and treated with a dryer at 80 ° C. for 3 hours to completely remove heptane to give 59.7 kg of Y14.
Polymerized with a Cheegler-based catalyst, the ratio of the propylene-α-olefin copolymer portion to the whole is 6.6% by weight, 44.7% by weight of ethylene as α-olefin, the intrinsic viscosity η is 14.8 dl / g, and the weight average molecular weight. Mw / Mn is 13.3, the ratio of the propylene homopolymer to the whole is 93.4% by weight, and the MFR (230 ° C., 2 ° C.) of the polyolefin resin (propylene block copolymer) is .16 kg load) is 12 g / 10 minutes, ME is 1.8, shows strain curability in 180 ° C stretch viscosity measurement (strain curability "yes"), and its strain curability (λmax (10)) is 2.07. It was a polyolefin resin of.

製造例2(PP−2の製造)
ポリプロピレン系樹脂(X)として材料A及び材料Bの製造を行った。
(材料A)
<触媒成分(A)の合成例1>
ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
(i)4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、4−i−プロピルフェニルボロン酸15g(91mmol)、ジメトキシエタン(DME)200mlを加え、炭酸セシウム90g(0.28mol)と蒸留水100mlの溶液を加え、4−ブロモインデン13g(67mmol)、テトラキストリフェニルホスフィノパラジウム5g(4mmol)を順に加え、80℃で6時間加熱した。
放冷後、反応液を蒸留水500ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで抽出した。エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−i−プロピルフェニル)インデンの無色液体15.4g(収率99%)を得た。
Production Example 2 (Production of PP-2)
Material A and material B were produced as polypropylene-based resin (X).
(Material A)
<Synthesis Example 1 of Catalyst Component (A)>
Dichloro [1,1'-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-i-propylphenyl) indenyl}] Hafnium synthesis: (component [A-1] (complex 1) ) Synthesis):
(I) Synthesis of 4- (4-i-propylphenyl) inden To a 500 ml glass reaction vessel, 15 g (91 mmol) of 4-i-propylphenylboronic acid and 200 ml of dimethoxyethane (DME) were added, and 90 g of cesium carbonate (DME) was added. 0.28 mol) and 100 ml of distilled water were added, 13 g (67 mmol) of 4-bromoinden and 5 g (4 mmol) of tetraxtriphenylphosphinopalladium were added in this order, and the mixture was heated at 80 ° C. for 6 hours.
After allowing to cool, the reaction solution was poured into 500 ml of distilled water, transferred to a separating funnel, and extracted with diisopropyl ether. The ether layer was washed with saturated brine and dried over sodium sulfate. The sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified on a silica gel column to obtain 15.4 g (yield 99%) of a colorless liquid of 4- (4-i-propylphenyl) inden.

(ii)2−ブロモ−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に4−(4−i−プロピルフェニル)インデン 15.4g(67mmol)、蒸留水7.2ml、DMSO 200mlを加え、ここにN−ブロモスクシンイミド17g(93mmol)を徐々に加えた。そのまま室温で2時間撹拌し、反応液を氷水500ml中に注ぎ入れ、トルエン100mlで3回抽出した。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸2g(11mmol)を加え、水分を除去しながら3時間加熱還流した。反応液を放冷後、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−i−プロピルフェニル)インデンの黄色液体19.8g(収率96%)を得た。
(Ii) Synthesis of 2-bromo-4- (4-i-propylphenyl) indene 15.4 g (67 mmol) of 4- (4-i-propylphenyl) indene in a 500 ml glass reaction vessel, 7.2 ml of distilled water. , DMSO 200 ml was added, and 17 g (93 mmol) of N-bromosuccinimide was gradually added thereto. The mixture was stirred as it was at room temperature for 2 hours, the reaction solution was poured into 500 ml of ice water, and the mixture was extracted 3 times with 100 ml of toluene. The toluene layer was washed with saturated brine, 2 g (11 mmol) of p-toluenesulfonic acid was added, and the mixture was heated under reflux for 3 hours while removing water. The reaction mixture was allowed to cool, washed with saturated brine, and dried over sodium sulfate. Sodium sulfate was filtered, the solvent was evaporated under reduced pressure, and the residue was purified on a silica gel column to obtain 19.8 g (yield 96%) of a yellow liquid of 2-bromo-4- (4-i-propylphenyl) inden. ..

(iii)2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、2−メチルフラン6.7g(82m1mol)、DME 100mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59mol/Lのn−ブチルリチウム−n−ヘキサン溶液51ml(81mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、そこにトリイソプロピルボレート20ml(87mmol)とDME50mlの溶液を滴下した。滴下後、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水50mlを加え加水分解した後、炭酸カリウム223gと蒸留水100mlの溶液、2−ブロモ−4−(4−i−プロピルフェニル)インデン 19.8g(63mmol)を順に加え、80℃で加熱し、低沸分を除去しながら3時間反応させた。
放冷後、反応液を蒸留水300ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで3回抽出した。エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデンの無色液体19.6g(収率99%)を得た。
Synthesis of (iii) 2- (2-methyl-5-frill) -4- (4-i-propylphenyl) inden In a 500 ml glass reaction vessel, 6.7 g (82 m1 mol) of 2-methylfuran and 100 ml of DME were placed. In addition, it was cooled to −70 ° C. in a dry ice-methanol bath. 51 ml (81 mmol) of a 1.59 mol / L n-butyllithium-n-hexane solution was added dropwise thereto, and the mixture was stirred as it was for 3 hours. The mixture was cooled to −70 ° C., and a solution of 20 ml (87 mmol) of triisopropylborate and 50 ml of DME was added dropwise thereto. After the dropping, the mixture was stirred overnight while gradually returning to room temperature.
After adding 50 ml of distilled water to the reaction solution and hydrolyzing it, 19.8 g (63 mmol) of 2-bromo-4- (4-i-propylphenyl) inden, a solution of 223 g of potassium carbonate and 100 ml of distilled water, was added in this order at 80 ° C. The mixture was heated in 1 and reacted for 3 hours while removing low boiling water.
After allowing to cool, the reaction solution was poured into 300 ml of distilled water, transferred to a separating funnel, and extracted 3 times with diisopropyl ether. The ether layer was washed with saturated brine and dried over sodium sulfate. The sodium sulfate was filtered, the solvent was evaporated under reduced pressure, and the residue was purified on a silica gel column. 19.6 g (19.6 g) of a colorless liquid of 2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indene. Yield 99%) was obtained.

(iv)ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの合成
500mlのガラス製反応容器に、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデン 9.1g(29mmol)、THF200mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−ヘキサン溶液17ml(28mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、1−メチルイミダゾール0.1ml(2mmol)、ジメチルジクロロシラン1.8g(14mmol)を順に加え、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄し、硫酸ナトリウムを加え反応液を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの淡黄色固体8.6g(収率88%)を得た。
(Iv) Synthesis of dimethylbis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) silane In a 500 ml glass reaction vessel, 2- (2-methyl-5-) 9.1 g (29 mmol) of frill) -4- (4-i-propylphenyl) indene and 200 ml of THF were added, and the mixture was cooled to −70 ° C. in a dry ice-methanol bath. 17 ml (28 mmol) of a 1.66 mol / L n-butyllithium-hexane solution was added dropwise thereto, and the mixture was stirred as it was for 3 hours. The mixture was cooled to −70 ° C., 0.1 ml (2 mmol) of 1-methylimidazole and 1.8 g (14 mmol) of dimethyldichlorosilane were added in this order, and the mixture was stirred overnight while gradually returning to room temperature.
Distilled water was added to the reaction solution, the mixture was transferred to a separatory funnel, washed with brine until neutral, sodium sulfate was added, and the reaction solution was dried. The sodium sulfate is filtered, the solvent is evaporated under reduced pressure, and the residue is purified on a silica gel column. 8.6 g (yield 88%) of a yellow solid was obtained.

(v)ジメチルシリレンビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)ハフニウムジクロライドの合成
500mlのガラス製反応容器に、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シラン8.6g(13mmol)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−n−ヘキサン溶液15ml(25mmol)を滴下し、3時間撹拌した。反応液の溶媒を減圧で留去し、トルエン400ml、ジエチルエーテル40mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.0g(13mmol)を加えた。その後、徐々に室温に戻しながら一夜撹拌した。
溶媒を減圧留去し、ジクロロメタン−ヘキサンで再結晶を行い、ジメチルシリレンビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)ハフニウムジクロライドのラセミ体を黄色結晶として7.6g(収率65%)得た。
得られたラセミ体についての1H−NMRによる同定値を以下に記す。
1H−NMR(C)同定結果
ラセミ体:δ0.95(s,6H),δ1.10(d,12H),δ2.08(s,6H),δ2.67(m,2H),δ5.80(d,2H),δ6.37(d,2H),δ6.74(dd,2H),δ7.07(d,2H),δ7.13(d,4H),δ7.28(s,2H),δ7.30(d,2H),δ7.83(d,4H)。
(V) Synthesis of dimethylsilylenebis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) hafnium dichloride In a 500 ml glass reaction vessel, dimethylbis (2- (2) 8.6 g (13 mmol) of −methyl-5-frill) -4- (4-i-propylphenyl) indenyl) silane and 300 ml of diethyl ether were added, and the mixture was cooled to −70 ° C. in a dry ice-methanol bath. To this, 15 ml (25 mmol) of a 1.66 mol / L n-butyllithium-n-hexane solution was added dropwise, and the mixture was stirred for 3 hours. The solvent of the reaction solution was distilled off under reduced pressure, 400 ml of toluene and 40 ml of diethyl ether were added, and the mixture was cooled to −70 ° C. in a dry ice-methanol bath. To this, 4.0 g (13 mmol) of hafnium tetrachloride was added. Then, the mixture was stirred overnight while gradually returning to room temperature.
The solvent was evaporated under reduced pressure and recrystallized from dichloromethane-hexane to give a racemic mixture of dimethylsilylenebis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) hafnium dichloride. 7.6 g (yield 65%) was obtained as yellow crystals.
The identification values of the obtained racemic mixture by 1H-NMR are described below.
1H-NMR (C 6 D 6 ) identification results racemate: δ0.95 (s, 6H), δ1.10 (d, 12H), δ2.08 (s, 6H), δ2.67 (m, 2H), δ5.80 (d, 2H), δ6.37 (d, 2H), δ6.74 (dd, 2H), δ7.07 (d, 2H), δ7.13 (d, 4H), δ7.28 (s) , 2H), δ7.30 (d, 2H), δ7.83 (d, 4H).

<触媒成分(A)の合成例2>
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様にして、実施した。
<Synthesis example 2 of catalyst component (A)>
rac-dichloro [1,1'-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] Hafnium synthesis: (Synthesis of component [A-1] (complex 2)):
The synthesis of rac-dichloro [1,1'-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium is described in Example 1 of JP-A-11-240909. It was carried out in the same manner as above.

<触媒合成例1>
(i)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水2,264gに96%硫酸(668g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)400gを加えた。このスラリーを90℃で210分加熱した。この反応スラリーに蒸留水4,000gを加えた後にろ過したところ、ケーキ状固体810gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム432g、蒸留水1,924gを加え硫酸リチウム水溶液としたところへ、上記ケーキ状固体を全量投入した。このスラリーを室温で120分反応させた。このスラリーに蒸留水4Lを加えた後にろ過し、更に蒸留水でpH5〜6まで洗浄し、ろ過を行ったところ、ケーキ状固体760gを得た。
得られた固体を窒素気流下100℃で一昼夜予備乾燥後、53μm以上の粗大粒子を除去し、更に200℃、2時間、減圧乾燥することにより、化学処理スメクタイト220gを得た。
この化学処理スメクタイトの組成は、Al:6.45重量%、Si:38.30重量%、Mg:0.98重量%、Fe:1.88重量%、Li:0.16重量%であり、Al/Si=0.175[mol/mol]であった。
<Catalyst synthesis example 1>
(I) Chemical treatment of ion-exchangeable layered silicate Add 96% sulfuric acid (668 g) to 2,264 g of distilled water in a separable flask, and then use montmorillonite (Benclay SL manufactured by Mizusawa Chemical Co., Ltd .: average particle size 19 μm) as the layered silicate. ) 400 g was added. The slurry was heated at 90 ° C. for 210 minutes. When 4,000 g of distilled water was added to this reaction slurry and then filtered, 810 g of a cake-like solid was obtained.
Next, 432 g of lithium sulfate and 1,924 g of distilled water were added to a separable flask to prepare an aqueous solution of lithium sulfate, and the entire amount of the cake-like solid was put into the flask. The slurry was reacted at room temperature for 120 minutes. After adding 4 L of distilled water to this slurry, it was filtered, further washed with distilled water to pH 5 to 6, and filtered to obtain 760 g of a cake-like solid.
The obtained solid was pre-dried at 100 ° C. under a nitrogen stream for a whole day and night, coarse particles of 53 μm or more were removed, and further dried under reduced pressure at 200 ° C. for 2 hours to obtain 220 g of chemically treated smectite.
The composition of this chemically treated smectite is Al: 6.45% by weight, Si: 38.30% by weight, Mg: 0.98% by weight, Fe: 1.88% by weight, Li: 0.16% by weight. Al / Si = 0.175 [mol / mol].

(ii)触媒調製及び予備重合
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト20gを入れ、ヘプタン(132mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を68.0mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウム(210μmol)をトルエン(42mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(90μmol)をトルエン(18mL)に溶解した(溶液2)。
先ほどの化学処理スメクタイトが入った1Lフラスコにトリイソブチルアルミニウム(0.84mmol:濃度143mg/mLのヘプタン溶液を1.2mL)を加えた後、上記溶液1を加えて20分間室温で撹拌した。その後更にトリイソブチルアルミニウム(0.36mmol:濃度143mg/mLのヘプタン溶液を0.50mL)を加えた後、上記溶液2を加えて、1時間室温で攪拌した。
その後、ヘプタンを338mL追加し、このスラリーを、1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを10g/時の速度でフィードし、4時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、1時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を17.0mL)を加えて5分攪拌した。
この固体を1時間減圧乾燥することにより、乾燥予備重合触媒52.8gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.64であった。
以下、このものを「予備重合触媒1」という。
(Ii) Catalyst preparation and prepolymerization 20 g of the chemically treated smectite obtained above was placed in a three-necked flask (volume 1 L), and heptane (132 mL) was added to prepare a slurry, to which triisobutylaluminum (25 mmol: concentration) was prepared. A 143 mg / mL heptane solution (68.0 mL) was added, and the mixture was stirred for 1 hour, washed with heptane until the residual liquid ratio became 1/100, and heptane was added so that the total volume became 100 mL.
Further, in another flask (volume 200 mL), the rac-dichloro [1,1'-dimethylsilylenebis {2- (5-methyl-2-furyl)-) prepared in Synthesis Example 1 of the catalyst component (A). 4- (4-i-propylphenyl) indenyl}] Hafnium (210 μmol) is dissolved in toluene (42 mL) (solution 1), and the catalyst component (A) is synthesized in another flask (volume 200 mL). Rac-dichloro [1,1'-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium (90 μmol) prepared in Example 2 was dissolved in toluene (18 mL) (solution 2). ).
After adding triisobutylaluminum (0.84 mmol: 1.2 mL of a heptane solution having a concentration of 143 mg / mL) to the 1 L flask containing the chemically treated smectite, the above solution 1 was added and the mixture was stirred at room temperature for 20 minutes. Then, triisobutylaluminum (0.36 mmol: 0.50 mL of a heptane solution having a concentration of 143 mg / mL) was further added, the above solution 2 was added, and the mixture was stirred at room temperature for 1 hour.
Then, 338 mL of heptane was added and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 10 g / hour, and prepolymerization was performed while maintaining 40 ° C. for 4 hours. Then, the propylene feed was stopped and residual polymerization was carried out for 1 hour. After removing the supernatant of the obtained catalyst slurry by decantation, triisobutylaluminum (6 mmol: 17.0 mL of heptane solution having a concentration of 143 mg / mL) was added to the remaining portion, and the mixture was stirred for 5 minutes.
The solid was dried under reduced pressure for 1 hour to obtain 52.8 g of a dry prepolymerization catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.64.
Hereinafter, this is referred to as "prepolymerization catalyst 1".

<重合>
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素9.2NL(標準状態の体積として、重量で0.82g)、トリイソブチルアルミニウム・n−ヘプタン溶液470ml(0.12mol)を加えた後、内温を70℃まで昇温した。次いで、予備重合触媒1を2.1g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。
得られたポリマーを90℃窒素気流下で1時間乾燥し、18.8kgの重合体(材料A)という)を得た。
触媒活性は、9000(g−PP/g−cat)であった。MFRは7.5g/10分であった。
<Polymerization>
After the inside of the stirring autoclave having an internal volume of 200 liters was sufficiently replaced with propylene, 40 kg of fully dehydrated liquefied propylene was introduced. To this was added 9.2 NL of hydrogen (0.82 g by weight as a standard volume) and 470 ml (0.12 mol) of a triisobutylaluminum n-heptane solution, and then the internal temperature was raised to 70 ° C. Next, 2.1 g (by weight excluding the prepolymerized polymer) of the prepolymerized catalyst 1 was press-fitted with argon to initiate polymerization, and the internal temperature was maintained at 70 ° C. After 2 hours, 100 ml of ethanol was press-fitted, unreacted propylene was purged, and the inside of the autoclave was replaced with nitrogen to terminate the polymerization.
The obtained polymer was dried under a nitrogen stream at 90 ° C. for 1 hour to obtain 18.8 kg of a polymer (referred to as Material A).
The catalytic activity was 9000 (g-PP / g-cat). The MFR was 7.5 g / 10 minutes.

(材料B(PP4)の製造)
(i)固体触媒成分(b)の製造
窒素置換した内容積50リットルの撹拌機付槽に脱水及び脱酸素したn−ヘプタン20リットルを導入し、次いで、塩化マグネシウム10モルとテトラブトキシチタン20モルとを導入して95℃で2時間反応させた後、温度を40℃に下げ、メチルヒドロポリシロキサン(粘度20センチストークス)12リットルを導入して更に3時間反応させた後、反応液を取り出し、生成した固体成分をn−ヘプタンで洗浄した。
引き続いて、前記撹拌機付槽を用いて該槽に脱水及び脱酸素したn−ヘプタン5リットルを導入し、次いで、上記で合成した固体成分をマグネシウム原子換算で3モル導入した。ついで、n−ヘプタン2.5リットルに、四塩化珪素5モルを混合して30℃、30分間かけて導入して、温度を70℃に上げ、3時間反応させた後、反応液を取り出し、生成した固体成分をn−ヘプタンで洗浄した。
さらに、引き続いて、前記撹拌機付槽を用いて該槽に脱水及び脱酸素したn−ヘプタン2.5リットルを導入し、フタル酸クロライド0.3モルを混合して90℃、30分間で導入し、95℃で1時間反応させた。反応終了後、n−ヘプタンで洗浄した。次いで、室温下四塩化チタン2リットルを追加し、100℃に昇温した後2時間反応した。反応終了後、n−ヘプタンで洗浄した。さらに、四塩化珪素0.6リットル、n−ヘプタン8リットルを導入し90℃で1時間反応し、n−ヘプタンで十分洗浄し、固体成分を得た。この固体成分中にはチタンが1.30質量%含まれていた。
次に、窒素置換した前記撹拌機付槽にn−ヘプタン8リットル、上記で得た固体成分を400gと、t−ブチル−メチル−ジメトキシシラン0.27モル、ビニルトリメチルシラン0.27モルを導入し、30℃で1時間接触させた。次いで15℃に冷却し、n−ヘプタンに希釈したトリエチルアルミニウム1.5モルを15℃条件下30分かけて導入、導入後30℃に昇温し2時間反応させ、反応液を取り出し、n−ヘプタンで洗浄して固体触媒成分390gを得た。
得られた固体触媒成分中には、チタンが1.22質量%含まれていた。
更に、n−ヘプタンを6リットル、n−ヘプタンに希釈したトリイソブチルアルミニウム1モルを15℃条件下30分かけて導入し、次いでプロピレンを20℃を越えないように制御しつつ約0.4kg/時間で1時間導入して予備重合した。その結果、固体1g当たり0.9gのプロピレンが重合したポリプロピレン含有の固体触媒成分(b)が得られた。
(Manufacturing of Material B (PP4))
(I) Production of solid catalyst component (b) 20 liters of dehydrated and deoxidized n-heptane was introduced into a nitrogen-substituted tank with an internal volume of 50 liters, followed by 10 mol of magnesium chloride and 20 mol of tetrabutoxytitanium. After introducing and reacting at 95 ° C. for 2 hours, the temperature was lowered to 40 ° C., 12 liters of methylhydropolysiloxane (viscosity 20 cm Stokes) was introduced and reacted for another 3 hours, and then the reaction solution was taken out. , The solid component produced was washed with n-heptane.
Subsequently, 5 liters of dehydrated and deoxidized n-heptane was introduced into the tank using the tank with a stirrer, and then 3 mol of the solid component synthesized above was introduced in terms of magnesium atoms. Then, 5 mol of silicon tetrachloride was mixed with 2.5 liters of n-heptane and introduced at 30 ° C. for 30 minutes, the temperature was raised to 70 ° C., the reaction was carried out for 3 hours, and then the reaction solution was taken out. The solid component produced was washed with n-heptane.
Further, subsequently, 2.5 liters of dehydrated and deoxidized n-heptane was introduced into the tank using the tank with a stirrer, 0.3 mol of phthalate chloride was mixed and introduced at 90 ° C. for 30 minutes. Then, the reaction was carried out at 95 ° C. for 1 hour. After completion of the reaction, the mixture was washed with n-heptane. Then, 2 liters of titanium tetrachloride was added at room temperature, the temperature was raised to 100 ° C., and then the reaction was carried out for 2 hours. After completion of the reaction, the mixture was washed with n-heptane. Further, 0.6 liters of silicon tetrachloride and 8 liters of n-heptane were introduced and reacted at 90 ° C. for 1 hour, and thoroughly washed with n-heptane to obtain a solid component. 1.30% by mass of titanium was contained in this solid component.
Next, 8 liters of n-heptane, 400 g of the solid component obtained above, 0.27 mol of t-butyl-methyl-dimethoxysilane, and 0.27 mol of vinyltrimethylsilane were introduced into the nitrogen-substituted tank with a stirrer. Then, they were contacted at 30 ° C. for 1 hour. Then, the mixture was cooled to 15 ° C., 1.5 mol of triethylaluminum diluted in n-heptane was introduced under 15 ° C. conditions for 30 minutes, the temperature was raised to 30 ° C. for 2 hours, the reaction solution was taken out, and n-. Washing with heptane gave 390 g of a solid catalyst component.
Titanium was contained in 1.22% by mass in the obtained solid catalyst component.
Further, 6 liters of n-heptane and 1 mol of triisobutylaluminum diluted to n-heptane were introduced under 15 ° C. conditions for 30 minutes, and then about 0.4 kg / kg of propylene was controlled so as not to exceed 20 ° C. It was introduced for 1 hour and prepolymerized. As a result, a polypropylene-containing solid catalyst component (b) in which 0.9 g of propylene was polymerized per 1 g of the solid was obtained.

(ii)プロピレン系ブロック共重合体の製造
(前段重合工程:プロピレン重合体の製造)
内容積230リットルの流動床式反応器を2個連結してなる連続反応装置を用いて重合を行った。まず第1反応器で、重合温度65℃、プロピレン分圧1.8MPa(絶対圧)、分子量制御剤としての水素を、水素/プロピレンのモル比で0.012となるように連続的に供給するとともに、トリエチルアルミニウムを5.25g/hrで、固体触媒成分(b)として、上記記載の触媒をポリマー重合速度が18kg/hrになるように供給し、プロピレン重合体を製造した。第1反応器で重合したパウダー(プロピレン重合体)は、反応器内のパウダー保有量を60kgとなるように連続的に抜き出し、第2反応器に連続的に移送した。
(Ii) Production of propylene-based block copolymer (pre-stage polymerization step: production of propylene polymer)
Polymerization was carried out using a continuous reactor in which two fluidized bed reactors having an internal volume of 230 liters were connected. First, in the first reactor, a polymerization temperature of 65 ° C., a propylene partial pressure of 1.8 MPa (absolute pressure), and hydrogen as a molecular weight control agent are continuously supplied so that the molar ratio of hydrogen / propylene is 0.012. At 5.25 g / hr of triethylaluminum, the catalyst described above was supplied as the solid catalyst component (b) so that the polymer polymerization rate was 18 kg / hr to produce a propylene polymer. The powder (propylene polymer) polymerized in the first reactor was continuously extracted so that the amount of powder held in the reactor was 60 kg, and was continuously transferred to the second reactor.

(後段重合工程:プロピレン−エチレン共重合体の製造)
続いて、第2反応器内が、重合温度80℃、圧力1.5MPa(絶対圧)になるように、プロピレンとエチレンをエチレン/プロピレンのモル比で0.002となるように連続的に供給すると共に、活性水素化合物としてエチルアルコールを、トリエチルアルミニウムに対して1.2倍モルになるように供給し、プロピレン−エチレン共重合体を製造した。第2反応器で重合が終了したパウダー(プロピレン重合体とプロピレン−エチレン共重合体とからなるプロピレン系ブロック共重合体)は、反応器内のパウダー保有量を60kgとなるように連続的にベッセルに抜き出した。水分を含んだ窒素ガスを供給して反応を停止させ、プロピレン系ブロック共重合体を得た。得られたプロピレン系ブロック共重合体を(材料B)とした。MFRは1.5g/10分であった。
前記製造で得られた材料Aのペレット:70%に材料Bのペレットを30%ドライブレンド後、230℃でペレット化してPP−2材料を得た。MFRは6g/10分であった。
(Post-stage polymerization step: Production of propylene-ethylene copolymer)
Subsequently, propylene and ethylene are continuously supplied so that the molar ratio of ethylene / propylene is 0.002 so that the inside of the second reactor has a polymerization temperature of 80 ° C. and a pressure of 1.5 MPa (absolute pressure). At the same time, ethyl alcohol was supplied as an active hydrogen compound in an amount of 1.2 times that of triethylaluminum to produce a propylene-ethylene copolymer. The powder (propylene-based block copolymer composed of a propylene polymer and a propylene-ethylene copolymer) that has been polymerized in the second reactor is continuously vesseld so that the amount of powder held in the reactor is 60 kg. I pulled it out. A nitrogen gas containing water was supplied to stop the reaction, and a propylene-based block copolymer was obtained. The obtained propylene-based block copolymer was used as (Material B). The MFR was 1.5 g / 10 minutes.
The pellet of the material A obtained in the above production: 70% of the pellet of the material B was dry-blended at 30%, and then pelletized at 230 ° C. to obtain a PP-2 material. The MFR was 6 g / 10 minutes.

製造例3(PP3の製造)
ポリプロピレン系樹脂(X)として材料Cの製造を行った。
材料C:
内容積200リットルのステンレス製オートクレーブにn―ヘプタン70リットル、Mg担持型チタン触媒(特開平4−348113の実施例1と同様にして調製された固体触媒)3g、およびトリエチルアルミニウム10gを加え、70℃に昇温し、水素とプロピレンを供給してMFR=50g/10分のプロピレン単独重合体を全重合体の70重量%製造した。次に水素をパージしてエチレンとプロピレンを供給し、エチレン含量10重量%、重量平均分子量480万のエチレン・プロピレン共重合体を全重合体の30重量%製造して樹脂組成物を得、材料Cとした。MFRは3g/10分であった
次に材料Cのペレット20重量%にポリオレフィン系樹脂(A)としてプロピレン系ブロック共重合体(日本ポリプロ社製、商品名「ノバテック(登録商標)PP BC3BH」、MFR(230℃、2.16kg荷重):8g/10分)を80重量%ドライブレンド後、230℃でペレット化して、PP−3の材料を得た。MFRは8g/10分であった。
Production Example 3 (Production of PP3)
Material C was produced as a polypropylene-based resin (X).
Material C:
70 liters of n-heptane, 3 g of Mg-supported titanium catalyst (solid catalyst prepared in the same manner as in Example 1 of JP-A-4-348113), and 10 g of triethylaluminum were added to a stainless steel autoclave having an internal volume of 200 liters. The temperature was raised to ° C., and hydrogen and propylene were supplied to produce a propylene homopolymer having MFR = 50 g / 10 minutes in an amount of 70% by weight based on the total polymer. Next, hydrogen was purged to supply ethylene and propylene, and an ethylene-propylene copolymer having an ethylene content of 10% by weight and a weight average molecular weight of 4.8 million was produced in an amount of 30% by weight based on the total polymer to obtain a resin composition. It was designated as C. The MFR was 3 g / 10 minutes. Next, 20% by weight of pellets of material C was added to a propylene block copolymer as a polyolefin resin (A) (manufactured by Japan Polypropylene Corporation, trade name "Novatec (registered trademark) PP BC3BH", MFR (230 ° C., 2.16 kg load): 8 g / 10 minutes) was dry-blended at 80% by weight and pelletized at 230 ° C. to obtain a material for PP-3. The MFR was 8 g / 10 minutes.

(2)β晶核剤(C)
β晶核剤(C)として、以下を使用した。
N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキサミド新日本理化株式会社製、商品名「エヌジェスターNU−100」上記NU−100:5重量%と上記PP1:95重量%からなる混合物を、口径25mmφの二軸押出機で、温度230℃で溶融押し出して、β晶核剤入プロピレン系マスターバッチ樹脂ペレット(β晶核剤MB)を得た。
(2) β crystal nucleating agent (C)
The following was used as the β crystal nucleating agent (C).
N, N'-dicyclohexyl-2,6-naphthalenecarboxamide, manufactured by New Japan Chemical Co., Ltd., trade name "Ngester NU-100" A mixture consisting of the above NU-100: 5% by weight and the above PP1: 95% by weight. A propylene-based masterbatch resin pellet containing a β-crystal nucleating agent (β-crystal nucleating agent MB) was obtained by melt extrusion at a temperature of 230 ° C. using a twin-screw extruder having a diameter of 25 mmφ.

[実施例1]
(スリットダイによる積層発泡シートの評価)
得られた材料:PP3のペレット100重量部に対し、発泡剤としてクラリアント社製発泡剤、商品名:CF40EJ(重曹、クエン酸系化学発泡剤)を0.5重量部とβ晶核剤MBを2重量部ドライブレンドで混ぜて、共押出機(プラ技研社製)の発泡層を押出す65φmmの押出機(スクリュー先端温度180℃)のホッパーに投入して押出量約60kg/時間で押出した。一方、PP1のペレット100重量部(以下スキン層と称す)を共押出機のスキン層を押出す50φmmの押出機(スクリュー先端190℃)のホッパーに投入して押出量約15kg/時間で押出し、総押出量75kg/時間の積層発泡シートを押出した。尚、発泡層の押出機前半においてまず溶融混練可塑化を行い、次いで押出機中間部分にて炭酸ガス定量供給装置(昭和炭酸社製)より時間当たり0.23kgで発泡剤として炭酸ガスを注入し、更に押出機の残存部分で炭酸ガスを可塑化樹脂中に混練することにより、炭酸ガスを均一に分散させた発泡剤含有樹脂を押出し、フィードブロック内でスキン層樹脂を発泡層の両側から積層して750mm幅のTダイ(設定温度180℃)からポリシングロールにキャストし、冷却固化を行い、巻き取ることによって積層発泡シートのサンプルを得た。得られた積層発泡シートの中心部TD方向を2cm角に切断して、エルマージャパン製の断面切断機でTD方向を20μmに切断して切断面を顕微鏡で観察したら、表、裏のスキン層厚みは30μmであり、発泡層の厚みは、940μmであった。
更にその積層発泡シートの発泡倍率は、3倍であり、β晶分率は、70%、連続気泡率は10%で気泡形態や積層発泡シートの外観も良好であった。
[Example 1]
(Evaluation of laminated foam sheet by slit die)
Obtained material: For 100 parts by weight of PP3 pellets, 0.5 parts by weight of Clariant's foaming agent, trade name: CF40EJ (baking soda, citric acid-based chemical foaming agent) and β crystal nucleating agent MB as a foaming agent. Mix with 2 parts by weight dry blend and put into the hopper of a 65φ mm extruder (screw tip temperature 180 ° C) that extrudes the foam layer of a coextruder (manufactured by Plastic Giken Co., Ltd.) and extrude at an extrusion rate of about 60 kg / hour. .. On the other hand, 100 parts by weight of PP1 pellets (hereinafter referred to as skin layer) is put into the hopper of a 50φ mm extruder (screw tip 190 ° C.) that extrudes the skin layer of the coextruder and extruded at an extrusion rate of about 15 kg / hour. A laminated foam sheet with a total extrusion rate of 75 kg / hour was extruded. The foam layer is first melt-kneaded and plasticized in the first half of the extruder, and then carbon dioxide gas is injected as a foaming agent at 0.23 kg per hour from a carbon dioxide gas quantitative supply device (manufactured by Showa Carbonate Co., Ltd.) in the middle part of the extruder. Furthermore, by kneading carbon dioxide gas into the plasticized resin in the remaining part of the extruder, the foaming agent-containing resin in which carbon dioxide gas is uniformly dispersed is extruded, and the skin layer resin is laminated from both sides of the foam layer in the feed block. Then, a T-die having a width of 750 mm (set temperature of 180 ° C.) was cast onto a polishing roll, cooled and solidified, and wound to obtain a sample of a laminated foam sheet. The TD direction of the central part of the obtained laminated foam sheet was cut into 2 cm squares, the TD direction was cut to 20 μm with a cross-section cutting machine manufactured by Elmer Japan, and the cut surface was observed with a microscope. Was 30 μm, and the thickness of the foam layer was 940 μm.
Further, the foaming ratio of the laminated foamed sheet was 3 times, the β crystal fraction was 70%, the open cell ratio was 10%, and the bubble morphology and the appearance of the laminated foamed sheet were also good.

1.シート成形性と外観性評価
シート成形性:積層発泡シートを成形する際、易賦形性で発泡倍率や連気率、及び幅方向の各層厚みが安定して問題なく成形でき、光沢ムラ、スジ、荒れがないものを ◎ と評価した。積層発泡シートを成形する際、賦形性や発泡倍率、連気率、各層厚み、表面の光沢ムラやスジ、又は荒れのいずれか一つが成形不良で生じたものを ○ と評価した。積層発泡シートを成形する際、賦形性や発泡倍率、連気率、各層厚み、表面の光沢ムラやスジ、又は荒れのいずれか二つが成形不良で生じたものを△と評価した。積層発泡シートを成形する際、各層の材料の粘度バランスの不良による表面肌荒れ、ダイスのリップでの目やに等の堆積が発生し、更に表面の光沢ムラやスジ、更には荒れが目視で確認できたものを × と評価した。
1. 1. Sheet formability and appearance evaluation Sheet formability: When a laminated foam sheet is molded, it is easy to shape and the foaming ratio, air coefficient, and thickness of each layer in the width direction can be stably molded without problems, and uneven gloss and streaks can be formed. , Those without roughness were evaluated as ◎. When molding a laminated foam sheet, any one of shapeability, foaming ratio, air coefficient, thickness of each layer, uneven gloss and streaks on the surface, and roughness was evaluated as ◯. When molding the laminated foamed sheet, any two of shapeability, foaming ratio, air coefficient, thickness of each layer, uneven gloss and streaks on the surface, and roughness were evaluated as Δ. When molding the laminated foam sheet, surface skin roughness due to improper viscosity balance of the material of each layer, accumulation of eyes and eyes on the dice lip, etc. occurred, and further surface gloss unevenness, streaks, and roughness could be visually confirmed. Those were evaluated as x.

2.熱成形による評価
上記で得られた積層発泡シートを用い、(株)浅野研究所製両面真空成形装置を用い、上下ヒーター温度380℃、雌雄一対の金型の温度がそれぞれ雌金型温度:40℃、雄金型温度:50℃にて、タテ16cm、ヨコ22cm、深さ4.5cmの長方形容器を作成し、容器成形性と容器外観を目視にて評価した。
評価は、以下の基準に拠った。
イ)容器成形性:
金型規格である容器底面の2mm厚みが得られる加熱時間幅を記入し、代表加熱時間で成形した容器底面の刻印転写状況を目で観察して容器外観を下記判断で判定して表3に記入した。
・2mm厚みが得られるβ晶核剤入り積層発泡シートの加熱時間は、42秒で容器が賦形出来、しかも賦形時間のウインドウは、42秒から62秒と20秒間も幅が広かった。
・容器外観:
◎:比較例1と同等の平滑性であって、刻印転写が良く特段の外観差が認められない
○:比較例1より平滑性や刻印転写が若干劣る
△:比較例1に比べ平滑性と刻印転写が大きく劣る
×:比較例1に比べ賦形性が劣り、容器に偏肉や穴あきが発生した。
2. 2. Evaluation by thermoforming Using the laminated foam sheet obtained above, using a double-sided vacuum forming device manufactured by Asano Laboratories Co., Ltd., the upper and lower heater temperature is 380 ° C, and the temperature of the pair of male and female molds is the female mold temperature: 40. A rectangular container having a length of 16 cm, a width of 22 cm, and a depth of 4.5 cm was prepared at ° C. and a male mold temperature of 50 ° C., and the container moldability and the appearance of the container were visually evaluated.
The evaluation was based on the following criteria.
B) Container moldability:
Enter the heating time width to obtain the 2 mm thickness of the bottom surface of the container, which is the mold standard, and visually observe the engraved transfer status of the bottom surface of the container molded with the representative heating time, judge the appearance of the container by the following judgment, and see Table 3. I filled it out.
The heating time of the laminated foam sheet containing β-crystal nucleating agent, which gives a thickness of 2 mm, was 42 seconds, and the container could be shaped, and the window of the shaping time was wide, from 42 seconds to 62 seconds, which was 20 seconds.
・ Container appearance:
⊚: Smoothness equivalent to that of Comparative Example 1, good engraving transfer and no particular difference in appearance is observed. ○: Smoothness and engraving transfer are slightly inferior to Comparative Example 1. Δ: Smoothness compared to Comparative Example 1. Engraving transfer is significantly inferior ×: The shapeability is inferior to that of Comparative Example 1, and uneven thickness and perforation occur in the container.

ロ)容器の圧縮強度
オートグラフ5KNG(島津製作所社製)に直径250mmの円形状の2枚の圧縮治具(下面板に容器を設置し、上面板を下面板側に移動して容器を圧縮する)を組み立て、両面真空成形機で得た発泡容器を容器底面が上になるように下面板の中心に設置して、上面板で容器底面を速度200mm/分の速さで15mm圧縮して、その最大圧縮荷重を測定した。β晶核剤含有発泡容器の最大荷重はβ晶核剤無容器より強いことから耐荷重の品質面向上や更なる減量化が期待できる。
B) Container compression strength Two circular compression jigs with a diameter of 250 mm (install the container on the bottom plate and move the top plate to the bottom plate side to compress the container) on Autograph 5KNG (manufactured by Shimadzu Corporation) ), Place the foam container obtained by the double-sided vacuum forming machine in the center of the bottom plate so that the bottom of the container faces up, and compress the bottom of the container by 15 mm at a speed of 200 mm / min with the top plate. , The maximum compressive load was measured. Since the maximum load of the foam container containing β crystal nucleating agent is stronger than that of the container without β crystal nucleating agent, it is expected that the quality of the load capacity will be improved and the weight will be further reduced.

ハ)容器の断熱性
理化工業(株)製携帯用温度計(商品名:DP−700)に同社製温度センサー:ST−50を差し込み、前記温度センサーの先端を両面真空成形機で作った容器底面の外側にセロハンテープで貼り付けた。次に前記温度センサーを貼り付けた長方形容器にポットで98℃沸騰したお湯を800mI注ぎ込み、180秒後容器底面の温度変化と実際に手で触れて断熱性を評価した。
○:表示温度が60℃前後で、容器底面は熱さを感じずに手で持つことが出来る。
△:表示温度が65℃前後で、容器底面熱さを若干感じるが何とか容器底面を手で持つ
ことが出来る。
×:表示温度が70℃前後で、容器底面が熱くて数秒以上は持てない。
C) Heat insulation of the container A container made by inserting the temperature sensor ST-50 manufactured by Rika Kogyo Co., Ltd. into a portable thermometer (trade name: DP-700) and making the tip of the temperature sensor with a double-sided vacuum forming machine. It was attached to the outside of the bottom surface with cellophane tape. Next, 800 mI of hot water boiled at 98 ° C. was poured into a rectangular container to which the temperature sensor was attached, and after 180 seconds, the temperature change on the bottom surface of the container was actually touched and the heat insulating property was evaluated.
◯: The indicated temperature is around 60 ° C., and the bottom surface of the container can be held by hand without feeling the heat.
Δ: When the displayed temperature is around 65 ° C., the bottom surface of the container feels a little hot, but the bottom surface of the container can be held by hand.
X: The displayed temperature is around 70 ° C., and the bottom surface of the container is hot and cannot be held for more than a few seconds.

[実施例2]
β晶核剤MBが2重量部とCF40EJが0.5重量部入ったPP3のペレット85重量%に、実施例1で得た積層発泡シートを5mm角のペレタイザーで切断した粉砕材を再生材として15重量%の割合で混合して(以下PP7と称す)押出機のホッパーに投入して発泡層を押出し、表、裏のスキン層の厚みを30μmから15μmに薄くした他は、実施例1と同様に2種3層の積層発泡シート:1000μmを作った。積層発泡シートの賦形は安定して成形できたので、積層発泡シートの品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 2]
A pulverized material obtained by cutting the laminated foam sheet obtained in Example 1 with a 5 mm square pelletizer into 85% by weight of PP3 pellets containing 2 parts by weight of β crystal nucleating agent MB and 0.5 parts by weight of CF40EJ is used as a recycled material. Except that the foam layer was extruded by mixing at a ratio of 15% by weight and thrown into the hopper of the extruder (hereinafter referred to as PP7) to reduce the thickness of the front and back skin layers from 30 μm to 15 μm, as in Example 1. Similarly, a laminated foam sheet of 2 types and 3 layers: 1000 μm was prepared. Since the shaping of the laminated foamed sheet could be stably formed, the quality of the laminated foamed sheet (air rate, β crystal fraction, appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例3]
PP3にβ晶核剤MBを2重量部添加し、PP1の表・裏のそれぞれのスキン層厚みを5μmに薄くして、PP3の発泡層990μmの両側にスキン層を積層した他は、実施例1と同様に1000μmの積層発泡シートを作り、積層発泡シートの品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 3]
Examples include adding 2 parts by weight of β crystal nucleating agent MB to PP3, reducing the thickness of each skin layer on the front and back sides of PP1 to 5 μm, and laminating skin layers on both sides of the foam layer 990 μm of PP3. A laminated foamed sheet having a thickness of 1000 μm was prepared in the same manner as in No. 1, and the quality of the laminated foamed sheet (air rate, β crystal fraction, appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例4]
PP3にβ晶核剤MBを2重量部添加し、表、裏のスキン層の厚みを50μmに厚くして、PP3の発泡層を900μmにした他は、実施例1と同様に2種3層の積層発泡シート1000μmを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 4]
2 types and 3 layers as in Example 1 except that 2 parts by weight of β crystal nucleating agent MB was added to PP3, the thickness of the front and back skin layers was increased to 50 μm, and the foamed layer of PP3 was increased to 900 μm. A laminated foam sheet of 1000 μm was prepared, and the quality (air rate, β crystal fraction, appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例5]
PP3にβ晶核剤MBを1重量部添加し、表、裏のスキン層の厚みを30μmにした他は、実施例1と同様に2種3層の積層発泡シート1000μmを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 5]
Except for adding 1 part by weight of β crystal nucleating agent MB to PP3 to make the thickness of the front and back skin layers 30 μm, a laminated foam sheet of 2 types and 3 layers was prepared in the same manner as in Example 1, and the quality (ream The air rate, β crystal fraction, appearance, etc.) were evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例6]
PP3にβ晶核剤MBを2重量部添加し、スキン層が合流するフィードブロック前の片側(裏)にロット棒を入れてスキン層樹脂が流れないように2種2層構成にした他は、実施例1と同様にPP3とPP1を押出し、表側のスキン層厚みが30μmで発泡層の厚みが970μmの2種2層の積層発泡シート1000μmを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 6]
Other than adding 2 parts by weight of β crystal nucleating agent MB to PP3 and putting a lot rod on one side (back side) in front of the feed block where the skin layers merge to prevent the skin layer resin from flowing. , PP3 and PP1 are extruded in the same manner as in Example 1 to prepare 1000 μm of two kinds of two-layer laminated foam sheets having a skin layer thickness of 30 μm on the front side and a foam layer thickness of 970 μm, and quality (air rate and β crystal fraction). , Appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例7]
PP3にβ晶核剤MBを2重量部添加し、積層発泡シートの発泡倍率を1.5倍にした他は、実施例1と同様に2種3層の積層発泡シート1000μm厚みを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 7]
Except for adding 2 parts by weight of β crystal nucleating agent MB to PP3 to increase the foaming ratio of the laminated foamed sheet to 1.5 times, the thickness of the laminated foamed sheet of 2 types and 3 layers was made 1000 μm as in Example 1, and the quality was improved. (Continuous air rate, β crystal fraction, appearance, etc.) were evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例8]
PP2にβ晶核剤MBを2重量部添加し、PP2を発泡層に使用し、積層発泡シートの発泡倍率を3.8に変更した他は、実施例1と同様に2種3層の積層発泡シート1000μm厚みを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 8]
Two types and three layers were laminated in the same manner as in Example 1, except that 2 parts by weight of β crystal nucleating agent MB was added to PP2, PP2 was used for the foam layer, and the expansion ratio of the laminated foam sheet was changed to 3.8. A foam sheet having a thickness of 1000 μm was prepared, and the quality (air rate, β crystal fraction, appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例9]
PP2にβ晶核剤MBを2重量部添加し、PP2を発泡層に使用し、積層発泡シートの発泡倍率を4.6倍にした他は、実施例1と同様に2種3層の積層発泡シート1000μm厚みを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 9]
Two types and three layers were laminated as in Example 1, except that 2 parts by weight of β crystal nucleating agent MB was added to PP2, PP2 was used for the foam layer, and the expansion ratio of the laminated foam sheet was 4.6 times. A foam sheet having a thickness of 1000 μm was prepared, and the quality (air rate, β crystal fraction, appearance, etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例10]
PP3にβ晶核剤MBを2重量部添加して、PP1の表・裏のスキン層厚みをそれぞれ30μm、PP3の発泡層厚みを740μmとした総厚み800μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 10]
By adding 2 parts by weight of β crystal nucleating agent MB to PP3, a laminated foam sheet having a total thickness of 800 μm with the skin layer thickness of the front and back surfaces of PP1 being 30 μm and the foam layer thickness of PP3 being 740 μm was produced, and the quality (ream) was obtained. Evaluation of air coefficient, β crystal fraction, appearance, etc.) and a container was made with the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例11]
PP2の材料50重量%に、ポリオレフィン系樹脂(A)として日本ポリプロ(株)製 PPホモグレード:商品名ノバテック MA1Bを50重量%ドライブレンド後、230℃でペレット化した混合樹脂(PP5、MFR11.5g/10分)100重量部にβ晶核剤MBを2重量部添加して、PP5を発泡層に使用した他は、実施例1と同様にPP1の表・裏のスキン層厚みをそれぞれ30μm、発泡層の厚みを940μmとした総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 11]
PP homograde manufactured by Japan Polypropylene Corporation as a polyolefin resin (A) in 50% by weight of the material of PP2: Trade name Novatec MA1B 50% by weight dry blended and pelletized at 230 ° C. mixed resin (PP5, MFR11. (5 g / 10 minutes) 2 parts by weight of β crystal nucleating agent MB was added to 100 parts by weight, and PP5 was used for the foam layer. However, the skin layer thickness on the front and back sides of PP1 was 30 μm, respectively, as in Example 1. , Make a laminated foam sheet with a total thickness of 1000 μm with a foam layer thickness of 940 μm, evaluate the quality (air rate, β crystal fraction, appearance, etc.) and make a container with the same double-sided vacuum forming machine as in Example 1. The container was observed and evaluated.

[実施例12]
ポリプロピレン系樹脂(X)としてPP4(MFR1.5g/10分)にβ晶核剤MBを2重量部添加し、PP4を発泡層に使用した他は、実施例1と同様にPP1の表・裏のスキン層厚みをそれぞれ30μm、発泡層の厚みを940μmとした総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 12]
The front and back surfaces of PP1 are the same as in Example 1, except that 2 parts by weight of β crystal nucleating agent MB is added to PP4 (MFR 1.5 g / 10 minutes) as a polypropylene resin (X) and PP4 is used for the foam layer. A laminated foam sheet having a total thickness of 1000 μm with a skin layer thickness of 30 μm and a foam layer thickness of 940 μm was prepared, and quality (air rate, β crystal fraction, appearance, etc.) was evaluated and the same double-sided vacuum as in Example 1 A container was made with a molding machine, and the container was observed and evaluated.

[実施例13]
3種5層の共押出機(プラ技研社製)を用い、発泡層を押出す65φmmの押出機(スクリュー先端温度180℃)のホッパーに、PP3のペレット100重量部に対してβ晶核剤MB剤を2重量部添加した樹脂を投入して押出量約50kg/時間で押出した。一方、PP1のペレット100重量部(以下スキン層と称す)を共押出機のスキン層を押出す50φmmの押出機(スクリュー先端190℃)のホッパーに投入して押出量約10kg/時間で押出した。更に、PP1の材料50重量%に、日本ポリプロ(株)製 タルクMB:商品名ノバテック TX1447MBNを50重量%ドライブレンドした混合樹脂(以下PPFと称す)100重量%のペレット100重量部(以下中間層と称す)を、中間層を押出す65φmmの押出機(スクリュー先端200℃)のホッパーに投入して押出量約30kg/時間で押出し、総押出量90kg/時間の3種5層の積層発泡シートを押出した。
得られた積層発泡シートの中心部TD方向を2cm角に切断して、エルマージャパン製の断面切断機でTD方向を20μmにスライスして切断面を顕微鏡で観察したところ、コア層の発泡層厚みは、800μm、フィラー層の中間層厚みは、それぞれ90μm、最外層のスキン層厚みは、それぞれ10μmの総厚1000μmの積層発泡シートであった。
更にその積層発泡シートの発泡倍率は、1.9倍であり、発泡層の発泡倍率は3倍であり、β晶分率は、60%、連続気泡率は10%で気泡形態や積層発泡シートの外観も良好であった。実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 13]
Using a 3 type 5 layer coextruder (manufactured by Plastic Giken Co., Ltd.), a β crystal nucleating agent was applied to the hopper of a 65φ mm extruder (screw tip temperature 180 ° C) that extrudes the foam layer with respect to 100 parts by weight of PP3 pellets. A resin to which 2 parts by weight of the MB agent was added was added and extruded at an extrusion rate of about 50 kg / hour. On the other hand, 100 parts by weight of PP1 pellets (hereinafter referred to as skin layer) was put into the hopper of a 50φ mm extruder (screw tip 190 ° C.) that extrudes the skin layer of the coextruder and extruded at an extrusion rate of about 10 kg / hour. .. Further, 100 parts by weight of pellets (hereinafter referred to as intermediate layer) of 100% by weight of a mixed resin (hereinafter referred to as PPF) obtained by dry blending 50% by weight of PP1 material with 50% by weight of Tarku MB manufactured by Nippon Polypro Co., Ltd. Is put into the hopper of a 65φ mm extruder (screw tip 200 ° C.) that extrudes the intermediate layer and extruded at an extrusion rate of about 30 kg / hour, and a total extrusion rate of 90 kg / hour is a laminated foam sheet of 3 types and 5 layers. Was extruded.
The central portion of the obtained laminated foam sheet was cut into 2 cm squares, sliced into 20 μm in the TD direction with a cross-section cutting machine manufactured by Elmer Japan, and the cut surface was observed with a microscope. Was 800 μm, the thickness of the intermediate layer of the filler layer was 90 μm, and the thickness of the outermost skin layer was 10 μm, respectively, and the total thickness was 1000 μm.
Further, the foaming ratio of the laminated foamed sheet is 1.9 times, the foaming ratio of the foamed layer is 3 times, the β crystal fraction is 60%, the open cell ratio is 10%, and the bubble form and the laminated foamed sheet. The appearance was also good. A container was made with the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[実施例14]
PP3にβ晶核剤MBを2重量部添加して発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ150μm、発泡層の厚みを680μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 14]
Example 13 except that 2 parts by weight of β crystal nucleating agent MB was added to PP3 and extruded as a foam layer to set the skin layer thickness of PP1 to 10 μm, the thickness of the intermediate layer to 150 μm, and the thickness of the foam layer to 680 μm. In the same manner as above, a laminated foam sheet having a total thickness of 1000 μm was prepared, the quality (air rate, β crystal fraction, appearance, etc.) was evaluated, and a container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[実施例15]
β晶核剤MBが1重量部とCF40EJが0.5重量部入ったPP3のペレット85重量%に、実施例13で得た積層発泡シートを5mm角のペレタイザーで切断した粉砕材を再生材として15重量%の割合で混合して(以下PP8と称す)押出機のホッパーに投入して発泡層を押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作った。積層発泡シートの賦形は安定して成形できたので、積層発泡シートの品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 15]
A pulverized material obtained by cutting the laminated foam sheet obtained in Example 13 with a 5 mm square pelletizer into 85% by weight of PP3 pellets containing 1 part by weight of β crystal nucleating agent MB and 0.5 part by weight of CF40EJ is used as a recycled material. The foam layer is extruded by mixing at a ratio of 15% by weight and putting it into the hopper of the extruder (hereinafter referred to as PP8), and the skin layer thickness of PP1 is 10 μm each, the thickness of the intermediate layer is 90 μm, and the thickness of the foam layer is adjusted. A laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in Example 13 except that the thickness was 800 μm. Since the shaping of the laminated foam sheet was able to be molded stably, the quality of the laminated foam sheet (air rate, β crystal fraction, appearance, etc.) was evaluated, and the container was made with a double-sided vacuum forming machine, and the container was observed and evaluated. Was carried out.

[実施例16]
PP3にβ晶核剤MBを2重量部添加して発泡倍率1.5倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 16]
2 parts by weight of β crystal nucleating agent MB was added to PP3 and extruded as a foam layer having a foaming ratio of 1.5 times, and the skin layer thickness of PP1 was 10 μm, the thickness of the intermediate layer was 90 μm, and the thickness of the foam layer was 800 μm. Other than that, a laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in Example 13, quality (air rate, β crystal fraction, appearance, etc.) was evaluated, a container was made with a double-sided vacuum forming machine, and the container was observed. Evaluation was carried out.

[実施例17]
PP2にβ晶核剤MBを2重量部添加し、PP2を発泡層に使用して発泡倍率3.8倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 17]
2 parts by weight of β crystal nucleating agent MB was added to PP2, PP2 was used as a foam layer and extruded as a foam layer having a foaming ratio of 3.8 times, and the skin layer thickness of PP1 was 10 μm and the thickness of the intermediate layer was 90 μm. In addition to setting the thickness of the foam layer to 800 μm, a laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in Example 13, and the quality (air rate, β crystal fraction, appearance, etc.) was evaluated and a double-sided vacuum forming machine was used. A container was made, and the container was observed and evaluated.

[実施例18]
PP3にβ晶核剤MBを2重量部添加して発泡倍率3倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ80μm、発泡層の厚みを620μmとし、総厚み800μmとした他は、実施例13と同様の積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 18]
2 parts by weight of β crystal nucleating agent MB was added to PP3 and extruded as a foam layer having a foaming ratio of 3 times, and the skin layer thickness of PP1 was 10 μm, the thickness of the intermediate layer was 80 μm, and the thickness of the foam layer was 620 μm. Except for the thickness of 800 μm, a laminated foam sheet similar to that of Example 13 was prepared, quality (air rate, β crystal fraction, appearance, etc.) was evaluated, and a container was made with a double-sided vacuum forming machine, and the container was observed and evaluated. Was carried out.

[実施例19] PP2の材料50重量%に、ポリオレフィン系樹脂(A)として日本ポリプロ(株)製 PPホモグレード:商品名ノバテック MA1Bを50重量%ドライブレンド後、230℃でペレット化した混合樹脂(PP5、MFR11.5g/10分)100重量部にβ晶核剤MBを2重量部添加して、PP5を発泡倍率3倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。 [Example 19] A mixed resin obtained by dry-blending 50% by weight of a PP2 material and 50% by weight of PP homograde manufactured by Japan Polypropylene Corporation as a polyolefin resin (A) and then pelletizing at 230 ° C. (PP5, MFR 11.5 g / 10 minutes) 2 parts by weight of β crystal nucleating agent MB was added to 100 parts by weight, PP5 was extruded as a foam layer having a foaming ratio of 3 times, and the skin layer thickness of PP1 was 10 μm and an intermediate layer, respectively. A laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in Example 13, except that the thickness of each was 90 μm and the thickness of the foam layer was 800 μm, and the quality (reactivity rate, β crystal fraction, appearance, etc.) was evaluated. A container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[実施例20]
ポリプロピレン系樹脂(X)としてPP4(MFR1.5g/10分)にβ晶核剤MBを2重量部添加して発泡倍率3倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、品質(連気率やβ晶分率、外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Example 20]
As a polypropylene resin (X), 2 parts by weight of β crystal nucleating agent MB was added to PP4 (MFR 1.5 g / 10 minutes) and extruded as a foam layer having a foaming ratio of 3 times, and the skin layer thickness of PP1 was 10 μm and an intermediate layer. A laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in Example 13, except that the thickness of each was 90 μm and the thickness of the foam layer was 800 μm, and the quality (air rate, β crystal fraction, appearance, etc.) was evaluated. A container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[実施例21]
PP3にβ晶核剤MBを2重量部添加して発泡層として押出し、PP1をスキン層として押出し、両スキン厚みをそれぞれ20μm、発泡層の厚みを1260μmとした他は実施例13と同様に実施し、総厚み1300μmの2種3層積層発泡シート(シート1)を作製した。実施例1と同様に成形した発泡シートの連気率、発泡倍率、シート外観の評価を実施した。次に、両面真空成形機に両面真空金型として両面真空用どんぶり形状容器金型(口外径170mm、口内径160mm、深さ50mm、ドライ運転時の雄雌型の容器底面の隙間(設定隙間と呼ぶ)が2.5mm、側面隙間が2.0mm)を取り付け、両面真空成形を実施し、どんぶり容器を得た。容器の底面を切り出し、厚さ、密度を測定し、また、容器の金型転写性を目視にて評価した。容器性能として、断熱性を評価した(表7)。
シートの連気率11%、発泡倍率3倍、シートの外観◎、容器の厚さ2.86mmで合格、シート物性(連気率、発泡倍率、外観)、両面真空容器物性(底面厚さ、密度、金型転写性、断熱性)に優れた容器であった。
容器底面厚さ、容器底面の密度、金型再現性、断熱性の全てが○(合格)のとき、容器の総合評価を○(合格)とした。(結果を表6、表7に示した。)
(両面真空成形機)
両面真空成形機として、(株)浅野研究所製 小型多機能真空圧空成形機FKSを用いた。
(容器底面厚さ)
(株)ミツトヨ製デジタルノギスを使用して、切り取った容器の底面より約3cm×3cmをカッターナイフで切り出し、厚さを測定した。
評価は以下のように行った。
設定隙間より厚い:○(合格)
設定隙間より薄い:×(不合格)
(金型転写性)
金型形状の転写性を目視にて評価した。
金型の凹凸、面、刻印が転写出来ているもの:○(合格)
金型転写が出来ていないもの:×(不合格)
(断熱性)
実施例1と同様に実施した。
[Example 21]
2 parts by weight of β crystal nucleating agent MB was added to PP3 and extruded as a foam layer, PP1 was extruded as a skin layer, and the thickness of both skins was 20 μm and the thickness of the foam layer was 1260 μm, as in Example 13. Then, a two-kind three-layer laminated foam sheet (sheet 1) having a total thickness of 1300 μm was prepared. The air coefficient, the foaming ratio, and the appearance of the foamed sheet molded in the same manner as in Example 1 were evaluated. Next, in a double-sided vacuum forming machine, as a double-sided vacuum mold, a bowl-shaped container mold for double-sided vacuum (outer diameter 170 mm, inner diameter 160 mm, depth 50 mm, gap between male and female container bottom during dry operation (with set gap) (Called) is 2.5 mm and the side gap is 2.0 mm), and double-sided vacuum forming was performed to obtain a bowl container. The bottom surface of the container was cut out, the thickness and density were measured, and the mold transferability of the container was visually evaluated. Insulation was evaluated as the container performance (Table 7).
Sheet air rate 11%, foaming ratio 3 times, sheet appearance ◎, container thickness 2.86 mm passed, sheet physical properties (air rate, foaming ratio, appearance), double-sided vacuum container physical properties (bottom thickness, bottom surface thickness, It was a container with excellent density, mold transferability, and heat insulation properties.
When the thickness of the bottom surface of the container, the density of the bottom surface of the container, the reproducibility of the mold, and the heat insulating property were all ○ (passed), the overall evaluation of the container was evaluated as ○ (passed). (The results are shown in Tables 6 and 7.)
(Double-sided vacuum forming machine)
As a double-sided vacuum forming machine, a compact multifunctional vacuum pressure air forming machine FKS manufactured by Asano Laboratories Co., Ltd. was used.
(Thickness of bottom of container)
Using a digital caliper manufactured by Mitutoyo Co., Ltd., about 3 cm x 3 cm was cut out from the bottom surface of the cut container with a cutter knife, and the thickness was measured.
The evaluation was performed as follows.
Thicker than the set gap: ○ (pass)
Thinner than the set gap: × (failed)
(Mold transferability)
The transferability of the mold shape was visually evaluated.
The unevenness, surface, and engraving of the mold can be transferred: ○ (pass)
Mold transfer not completed: × (failed)
(Thermal insulation properties)
It was carried out in the same manner as in Example 1.

[実施例22]
PP3の代わりにPP2とした以外は、実施例21と同様に実施した。成形したシートは、シート2とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 22]
It was carried out in the same manner as in Example 21 except that PP2 was used instead of PP3. The molded sheet was designated as sheet 2. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例23]
PP3の代わりにPP7とした以外は、実施例21と同様に実施した。成形したシートは、シート3とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 23]
It was carried out in the same manner as in Example 21 except that PP7 was used instead of PP3. The molded sheet was designated as sheet 3. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例24]
PP3の代わりにPP5とした以外は、実施例21と同様に実施した。成形したシートは、シート4とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 24]
It was carried out in the same manner as in Example 21 except that PP5 was used instead of PP3. The molded sheet was designated as sheet 4. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例25]
スキン層/中間層/発泡層/中間層/スキン層の順に積層された、それぞれの層厚さが順に20μm/130μm/1000μm/130μm/20μm(総厚さ1300μm)のシートとなるように調整した以外は実施例13と同様に3種5層シートを成形し、シート5とした。
実施例1と同様に成形した発泡シートの連気率、発泡倍率、シート外観の評価を実施した。次に、両面真空成形機に両面真空金型として両面真空用どんぶり形状容器金型(口外径170mm、口内径160mm、深さ50mm、ドライ運転時の雄雌型の容器底面の隙間(設定隙間と呼ぶ)が2.5mm、側面隙間が2.0mm)を取り付け、両面真空成形を実施し、どんぶり容器を得た。容器の底面を切り出し、厚さ、密度を測定し、また、容器の金型転写性を目視にて評価した。容器性能として、断熱性を評価した(表7)。評価は実施例21と同様に実施し、結果を表6、表7に示した。
総合評価で○(合格)であった。
[Example 25]
The skin layer / intermediate layer / foam layer / intermediate layer / skin layer were laminated in this order, and the thickness of each layer was adjusted to be 20 μm / 130 μm / 1000 μm / 130 μm / 20 μm (total thickness 1300 μm) in order. A sheet 5 was formed by molding a three-kind five-layer sheet in the same manner as in Example 13.
The air coefficient, the foaming ratio, and the appearance of the foamed sheet molded in the same manner as in Example 1 were evaluated. Next, in a double-sided vacuum forming machine, as a double-sided vacuum mold, a bowl-shaped container mold for double-sided vacuum (outer diameter 170 mm, inner diameter 160 mm, depth 50 mm, gap between male and female container bottom during dry operation (with set gap) (Called) is 2.5 mm and the side gap is 2.0 mm), and double-sided vacuum forming was performed to obtain a bowl container. The bottom surface of the container was cut out, the thickness and density were measured, and the mold transferability of the container was visually evaluated. Insulation was evaluated as the container performance (Table 7). The evaluation was carried out in the same manner as in Example 21, and the results are shown in Tables 6 and 7.
The overall evaluation was ○ (passed).

[実施例26]
発泡層の材料として、PP3の代わりにPP2を使用した以外は実施例25と同様に実施した。成形したシートは、シート6とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 26]
The same procedure as in Example 25 was carried out except that PP2 was used instead of PP3 as the material for the foam layer. The molded sheet was designated as sheet 6. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例27]
発泡層の材料として、PP3の代わりにPP7を使用した以外は実施例25と同様に実施した。成形したシートは、シート7とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 27]
The same procedure as in Example 25 was carried out except that PP7 was used as the material for the foam layer instead of PP3. The molded sheet was designated as sheet 7. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例28]
発泡層の材料として、PP3の代わりにPP5を使用した以外は実施例25と同様に実施した。成形したシートは、シート8とした。結果を表6、表7に示した。総合評価で○(合格)であった。
[Example 28]
The same procedure as in Example 25 was carried out except that PP5 was used as the material for the foam layer instead of PP3. The molded sheet was designated as sheet 8. The results are shown in Tables 6 and 7. The overall evaluation was ○ (passed).

[実施例29]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例21と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 29]
The same procedure as in Example 21 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例30]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例22と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 30]
The same procedure as in Example 22 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例31]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例23と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 31]
The same procedure as in Example 23 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例32]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例24と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 32]
The same procedure as in Example 24 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例33]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例25と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 33]
The same procedure as in Example 25 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例34]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例26と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 34]
The same procedure as in Example 26 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例35]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例27と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 35]
The same procedure as in Example 27 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[実施例36]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は実施例28と同様に実施した。結果を表7に示した。総合評価で○(合格)であった。
[Example 36]
The same procedure as in Example 28 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm. The results are shown in Table 7. The overall evaluation was ○ (passed).

[比較例1]
実施例1からβ晶核剤MBを抜いた他は、実施例1と同様にPP1とPP3の2種3層の積層発泡シート1000μm厚みを作り、品質(連気率やβ晶分率、外観等)を評価した。更に実施例1と同じ両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 1]
Except for removing the β crystal nucleating agent MB from Example 1, a laminated foam sheet of 2 types and 3 layers of PP1 and PP3 was prepared in the same manner as in Example 1 with a thickness of 1000 μm, and the quality (air rate, β crystal fraction, appearance) Etc.) was evaluated. Further, a container was prepared by the same double-sided vacuum forming machine as in Example 1, and the container was observed and evaluated.

[比較例2]
PP6(日本ポリプロ(株)製 PPブロックコポリマーグレード:商品名ノバテックBC6C、MFR2.7g/10分)にβ晶核剤MBを添加しない他は、実施例1と同様にPP1をスキン層に、PP6を発泡層にした2種3層の積層発泡シート1000μm厚みを作り、実施例1と同様な品質評価(連気率や外観等)や両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 2]
PP6 (PP block copolymer grade manufactured by Japan Polypropylene Corporation: trade name Novatec BC6C, MFR 2.7 g / 10 minutes) with PP1 as the skin layer and PP6 as in Example 1 except that β crystal nucleating agent MB is not added. Make a 1000 μm thickness of a laminated foam sheet of 2 types and 3 layers using Carried out.

[比較例3]
スキン層の押出機(φ50mm)を停止して、PP3からβ晶核剤MBを抜いた単層の発泡シート1000μm厚みを作った他は、実施例1と同様な品質評価(連気率や外観等)や両面真空成形機での容器成形性や評価を実施した。
[Comparative Example 3]
The same quality evaluation as in Example 1 (air rate and appearance) except that the skin layer extruder (φ50 mm) was stopped to make a single-layer foam sheet 1000 μm thick by removing the β crystal nucleating agent MB from PP3. Etc.) and the container formability and evaluation with a double-sided vacuum forming machine were carried out.

[比較例4]
PP2を発泡層に使用し、PP2にβ晶核剤MBを添加しない他は、実施例1と同様にPP1の表・裏のスキン層厚みをそれぞれ30μm、PP2の発泡層厚みを940μmとした総厚み1000μmの積層発泡シートを作り、実施例1と同様な品質評価(連気率や外観等)と両面真空成形機での容器成形性や評価を実施した。
[Comparative Example 4]
The total thickness of the front and back skin layers of PP1 was 30 μm and the thickness of the foam layer of PP2 was 940 μm, as in Example 1, except that PP2 was used for the foam layer and the β crystal nucleating agent MB was not added to PP2. A laminated foam sheet having a thickness of 1000 μm was prepared, and the same quality evaluation (air rate, appearance, etc.) as in Example 1 and container moldability and evaluation with a double-sided vacuum forming machine were carried out.

[比較例5]
PP4を発泡層に使用し、PP4にβ晶核剤MBを添加しない他は、実施例1と同様にPP1の表・裏のスキン層厚みをそれぞれ30μm、PP4の発泡層厚みを940μmとした総厚み1000μmの積層発泡シートを作り、実施例1と同様な品質評価(連気率や外観等)と両面真空成形機での容器成形性や評価を実施した。
[Comparative Example 5]
The total thickness of the front and back skin layers of PP1 was 30 μm and the thickness of the foamed layer of PP4 was 940 μm, respectively, except that PP4 was used for the foam layer and the β crystal nucleating agent MB was not added to PP4. A laminated foam sheet having a thickness of 1000 μm was prepared, and the same quality evaluation (air rate, appearance, etc.) as in Example 1 and container moldability and evaluation with a double-sided vacuum forming machine were carried out.

[比較例6]
PP3からβ晶核剤MBを抜いた他は、実施例10と同様な積層発泡シート800μm厚の積層発泡シートを作り、実施例1と同様な品質評価(連気率や外観等)と両面真空成形機での容器成形性や評価を実施した。
[Comparative Example 6]
A laminated foam sheet with a thickness of 800 μm similar to that of Example 10 was prepared except that the β crystal nucleating agent MB was removed from PP3, and the same quality evaluation (air rate, appearance, etc.) and double-sided vacuum as in Example 1 were made. The container formability and evaluation with a molding machine were carried out.

[比較例7]
PP6(日本ポリプロ(株)製 PPブロックコポリマーグレード:商品名ノバテックBC6C)をスキン層として押出し、PP6とPP3にβ晶核剤MBを添加しなかった他は、実施例1と同様にPP3を発泡層にした2種3層の積層発泡シート1000μm厚みを作り、実施例1と同様な成形性や品質(連気率や外観等)を評価し、両面真空成形機での容器成形性や評価を実施した。積層発泡シートの表面荒れや幅方向の厚み変動が発生し、連気率の数値も若干高かった。
[Comparative Example 7]
PP6 (PP block copolymer grade manufactured by Japan Polypropylene Corporation: trade name Novatec BC6C) was extruded as a skin layer, and PP3 was foamed in the same manner as in Example 1 except that β crystal nucleating agent MB was not added to PP6 and PP3. A 1000 μm thickness of a laminated foam sheet of 2 types and 3 layers was made into layers, and the same moldability and quality (air rate, appearance, etc.) as in Example 1 were evaluated, and the container moldability and evaluation with a double-sided vacuum forming machine were evaluated. Carried out. The surface of the laminated foam sheet was rough and the thickness fluctuated in the width direction, and the value of the continuous air ratio was also slightly high.

[比較例8]
PP3からβ晶核剤MBを抜いた発泡倍率3倍の発泡層として押出し、PP1のスキン層厚みをそれぞれ10μm、中間層の厚みをそれぞれ90μm、発泡層の厚みを800μmとした他は、実施例13と同様に総厚み1000μmの積層発泡シートを作り、実施例13と同様な品質(連気率や外観等)の評価と両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 8]
Example except that the skin layer thickness of PP1 was 10 μm, the thickness of the intermediate layer was 90 μm, and the thickness of the foamed layer was 800 μm. A laminated foam sheet having a total thickness of 1000 μm was prepared in the same manner as in 13, and the same quality (air rate, appearance, etc.) as in Example 13 was evaluated, and a container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[比較例9]
PP6(日本ポリプロ(株)製 PPブロックコポリマーグレード:商品名ノバテックBC6C)を発泡層として押出し、PP6にβ晶核剤MBを添加しない他は、実施例13と同様にPP1をスキン層に、PPFを中間層に、PP6を発泡層とした3種5層の積層発泡シート1000μm厚みを作り、実施例13と同様な品質(連気率や外観等)の評価や両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 9]
PP6 (PP block copolymer grade manufactured by Japan Polypropylene Corporation: trade name Novatec BC6C) is extruded as a foam layer, and PP1 is used as a skin layer and PPF as in Example 13 except that β crystal nucleating agent MB is not added to PP6. To make a 1000 μm thickness of a laminated foam sheet of 3 types and 5 layers with PP6 as an intermediate layer, evaluate the same quality (air rate, appearance, etc.) as in Example 13 and make a container with a double-sided vacuum forming machine. , The container was observed and evaluated.

[比較例10]
PP2を発泡層に使用し、PP2にβ晶核剤MBを添加しない他は、実施例13と同様にPP1をスキン層に、PPFを中間層に、PP2を発泡層にした3種5層の積層発泡シート1000μm厚みを作り、実施例13と同様な品質(連気率や外観等)の評価や両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 10]
3 types and 5 layers with PP1 as the skin layer, PPF as the intermediate layer, and PP2 as the foam layer, except that PP2 is used for the foam layer and the β crystal nucleating agent MB is not added to PP2, as in Example 13. A laminated foam sheet having a thickness of 1000 μm was prepared, and the same quality (air rate, appearance, etc.) as in Example 13 was evaluated, and a container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[比較例11]
PP4を発泡層に使用し、PP4にβ晶核剤MBを添加しない他は、実施例13と同様にPP1をスキン層に、PPFを中間層に、PP4を発泡層にした3種5層の積層発泡シート1000μm厚みを作り、実施例13と同様な品質(連気率や外観等)の評価や両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 11]
3 types and 5 layers with PP1 as the skin layer, PPF as the intermediate layer, and PP4 as the foam layer, except that PP4 was used for the foam layer and the β crystal nucleating agent MB was not added to PP4, as in Example 13. A laminated foam sheet having a thickness of 1000 μm was prepared, and the same quality (air rate, appearance, etc.) as in Example 13 was evaluated, and a container was made with a double-sided vacuum forming machine, and the container was observed and evaluated.

[比較例12]
PP3からβ晶核剤MBを抜いた発泡倍率3倍、厚み620μmの発泡層を押出した他は、実施例13と同様にPP1を厚み10μmのスキン層に、PPFを厚み80μmの中間層に、PP3を発泡層にした3種5層の積層発泡シート800μm厚みを作り、実施例13と同様な品質(連気率や外観等)の評価や両面真空成形機で容器を作り、容器の観察や評価を実施した。
[Comparative Example 12]
PP1 was used as a skin layer having a thickness of 10 μm, and PPF was used as an intermediate layer having a thickness of 80 μm, except that a foam layer having a foaming magnification of 3 times and a thickness of 620 μm was extruded from PP3 by removing the β crystal nucleating agent MB. A laminated foam sheet of 3 types and 5 layers with PP3 as a foam layer was made to have a thickness of 800 μm, and the same quality (air rate, appearance, etc.) as in Example 13 was evaluated, a container was made with a double-sided vacuum forming machine, and the container was observed. Evaluation was carried out.

[比較例13]
β晶核剤MBの添加量を0重量部とした以外は、実施例21と同様に実施した。
[Comparative Example 13]
The same procedure as in Example 21 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例14]
β晶核剤MBの添加量を0重量部とした以外は、実施例22と同様に実施した。
[Comparative Example 14]
The same procedure as in Example 22 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例15]
β晶核剤MBの添加量を0重量部とした以外は、実施例23と同様に実施した。
[Comparative Example 15]
The same procedure as in Example 23 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例16]
β晶核剤MBの添加量を0重量部とした以外は、実施例24と同様に実施した。
[Comparative Example 16]
The same procedure as in Example 24 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例17]
β晶核剤MBの添加量を0重量部とした以外は、実施例25と同様に実施した。
[Comparative Example 17]
The same procedure as in Example 25 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例18]
β晶核剤MBの添加量を0重量部とした以外は、実施例26と同様に実施した。
[Comparative Example 18]
The same procedure as in Example 26 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例19]
β晶核剤MBの添加量を0重量部とした以外は、実施例27と同様に実施した。
[Comparative Example 19]
The same procedure as in Example 27 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例20]
β晶核剤MBの添加量を0重量部とした以外は、実施例28と同様に実施した。
[Comparative Example 20]
The same procedure as in Example 28 was carried out except that the amount of the β crystal nucleating agent MB added was 0 parts by weight.

[比較例21]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例13と同様に実施した。
[Comparative Example 21]
The same procedure as in Comparative Example 13 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例22]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例14と同様に実施した。
[Comparative Example 22]
The same procedure as in Comparative Example 14 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例23]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例15と同様に実施した。
[Comparative Example 23]
The same procedure as in Comparative Example 15 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例24]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例16と同様に実施した。
[Comparative Example 24]
The same procedure as in Comparative Example 16 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例25]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例17と同様に実施した。
[Comparative Example 25]
The same procedure as in Comparative Example 17 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例26]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例18と同様に実施した。
[Comparative Example 26]
The same procedure as in Comparative Example 18 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例27]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例19と同様に実施した。
[Comparative Example 27]
The same procedure as in Comparative Example 19 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

[比較例28]
両面真空金型の設定隙間を4.5mm、側面隙間を2.4mmとした以外は比較例20と同様に実施した。
[Comparative Example 28]
The same procedure as in Comparative Example 20 was carried out except that the setting gap of the double-sided vacuum mold was 4.5 mm and the side gap was 2.4 mm.

Figure 0006759989
以上の結果を下記表2〜5に示す。
Figure 0006759989
The above results are shown in Tables 2 to 5 below.

Figure 0006759989
Figure 0006759989

Figure 0006759989
Figure 0006759989

Figure 0006759989
Figure 0006759989

Figure 0006759989
Figure 0006759989

Figure 0006759989
Figure 0006759989

Figure 0006759989
Figure 0006759989

本発明の積層発泡シートは、熱成形性に優れ、しかもその熱成形品は、軽量且つ剛性や断熱性が得られ、かつリサイクル性に優れた発泡成形品を得ることができるので、食品容器、飲料カップ、緩衝材や自動車部品、工業産業用部品、トレーなどに好適に利用でき、その工業的価値は極めて高い。 The laminated foam sheet of the present invention is excellent in thermoformability, and the thermoformed product is lightweight, has rigidity and heat insulating properties, and can be obtained as a foam molded product having excellent recyclability. It can be suitably used for beverage cups, cushioning materials, automobile parts, industrial parts, trays, etc., and its industrial value is extremely high.

Claims (10)

ポリオレフィン系樹脂を含有する発泡層と発泡層の片面又は両面にポリオレフィン系樹脂を含有するスキン層を積層し、各スキン層の厚みが1μm以上で、且つスキン層の合計厚みがシート全体の厚みの50%以下であるポリオレフィン系の積層発泡シートであって、ポリオレフィン系樹脂を含有する発泡層にβ晶核剤を含有し、ポリオレフィン系樹脂を含有するスキン層にβ晶核剤を配合しないことを特徴とする積層発泡シート。 A foam layer containing a polyolefin resin and a skin layer containing a polyolefin resin are laminated on one side or both sides of the foam layer, the thickness of each skin layer is 1 μm or more, and the total thickness of the skin layers is the thickness of the entire sheet. A polyolefin-based laminated foamed sheet having a content of 50% or less, in which the foamed layer containing the polyolefin-based resin contains the β-crystal nucleating agent, and the skin layer containing the polyolefin-based resin does not contain the β-crystal nucleating agent. A characteristic laminated foam sheet. スキン層と発泡層との層間のうちの少なくとも1つの層間にポリオレフィン系樹脂を含有する中間層を積層し、各スキン層と各中間層の厚みが1μm以上で、且つ各スキン層と各中間層との合計厚みがシート全体の厚みの50%以下である請求項1に記載の積層発泡シート。 An intermediate layer containing a polyolefin resin is laminated between at least one of the layers between the skin layer and the foam layer, the thickness of each skin layer and each intermediate layer is 1 μm or more, and each skin layer and each intermediate layer. The laminated foam sheet according to claim 1, wherein the total thickness of the sheet is 50% or less of the total thickness of the sheet. 発泡層がポリプロピレン系樹脂(X)を20〜100重量%及び前記ポリプロピレン系樹脂(X)以外のポリオレフィン系樹脂(A)を80〜0重量%含有する発泡層用樹脂(Z)からなり、前記発泡層用樹脂(Z)の溶融張力Y(温度230℃、単位:g)とMFR(メルトフローレート:温度230℃、2.16kg荷重、単位:g/10分)が以下の式を満たす請求項1又は2に記載の積層発泡シート。
Y > 7.4446(MFR)−0.7419
The foamed layer is composed of a foamed layer resin (Z) containing 20 to 100% by weight of a polypropylene-based resin (X) and 80 to 0% by weight of a polyolefin-based resin (A) other than the polypropylene-based resin (X). Claim that the melt tension Y (temperature 230 ° C., unit: g) and MFR (melt flow rate: temperature 230 ° C., 2.16 kg load, unit: g / 10 minutes) of the foamed layer resin (Z) satisfy the following formula. Item 2. The laminated foam sheet according to Item 1 or 2.
Y> 7.4446 (MFR) -0.7419
スキン層に用いるポリオレフィン系樹脂(B)の190℃で測定した溶融弾性率(以下MEと称す)が1.4以上である請求項1〜3のいずれかに記載の積層発泡シート。
ここで、溶融弾性率は、メルトインデクサーを用い、シリンダー温度190℃、内径1.00mm、長さ8mmのノズルを用い、シリンダーにピストンを挿入して6分後に規定押出速度0.1g/分でストランドを押出し、その1分間後のストランドをエチルアルコールに浸漬し、固化したストランドの直径を測定して、ME=(ストランドの直径)/(ノズル内径)として算出する。
The laminated foam sheet according to any one of claims 1 to 3, wherein the polyolefin resin (B) used for the skin layer has a melt elastic modulus (hereinafter referred to as ME) measured at 190 ° C. of 1.4 or more.
Here, the melt elastic modulus is determined by using a melt indexer, using a nozzle having a cylinder temperature of 190 ° C., an inner diameter of 1.00 mm, and a length of 8 mm, and 6 minutes after inserting the piston into the cylinder, the specified extrusion speed is 0.1 g / min. The strand is extruded with, and the strand one minute later is immersed in ethyl alcohol, and the diameter of the solidified strand is measured and calculated as ME = (strand diameter) / (nozzle inner diameter).
中間層が、中間層全体の重量に対して充填剤を5〜60重量%含有することを特徴とする請求項2〜4のいずれかに記載の積層発泡シート。 The laminated foam sheet according to any one of claims 2 to 4, wherein the intermediate layer contains 5 to 60% by weight of a filler with respect to the weight of the entire intermediate layer. 積層発泡シートの発泡倍率が1.3〜5倍であり、連続気泡率が50%以下及び厚みが0.1〜10mmである請求項1〜5のいずれかに記載の積層発泡シート。 The laminated foam sheet according to any one of claims 1 to 5, wherein the laminated foam sheet has a foaming ratio of 1.3 to 5 times, an open cell ratio of 50% or less, and a thickness of 0.1 to 10 mm. 積層発泡シートのβ晶分率が12%以上である請求項1〜6のいずれかに記載の積層発泡シート。 The laminated foamed sheet according to any one of claims 1 to 6, wherein the laminated foamed sheet has a β crystal fraction of 12% or more. 下記の(1)又は(2)の積層発泡シートを用いて、両面真空成形法によって熱成形体を得ることを特徴とする熱成形体の製造方法。
(1)ポリオレフィン系樹脂を含有する発泡層と発泡層の片面又は両面にポリオレフィン系樹脂を含有するスキン層を積層し、各スキン層の厚みが1μm以上で、且つスキン層の合計厚みがシート全体の厚みの50%以下であるポリオレフィン系の積層発泡シートであって、ポリオレフィン系樹脂を含有する発泡層にβ晶核剤を含有し、ポリオレフィン系樹脂を含有するスキン層にβ晶核剤を配合しない積層発泡シート。
(2)ポリオレフィン系樹脂を含有する発泡層と発泡層の片面又は両面にポリオレフィン系樹脂を含有するスキン層を積層し、スキン層と発泡層との層間のうちの少なくとも1つの層間にポリオレフィン系樹脂を含有する中間層を積層し、各スキン層と各中間層の厚みが1μm以上で、且つ各スキン層と各中間層との合計厚みがシート全体の厚みの50%以下であるポリオレフィン系の積層発泡シートであって、ポリオレフィン系樹脂を含有する発泡層にβ晶核剤を含有し、ポリオレフィン系樹脂を含有するスキン層にβ晶核剤を配合しない積層発泡シート。
A method for producing a thermoformed product, which comprises obtaining a thermoformed product by a double-sided vacuum forming method using the laminated foam sheet according to (1) or (2) below.
(1) A foam layer containing a polyolefin resin and a skin layer containing a polyolefin resin are laminated on one side or both sides of the foam layer, the thickness of each skin layer is 1 μm or more, and the total thickness of the skin layers is the entire sheet. A polyolefin-based laminated foamed sheet having a thickness of 50% or less of the above, in which a β-crystal nucleating agent is contained in a foam layer containing a polyolefin-based resin, and a β-crystal nucleating agent is blended in a skin layer containing a polyolefin-based resin. Not laminated foam sheet.
(2) A foam layer containing a polyolefin resin and a skin layer containing a polyolefin resin are laminated on one or both sides of the foam layer, and the polyolefin resin is sandwiched between at least one layer between the skin layer and the foam layer. Lamination of polyolefin-based layers in which the thickness of each skin layer and each intermediate layer is 1 μm or more, and the total thickness of each skin layer and each intermediate layer is 50% or less of the total thickness of the sheet. A laminated foamed sheet that contains a β-crystal nucleating agent in a foaming layer containing a polyolefin-based resin and does not contain a β-crystal nucleating agent in a skin layer containing a polyolefin-based resin.
両面真空成形法に用いる雌雄一対の金型の温度が40℃以上である請求項8に記載の熱成形体の製造方法。 The method for producing a thermoformed body according to claim 8, wherein the temperature of the pair of male and female dies used in the double-sided vacuum forming method is 40 ° C. or higher. 熱成形体のβ晶分率が40%以下である請求項8又は9に記載の熱成形体の製造方法。 The method for producing a thermoformed body according to claim 8 or 9, wherein the β crystal fraction of the thermoformed body is 40% or less.
JP2016216930A 2015-11-26 2016-11-07 Laminated foam sheet and thermoformed body Active JP6759989B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230647 2015-11-26
JP2015230647 2015-11-26

Publications (2)

Publication Number Publication Date
JP2017105171A JP2017105171A (en) 2017-06-15
JP6759989B2 true JP6759989B2 (en) 2020-09-23

Family

ID=59058529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216930A Active JP6759989B2 (en) 2015-11-26 2016-11-07 Laminated foam sheet and thermoformed body

Country Status (1)

Country Link
JP (1) JP6759989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064355B2 (en) * 2018-03-13 2022-05-10 サンアロマー株式会社 Method for manufacturing polyolefin multilayer sheet or film
JP7030598B2 (en) * 2018-03-30 2022-03-07 デンカ株式会社 Laminated foam sheet and molded body
JP7249757B2 (en) * 2018-10-30 2023-03-31 株式会社イノアックコーポレーション Electromagnetic wave shielding material
CN110116532B (en) * 2019-05-10 2021-02-12 四川大学 Polypropylene film rich in beta transcrystalline and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790275A4 (en) * 1994-10-31 1998-10-07 Kanegafuchi Chemical Ind Prefoamed particles of polypropylene resin and process for producing the same
JP2008162022A (en) * 2006-12-26 2008-07-17 Japan Polypropylene Corp Foamed polyolefin based resin laminated sheet and molding using the sheet
JP2009126140A (en) * 2007-11-27 2009-06-11 Japan Polypropylene Corp Foamed molding
JP5457072B2 (en) * 2009-05-21 2014-04-02 日本ポリプロ株式会社 Method for extruding laminated foamed sheet using polyolefin resin
JP2013057023A (en) * 2011-09-09 2013-03-28 Tosoh Corp Foamed container
US9272795B2 (en) * 2012-05-17 2016-03-01 Henkel IP & Holding GmbH Integral hot melt adhesive packaging films and use thereof
JP5915593B2 (en) * 2012-06-05 2016-05-11 日本ポリプロ株式会社 Thermoformed body, method for producing the same, and heat treatment method
JP5994751B2 (en) * 2013-08-09 2016-09-21 スターライト工業株式会社 Continuous molding method for thermally conductive resin moldings
JP6642137B2 (en) * 2015-03-16 2020-02-05 日本ポリプロ株式会社 Laminated foam sheet and thermoformed body

Also Published As

Publication number Publication date
JP2017105171A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6642137B2 (en) Laminated foam sheet and thermoformed body
TWI519397B (en) Process for producing molded article of expanded polylolefin-based resin beads, and molded article of expanded polylolefin-based resin beads
JP6759989B2 (en) Laminated foam sheet and thermoformed body
TWI331163B (en) Polypropylene resin expanded particle and molded article using it
JP7057752B2 (en) Polypropylene resin pre-foamed particles and method for producing the pre-foamed particles
WO2013058255A1 (en) Polypropylene resin composition and expanded molding
JP5417023B2 (en) Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same
US20220073262A1 (en) Insulated multi-layer sheet and method of making the same
JP2007154172A (en) Polypropylene-based resin foamed sheet, laminated foamed sheet, method of manufacturing polypropylene-based resin foamed sheet, and formed article therefrom
JPH01301235A (en) Laminated foamed sheet suitable for vacuum molding
JP2008162022A (en) Foamed polyolefin based resin laminated sheet and molding using the sheet
CN103665584B (en) Propylene and ethylene high melt strength, propylene foaming plate or sheet material and preparation method thereof
JP2009126140A (en) Foamed molding
JP2013001826A (en) Resin composition for injection foam, injection foam molded article, and method for producing the article
JP5162329B2 (en) Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same
JP5597361B2 (en) Thermoforming sheet comprising polyolefin resin laminated foam sheet and thermoforming article using the same
JP2019111727A (en) Decorative molding and method for producing the same
US20130189512A1 (en) Resin composition for injection molding, injection molded foam article, and method for producing injection molded foam article
JP5457072B2 (en) Method for extruding laminated foamed sheet using polyolefin resin
JP5728435B2 (en) Polypropylene thermoplastic resin composition for foam molding and foam molded article
JP2006248187A (en) Polypropylene resin-laminated foamed sheet, its manufacturing method and its molding
JP2004331722A (en) Polypropylene-based resin foamed sheet and molded article
JP2011162731A (en) Abs resin composition for foaming and expanded molding
JP5751670B2 (en) Polyethylene resin multilayer foam sheet and molded article thereof
JP6673157B2 (en) Polypropylene resin multilayer foam sheet, foam container and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250